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Abstract. This article concerns a general fractional differential equation of

order between 1 and 2. We consider the cases where the nonlinear term con-

tains or does not contain other (lower order) fractional derivatives (of Riemann-
Liouville type). Moreover, the nonlinearity involves also a nonlinear non-local

in time term. The case where this non-local term has a singular kernel is
treated as well. It is proved, in all these situations, that solutions approach

power type functions at infinity.

1. Introduction

We consider the initial value problem

(Dα+1
0+ y)(t) = f

(
t, (Dβ

0+y)(t),
∫ t

0

k(t, s, (Dγ
0+y)(s))ds

)
, t > 0,

(I1−α
0+ y)(0+) = a1, (Dα

0+y)(0+) = a2, a1, a2 ∈ R,
(1.1)

whereDα+1
0+ , Dβ

0+ andDγ
0+ are the Riemann-Liouville fractional derivatives of orders

α + 1, β and γ, respectively, 0 ≤ β ≤ α < 1 and 0 ≤ γ ≤ α < 1. The definition
of the Riemann-Liouville fractional derivative is given in the next section. Notice
that Dα+1

0+ = DDα
0+ = (Dα

0+)′, 0 < α < 1.
We study the asymptotic behavior of solutions of this nonlinear fractional integro-

differential problem. Different types of the nonlinear function f and the kernel k
are discussed. In this regard, we consider the case of fractional and non-fractional
source terms and also the case of singular kernels.

It is of great importance to have an idea about the behavior of solutions for
large values of the time variable. Unfortunately, relatively few problems only can
be solved explicitly. Therefore there is a need to find analytical techniques which
allow us to explore the behavior of solutions without solving the differential equa-
tions. The study of asymptotically linear solutions to linear and nonlinear ordinary
differential equations is important in many fields like fluid mechanics, differential
geometry, bidimensional gravity, Jacobi fields, etc. see e.g. [17].

2010 Mathematics Subject Classification. 35B40, 34A08, 26D10.
Key words and phrases. Asymptotic behavior; fractional integro-differential equation;

Riemann-Liouville fractional derivative; nonlocal source; integral inequalities.
c©2017 Texas State University.

Submitted April 27, 2017. Published May 17, 2017.

1



2 A. M. AHMAD, K. M. FURATI, N.-E. TATAR EJDE-2017/134

In many cases, the main idea to study the asymptotic behavior of solutions is
to establish sufficient reasonable conditions ensuring comparison or similarity with
the long-time behavior of solutions of simpler differential equations. This important
issue has attracted many researchers, see [13, 16, 21, 22, 25].

Recently, some papers discussed the issue of asymptotic behavior for some types
of fractional differential equations, see [5, 7, 9, 12, 18, 20]. In 2004, Momani, et al.
[19] discussed the Lyapunov stability and asymptotic stability for solutions of the
fractional integro-differential equation

(Dα
a+y)(t) = f(t, y(t)) +

∫ t

a

k(t, s, y(s))ds, 0 < α ≤ 1, t ≥ a, (1.2)

with the initial condition (I1−α
a+ y)(a+) = c0 ∈ R. The assumptions

|f(t, y(t))| ≤ γ(t)|y|,∫ t

s

k(σ, s, y(s))dσ ≤ δ(t)|y|, s ∈ [a, t],

where γ(t) and δ(t) are continuous nonnegative functions and

sup
t≥a

∫ t

a

(t− s)α−1[γ(s) + δ(s)]ds <∞,

were imposed. The authors proved that every solution y(t) of (1.2) satisfies

|y(t)| ≤ |c0|
Γ(α)

(t− a)α−1 exp
{ 1

Γ(α)

∫ t

a

(t− s)α−1[γ(s) + δ(s)]ds
}
<∞,

and if ∫ t

a

(t− s)α−1[γ(s) + δ(s)]ds = O((t− a)α−1),

then |y(t)| ≤ C0(t− a)α−1 where C0 is a positive constant, and hence the solution
of (1.2) is asymptotically stable.

Furati and Tatar [10] considered (1.2) subject to the initial condition

lim
t→a+

(t1−αy(t)) = b, b ∈ R, 0 < α < 1, a = 0,

and showed that solutions decay polynomially for some nonlinear functions f and
k. When k ≡ 0, they proved in [11] that solutions of the problem exist globally and
decay as a power function in the space Cα1−α[0,∞) defined in (3.1), see Section 2.
In 2007, the same authors considered in [9] the equation (1.2) and found uniform
bounds for solutions and also provided sufficient conditions assuring decay of power
type for the solutions.

In 2015, Medveď and Posṕı̌sil considered in the paper [18] a more general case
when the right-hand side depends on Caputo fractional derivatives of the solution.
They proved that there exists a constant b ∈ R such that any global solution of the
initial value problem

(CDα
a+x)(t) = f

(
t, x(t), x′(t), . . . , x(n−1)(t), (CDα1

a+x)(t), . . . , (CDαm
a+ x)(t)

)
,

x(i)(a) = ci, i = 0, 1, . . . , n− 1, n ∈ N,

where t ≥ a and n− 1 < αj < α < n, j = 1, 2, . . . ,m, m ∈ N, is asymptotic to btr

with r = max{n− 1, αm}.
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To the best of our knowledge, there are no similar investigations on the asymp-
totic behavior of solutions for fractional integro-differential equations of type (1.1).

