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ABSTRACT 

Face recognition has been an active research topic in the field of computer vision. 

Face recognition is currently being used for applications such as law enforcement, 

security, and video surveillance. Variations in pose and skin color are the two main 

factors that affect the accuracy of a face recognition system. The aim of this research is to 

develop a pose invariant and skin color invariant face recognition system for surveillance 

and law enforcement applications. In this research, we tackle the problem of pose 

variations and skin color separately. 

To understand the effect of pose on face recognition, we initially created a face 

recognition system for variation in head poses from -90 degrees yaw angle to 90 degrees 

yaw angle. From our study, we found that the accuracy of a face recognition system 

drops significantly from a yaw angle of 45 degrees to 90 degrees and -60 degrees to -90 

degrees. To combat this problem, we identified two solutions. Firstly, we propose skin 

segmentation in HSV color space as a preprocessing step to improve accuracy for non-

frontal poses from 45 degrees to 90 degrees and -60 degrees to -90 degrees. Secondly, we 

propose using a Style Transfer Generative Adversarial Network (StyleGAN) generated 

frontal image for face recognition to improve accuracy for non-frontal poses from 45 

degrees to 75 degrees and -60 degrees to -75 degrees. The experimental results 

demonstrate that both methods have significantly improved the accuracy of non-frontal 

poses. 

To study the effect of skin color on face recognition, we created the ‘Celeb-Skin’ 
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dataset. The dataset contains 480 images of male celebrities of different races such as 

White, Asian, and African American. From testing the face recognition system on the 

Celeb-Skin dataset, we found that the accuracy of White faces was comparatively higher 

than African American and Asian faces. In this research, we propose that creating a 

training dataset based on skin color and grouping the celebrities based on their skin color 

would improve the accuracy of dark-skinned faces. Experimental results show that our 

technique has improved the accuracy of dark-skinned faces by 7.38 percent. 

 



 

1 

I. INTRODUCTION  

Background and Motivation 

Face Recognition is the process of identifying an individual from an input face 

image. Currently, face recognition is used in applications such as law enforcement, 

biometrics, and video surveillance. The accuracy of the face recognition system for a 

surveillance system should be high. Some of the major factors that affect the accuracy of 

a face recognition system are variation in poses, illumination, and skin color. This 

research aims at improving face recognition accuracy for variations in pose and skin 

color. 

For surveillance and law enforcement applications, a frontal image will be 

available as a gallery image and the image acquired might be a profile or non-frontal 

image. In such cases, a normal face recognition system fails to recognize faces correctly. 

Therefore, it is substantial to build a pose invariant face recognition system for law 

enforcement and surveillance applications. In the past decades, a lot of research has been 

conducted in improving the performance of face recognition for pose variations and the 

researchers have found ways to improve the performance of face recognition algorithms 

for non-frontal poses by training their algorithms with large amounts of data. The main 

problem with the current face recognition system is racial bias. Current face recognition 

technology is less accurate on dark skin faces. Therefore, using such face recognition 

technology for law enforcement applications would put people of color at risk. From a 

study conducted to identify the performance of various commercial face recognition 

technology provided by global tech companies on different races and gender, it was 

found that the technology worked fine 99 percent of the time for white men. However, 
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with darker skin, face recognition technology failed often. Another study conducted by a 

researcher at MIT on the three most leading commercial face recognition software [1] 

found that the error rate for dark-skinned women is 35%.  If the government plans to 

employ face recognition to create a centralized database for national security reasons,  it 

is crucial to improve the performance of face recognition technology for dark-skinned 

faces, to treat all people equally, and to prevent future risks. Therefore, it is important to 

develop a reliable face recognition system that works for all skin colors. 

Problems 

Face recognition is an active research topic in computer vision. Recently Deep 

convolutional neural networks produced state of art results on benchmark datasets of face 

recognition. Some of the examples of deep convolutional neural architectures (CNN) for 

face recognition are FaceNet, VGGFace, and VGGFace2. These architectures have been 

trained with millions of face images and with vast computation resources. For example, 

VGGFace2 is trained on a dataset of 3.31 million images of 9131 subjects with an 

average of 362.6 images per subject with large variations in pose, age, gender, and 

ethnicity. The CNN architectures can handle pose variations with a very less error rate. 

Numerous research in face recognition with deep CNN architectures has almost solved 

the pose challenges in face recognition. The demerit with deep learning architectures is 

that it requires a lot of training data and huge amounts of computational resources. In this 

research, we are focusing on face recognition with less training data per person and no 

need for additional computational resources than a normal CPU.  

Variations in Pose has been a major challenge in traditional face recognition 

approaches. For surveillance applications, the face image is mostly captured in an 



 

3 

uncontrolled environment. Images captured in an uncontrolled environment have varying 

illumination and faces might not be actually facing the camera. Depending on how the 

head of the face is facing the camera, the pose of the face can be categorized into two, 

frontal and non-frontal. A frontal pose is a front view of a face image whereas a non-

frontal pose is a side view of a face image. Classic face recognition algorithms like the 

Eigenface algorithm and the Fisherface algorithm work well for frontal pose images. 

Accuracy of a traditional face recognition algorithm degrades for non-frontal poses. 

Matching a non-frontal probe image with a frontal gallery image induces differences in 

an Appearance-based model like Eigenface and consecutively reduces the accuracy. 

Hence, the accuracy of face recognition systems for non-frontal poses has to be 

improved. 

 Skin color is another important problem faced by current face recognition 

technologies. Face recognition technologies are less accurate with dark skin faces 

compared to white skin faces. Face recognition technology provided by leading 

companies such as Amazon, IBM, and Microsoft are used by lawmakers to find 

criminals. MIT’s Ms. Buolamwini conducted a study to examine the performance of the 

three most leading face recognition technologies on gender and race. Her research found 

that all three companies performed better on males than females, and also on lighter-

skinned faces than darker-skinned ones. The systems performed worst on darker females 

with Microsoft recording an error rate of one in five (20.8 percent) and IBM and Megvii's 

Face++ more than one in three [1] (34.7 percent and 34.5 percent respectively).  The 

error rates for most leading face recognition technologies are shown in Figure 1. The 

higher error rate makes the minorities most vulnerable to dark skin bias in face 
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recognition applications. The reason for the dark skin bias is the lack of diversity in 

training images and benchmark datasets. The existing face recognition technologies are 

often trained and tested on a non-diverse dataset [2]. A popular open-source face dataset, 

‘Labeled Faces in the wild’, was estimated to be 83.5 percent white [2]. A system trained 

mostly on white faces would have lower accuracy on black faces. Therefore, it is very 

important to develop a face recognition system whose performance is independent of the 

color of skin. 

 

Figure 1. Error rates of facial recognition systems by skin color and gender [1] 

Solutions 

A good face recognition system must be pose-invariant and skin color-invariant. 

The accuracy of traditional face recognition algorithms like the Eigenface algorithm for 

non-frontal poses can be improved by separating the skin pixels from non-skin pixels of 

the image. The process of separating skin pixels from non-skin pixels is known as skin 

segmentation. Performing skin segmentation as an image preprocessing step before face 

detection would improve the performance of the face recognition system for non-frontal 
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poses. The experimental results show that skin segmentation in HSV color space has 

improved the performance of face recognition systems of non-frontal poses. Another 

solution to improve the accuracy of non-frontal poses is by creating a frontal view from a 

non-frontal image. In this research, we have created a frontal view from a non-frontal 

image by using a state of art architecture called Style Transfer Generative Adversarial 

Network (StyleGAN). A Generative Adversarial Network (GAN) creates a fake image 

from an actual image. The problem with GAN is that we lack control over the style of the 

synthetic image generated. To have control over the style of the synthetic image 

generated and to create photo-realistic images, researchers created a different architecture 

known as StyleGAN. The architecture of the StyleGAN model provides control over the 

style of generated images at various levels of detail. This helps us to generate synthetic 

images with variations in pose, age, expression, and gender. We use StyleGAN to 

generate a frontal view from a non-frontal image. The StyleGAN generated frontal image 

is then used for face recognition. The experimental results show that using StyleGAN 

generated frontal view image for face recognition instead of the non-frontal face image 

improves accuracy for non-frontal pose significantly. 

Skin color is another major challenge faced by both the current state of art face 

recognition algorithms and traditional face recognition algorithms. The face recognition 

technology is more inaccurate on dark skin faces. Research has been conducted to 

examine the reasons for the lower accuracy of face recognition technology on dark skin 

faces. The main reason for the dark skin bias is the less diverse training datasets. In this 

thesis, we aim to improve the performance of traditional face recognition algorithms such 

as Eigenface algorithms on dark skin faces by creating separate training datasets based on 
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the skin tone of a face image.  We use skin segmentation and K-means clustering to 

extract the most dominant skin tone in a face image. The skin tone is extracted in the 

form of RGB values. Skin color is dependent on illumination [3] and therefore RGB 

values of the skin tone of the same person vary based on the lighting conditions in which 

the image was captured. Therefore, we group the face images of different people based 

on their range of RGB values. Based on the RGB values, the skin tones are classified into 

white, brown, dark brown, and black. Our experimental results demonstrate that creating 

training datasets based on the skin tone of a person significantly improves the accuracy of 

dark skin tones.  