There is a great volume of literature on the well-posedness for various classes of
fractional differential and integro-differential equations; see [1, 2, 3, 4, 6, 14, 27, 28,
29]. In fact most of the analytical investigations are on existence and uniqueness.
Several nonlinearities of the form

f(t, y), f(t, y,Dβ
0+y), f

(
t, y,Dβ

0+y,

∫ t

0

k(s, t,Dγ
0+y(s))ds

)
,

(with different kinds of fractional derivatives) or even more general ones have been
treated. The local existence has been proved under much weaker conditions than
those for the asymptotic behavior. For our purpose here, the local existence holds
under the simple continuity of the nonlinearities. In this paper we will be concerned
mainly with the asymptotic properties of solutions. Therefore, the local existence
(which we will assume throughout this document) justifies our investigations. There
is no need for uniqueness as our results will apply for all possible solutions.

The rest of this paper is organized as follows. In Section 2 we present the
used notations, underlying function spaces, background material and some prelim-
inary results. It contains, in particular, the definitions and basic properties of the
fractional integrals and derivatives used in this paper. Some useful lemmas and
inequalities that will be used later in our proofs are listed there. The asymptotic
behavior of solutions for fractional integro-differential equations of type (1.1) is
studied in detail in Section 3. Finally, we illustrate our findings by an example in
the last section, Section 4.

2. Preliminaries

In this section we briefly introduce some basic definitions, notions and properties
from the theory of fractional calculus.

Definition 2.1 ([15]). Let −∞ ≤ a < b ≤ ∞. The space Lp(a, b) (1 ≤ p ≤ ∞)
consists of all (Lebesgue) real-valued measurable functions f on (a, b) for which
‖f‖p <∞, where

‖f‖p =
(∫ b

a

|f(s)|pds
)1/p

, 1 ≤ p <∞,

‖f‖∞ = ess supa≤t≤b |f(t)|,

and ess sup |f(t)| is the essential supremum of the function |f(t)|.

Definition 2.2 ([15]). We denote by C[a, b] and Cn[a, b], n ∈ N0 = N ∪ {0}, the
spaces of continuous and n-times continuously differentiable functions on [a, b], with
the norms

‖f‖C = max
t∈[a,b]

|f(t)|,

‖f‖Cn =
n∑
i=0

‖f (i)‖C =
n∑
i=0

max
t∈[a,b]

|f (i)(t)|, n ∈ N0,

respectively, where C[a, b] = C0[a, b].
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Definition 2.3 ([15]). We denote by Cγ [a, b], 0 ≤ γ < 1, the weighted space of
continuous functions

Cγ [a, b] = {f : (a, b]→ R : (t− a)γf(t) ∈ C[a, b]}, (2.1)

with the norm
‖f‖Cγ = ‖(t− a)γf(t)‖C ,

In particular, C[a, b] = C0[a, b].

Definition 2.4 ([15]). For n ∈ N and 0 ≤ γ < 1, we denote by Cnγ [a, b], the
following weighted space of continuously differentiable functions up to order n− 1
with n-th derivative in Cγ [a, b],

Cnγ [a, b] = {f : (a, b]→ R : f ∈ Cn−1[a, b], f (n) ∈ Cγ [a, b]},

with the norm

‖f‖Cnγ =
n−1∑
k=0

‖f (k)‖C + ‖f (n)‖Cγ .

In particular, Cγ [a, b] = C0
γ [a, b].

Next we introduce some definitions, notation and properties of the Riemann-
Liouville fractional derivative.

Definition 2.5. The Riemann-Liouville left-sided fractional integral of order α > 0
is defined by

(Iαa+u)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, a < t < b,

provided the right-hand side exists. We define I0
a+u = u. The function Γ is the

Euler gamma function defined by Γ(α) =
∫∞

0
tα−1e−tdt, α > 0.

Definition 2.6. The Riemann-Liouville left-sided fractional derivative of order
α ≥ 0, is defined by

(Dα
a+u)(t) = Dn(In−αa+ u)(t), t > a,

where Dn = dn

dtn , n = [α] + 1, [α] is the integral part of α. In particular, when
α = m ∈ N0, it follows from the definition that Dm

a+u = Dmu.

The next lemma shows that the Riemann-Liouville fractional integral and deriv-
ative of the power functions yield power functions multiplied by certain coefficients
and with the order of the fractional derivative added or subtracted from the power.

Lemma 2.7 ([15]). If α ≥ 0, β > 0, then(
Iαa+(s− a)β−1

)
(t) =

Γ(β)
Γ(β + α)

(t− a)β+α−1, t > a,

(
Dα
a+(s− a)β−1

)
(t) =

Γ(β)
Γ(β − α)

(t− a)β−α−1, t > a.

The Riemann fractional integration operator Iαa+ has the semigroup property
expressed in the following lemma.
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Lemma 2.8 ([15]). Let α > 0, β > 0 and 0 ≤ γ < 1. Then

Iαa+I
β
a+u = Iα+β

a+ u,

almost everywhere in [a, b] for u ∈ Lp(a, b) and holds at any point in (a, b] if u ∈
Cγ [a, b]. When u ∈ C[a, b], this relation is valid at every point in [a, b].

Lemma 2.9 ([15]). Let 0 < β ≤ α and 0 ≤ γ < 1. If u ∈ Cγ [a, b], then

Dβ
a+I

α
a+u = Iα−βa+ u

at every point in (a, b].

The following result is about the composition Iαa+D
α
a+ of the Riemann-Liouville

fractional integration and differentiation operators.

Lemma 2.10 ([15]). Let α > 0, 0 ≤ γ < 1, n = [α] + 1. If u ∈ Cγ [a, b] and
In−αa+ u ∈ Cnγ [a, b], then

(Iαa+Dα
a+u)(t) = u(t)−

n∑
i=1

(Dn−iIn−αa+ u)(a)
Γ(α− i+ 1)

(t− a)α−i

for all t ∈ (a, b]. In particular, if 0 < α < 1, u ∈ Cγ [a, b] and I1−α
a+ u ∈ C1

γ [a, b],
then

(Iαa+Dα
a+u)(t) = u(t)−

(I1−α
a+ u)(a)
Γ(α)

(t− a)α−1, (2.2)

for all t ∈ (a, b].

For more details about fractional integrals and fractional derivatives, the reader
is referred to the books [24, 26, 15].

Let S ⊂ R. For two functions f, g : S → R\{0}, we write f ∝ g if g/f is
nondecreasing on S.

Next, we mention two lemmas, due to Pinto [23], about some useful nonlinear
integral inequalities.

Lemma 2.11 ([23, Theorem 1]). Let u, λi, i = 1, . . . , n be continuous and non-
negative functions on I = [a, b] and the functions ωi, i = 1, . . . , n be continuous
nonnegative and nondecreasing on [0,∞) such that ω1 ∝ ω2 ∝ · · · ∝ ωn. Assume
further that c is a positive constant. If

u(t) ≤ c+
n∑
i=1

∫ t

a

λi(s)ωi(u(s))ds, t ∈ [a, b],

then, for t ∈ [a, b1],

u(t) ≤W−1
n (Wn(cn−1) +

∫ t

a

λn(s)ds),

where

(1) Wi(v) =
∫ v
vi

dτ
ωi(τ) , v > 0, vi > 0, i = 1, . . . , n and W−1

i is the inverse func-
tion of Wi.

(2) The constants ci are given by c0 = c and ci = W−1
i (Wi(ci−1)+

∫ b1
a
λi(s)ds),

i = 1, . . . , n− 1.
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(3) The number b1 ∈ [a, b] is the largest number such that∫ b1

a

λi(s)ds ≤
∫ ∞
ci−1

dτ

ωi(τ)
, i = 1, . . . , n.

Lemma 2.12 ([23, Theorem 4]). Let u, λi, ωi, i = 1, 2, 3 and c be as in Lemma
2.11. If

u(t) ≤ c+
∫ t

a

λ1(s)ω1(u(s))ds+
∫ t

a

λ2(s)ω2

(∫ s

a

λ3(τ)ω3(u(τ))dτ
)
ds,

then, for t ∈ [a, b1],

u(t) ≤W−1
3 (W3(c2) +

∫ t

a

λ3(s)ds),

where Wi,W
−1
i , i = 1, 2, 3 and c0, c1, c2 are the same as in Lemma 2.11.

3. Main Results

According to the types of the functions f and k, we consider the case of fractional
and non-fractional source terms and also the case of singular kernels. We discuss the
asymptotic behavior of solutions for the problem (1.1) in the sense of the following
definition.

Definition 3.1. By a solution y of (1.1), we mean a function y : (0, b] → R,
that is continuable (continuous on (0,+∞)), satisfying the equation and the initial
conditions in (1.1) and is in the space Cα+1

1−α [0, b], 0 < b ≤ ∞, defined by

Cα+1
1−α [0, b] = {y : (0, b]→ R : y ∈ C1−α[0, b], Dα+1

0+ y ∈ C1−α[0, b]}, (3.1)

where the space C1−α[0, b] is defined in (2.1).

We assume that the functions f and k satisfy the hypotheses
(A1) f(t, u, v) is a C1−α function in D = {(t, u, v) : t ≥ 0, u, v ∈ R}.
(A2) k(t, s, u) is continuous in E = {(t, s, u) : 0 ≤ s < t <∞, u ∈ R}.
Before presenting our main results we need to define the following classes of

functions:

Definition 3.2. We say that a function h : [0,∞) → [0,∞) is of type Hσ if
h ∈ C[0,∞) and tσh(t) ∈ L1(1,∞), σ ≥ 0.