Thesis Focus 

The objectives of the thesis research are  (i) to develop a pose-invariant face 

recognition system adaptable to yaw variations up to 90 degrees (ii) to implement a 

reliable face recognition system that improves face recognition accuracy for dark skin 

faces. Research has been conducted to improve the performance of face recognition 

systems for variation in poses. However, there is some research gap in identifying at what 

face angles the face recognition system starts to perform worse. While dealing with non-

frontal faces, selecting an appropriate face detection method is important. Previous 

researchers have not addressed this question.  In this research, we improve the 

performance of face recognition systems for non-frontal poses by skin segmentation. This 

technique has not been used in any prior research to improve face recognition 

performance on non-frontal poses.  In addition to skin segmentation, we also propose the 

use of StyleGAN generated face image for face recognition. There is no previous 

research that has used StyleGAN generated images for face recognition.  
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In addition to investigating the effect of pose on face recognition, our research 

also conducts a study on the effect of the color of the skin on face recognition with 

traditional face recognition algorithms. Researchers have tried to improve the 

performance of face recognition technologies on dark skin faces through creating a 

diverse training dataset and training specifically on a particular race/ethnicity. In our 

research, we propose that creating training datasets based on skin tone would improve 

face recognition. Most researchers consider skin as a non-reliable parameter for face 

recognition due to illumination variations. But in this research, we provide solutions on 

how skin tone can be made a reliable parameter for face recognition. We also compare 

how our technique performs with other solutions offered by researchers such as diverse 

training datasets and training on a specific race. 

 The contributions of this thesis are: 

1. A detailed study on the effect of pose on face recognition and to identify at what 

face angles does the face recognition accuracy starts to drop significantly 

2. Identifying the best face detection model for extreme non-frontal poses 

3. Improvement of face recognition accuracy for non-frontal poses by performing 

skin segmentation as an image preprocessing step before face detection 

4. Improvement of face recognition accuracy for non-frontal poses by using a 

synthetically generated frontal view from a non-frontal image for face recognition 

through StyleGAN 

5. A detailed study on the effect of skin color on the performance of face recognition 

systems 

6. Improvement of accuracy of dark skin faces by creating a training dataset based 
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on the skin color of face images 

Organization of the Thesis 

 The thesis is arranged into nine chapters: 

a) CHAPTER I: introduction of the work has been presented 

b) CHAPTER II: describes the previous work conducted in face recognition 

c) CHAPTER III: studies the effect of the pose on face recognition and delineates 

the methods employed to develop the machine learning model for face 

recognition 

d) CHAPTER IV: discusses the improvement of face recognition in non-frontal 

poses 

e) CHAPTER V: studies the effect of skin color on face recognition and 

demonstrates methods employed to develop a machine learning model for face 

recognition 

f) CHAPTER VI: describes the enhancement of face recognition for dark skin face 

g) CHAPTER VII: explains and discusses the results of the initial study on the effect 

of pose on face recognition. This chapter also illustrates the results of 

improvement of face recognition accuracy for non-frontal poses 

h) CHAPTER VIII: demonstrates the results of the initial study on the effect of skin 

color on face recognition and analyzes the results. This chapter also elucidates the 

results of the improvement of face recognition accuracy for dark skin faces. 

i) CHAPTER IX: presents the conclusion of the work and future scope of the work 

described 
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II. LITERATURE REVIEW 

Face recognition has been an active research topic in the field of computer vision. 

Based on the representation of features in an image, face recognition is mainly classified 

into two approaches, the Appearance-based approach, and the Feature-based approach. In 

the Appearance-based approach, the pixel intensity values of a face image are used as 

features whereas, in the Feature-based approach, the features are derived from the 

intensity data and correspond to the location of facial features such as mouth, eyes, nose, 

etc. [4]. Traditional face recognition approaches like Principal Component Analysis 

based Eigenface algorithm, Linear Discriminant Analysis based Fisherface algorithm 

falls under the category of Appearance-based approaches. The Eigenface algorithm is an 

information theory approach that decomposes face images into a small set of 

characteristic feature images known as Eigenfaces. These eigenfaces are projected on an 

Eigenface space and faces are then classified based on the distance between the 

individual projections [5]. Here the images are captured in a controlled environment and 

poses are mostly frontal. The accuracy of most of the traditional face recognition 

algorithms decreases for changes in pose, illumination, and expressions [6]. Eigenface 

being an appearance-based approach, only considers the 2D facial appearance of images. 

The 2D appearance of faces changes along with different poses due to the non-planar 

geometry of the face. The accuracy of the Eigenface algorithm and Fisherface algorithm 

degrades for changes in pose due to the inconsideration of 3D alignment of a face in 

feature extraction. 

Variations in pose have been a major problem for face recognition technologies. 

Numerous research [6] [7] [8] [9] [10] [11] have been performed to tackle this problem.                                                                                                                                                                                                                                                                                                                                  



 

10 

Gross et al. proposed an appearance-based algorithm to deal with the pose variations by 

estimating Eigen light fields from input images. The input image is then matched with the 

gallery image by comparing the ELF Coefficients [7]. In the recognition stage, the face 

can be recognized even when there is only a single image of each person in the gallery 

[7]. This method was able to address the pose issues successfully compared to the 

Eigenfaces approach.  

Reconstructing a frontal view from a non-frontal face image is another method for 

handling the pose variation in face recognition. Blanz and Vetter [8] created a 3D 

Morphable Model (3-DMM) model for reconstructing a frontal view and produced 

impressive results in pose invariant face recognition. However, the 3D model 

construction is computationally expensive. Chai et al. [6] proposed a Local Linear 

Regression based (LLR) method to generate a frontal view from a non-frontal view. This 

method was able to handle pose variations of yaw ±45 degrees.  Reconstruction of frontal 

view by 3D pose normalization was proposed in [9]. The frontal face is reconstructed by 

3D pose normalization using 2D facial feature points. A 2D input image is projected onto 

a 3D face model to create a textured 3D model. A 3D rigid transformation is performed 

to normalize the input face into a frontal pose. This research produced the best results for 

pose variations of  ±45-degrees yaw and ±30 degrees pitch angles. Changxing et al. [10] 

delineate a pose invariant face recognition system that handles the pose ranges of ±90 

degree yaw angle. Here a frontal face is obtained using 3D pose normalization and the 

face matching is performed at a patch level than at a holistic level. For extreme poses, 3D 

pose normalization results in self occluded faces, and only the unoccluded portion of the 

face is considered, and patch wise matching is performed with the gallery image. Another 
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way to handle extreme poses is described in [11]. This research uses 3D pose correction 

and only considers the half profile face for self-occluded faces. The face recognition was 

implemented using ResNet architecture with 28 layers. This technique [11] outperformed 

the state of art techniques for extreme poses and is easier to implement. The above-

mentioned studies [9] [10] [11] have used 3D pose normalization to construct a frontal 

view from a non-frontal image.  

The advent of Generative Adversarial Networks (GAN) has led to many studies in 

frontal view synthesis. Frontal view synthesis is the process of generating a frontal view 

from a non-frontal image. The only difference is that the image is synthetically generated. 

Over three years there are several GAN based architectures created for frontal view 

synthesis. Face Frontalization Generative Adversarial Networks (FF-GAN) is a 3D 

Morphable Model conditioned face frontalization network to generate neutral head pose 

images [12]. Pose weighted Generative Adversarial network (PW-GAN) creates 

photorealistic frontal views for large pose variations [13]. PW-GAN considers both 3D 

face geometry and uses pose normalization results to help GAN learn self-occluded 

regions. The Two Pathway Generative Adversarial Network (TP-GAN) recovers 

photorealistic and identity preserving frontal view image from a profile image. TP-GAN 

generates a photo-realistic frontal view from a non-frontal image, and it works well for 

extreme poses with yaw angles greater than 60 degrees. The research [14] found that the 

synthesized frontal image improved the face recognition performance for non-frontal 

poses. The main advantage when comparing 3D pose normalized image and TP-GAN 

generated frontal view image is that even for extreme pose variations, the faces are 

photo-realistic and preserve identity. Hung et al. [15] propose a Dual Attention 
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Generative adversarial network (DA-GAN) for photo-realistic face frontalization by 

capturing both contextual dependencies and local consistency during GAN training. DA-

GAN architecture outperformed TP-GAN for generating photo-realistic images for large 

pose variations. DA-GAN generated frontal view image gave high face recognition 

accuracy for extreme poses of 90 degrees [15]. Our research is using StyleGAN 

architecture proposed in [16] generated face image and we move the latent 

representations generated by StyleGAN in the latent directions of a pose. This technique 

preserves the identity of the person to some extent. However, when incorporated with 

Eigenface algorithms, the StyleGAN generated frontal image offers improvement in face 

recognition accuracy for non-frontal poses up to 75 degrees. 

Skin color is another factor that plays a significant role in face recognition. In a 

study conducted by Joy Buolamwini to identify the performance of three leading face 

recognition technologies such as Microsoft, IBM, and Face++ on different races and 

gender, it was found that the technology identified white people correctly 99 percent of 

the time but failed often to identify dark faces [1]. Training on non-diverse datasets is the 

primary reason for the racial bias of the face recognition system [17]. If black people are 

underrepresented in benchmark datasets, then the face recognition system will be less 

successful in identifying black faces [13]. This problem can be solved by using a diverse 

training set [17]. Researchers found that even a representative dataset could not solve the 

dark skin bias in face recognition technology. One of the reasons why face recognition 

technology is less successful on dark skin is that black skin reflects light in different 

wavelengths compared to white skin.  

A study on the effect of skin color on face recognition is presented in [2]. In this 
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study, training specifically on a black face improved the accuracy of black faces by 2 

percent. i.e., the accuracy of black faces can be improved by having a different training 

set with black faces alone. Especially in biometric applications, the 1-1 verification and 

identification are not performed automatically. There would be an officer who manually 

identifies whether a face is black or white. For example, if the individual identified on the 

probe image is black, then the algorithm specifically trained for black images will be 

used for training. During the testing stage, the face with the highest matching score will 

be selected as the face identified. This would improve the recognition accuracy of black 

faces. Training on a specific race outperforms the usage of a diverse training dataset in 

the face recognition algorithm [2]. In cases where the demographics are not known, 

generic algorithms trained equally on all cohorts were used. Creating a specific dataset 

based on the race of face image requires one to identify the race from a face image. 

Sometimes human identification can be wrong too because one cannot identify the 

ethnicity of a person just from his/her skin color. Our research differs from existing 

works by creating a specific training dataset based on skin color. The dominant skin color 

can be extracted from an image with the help of skin segmentation and K-means 

clustering. Based on the RGB values of the skin color extracted, the face images are 

grouped into four skin shades namely white, brown, dark brown, and black. Our 

technique has improved the accuracy of dark skin faces significantly. 
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III. EFFECT OF POSE ON FACE RECOGNITION 

Face recognition has been a challenging research problem in computer vision. A 

face recognition system identifies a face from a background image and recognizes the 

person in the image. Firstly, a face recognition system detects a face/faces in an image 

and then transforms the face/faces into a feature vector. A feature vector is like a face 

print and contains important features of the face image. Once a feature vector of detected 

faces is obtained, the face recognition system compares it with a face database of known 

faces. The face with the least distance from the feature vector of the detected face will be 

the closest match to the detected face. A face recognition system can return the name of 

the person or an image that matches the detected face depending on the application. Most 

of the current face recognition systems work well on frontal pose images. However, with 

variation in poses, the face recognition technologies fail to recognize people correctly. 

For example, assume that the face detected is non-frontal and we compare the detected 

face with a known face database containing frontal images of known faces. When a face 

recognition system compares the feature vectors of detected non-frontal faces with 

feature vectors of known frontal faces in a database, the system might not recognize the 

person correctly. Even though the images are of the same person in different poses, the 

system finds the distance between the feature vectors of frontal and non-frontal pose 

larger than the threshold set by the system. It is easy for humans to identify a person from 

different poses, however, computers cannot. Hence, it is very important to study the 

effect of pose on face recognition and find ways to improve the performance of face 

recognition systems on non-frontal poses.  
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  The effect of poses on face recognition is studied in this section. The pose of the 

face can be described as the orientation and rotation of the head with respect to the 

position of the camera. The head pose angle is classified into three types namely, yaw 

angle, pitch angle, and roll angle as shown in Figure 2. Yaw angle is the rotation of the 

face along the Y-axis of the camera plane, for instance, when a person turns their head 

towards the left or right relative to the position of the camera. Pitch angle is the rotation 

of face along the X-axis of the camera plane, e.g., turning the face-up or down from the 

camera whereas the roll angle is the rotation of face along the Z-axis of the camera plane. 

For the study of the effect of head pose, specifically variations in yaw angles on face 

recognition, we build a simple face recognition system as shown in Figure 3. A simple 

face recognition system consists of stages such as image acquisition, face detection, 

feature extraction, and face recognition. 

 

Figure 2. Head pose angles 

 

Figure 3. Block diagram of a face recognition system 
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Image Acquisition 

 To study the effect of pose on face recognition, the images are captured from a 

mobile camera setting. To obtain different poses, markers were put in the whole room for 

various yaw angles from -90 degrees to +90 degrees in 15-degree increments. Each 

marker corresponds to a pose at a particular yaw angle maintaining the pitch angle at 0. 

Post-it was used as markers. The whole set of post-it covers a half-sphere in front of the 

person. To obtain the face in the center of the image, the person was asked to adjust the 

chair to see the device in front of him. After this initialization phase, we asked the person 

to stare successively at 13 post-its. At each post-it positions, the person was asked to keep 

the head in alignment with the position of the post-it. The person was allowed to move 

his eyes. A video of 30 seconds was captured for every angle from -90 degrees to 90 

degrees yaw angle in 15-degree increments. Each video consists of images with the same 

yaw angle but with varying expressions and emotions, for example with eyes open, while 

talking, smiling. showing teeth, eyes looking at various points but maintaining the head at 

the same yaw position, etc. This video was converted into images using the Python Image 

Library (PIL). Capturing a video was easier compared to capturing images at various 

expressions separately.  

 

Figure 4. An example of a frontal pose with a yaw angle of 0 degrees 
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Figure 5. An example of a non-frontal pose with a yaw angle of -90 degrees 

The examples of the frontal pose at 0-degree yaw angle and non-frontal pose at    

-90 degrees yaw angle are shown in  Figure 4 and Figure 5 respectively. The training and 

testing images were randomly selected from the images generated from the video.  The 

images captured were of size 1920x1080 pixels. The images were captured for 13 poses 

from -90 degrees yaw angle to +90 degrees yaw angle in 15-degree increments, i.e. -90, -

75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, and 90 degrees. Our intuition is that in a 

known face database like a state database containing photos for every person in the state, 

images captured for the need for state identification cards are frontal images with a 

neutral pose. It is important to understand how the face recognition system behaves when 

the lawmakers have to match a face image in the database with a non-frontal image of a 

person. We are trying to replicate this scenario by having a training dataset of only frontal 

images at a yaw angle of 0 degrees and testing dataset with poses from a yaw angle of -90 

degrees to 90 degrees. 

Face Detection 

 Face detection is the primary step in face recognition. Face detection is an 

application of object detection in computer vision. An object detection algorithm detects 

objects in an image whereas a face detection considers a face as the object to be detected.  
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The face detection model locates a face in the image and the located face is then 

converted into a face feature vector and later sent to the face recognition model to 

identify the detected face. Face detection plays an important role in face recognition. If 

the face detector cannot detect faces in the image, then we cannot recognize the face.  For 

example, Haar cascade classifiers cannot detect non-frontal faces in an image and we 

cannot recognize the non-frontal face in an image. Hence, it is important to select a 

suitable face detector model to ensure face recognition for poses in the range of  -90 to 90 

degrees yaw. Some of the commonly used face detector models are Haar cascade 

classifier, OpenCV Deep Neural network face detector (OpenCVDNN), Multi-task 

Cascaded Convolution Networks (MTCNN), and Histogram Of Gradients - dlib. In our 

research, we are working with Haar cascade face classifier, MTCNN, and OpenCVDNN 

face detector. In this section, we conduct a study on various face detectors and how it 

performs on non-frontal poses.  

 Haar Cascade classifier. Haar cascade classifier was proposed by Paul Viola and 

Michael Jones in [18]. Haar cascade classifier was the first real-time face detection model 

that offered high detection accuracy. The classifier was trained with an Adaboost learning 

algorithm on face images and non-face images.  The classifier uses Haar features to 

extract facial features from the image. Haar feature value for each feature is calculated as 

the difference between the sum of pixels in a white rectangle from the sum of pixels in a 

black rectangle. Examples of Haar feature representation are shown in Figure 6. The 

paper states [18] that there are almost 160000 haar features in a 24x24 image window. To 

calculate the difference between the sum of black pixels from the sum of white pixels for 

160000 Haar features is tedious. The researchers proposed an integral image to calculate 
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Haar feature value faster. An integral image calculates Haar feature value from just 4 

pixels. If the accumulated Haar feature value is within the threshold limits set by the 

classifier, then that Haar feature is considered as a feature of a face. A number of Haar 

features contribute to the selection of a face. Out of 160000 features in a 24x24 window, 

only some Haar features would be relevant to face. The most relevant features are 

selected by Adaboost training. Weak classifiers with Adaboost learning would select the 

most important Haar features to classify faces. The classifier is known as weak because 

one Haar feature alone cannot classify a face. The set of weak classifiers reduced 160000 

features to 6000 features after Adaboost learning in [18]. Searching each image window 

for 60000 features of a face is a time-consuming process.  

 

Figure 6. Examples of Haar-like features 

 The researchers proposed a Cascade of classifiers that checks 6000 features 

through different stages to make the face detection faster. The research [18] used 38 

stages where 1, 10, 25, 25, 50 features were checked in the first five stages. If a window 

fails at the first stage then we discard it and the window which passes through all the 

stages of the cascade classifier contains a face region in it. Similarly, the cascade 

classifier is applied at different image windows successively. Finally detecting the entire 

face. The flow diagram of a Cascade classifier is shown in Figure 7. 
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Figure 7. Flow diagram of a Cascade classifier [19] 

 OpenCV is a computer vision library and OpenCV has a pre-trained Haar cascade 

classifier for face detection. The pre-trained classifier for frontal face detection is 

available as an XML file ‘haarcascade_frontalface_default.xml’. The first step of the  

OpenCV Haar cascade face detection is converting a color image to grayscale. Scale 

factor and minimum neighbors are parameters that control the accuracy of the Haar 

cascade classifier in the OpenCV library. We have used a scale factor of 1.2 and the 

number of neighbors as 5. The face detection is performed with the help of a function 

‘detectMultiscale’. This function returns the coordinates of the face detected. Using the 

pre-trained face classifier helps us to directly test on face image than going through the 

hassle of training the model for detecting faces. The disadvantages of the Haar Cascade 

Classifier are that it does not work well in non-frontal poses and has a high number of 

false positives. 