Definition 3.3. We say that a function g is of type G if it is continuous nonde-
creasing on [0,∞) and positive on (0,∞) with g(v) ≤ ug( vu ), u ≥ 1, v > 0 and∫ t
t0

dτ
g(τ) →∞ as t→∞ for any t0 > 0.

The above classes are not empty. Examples showing this fact are given in the
next subsections. We will need to deal with the limit of the ratio of the Riemann-
Liouville fractional integral Iα+1

a+ of a function and the power function tα as t→∞.
This is treated in the next lemma.

Lemma 3.4. Let f ∈ L1(a,∞), a ≥ 0. Suppose that u and v are real-valued
functions defined on [a,∞), then

lim
t→∞

1
tα

∫ t

a

(t− s)αf(s, u(s), v(s))ds =
∫ ∞
a

f(s, u(s), v(s))ds .
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Proof. It is sufficient to prove that

lim
t→∞

∣∣ 1
tα

∫ t

a

(t− s)αf(s, u(s), v(s))dτ)−
∫ ∞
a

f(s, u(s), v(s))ds
∣∣ = 0 .

Note that ∣∣ 1
tα

∫ t

a

(t− s)αf(s, u(s), v(s))−
∫ ∞
a

f(s, u(s), v(s))ds
∣∣

=
∣∣ ∫ t

a

(1− s

t
)αf(s, u(s), v(s))ds−

∫ ∞
a

f(s, u(s), v(s))ds
∣∣

=
∣∣ ∫ ∞
a

(χ[a,t](s)(1−
s

t
)α − 1)f(s, u(s), v(s))ds

∣∣
≤
∫ ∞
a

∣∣χ[a,t](s)(1−
s

t
)α − 1|

∣∣f(s, u(s), v(s))|ds,

where

χ[a,t](s) =

{
1, s ∈ [a, t]
0, s /∈ [a, t].

Since

lim
t→∞

χ[a,t](s)(1−
s

t
)α = 1,

by the Dominated Convergence Theorem [8] we obtain

lim
t→∞

∣∣ 1
tα

∫ t

a

(t− s)αf(s, u(s), v(s))−
∫ ∞
a

f(s, u(s), v(s))ds
∣∣

≤ lim
t→∞

∫ ∞
a

∣∣χ[a,t](s)(1−
s

t
)α − 1

∣∣|f(s, u(s), v(s))|ds

=
∫ ∞
a

lim
t→∞

∣∣χ[a,t](s)(1−
s

t
)α − 1

∣∣|f(s, u(s), v(s))|ds = 0,

which is the desired result. �

The following lemmas will be needed in the next subsections.

Lemma 3.5. Let y be a solution of problem (1.1) with f ∈ L1(0,∞). Then

lim
t→∞

y(t)
tα

= lim
t→∞

(Dα
0+y)(t)

Γ(α+ 1)

=
1

Γ(α+ 1)

(
a2 +

∫ ∞
0

f
(
s, (Dβ

0+y)(s),
∫ s

0

k(s, τ, (Dγ
0+y)(τ))dτ

)
ds
)
.

Proof. Applying I1
0+ to both sides of the equation in (1.1) yields

(Dα
0+y)(t) = a2 +

∫ t

0

f
(
s, (Dβ

0+y)(s),
∫ s

0

k(s, τ, (Dγ
0+y)(τ))dτ

)
ds, (3.2)
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Applying Iαa+ to the 3.2 with taking into account Lemmas 2.7, 2.8 and 2.10, we
obtain

y(t) =
a1t

α−1

Γ(α)
+

a2t
α

Γ(α+ 1)

+
(
Iα+1
0+ f

(
s, (Dβ

0+y)(s),
∫ s

0

k(s, τ, (Dγ
0+y)(τ))dτ

))
(t),

(3.3)

for all t > 0. Taking the limit of the ratio y(t)
tα as t → ∞ gives the desired result

with the help of Lemma 3.4. �

The next two lemmas provide estimates for some integrals which will appear
later in our arguments.

Lemma 3.6. Let b2, b3 and b4 be positive constants and z(t) be a continuous and
nonnegative function on [0,∞). Assume that

z(t) ≤ b2 + b3t+ b4t

∫ t

0

(h1(s)g1(z(s)) + h2(s)g2(z(s)))ds, t ≥ 0, (3.4)

where h1, h2 ∈ H1 and g1, g2 ∈ G with g1 ∝ g2. Then

z(t) ≤

{
G−1

2 (d2), 0 ≤ t < 1
tG−1

2 (d3), t ≥ 1,

where

d2 = G2(d1) +
∫ 1

0

h2(s)ds, d1 = G−1
1 (G1(d0) +

∫ 1

0
h1(s)ds

Γ(α+ 1)
),

d0 = b2 + b3, d3 = G2(e1) + b4

∫ ∞
1

sh2(s)ds,

e1 = G−1
1

(
G1(d4) + b4

∫ ∞
1

sh1(s)ds
)
,

d4 = d0 + b4g1(G−1
2 (d2))

∫ 1

0

h1(s)ds+ b4g2(G−1
2 (d2))

∫ 1

0

h2(s)ds,

and G−1
i is the inverse function of Gi(t) =

∫ t
t0

dτ
gi(τ) , i = 1, 2, t ≥ t0 > 0.