 Multi-task Cascaded Convolution Neural Networks (MTCNN). The MTCNN 

is a deep learning-based face detector that offers the state of art results in face detection. 

MTCNN proposed by Kaipeng Zhang et al. in [20] is one of the most popular deep 
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learning-based face detection models. MTCNN can also detect facial landmarks such as 

eyes and mouth.  The MTCNN is a three-stage cascaded convolutional neural network. 

The MTCNN is made of 3 convolution networks namely Proposal Network (P-Network), 

Refine Network (R-Network), and Output Network (O-network). The first stage is a P-

Network which proposes candidates face regions in an image. The proposed face region 

is given as input to the R-Network. The R-Network filters the bounding boxes in the face 

region. Finally, the bounding box regions are fed to the O-Network. The O-Network 

proposes facial landmarks in the face detected. The MTCNN is known as Multitask 

cascaded convolution network because it performs three tasks mainly face classification, 

bounding box regression, and facial landmark localization.  

 

Figure 8. The pipeline of the MTCNN face detector [21] 

 The advantage of the MTCNN face detector is that it can detect non-frontal poses 

better compared to the Haar cascade classifiers. Another advantage of the MTCNN is that 

it comes with facial landmark detection, which is helpful for head pose estimation. 
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MTCNN architecture is complex to implement. So, we can make use of open-source 

implementations of the MTCNN face detector. The MTCNN face detector can be 

installed as a Python library ‘MTCNN’. The MTCNN library contains the pre-trained 

model of the face detector. In Python, an instance of the MTCNN network can be created 

by calling the ‘MTCNN()’ constructor [21]. Once an instance of MTCNN is created, we 

can call the function ‘detect_faces’ to detect faces in an image. The function returns a 

dictionary containing the coordinates of the face detected, the confidence of the face 

detected, and coordinates of the location of eyes, nose, and mouth. This is how we detect 

faces with the MTCNN face detector. 

 OpenCV Deep Neural Network (OpenCV DNN). The OpenCV DNN face 

detector model is based on a Single-shot Multibox detector and uses ResNet-10 

architecture [22]. This model is available in OpenCV 3.3 version. OpenCV has provided 

TensorFlow and Caffe implementation of the model. This model is the best compared to 

the Haar cascade classifier and MTCNN face detector because it can handle extreme pose 

variations and can detect faces in different scales.  

Feature Extraction 

 Once we detect a face, the next step is to extract features. Before feature 

extraction, it is important to do some data preprocessing. Firstly, we resize all the 

detected faces to 500x500 pixels. After resizing, we apply standardization. 

Standardization of the detected faces is achieved through the ‘StandardScaler’ function in 

Scikit-learn. ‘StandardScaler’ standardizes features by removing the mean and scaling to 

unit variance [23]. In standardization, we find the mean of each feature and the standard 

deviation of each feature in the training data. Then we standardize the training data by 
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subtracting the sample mean of each feature from the sample feature and then divide the 

feature difference by standard deviation. The test data is then transformed according to 

the standardization of training data. Machine learning models will behave badly if they 

are fed data which is not standardized. Most machine learning models make predictions 

based on the distance calculated between actual output and predicted output. The reason 

there is a higher distance between the actual and predicted value is just that they were 

measured on different scales. Therefore, it is essential to standardize the data before 

feeding to your machine learning model.  

 Feature extraction plays a significant role in machine learning models. The 

accuracy of the algorithm depends on the method of feature extraction. In this research, 

we use Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and 

Local Binary Pattern Histogram (LBPH) for feature extraction. 

 Principal Component Analysis (PCA). The feature of an image is the most 

important information of the image. The computer stores images as pixel values in the 

range of 0-255. If the pixel intensity is 0, then it has no information and if the pixel 

intensity is near to 255, it is white and contains information. The detected faces are of 

size 500x500 pixels and contain 250000 feature values where each pixel intensities are 

considered as features. If we have 100 training images, each image will have 250000 

feature values, and then it would be computationally expensive. This is when we use 

dimensionality reduction. The Principal Component Analysis is a dimensionality 

reduction technique that extracts the features in such a way that it finds the direction of 

maximum variance in high dimensional data and projects on to a new subspace with 

equal or fewer dimensions than the original one. Principal components of the new 
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subspace are orthogonal to each other as illustrated in Figure 9. The PCA is performed 

with the help of the  ‘PCA’  function in the Scikit-learn. PCA is sensitive to outliers 

therefore it is important to standardize the data before performing PCA dimensionality 

reduction.  

 

Figure 9. PCA feature representation [24] 

PCA is an unsupervised method i.e. it does not require any class labels during the 

training stage. The important thing to remember is that PCA considers the entire training 

dataset and calculates k eigenfaces for the entire training dataset instead of calculating 

PCA for each image in the training set separately. Steps of PCA are 

1. Standardize the d dimensional dataset where d is the number of features 

2. Construct the covariance matrix 

3. Obtaining eigenvalues and eigenvectors of the covariance matrix 

4. Sort the eigenvalues in descending order to rank the eigenvectors 

5. Select k eigenvectors which correspond to k largest eigenvalues, where k is the 

dimensionality of the new feature space 

6. Construct a projection matrix W from the top k eigenvectors 

7. Transform the d dimensional input dataset X using the projection matrix W to 

obtain the new k dimensional feature space [24] 



 

25 

 Linear Discriminant Analysis (LDA). Linear Discriminant Analysis (LDA) is 

another method of feature extraction. LDA finds the feature subspace that optimizes the 

class separability. LDA is a supervised method and hence uses the class labels for feature 

extraction. Both PCA and LDA are good feature extractors. The concept of LDA for a 

two-class problem is shown in Figure 10. Class 1 samples are represented by circles and 

class 2 samples are represented by crosses.  

 

Figure 10. Linear Discriminant Analysis for a 2-class problem [23] 

LDA is more useful when the classification is a multi-class classification problem 

than a binary classification problem. Similar to PCA, LDA is also calculated on the entire 

training dataset and it requires the data to be standardized before applying LDA. In LDA, 

we can have a maximum of c-1 linear discriminants where c is the number of classes, i.e. 

for a four-class classification problem, the maximum number of linear discriminants one 

can obtain is three. The steps of performing LDA are: 

1. Standardize the d-dimensional dataset 

2. Compute the d dimensional mean vector for each class 

3. Construct the between-class scatter matrix 𝑆𝐵 and within-class scatter matrix  

4. Compute the eigenvectors and corresponding eigenvalues of the matrix  𝑆𝑤
−1𝑆𝐵 
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5. Sort the eigenvalues in decreasing order to rank the corresponding eigenvectors 

6. Choose the k eigenvectors that correspond to the k largest eigenvalues to 

construct a dxk dimensional transformation matrix W 

7. Project the samples onto the new feature subspace using transformation matrix W 

 Local Binary Pattern Histogram (LBPH). Local Binary Pattern (LBP) 

descriptors compute the local representations of texture by comparing each pixel with its 

surrounding neighborhood of pixels. For each pixel in the grayscale image,  

a neighborhood of size r surrounding the central pixel is selected. LBP value is calculated 

for the central pixel as shown in Figure 11 and stored in the output 2D array with the 

same width and height as the input image [25].  Similarly, the LBP value is calculated for 

all pixels. Finally, we create an LBP representation of the image. A histogram is 

calculated from the LBP 2D array as illustrated in Figure 12. The calculated histogram 

contains information about the most important features. To account for variable 

neighborhood size, parameters ‘p’ and ‘r’ are introduced. Parameter ‘p’ represents the 

number of points in the neighborhood and r represents the radius of the circle. If there are 

24 points and a radius of 8, the final histogram obtained will have 24+2 features.  For 

LBP, a histogram is calculated for every single image rather than for the entire training 

dataset. LBPH for each image is independent of the LBPH of another image. During the 

testing phase, a histogram is obtained, and the system tries to compare the histogram of 

the test image with the histogram of each training image. The face recognition system 

based on LBPH compares two histograms and returns the image with the closest 

histogram. Depending on the system, the system also returns the name of the matched 

histogram.  
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Figure 11. Applying LBP operator on an image [26] 

 

Figure 12. Creation of Local Binary Pattern Histogram from an image [25] 

Face Recognition Model 

 The dataset for face recognition is divided into ‘Train’ and ‘Test’ dataset. The 

face detector model detects faces. The detected faces are resized into 500x500 pixels 

before passing it to the face recognition model. The face recognition model is a machine 

learning classifier that recognizes faces into Face ID classes. Here, we have used 3 

classes such as ‘FaceID1’, ‘FaceID2’, and ‘Unknown’ class. The flow diagram of the 

face recognition model is shown in Figure 13. In the training phase, the extracted features 

are fed to a machine learning model. The model is then trained with the extracted face 

features. Ten percent of the training data is used for validation. We also perform 

hyperparameter tuning and retrain the model to improve the performance of the classifier. 

Once the machine learning model is optimized, the model is ready for test data. For the 

testing phase, the process repeats like before, the only difference is that instead of 

classifier training and hyperparameter tuning stages, the model directly predicts the test 
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image as ‘Face ID1’, ‘FaceID2’, or ‘Unknown face’.  

 

Figure 13. Block diagram of the face recognition model 

 Classifier selection and training. There are several classifications approaches 

available for machine learning such as Logistic Regression, Support Vector Machine, 

Decision Tree Classifier, Random Forest Classifier, and K Nearest Neighbors (KNN) 

classifier. Most face recognition approaches use the KNN algorithm with Euclidean 

distance and SVM for face recognition. In this research, training, and testing of the model 

was performed using SVM and KNN. The optimal model will be chosen based on 

performance. 

 SVM is a machine learning classifier that maximizes the margin between classes. 

The margin is defined as the distance between the decision boundary and the training 

samples that are closest to this decision boundary. The performance of SVM 

classification depends on the ‘C’ parameter. C parameter controls the penalty for 

misclassification. Large values of ‘C’ mean a large penalty for misclassification whereas, 

with small values of ‘C’, the penalty for misclassification would be less. The ‘C’ 

parameter of the SVM model controls the width of the margin and therefore tunes the 

bias-variance trade-off. The advantage of SVM is that it can work for both linear and 

non-linear classification. SVM can perform non-linear classification with the help of a 



 

29 

kernel [23]. Kernelized SVM creates non-linear combinations of the original features to 

project them to a higher dimensional space through a mapping function where the 

features are linearly separable. This separates two classes utilizing a linear hyperplane 

which becomes a non-linear decision boundary if we project it back to the original feature 

space. 

 After selecting the model, the model is trained with the help of the ‘fit’ method in 

Scikit-learn. Fit method loops over all individual samples in the training set and updates 

the weights according to the classifier rule. In this case, supervised training is used i.e. 

the model is trained with both data features and the class labels. During the training stage, 

class labels are predicted, and the training error is calculated. The learning of the model is 

dependent on the cost function. In the case of SVM, learning is dependent on the 

objective function which is the maximization of the margin whereas in KNN the features 

are learned by memorizing the training data set itself without depending on the objective 

function. The KNN selects the sample nearest to the training sample based on Euclidean 

distance. If the neighbors have a similar distance, then the classifier would choose the 

class label that comes first in the training dataset. The K parameter denotes the minimum 

number of nearest neighbors to include in the majority of the voting process. If k=1, then 

the predictions are not stable. 

 Hyperparameter tuning. After training the model, the performance of the model 

on unseen data has to be tested. This can be performed by cross-validation. Cross-

validation helps to find the best model for the face classification problem. In this 

research, K fold cross-validation with 15 folds is used to evaluate the model. K fold 

cross-validation randomly splits the training dataset into K folds without replacement, 
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where K-1 folds are used for model training, and 1-fold is used for performance 

evaluation. The average scores are calculated out of the K folds. K fold cross-validation 

finds the optimal hyperparameters that provide a satisfying generalization performance. 

The optimal hyperparameters are determined by performing a Grid Search on the training 

data with K number of folds. After finding the optimal hyperparameter values, the model 

is retrained on the complete training dataset and the final performance is obtained using 

the unseen test dataset. 

 Optimized model. The best model is determined after retraining the model with 

optimal hyperparameters. The model will be tested on unseen data. We test the face 

recognition system for 13 poses from a yaw angle of -90 degrees to 90 degrees in 15-

degree increments. The performance of the model will be evaluated based on the 

performance metrics such as accuracy, precision, recall, and F1 score. The prediction 

accuracy is the sum of correct predictions to the total number of predictions. Precision is 

a metric that helps to determine what proportion of positive identifications was actually 

correct. Recall indicates what proportion of actual positives was identified correctly. 

Often a combination of precision and recall is used and is called an F1 score. 
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IV. PROPOSED METHODOLOGY-POSE 

Improvement of Face Recognition by Skin Segmentation 

Skin is an important feature of a face image and the processing of skin is faster 

than other features. Skin color is different for every person and the variation in skin color 

is due to the difference in brightness of the image and not the chrominance. The 

distribution of skin color is clustered in a small portion of color space. Therefore, we can 

segment the image by skin segmentation. Skin segmentation separates skin pixels from 

non-skin pixels. Skin segmentation removes the background information of the image 

and hence reduces computation complexity. Therefore, skin segmentation can be 

considered as a preprocessing stage of face detection to reduce computational 

complexity. Skin segmentation is performed by choosing a proper color space and 

selecting a skin color model. 

 Color space. Skin color is sensitive to illumination, ethnicity, camera 

characteristics, etc. [27].  Hence it is important to choose an appropriate color space 

model that is robust to variations in illumination and ethnicity. Color space is a 

mathematical model that represents color information using three or four different color 

components. RGB, HSV, YCbCr are different color spaces available for skin detection. 

Studies on various color spaces [3] indicate that YCbCr is the best color space for skin 

detection. The separation of chrominance and luminance components makes YCbCr 

standout for skin detection. Luminance is stored in Y; Chrominance information is stored 

in Cb and Cr.  YCbCr is used for skin detection in [26] and [28]. YCbCr can be 

calculated from RGB as shown below 
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 Y=0.299R+0.287G+0.11B (1) 

 Cr = R-Y (2) 

 Cb = B-Y  (3) 

 HSV is another color space that works well for skin segmentation. RGB 

components of the color of an object in a digital image are correlated with the amount of 

light hitting the object and therefore image description is difficult. Whereas in HSV, 

image descriptions are more relevant [29]. A skin detection model in HSV color space is 

proposed in [30]. Hue varies from 0 to 1.0, from red through yellow, green, cyan, blue, 

magenta, and back to red [31]. As saturation varies from 0 to 1.0, color varies from 

shades of gray to fully saturated, and as V values vary from 0 to 1, the brightness of 

colors increases. The hue component in HSV is in the range of 0 to 360 degrees. 

 Skin color model. After choosing a proper color space, we have to specify the 

skin color model that segments skin and non-skin pixels. Different methods such as 

explicit skin-color space thresholding, histogram model, Gaussian classifiers, elliptical 

boundary model MLP classifier, Maximum entropy classifier, etc. have been proposed 

for skin segmentation [27]. Here we use skin color thresholding for selecting the skin 

pixels. The color space converted image is given some threshold range so that the values 

within the range would be turned to white and can be considered as skin pixels. The 

pixels that fall out of range are considered as background information or non-skin pixels 

would change to black. As a result, a binary image with skin pixels in white and non-skin 

pixels in the black color is formed. 

 Choosing an appropriate threshold value for skin color will affect the performance 

of skin segmentation. People have different skin tones; White people have lighter skin 
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tones and African American and Asian people have darker skin tones. The threshold 

value should be selected in such a way that it matches the skin color distribution of the 

person. Otherwise, skin segmentation for one skin color will not work for another skin 

color. 

 Binary morphological operations. The resultant binary image after thresholding 

will have more false-positive skin regions in the image [30]. To eliminate the false 

positives of skin detection, we pass the binary image through an elliptical structural 

kernel that performs a number of iterations of dilation and erosion. We can adjust the 

kernel size to get a clearly segmented image. Dilation adds pixels to the object 

boundaries whereas erosion removes pixels on object boundaries. The number of pixels 

added or removed is determined by the size and shape of the elliptical structural kernel. 

 

Figure 14. Skin segmented image 

After morphological operations, the output image is smoothed with a Gaussian 

blur to remove noise. Finally, the input image is multiplied with the masked binary image 

to obtain a skin segmented image. The skin segmented image will only contain the skin 

pixels and the background pixels will be in black. An example of a skin segmented image 

is shown in Figure 14. Skin segmentation reduces the resolution of the image and makes 

the resultant image easier for computations.  
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Proposed Methodology 

 The flow diagram of the pose improved face recognition is shown in Figure 15. 

The output of face detection is shown in Figure 16. In the proposed methodology, we first 

perform skin segmentation in HSV color space by giving threshold values according to 

the skin tone of the person. The skin segmented image is converted to grayscale before 

applying face detection. The skin segmentation removes the non-skin pixels from the 

image and the face detection is applied only on the skin pixels in the image. 

 

 

Figure 15. Proposed methodology 

 

 

 

Figure 16. The detected face on a skin segmented image 

Once the face is detected, we extract face features with the help of PCA. The PCA 

features extracted from the skin segmented face is used to train the classifier. We also 

perform hyperparameter tuning to determine the optimal parameters of the machine 
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learning model. Once the model is optimized, the model is ready for testing. For testing, 

first, we separate skin pixels in the image and then we apply face detection. PCA features 

are extracted from the detected face and are fed to the machine learning model to predict 

the FaceID. This is how our proposed methodology works. The proposed method just 

adds a preprocessing stage to the normal workflow of the face recognition model. 

Experimental results show that the proposed methodology significantly improves the face 

recognition accuracy for non-frontal poses.  

Improvement of Face Recognition through Frontal View Synthesis 

 In this section, we propose another methodology to improve face recognition by 

generating a frontal view from a non-frontal image. We aim to recognize a non-frontal 

face by comparing the non-frontal face with a known frontal face database. Our model 

will be trained on frontal faces and will be tested on both frontal and non-frontal faces. 

We assume that we manually identify a pose as frontal or non-frontal before testing. If 

the face is frontal, then we use the model discussed in Figure 13 for face recognition. If 

the testing face is non-frontal we will use the model proposed in Figure 17.   

The flow diagram for training the face recognition model is illustrated in Figure 

18. Our model is trained on frontal faces. The faces will be first detected by the face 

detector and the features are extracted using Principal Component Analysis (PCA). The 

classifier will be trained on the extracted features from the training data. After training, 

the model is optimized with the help of hyperparameter tuning. To find the optimal 

parameters of the model, the optimization of the model is performed through Grid search. 

Once we obtain the optimal parameters of the model, the model is ready for testing.  