Proof. For 0 ≤ t < 1, from (3.4) we obtain

z(t) ≤ b2 + b3 + b4

∫ t

0

h1(s)g1(z(s))ds+ b4

∫ t

0

h2(s)g2(z(s))ds.

From Lemma 2.11 it follows z(t) ≤ G−1
2 (d2). For t ≥ 1, from (3.4) we have

z(t)
t
≤ b2 + b3 + b4

∫ t

0

h1(s)g1(z(s))ds+ b4

∫ t

0

h2(s)g2(z(s))ds

≤ d4 + b4

∫ t

1

sh1(s)g1(
z(s)
s

)ds+ b4

∫ t

1

sh2(s)g2(
z(s)
s

)ds .
(3.5)

Notice that the hypotheses of Lemma 2.11 are satisfied with b1 = ∞ (because∫∞
t0

dτ
gi(τ) =∞, i = 1, 2). Then, for t ∈ [1,∞) (3.5) leads to

z(t)
t
≤ G−1

2 (d3).

This completes the proof. �
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Lemma 3.7. Let b2, b3 and b4 be positive constants and let z(t) be a continuous
and nonnegative function on [0,∞). Assume further that

z(t) ≤ b2 + b3t+ b4t

∫ t

0

(
h1(s)g1(z(s)) + h2(s)g2

(∫ s

0

h3(τ)g3(z(τ))dτ
))
ds, (3.6)

for t ≥ 0, where h1, h3 are of type H1, h2 is of type H0 and gi is of type G, i = 1, 2, 3
with g1 ∝ g2 ∝ g3. Then

z(t) ≤

{
G−1

3 (M), 0 ≤ t < 1
tG−1

3 (M1), t ≥ 1,

where

M = G3(d2) +
∫ 1

0

h3(s)ds, d2 = G−1
2 (G2(d1) + b4

∫ 1

0

h2(s)ds),

d1 = G−1
1

(
G1(d0) + b4

∫ 1

0

h1(s)ds
)
, d0 = b2 + b3,

M1 = G3(e2) +
∫ ∞

1

sh3(s)ds, e2 = G−1
2

(
G2(e1) + b4

∫ ∞
1

h2(s)ds
)
,

e1 = G−1
1 (G1(M2) + b4

∫ ∞
1

sh1(s)ds),

M2 = d0 + b4g1(G−1
3 (M))

∫ 1

0

h1(s)ds

+ b4g2

(
g3(G−1

3 (M))
∫ 1

0

h3(τ)dτ
)∫ 1

0

h2(s)ds .

Proof. For 0 ≤ t < 1, from (3.6) we obtain

z(t) ≤ b2 + b3 + b4

∫ t

0

(
h1(s)g1(z(s)) + h2(s)g2(

∫ s

0

h3(τ)g3(z(τ))dτ)
)
ds.

From Lemma 2.12 it follows that

z(t) ≤ G−1
3 (M) for all 0 ≤ t < 1 .

For t ≥ 1, from (3.6) we have

z(t)
t
≤ d0 + b4

∫ 1

0

(
h1(s)g1(G−1

3 (M)) + h2(s)g2

(∫ s

0

h3(τ)g3(G−1
3 (M))dτ

))
ds

+ b4

∫ t

1

(
h1(s)g1(z(s)) + h2(s)g2

(∫ s

0

h3(τ)g3(z(τ))dτ
))
ds

≤M2 + b4

∫ t

1

(
h1(s)g1(z(s)) + h2(s)g2

(∫ s

0

h3(τ)g3(z(τ))dτ
))
ds .

Let u = u1 + u2 + u3, where

u1(t) = M2 + b4

∫ t

0

h1(s)g1(z(s))ds,

u2(t) = b4

∫ t

0

h2(s)g2(u3(s))ds, u3(t) =
∫ t

0

h3(s)g3(z(s))ds, t > 0.

Differentiating u, by the monotonicity of gi, i = 1, 2, 3, we obtain

u′(t) ≤ b4th1(t)g1(u(t)) + b4h2(t)g2(u(t)) + th3(t)g3(u(t)), (3.7)
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for all t ≥ 1. Integrating both sides of (3.7) over [1, t] gives

u(t) ≤ u(1) + b4

∫ t

1

sh1(s)g1(u(s))ds+ b4

∫ t

1

h2(s)g2(u(s))ds

+
∫ t

1

sh3(s)g3(u(s))ds .
(3.8)

Now, since
∫∞
t0

dτ
gi(τ) =∞, i = 1, 2, 3 for any t0 > 0, the hypotheses of Lemma 2.11

are satisfied with b1 =∞. Therefore, by Lemma 2.11, the inequality (3.8) leads to

u(t) ≤ G−1
3 (M1), for all t ≥ 1.

The proof is now complete. �

Although the estimates in Lemmas 3.6 and 3.7 are not the best, they ensure that
all the involved integrals are bounded, which is the most useful fact we need in the
next subsections.