 

36 

 

Figure 17. Face recognition with pose correction-testing phase 

 

Figure 18. Face recognition with pose correction-training phase 

When we have a non-frontal image as a test image, we feed the non-frontal image 

to a Style Transfer Generative Adversarial Network (StyleGAN). The StyleGAN 

architecture generates a synthetic image that looks exactly like the actual image. We then 

apply pose corrections on the StyleGAN generated image. The generation of a frontal 

pose from a non-frontal pose with StyleGAN will be explained in detail later. The 

StyleGAN architecture generates a frontal view and the generated frontal view is given as 

input to the face detector. Once the face is detected, the most important features are 

extracted through PCA. The PCA features extracted from the non-frontal face will be 

given as input to the optimized model. The optimized model now predicts the FaceID of 

the non-frontal face. 

 Generative Adversarial Network (GAN) architecture. A deep neural network 

is a type of machine learning network whose connections resemble the neural 

connections that exist in the human brain. Some of the commonly used deep neural 
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networks for image classification are Convolutional neural networks, Deconvolution 

network, and Generative Adversarial Network (GAN). StyleGAN is a type of GAN.  

GAN is an unsupervised deep learning network that automatically discovers the 

underlying structure of input data and creates new examples that could have been drawn 

from the original dataset [32]. GAN consists of two neural networks, a generator, and a 

discriminator. The generator generates image from a random latent vector. The 

Discriminator discriminates whether the generated image is a real image or fake 

image.  A generator is a deconvolution network that can generate images from a latent 

vector whereas a discriminator is a convolution network that generates feature vectors 

from the input image. A random noise vector, mostly Gaussian distribution, is given as 

input to the generator. The generator generates images from this latent vector. The 

generated image is then fed to a discriminator. A discriminator is initially trained with 

real images so that it can discriminate between real and fake images. When the generator 

feeds the fake image to the discriminator, the discriminator would classify the image as a 

fake image and will give feedback to the generator to update its latent vector in such a 

way that the image generated looks like a real image. When the generator fools the 

discriminator, the generator is rewarded, and the discriminator is penalized, and model 

parameters are updated. The discriminator and generator compete with each other in such 

a way that the generator tries to generate a more realistic image, and the discriminator 

tries to discriminate it as a fake image. After sufficient training there comes a stage where 

the discriminator can no longer say whether the image generated is real or fake. An 

example of GAN architecture is shown in Figure 19. Some of the applications of GAN 

are creating super-resolution images, creating art, image to image translation, etc. The 
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drawbacks with traditional GAN are that we do not have control over the properties or 

style of the image generated. For example, if we have to make small changes in the 

generated image, like changing the hair color, trying to change the latent representation 

by a little would have changed the color of eyes or changed the shape of the nose 

resulting in a completely different image. This process where we cannot separate features 

from the latent representation is known as feature entanglement.   

 

Figure 19. Example of GAN architecture [31] 

 Style Transfer Generative Adversarial Network (StyleGAN) architecture. 

StyleGAN is an extension to the GAN architecture developed to overcome the problem 

of feature disentanglement faced by GAN models. The most important property of 

StyleGAN is the ability to control the style of the image at different levels of detail. 

StyleGAN overcomes the problem of feature entanglement through an additional 

mapping network that maps the input latent vector into an intermediate latent vector. 
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Figure 20. A StyleGAN generator model architecture [32] 

The architecture of the StyleGAN generator model is illustrated in Figure 20. In 

GAN, a random noise vector is fed to the generator network whereas in StyleGAN, the 

input latent vector is mapped to an intermediate latent vector and this intermediate latent 

vector is fed to the generator network. Another major difference of StyleGAN from GAN 

is that in StyleGAN we inject the latent vector back to the generator through Adaptive 

Instance Normalization (AdaIN) and in GAN,  the input latent vector will not be used 

further after the initial stage. Since adaptive instance normalization induces changes in 

style in every convolution layer, there is no need to use a random noise latent vector as 

the input of the generative model. The generator model of StyleGAN uses a learned 

constant the input of 4x4x512 tensor. Noise is injected pixel-wise at each AdaIN layer to 

provide stochastic variations in the image generated. The StyleGAN learns progressively 

from a lower resolution. Firstly, the model starts with generating 4x4 pixels images and 

when the model is stable, then it progresses to learn and generate 8x8 pixels images. This 
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process repeats until the model generates 1024x1024 pixels. The use of different style 

vectors at different points of the synthesis network gives control over the resultant image 

at different levels of detail [33]. The blocks of layers in the synthesis network at lower 

resolutions such as 4x4 pixels and 8x8 pixels control high-level styles such as pose, 

gender, age, etc. The layers of 16x16 pixels and 32x32 pixels control facial features and 

hairstyles and blocks from 64x64 to 1024x1024 control color schemes and fine details.  

  StyleGAN-based pose correction. StyleGAN architecture is used to generate 

images. We have a query image, and we aim to generate synthetic images that look 

exactly like the query image. Firstly, we look for faces in the image and crop the face 

region in the image. Then we align the faces by centering the nose and making the eyes 

horizontal. The aligned images are then fed to a pre-trained Resnet encoder to generate an 

estimate of the latent representation of the actual image. The Resnet generated latent 

vector will be given as the input to the pre-trained StyleGAN. The pre-trained StyleGAN 

[34] can generate a face image from the estimated latent vector. Now the problem is that 

the generated face image would not look like the actual query image. To make our 

generated image look like the query image, we use a pre-trained VGG16 network to 

extract face features from the query image and the generated image. The L2- loss in 

semantic VGG space is calculated as the difference between the feature vectors. We aim 

to minimize the distance between the feature vectors and to minimize the loss. We 

optimize the model by updating the initial latent vector estimate of the query image. The 

latent representations will be further optimized by stochastic gradient descent. The model 

converges when the generated image looks exactly like the query image i.e. when L2-loss 

in the semantic ‘VGG’ space between generated image feature vectors and the query 



 

41 

image feature vector is the minimum. Optimization is performed only for the latent 

representation we want to obtain. Now we have the actual latent representations, which 

when given to a StyleGAN will generate an image that looks exactly like the query 

image. The generation of the optimal latent vector from a query image is shown in  

Figure 21. The flow diagram for the generation of the optimal latent vector is shown in 

Figure 22. 

 

Figure 21. Generation of the optimal latent vector 

 

 

Figure 22. Flow diagram for the generation of the optimal latent vector 

Once the latent vector is optimized,  the latent vector can be transformed 

according to our wish. We find the direction of head pose yaw in the latent space and can 
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move the optimized latent vector in the direction of head pose yaw in the latent space and 

can transform it back to the image using the generator. We use a pre-trained head pose 

yaw latent direction available in [35] to transform the optimized latent vector to a latent 

vector in head pose yaw direction. The optimal latent vector is moved in the pre-trained 

directions of the head pose yaw. The pre-trained model was trained in the Flickr-Faces-

HQ dataset to obtain the latent directions of the head pose yaw. The new latent vector 

will be the sum of the product of latent direction and coefficient and optimal latent 

vector. The coefficients indicate the direction in which we move the optimal latent 

vector. There are positive and negative coefficients. For example, in the head pose yaw 

latent directions, a  coefficient of -1 means the movement of the face towards the right, 

+1 means the movement of the face towards the left, and 0 means the actual pose. We 

adjust the coefficients from -4 to +4 to generate frontal faces from non-frontal faces.  
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V. EFFECT OF SKIN COLOR ON FACE RECOGNITION 

Skin color plays an important role in face recognition. Dark-skinned faces are one 

of the major challenges faced by the current face recognition system. The reasons for low 

face recognition accuracy for dark skin faces are less diverse training dataset and optical 

perspective of black color. Creating a diverse dataset could not solve the problem with 

dark skin. Researchers state that black color reflects light in different wavelengths 

compared to white faces, which makes it difficult for the current face recognition 

technology to correctly classify dark faces. In this section, we explain the creation of the 

‘Celeb-Skin’ dataset for finding the impact of skin color on face recognition. We also 

explain the machine learning model created to find the effect of dark skin on face 

recognition. Our study found that dark-skinned Asians have a higher misclassification 

rate when compared to African American and White faces. The results of the initial study 

will be discussed in the results section.  

Creation of the ‘Celeb-Skin’ dataset 

 The Celeb-Skin dataset contains images of 11 male celebrities. The images were 

collected from the web. The faces in the dataset are frontal. The dataset contains a total of 

480 images in the dataset. Female celebrity faces were not collected because the face 

recognition accuracy of females was less compared to males. One of the main reasons 

that females have less accuracy than male faces is because of changes in hairstyle, 

jewelry, makeup, etc. There were other variations in the images of female celebrities 

other than skin color. We do not want our face recognition model to be tested with more 

than one variable parameter. We aim to find the effect of skin color on face recognition. 

So, we tried to discard other features like pose, gender, etc. We choose celebrities in 
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various skin tones and different races. We chose 4 celebrities from African American and 

White races, and 3 celebrities from Asian and 1 Asian person who is not a celebrity. Our 

dataset, therefore, contains an equal distribution of African  American, Asian, and White 

faces. The classes of the Celeb-skin dataset are shown in Figure 23. The images shown in 

Figure 23 were collected from [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46]. 

 

Figure 23. Example of classes in the Celeb-Skin dataset 

Study on the Effect of Skin Color on Face Recognition 

 In this section, we discuss the development of machine learning models to find 

the effect of skin on face recognition. The initial results will be explained later in the 

results section. The flow diagram for the machine learning model to identify the effect of 

skin color on face recognition is shown in Figure 24. We use the ‘Celeb-Skin’ dataset to 

study the effect of skin color on face recognition.  
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Figure 24. Flow diagram of the face recognition model 

During the training phase, images are converted to grayscale, and faces are 

detected with the help of the Haar Cascade Classifier. We use a Haar cascade classifier 

because the dataset only contains frontal faces. Once the faces are detected, the detected 

faces are resized into 500x500 pixels. The features are extracted from the detected face 

using PCA and LDA. Once the features are extracted, the machine learning classifier, 

here we use a support vector machine, is trained on the PCA or LDA features. The PCA 

reduces the dimension from the 250000 features to a number of PCA components. 

Choosing the optimal number of PCA components would improve the accuracy of the 

model to a great extent. The model is optimized by hyperparameter tuning performed 

through grid search. Optimal hyperparameters would lead to the development of an 

optimized model that is ready to test unseen data.  

During the testing phase, we perform operations such as converting to grayscale, 

resizing images to 500x500 pixels, feature extraction and finally the optimized model 

predicts the FaceID based on the PCA features extracted. The training data and test data 

must have the same dimensions. Test data should be transformed according to training 

data. After testing, we found that face recognition accuracy of dark Asians is less than 

white and African American faces.  
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VI. PROPOSED METHODOLOGY-SKIN 

 In this section, we propose the improvement of face recognition accuracy of dark 

skin faces. From our initial testing on the Celeb-Skin dataset, we found that dark Asians 

have the least recognition accuracy and are often misclassified with African American 

faces. We improve the accuracy of dark-skinned faces by specifically creating a dataset 

according to the skin tone. We create different training datasets for people in different 

ranges of skin tone. The classes whose skin tone (RGB values) falls in the same range 

falls is considered as one category. The skin tone range is determined by extracting the 

RGB values of the dominant skin tone. The flow diagram for creating separate datasets 

according to skin tone is shown in Figure 25.   

 

Figure 25. Creation of different training dataset based on skin tone 

The Celeb-Skin dataset contains images collected from the web. The images have 

different illumination conditions, and the skin color of the person is dependent on the 

lighting conditions in which the image is captured [3]. To reduce the effect of 

illumination on skin tone, we perform Contrast Limited Adaptive Histogram Equalization 

(CLAHE). Skin segmentation is performed on the illumination corrected image to 

separate skin pixels from the background pixels. The skin segmented image contains only 

the skin portion of the face image. K-means clustering is performed to cluster the skin 



 

47 

tones of the image. The cluster gives information about the RGB pixel values of the skin 

tone in that cluster. Similarly, we obtain the RGB values of all the images in the same 

class and calculate the range of  RGB values for that class. Based on the range of RGB 

values obtained, the entire training dataset is divided into 4 groups namely white, brown, 

dark brown, and black.  

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

 Histogram equalization is an image preprocessing step performed to improve the 

contrast of images. Histogram equalization improves the contrast of images by spreading 

out the most frequent intensity values. Adaptive histogram equalization (AHE) solved the 

global contrast improvement problem in histogram equalization by computing several 

histograms for different sessions of image. Adaptive histograms use these histograms to 

redistribute the lightness values of the image. AHE improves the local contrast of the 

image and enhances the definitions of edges in each region of an image. CLAHE was 

developed to prevent the overamplification of noise in adaptive histogram equalization.  

 

Figure 26. Histogram representation of AHE and CLAHE [35] 
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Figure 27. Examples of histogram equalized and CLAHE corrected image 

Histogram representation of histogram equalization and contrast limited 

histogram equalization is shown in Figure 26. An example of how an image changes with 

histogram equalization is shown in Figure 27. CLAHE offers higher performance when 

compared to Adaptive histogram equalization for image processing applications.  

The Celeb-Skin dataset consists of images collected from the web. These images 

were captured under different lighting conditions and there is a variation in illumination. 

The skin tone of a person depends on the lighting conditions in which the image is 

captured. If there is much light when the image is captured, even a dark Asian person 

would have similar RGB values to a white person. We observed that RGB values of the 

same person vary significantly over different images. When we extract the RGB values, 

the range of RGB values for white and dark Asian almost fall in the same range. 

Computers finding that dark Asian has skin tone equivalent to a white person, due to the 

illumination conditions, is not good. To reduce the effect of illuminations on skin tone we 

used CLAHE. CLAHE is performed on the Value (V) component of HSV color space. 

Only the Value component of HSV space contributes to luminance or brightness, so we 

equalize the histograms in the value channel. CLAHE cannot be performed on RGB 
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because the luminance component cannot be separated in RGB color space. After 

equalizing the value component of the image, equalized value components are merged 

with hue and saturation components of the image resulting in a CLAHE corrected image. 

The hue and saturation values of the original image are kept intact and only the value 

component of the image changes after CLAHE.  After performing CLAHE, the classes 

were grouped based on the range of RGB values.  

Skin Segmentation 

 Skin segmentation is performed on the illumination corrected image. Skin pixels 

are separated from non-skin pixels in the image by applying thresholding in HSV color 

space. The pixel values within the threshold range would turn to white and all other 

pixels are turned to black. Thresholding results in a binary image. Choosing an optimal 

threshold value is important to properly segment the skin region. Threshold values for 

white and dark skin tones are different. The optimal value of the HSV range is figured 

out through trial and error. The optimal threshold value can separate skin and non-skin 

pixels for both black and white faces. The binary image is then smoothed with a Gaussian 

blur to remove noise. Finally, the input image is multiplied with the binary image to 

obtain the skin segmented image. The skin segmented image only contains the skin parts 

in the image and all the background pixels will be black. The dominant skin tone is 

extracted from the skin segmented image through K- means clustering. 

K-means Clustering  

K-means clustering is an unsupervised learning algorithm that finds groups of 

data points with similar features. This group of data is known as a cluster. K-means 

clustering groups data into K clusters as shown in Figure 28. K-means algorithm aims to 
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choose centroids that minimize the within-cluster sum of squares [37]. To extract the 

dominant skin tone, the number of clusters k is chosen as 2.  This would return the two 

most dominant skin tones in the skin segmented image. The steps of K-means clustering 

are the following: 

1. Choose k number of clusters 

2. Choose random k number of data points as initial centroids 

3. Assign each sample to its nearest centroid 

4. Create new centroids by taking the mean value of all the samples assigned to the 

previous centroid [37]  

5. Repeat steps 3 and 4 until the difference between the old centroid and the new 

centroid is less than a threshold and until the centroid does not move [37] 

 

Figure 28. K-means clustering [24] 

We use ‘sklearn.cluster.KMeans’ in Scikit-learn to group the skin segmented 

image into different clusters. The Scikit-learn model takes the number of clusters as input 

and predicts the cluster in which the data would belong to. We can also find the centroids 
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of each cluster index. While calculating the dominant skin tone, 2 clusters were used, and 

the model returned the cluster index and the centroid coordinates of each cluster index. 

The centroid coordinates of each cluster are the mean RGB values of each cluster. 

Extraction of the Dominant Skin Tone 

The K-means clustering algorithm groups the skin segmented image into 2 

clusters and the RGB values of each cluster are obtained. To calculate the dominant skin 

tone, the number of data points in each cluster, and the total number of data points in both 

clusters are found. Then the percentage of data points in each skin cluster is calculated. 

The cluster with the highest percentage of data points is the dominant skin tone. The 

RGB values of the dominant skin tone can be obtained from the centroid estimates of the 

cluster with the highest percentage of data points. 

Calculation of the RGB Range Per Class 

 The RGB values of the dominant skin tone are extracted for every image in the 

training dataset. We aim to extract the RGB value range of a person. For example, we 

have to calculate the RGB range of ‘Brad Pitt’, for that we extract RGB values of every 

image in the ‘Brad Pitt’ class of the training dataset. The RGB values are not constant for 

a person because the RGB values are dependent on the lighting conditions in which the 

image is captured. Therefore, we calculate the RGB range for each class in the training 

dataset. The range of RGB values is larger for each class because the images are captured 

in different lighting conditions. If the images were captured in a controlled environment 

with fixed lighting conditions then the range of RGB values is within ±5 pixels.  
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Creation of the Skin Tone Specific Training Dataset 

 After extracting the range of RGB values for each class in the training dataset, the 

classes with almost the same RGB range are arranged into one group. Based on the RGB 

range obtained, the training dataset was divided into 4 training datasets namely white, 

brown, dark brown, and black. An example of the training datasets based on a specific 

skin tone is shown in Figure 29. 

 

Figure 29. Training datasets specific to skin tone 

When we obtained the range of RGB values for different skin tones, we found 

that there is an overlap in the upper range of black and lower range of dark brown. 
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Similarly, there is an overlap in the upper range of dark brown and the lower range of 

brown skin tones. In such cases, we only consider the lower ranges of each skin tone, 

specifically lower R channel ranges, to group the training dataset according to skin tone. 

For example, the range of RGB values for the black training dataset is R: 95-120 B: 60-

90 and B: 40-80, and the RGB for the dark brown training dataset is R: 105-130, G: 60-

100, B: 40-70. We can see that there is an overlap of R: 105-120 in both black and dark 

brown skin tone. So, we are only considering the lower range RGB values i.e. 95,60,40 

for black and 105,60,40 for dark brown. In this way, we can separate the classes in the 

training dataset into 4 groups. 

Face Recognition Model 

 The face recognition model is similar to the model discussed in Figure 24. The 

only difference is that instead of one single training dataset we have 4 training datasets 

according to skin color. We assume that the test dataset contains only the classes in the 

training dataset. If the test dataset contains faces that are not training datasets, then the 

model should predict the image as unknown and we have to match the test image with 

other training datasets to find the right match. Face detection is performed by the Haar 

cascade classifier and PCA features extracted from the faces are given to train the model. 