3.1. Case of a non-fractional source. In this subsection, we consider problem
(1.1) with β = γ = 0 and 0 < α < 1; that is,

(Dα+1
0+ y)(t) = f

(
t, y(t),

∫ t

0

k(t, s, y(s))ds
)
, t > 0,

(I1−α
0+ y)(0+) = a1, (Dα

0+y)(0+) = a2, a1, a2 ∈ R.
(3.9)

First, we need the following condition:
(A3) There are functions h1, h3 ∈ H1, h2 ∈ H0 and gi ∈ G, i = 1, 2, 3 with

g1 ∝ g2 ∝ g3 such that

|f(t, u, v)| ≤ h1(t)g1

( |u|
tα−1

)
+ h2(t)g2(|v|), (t, u, v) ∈ D, (3.10)

|k(t, s, y)| ≤ h3(s)g3(
|y|
sα−1

), (t, s, y) ∈ E . (3.11)

Now, we prove the main result in this subsection.

Theorem 3.8. Suppose that f and k satisfy (A1)–(A3). Then, any solution of
problem (3.9) is asymptotic to ctα as t→∞, for some c ∈ R.

Proof. Applying Iα+1
0+ to both sides of the equation in (3.9) gives

y(t) =
a1t

α−1

Γ(α)
+

a2t
α

Γ(α+ 1)
+
(
Iα+1
0+ f

(
s, y(s),

∫ s

0

k(s, τ, y(τ))dτ
))

(t).

Then, for all t > 0,

|y(t)|
tα−1

≤ |a1|
Γ(α)

+
|a2|t

Γ(α+ 1)
+

t

Γ(α+ 1)

∫ t

0

[
h1(s)g1

( |y(s)|
sα−1

)
+ h2(s)g2

(∫ s

0

h3(τ)g3(
|y(τ)|
τα−1

)dτ
)]
ds.

(3.12)

Let us denote the right hand side of (3.12) by z(t) for all t > 0, then

|y(t)|
tα−1

≤ z(t), for all t > 0, (3.13)
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and consequently,

z(t) ≤ |a1|
Γ(α)

+
|a2|

Γ(α+ 1)
t+

t

Γ(α+ 1)

∫ t

0

[h1(s)g1(z(s))

+ h2(s)g2

(∫ s

0

h3(τ)g3(z(τ))dτ
)

]ds for all t > 0.
(3.14)

It follows from Lemma 3.7 that

z(t) ≤ tG−1
3 (M1), for all t ≥ 1,

and from (3.13) we have

|y(t)|
tα
≤M3 := G−1

3 (M1), for all t ≥ 1. (3.15)

Let

J :=
∫ t

0

∣∣∣f(s, y(s),
∫ s

0

k(s, τ, y(τ))dτ
)∣∣∣ds, t > 0.

Using assumption (A3) and (3.13) we see that

J ≤
∫ 1

0

[
h1(s)g1(z(s)) + h2(s)g2(

∫ s

0

h3(τ)g3(z(τ))dτ)
]
ds

+
∫ t

1

[
h1(s)g1(z(s)) + h2(s)g2(

∫ s

0

h3(τ)g3(z(τ))dτ)
]
ds, t ≥ 1.

(3.16)

The second integral on the right-hand side of (3.16) can be estimated using (3.13)
as follows

J2 ≤
∫ t

1

sh1(s)g1(M3)ds+
∫ t

1

h2(s)g2

(∫ 1

0

h3(τ)g3(z(τ))dτ

+
∫ s

1

h3(τ)g3(z(τ))dτ
)
ds

≤ g1(M3)
∫ t

1

sh1(s)ds+ g2

(
g3(M4)

∫ 1

0

h3(τ)dτ + g3(M3)
∫ t

1

τh3(τ)dτ
)

×
∫ t

1

h2(s)ds.

for all t ≥ 1. As h1, h3 ∈ H1, h2 ∈ H0, we deduce that J2 is uniformly bounded
and so is J .

It means that the integral
∫ t

0
f(s, y(s),

∫ s
0
k(s, τ, y(τ))dτ)ds is absolutely conver-

gent and so

lim
t→∞

∫ t

0

f
(
s, y(s),

∫ s

0

k(s, τ, y(τ))dτ
)
ds <∞. (3.17)

Integrating both sides of the equation in(3.9) over the interval [0, t] yields

(Dα
0+y)(t) = a1 +

∫ t

0

f
(
s, y(s),

∫ s

0

k(s, τ, y(τ))dτ
)
ds.

Now, (3.17) ensures that there is a real number ĉ such that

lim
t→∞

Dα
0+y(t) = ĉ.

By Lemma 3.5,

lim
t→∞

y(t)
tα

= lim
t→∞

(Dα
0+y)(t)

Γ(α+ 1)
= c,
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c := ĉ
Γ(α+1) . This completes the proof. �

3.2. Case of a singular kernel. Consider the problem

Dα+1
0+ y(t) = f

(
t, y(t), (Iβ0+y)(t)

)
, t > 0, 0 < α < 1, 0 < α+ β < 1,

(I1−α
0+ y)(0+) = a1,

(
Dα

0+y
)
(0+) = a2, a1, a2 ∈ R.

(3.18)

To study the asymptotic behavior of solutions for the problem (3.18), we assume
that the function f satisfies the condition

(A4) There are functions h1, h2 ∈ H1 and g1, g2 ∈ G with g1 ∝ g2 such that

|f(t, u, v)| ≤ h1(t)g1

( |u|
tα−1

)
+ h2(t)g2

( |v|
tα+β−1

)
, (t, u, v) ∈ D.

Theorem 3.9. Suppose that f satisfies conditions (A1), )A4). Then, every solution
of problem (3.18) is asymptotic to ctα when t→∞, for some c ∈ R.

Proof. From condition (A4), after applying Iα+1
0+ to both sides of the equation in

(3.18), we have

t1−α|y(t)| ≤ |a1|
Γ(α)

+
|a2|t

Γ(α+ 1)
+

t

Γ(α+ 1)

∫ t

0

[
h1(s)g1(

|y(s)|
sα−1

)

+ h2(s)g2

( |(Iβ0+y)(s)|
sα+β−1

)]
ds, t > 0.

(3.19)

Since

(Iβ0+y)(t) =
a1t

α+β−1

Γ(α+ β)
+

a2t
α+β

Γ(α+ β + 1)
+ Iα+β+1

0+ f
(
τ, y(τ), (Iβ0+y)(τ)

)
(s)(t),

for all t > 0, we arrive at

|(Iβ0+y)(t)|

≤ |a1|tα+β−1

Γ(α+ β)
+

|a2|tα+β

Γ(α+ β + 1)
+ Iα+β+1

0+

∣∣f(τ, y(τ), (Iβ0+y)(τ))
∣∣(s)(t)

≤ |a1|tα+β−1

Γ(α+ β)
+

tα+β

Γ(α+ β + 1)

(
|a2|+

∫ t

0

|f(s, y(s), (Iβ0+y)(s))|ds
)
,

or equivalently with the help of (A4),

t1−α−β |(Iβ0+y)(t)| ≤ |a1|
Γ(α+ β)

+
t

Γ(α+ β + 1)

(
|a2|+

∫ t

0

[
h1(s)g1

( |y(s)|
sα−1

)
+ h2(s)g2

( |(Iβ0+y)(s)|
sα+β−1

)]
ds
)
∀t > 0.

(3.20)

Now, let

z(t) = A1 +A2t+A3t

∫ t

0

(
h1(s)g1

( |y(s)|
sα−1

)
+ h2(s)g2

( |(Iβ0+y)(s)|
sα+β−1

))
ds, (3.21)

for all t > 0, where

A1 = max
{ |a1|

Γ(α)
,
|a1|

Γ(α+ β)
}
, A2 = max

{ |a2|
Γ(α+ 1)

,
|a2|

Γ(α+ β + 1)
}
,

A3 = max
{ 1

Γ(α+ 1)
,

1
Γ(α+ β + 1)

}
.
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It is not difficult to see from the relations (3.19)–(3.21), that

t1−α|y(t)|, t1−α−β |(Iβ0+y)(t)| ≤ z(t), t > 0,

and consequently, for t > 0,

z(t) ≤ A1 +A2t+A3t

∫ t

0

h1(s)g1(z(s))ds+A3t

∫ t

0

h2(s)g2(z(s))ds, t > 0.

It follows from Lemma 3.6 that

z(t) ≤ tG−1
2 (d3), for all t ≥ 1,

where G−1
2 and d3 are given in Lemma 3.6. Now, the proof can be completed as

the proof of Theorem 3.8. �

3.3. Case of fractional source terms. In this subsection we study the asymp-
totic behavior of solutions for problem (1.1) under the following condition:

(A5) There are functions h1, h3 ∈ H1, h2 ∈ H0 and gi ∈ G, i = 1, 2, 3, with
g1 ∝ g2 ∝ g3 such that

|f(t, u, v)| ≤ h1(t)g1

( |u|
tα−β−1

)
+ h2(t)g2(|v|), (t, u, v) ∈ D,

|k(t, s, y)| ≤ h3(s)g3

( |y|
tα−γ−1

)
, (t, s, y) ∈ E.

The main result of this subsection is as follows.

Theorem 3.10. Suppose that f and k satisfy conditions (A1), (A2), (A5). Then,
every solution of the problem (1.1) is asymptotic to ctα when t → ∞, for some
c ∈ R.

Proof. Here we have

y(t) =
a1t

α−1

Γ(α)
+

a2t
α

Γ(α+ 1)

+
(
Iα+1
0+ f

(
s, (Dβ

0+y)(s),
∫ s

0

k(s, τ, (Dγ
0+y)(τ))dτ

))
(t),

(3.22)

|y(t)|
tα−1

≤ |a1|
Γ(α)

+
|a2|t

Γ(α+ 1)
+

t

Γ(α+ 1)

∫ t

0

[
h1(s)g1

( |(Dβ
0+y)(s)|
sα−β−1

)
+ h2(s)g2

(∫ s

0

h3(τ)g3(
|(Dγ

0+y)(τ)|
τα−γ−1

)dτ
)]
ds, t > 0.

(3.23)

Applying Dβ
0+ and Dγ

0+ to both sides of (3.22), and taking Lemma 2.7 and Lemma
2.9 into account, we have

(Dβ
0+y)(t) =

a1t
α−β−1

Γ(α− β)
+

a2t
α−β

Γ(1 + α− β)

+
(
Iα+1−β
0+ f

(
s, (Dβ

0+y)(s),
∫ s

0

k(s, τ, (Dγ
0+y)(τ))dτ

))
(t), t > 0,

(Dγ
0+y)(t) =

a1t
α−γ−1

Γ(α− γ)
+

a2t
α−γ

Γ(1 + α− γ)

+
(
Iα+1−γ
0+ f

(
s, (Dβ

0+y)(s),
∫ s

0

k(s, τ, (Dγ
0+y)(τ))dτ

))
(t), t > 0,
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respectively. Therefore for all t > 0,

t1−(α−β)|(Dβ
0+y)(t)|

≤ |a1|
Γ(α− β)

+
|a2|t

Γ(1 + α− β)
+

t

Γ(1 + α− β)

∫ t

0

h1(s)g1

( |(Dβ
0+y)(s)|
sα−β−1

)
ds

+
t

Γ(1 + α− β)

∫ t

0

h2(s)g2

(∫ s

0

h3(τ)g3

( |(Dγ
0+y)(τ)|
τα−γ−1

)
dτ
)
ds, t > 0,

(3.24)

and

t1−(α−γ)|(Dγ
0+y)(t)|

≤ |a1|
Γ(α− γ)

+
|a2|t

Γ(1 + α− γ)
+

t

Γ(1 + α− γ)

∫ t

0

h1(s)g1

( |(Dβ
0+y)(s)|
sα−β−1

)
ds

+
t

Γ(1 + α− γ)

∫ t

0

h2(s)g2

(∫ s

0

h3(τ)g3

( |(Dγ
0+y)(τ)|
τα−γ−1

)
dτ
)
ds, t > 0.

(3.25)

Now, let

b2 = |a1|max
{ 1

Γ(α)
,

1
Γ(α− β)

,
1

Γ(α− γ)
}
, b3 = |a2|b4,

b4 = max
{ 1

Γ(α+ 1)
,

1
Γ(1 + α− β)

,
1

Γ(1 + α− γ)
}
,

z(t) = b2 + b3t+ b4t

∫ t

0

[
h1(s)g1

( |(Dβ
0+y)(s)|
sα−β−1

)
+ h2(s)g2

(∫ s

0

h3(τ)g3(
|(Dγ

0+y)(τ)|
τα−γ−1

)dτ
)]
ds, t > 0.

Then, for all t > 0 we obtain

|y(t)|
tα−1

,
|(Dβ

0+y)(t)|
tα−β−1

,
|(Dγ

0+y)(t)|
tα−γ−1

≤ z(t). (3.26)

The remaining steps of the proof are similar to those of the proof of Theorem
3.8. �

4. Example

The next example provides some functions to which Theorem 3.8 applies.

Example 4.1. Consider the equation

(Dα+1
0+ y)(t) = tµ1e−t y(t) + tµ2e−t

∫ t

0

sµ3e−(s+t)y(s)ds, t > 0, (4.1)

where 0 < α < 1, µ1 > −α − 1, µ2 > −1 and µ3 > −α − 1. Notice that the
right-hand side of the equation (4.1) can be rewritten as

tµ1+α−1e−t
y(t)
tα−1

+ tµ2e−t
∫ t

0

sµ3+α−1e−(s+t) y(s)
sα−1

ds, t > 0.

Let h1(t) = tµ1+α−1e−ρ1t, h2(t) = tµ2e−ρ2t, h3(t) = tµ3+α−1e−ρ3t for t > 0,

gi(t) = t, 0 < ρi ≤ 1, i = 1, 2, 3, t > 0.
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Then conditions (A1)–(A3) are satisfied,∫ ∞
1

th1(t)dt <
∫ ∞

0

th1(t)dt =
∫ ∞

0

tµ1+αe−ρ1tdt =
Γ(µ1 + α+ 1)
ρµ1+α+1

1

<∞,∫ ∞
1

h2(t)dt <
∫ ∞

0

h2(t)dt =
∫ ∞

0

tµ2e−ρ2tdt =
Γ(µ2 + 1)
ρµ2+1

2

<∞,∫ ∞
1

th3(t)dt <
∫ ∞

0

th3(t)dt =
∫ ∞

0

tµ3+αe−ρ3tdt =
Γ(µ3 + α+ 1)
ρµ3+α+1

3

<∞,∫ ∞
t0

1
gi(t)

dt =
∫ ∞
t0

1
t
dt =∞ for any t0 > 0.

From Theorem 3.8 every solution of (4.1), subject to the initial conditions given in
(4.1), is asymptotic to d1t

α as t→∞, for some d1 ∈ R.
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