The model is optimized by hyperparameter tuning. The optimized model is tested on 

PCA extracted features of the test faces. We found that separately training on specific 

skin tone has significantly improved the accuracy of dark Asians. 
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VII. RESULTS AND DISCUSSION-POSE 

 The implementation described above was tested in Jupyter notebook using the 

Scikit-learn package in a PC with Intel® core™ i5-8250U. The programming was 

performed in Python language. Table 1 indicates the details of the test environment.  

Table 1. Specifications of the test environment 

Parameters Specifications 

Workstation Intel ® core™ 15-8250U, 1.8 GHz (4 cores) 

Development environment 

(IDE) 

Jupyter Notebook, Spyder 

Programming language Python 

Image processing libraries OpenCV 4.0, Scikit-image 

Machine learning libraries Scikit-learn 

We used 30 images per person in various expressions such as smiling, eyes open, 

eyes closed, talking, etc. in the frontal pose for training. We have tested for 13 poses, i.e. 

-90°, -75°, -60°,  -45°, -30°,  -15°, 0°, 15°, 30°, 45°, 60°, 75°, and 90° yaw angles. For 

law enforcement applications, the images in the database are usually frontal and they 

have to match a non-frontal profile photo with a frontal image. The same scenario was 

replicated here by training on frontal images only and testing on images from -90° to 90° 

yaw angle in 15° increments. We have considered 3 classes such as ‘FaceID1’, 

‘FaceID2’, and ‘Unknown’. ‘FaceID1’ and ‘FaceID2’ images are captured as part of 

image acquisition. For the ‘Unknown’ class, we took images of 30 different persons from 

the web for training and 12 images of different people for testing. The important thing to 

note here is that images in the ‘Unknown’ class are always frontal even for yaw angles 

from -90 degrees to 90 degrees. The images were captured during daytime with the 
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presence of daylight and daylight led bulbs with no flash. The specifications of the 

camera used to capture the images in the dataset are presented in Table 2. 

Table 2. Specifications of the camera 

Parameters Specifications 

Camera Google Pixel 3 

Resolution A front camera of 12.2 MP 

Video 1920x1080 pixels at 30 fps 

Aspect ratio 16:9 

Flash No flash 

Comparison of Face Detection Models on Non-frontal Poses 

 Face detection was performed with the OpenCV Haar cascade classifier, 

MTCNN, and OpenCV DNN. The Viola-Jones algorithm-based Haar cascade classifier 

could only detect faces from -60 degrees to +60 degrees yaw angle. The main drawback 

of the Haar cascade classifier was that it could not detect extreme non-frontal poses from 

∓60° to ∓90°.  We also conducted face detection using the MTCNN face detector and 

found that the deep learning-based face detector could detect faces from -75° to +75° yaw 

angle. The MTCNN face detector could not detect extreme non-frontal poses at ∓90°. 

We aim to test the face recognition model for yaw angles from -90° to +90°. Therefore, 

we used a deep learning-based face detector OpenCV DNN. OpenCV DNN was able to 

detect all the poses from -90° to +90° yaw angle. Hence, the OpenCV DNN face 

detector was further used for face recognition from -90° to +90°. The results of face 

recognition with OpenCV DNN will be explained later in this chapter.  
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Figure 30. Comparison of performance of face detection models on non-frontal poses 

(a) Haar Cascade classifier (b) MTCNN (c) OpenCV DNN 

The performance of Haar cascade classifier, MTCNN, and OpenCV DNN for 

non-frontal poses is illustrated in Figure 30. The blue bounding box indicates the face 

detected in the image. If the image does not have a bounding box, that means that the 

face is not detected. From Fig. 28 we can understand that OpenCV DNN was able to 

detect faces at 0°, 60°, -75°, 90° yaw angles. However, MTCNN could not detect faces at 

90°and Haar Cascade classifier could not detect faces with yaw angles 75° and 90°.  
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PCA Feature Extraction 

After the face detection, PCA features are extracted from the training images. 

Choosing the appropriate number of PCA components played an important role in the 

performance of face recognition. In our case, we found that 20 numbers of PCA 

components give us the highest performance. Example eigenfaces extracted from the 

training dataset is shown in Figure 31. The first four Eigenfaces contributed to 80 percent 

of the total variance in the training dataset. 

 

Figure 31. The top 8 Eigenfaces 

Face Recognition Model 

 The face recognition model was developed as shown in Figure 13. We used 

various classifiers such as LinearSVC and KNN classifier for creating the model. From 

our results, we found that LinearSVC is the best classifier for face recognition. The 

results of comparing various classifiers are shown in Table 3. We have trained our model 

with frontal images and tested the model for 13 poses. OpenCV DNN face detector was 

used for face detection. Hyperparameter tuning was performed to find the optimized 

model. The optimal parameters that produced the best validation accuracy are shown in 

Table 4.  The initial results of the face recognition model for various poses are displayed 

in Table 5.  
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Table 3. Comparison of classifiers 

Classifier Training accuracy  

(%) 

Testing accuracy  

(%) 

Linear SVC 100 94.4 

K-Nearest Neighbors 

(KNN) 

95.5 97.2 

Table 4. Optimal hyperparameters 

Parameter Optimal value 

Number of PCA components n_components=20 

Linear SVC ‘C’ C=0.0001 

Table 5. Comparison of performance-pose 

Pose 

 

(Degrees) 

Initial 

 

(%) 

Skin segmentation 

 

(%) 

StyleGAN based  

pose correction 

(%) 

-90 61.1 74.3 - 

-75 86.1 94.2 94.4 

-60 89 94.2 94.4 

-45 94.4 94.2 94.4 

-30 94.4 94.2 94.4 

-15 94.4 94.2 94.4 

0 94.4 94.2 94.4 

15 94.4 94.2 94.4 

30 94.4 94.2 94.4 

45 86.1 94.2 94.4 

60 61.1 94.2 94.4 

75 61.1 94.2 94.4 

90 61.1 83 - 

 From the initial results presented in Table 5, we can tell that face recognition 
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accuracy decreases significantly from 45 degrees to 90 degrees and -60 degrees to -90 

degrees. From -45 to 30 degrees, the face recognition accuracy is almost the same. The 

face recognition accuracy for extreme non-frontal poses from -60 degrees to -90 degrees 

and +45 to +90 degrees was improved by skin segmentation. The hyperparameters that 

gave the best accuracy for non-frontal poses are listed in Table 6. 

Table 6. Optimal hyperparameters for skin segmentation-based pose improvement 

Parameter Optimal value 

Number of PCA components n_components=20 

Linear SVC ‘C’ C=0.0001 

HSV threshold Lower threshold: [0,30,0] 

Upper threshold: [55,255,255] 

Number of erosions 1 

Number of dilations 2 

Table 7. Performance improvement for extreme non-frontal poses 

Pose 

 

(Degrees) 

Skin segmentation 

 

(%) 

StyleGAN based                 

pose correction 

(%) 

-90 21 - 

-75 9 9.6 

-60 5 6 

45 9 9.6 

60 54.1 54.5 

75 54.1 54.5 

90 35.8 - 

 The results in Table 5 shows that performing skin segmentation in HSV color 
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space before face detection has improved the face recognition accuracy at poses such as   

-90, -75, -60, 45, 60, 75, and 90 degrees considerably. From Table 7, we can see that skin 

segmentation has increased the face recognition accuracy for faces at 60 degrees and 75 

degrees by 54%.  

 The improvement in face recognition accuracy for non-frontal poses by 

StyleGAN based pose correction is presented in Table 5. In this method, we have created 

a frontal view from a non-frontal image. From our experimentation, we found that this 

technique only works for poses from -75 degrees to +75 degrees yaw angle. StyleGAN 

based pose correction does not work for -90 degrees and 90 degrees yaw angles. Firstly, a 

ResNet encoder determined an estimate of the latent vector from the actual image. The 

obtained latent vector was fed to the StyleGAN to generate images. The L2 loss in the 

VGG space was optimized by stochastic gradient descent over several iterations until the 

generated image looked like the actual image. From Figure 32, we can observe that the 

StyleGAN generated image and the actual image looks the same. However, we aim to 

create a frontal view of the StyleGAN generated image. The output of the StyleGAN 

generator is the optimal latent vector, that generated an image that looks exactly like the 

actual image. The obtained latent vector was then adjusted in the direction of the head 

pose yaw direction. The new head pose yaw direction adjusted latent vector was fed to 

the StyleGAN to create a frontal pose from a non-frontal pose. From our 

experimentation, we found that the coefficient value controls the direction of the head 

pose yaw. The StyleGAN generated images for various coefficients of head pose 

direction is shown in Figure 33. The image shown in Figure 33 is an image at 75 degrees 

yaw angle. To convert a non-frontal image to a frontal image, we used a coefficient of -4. 
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The coefficient -4 generated image is the most frontal, and this frontal image will be used 

for testing.  

 

Figure 32. StyleGAN based pose correction 

 

Figure 33. Variation of the pose with coefficients 

Table 8. Specifications of StyleGAN based pose correction 

 

Parameters Specifications 

GPU Nvidia Tesla T4, 8.1 TFLOPS 

Learning rate 0.02 

L1_penalty 0.3 

Number of iterations 400 

The model was trained on real frontal images and tested on synthetic pose 

corrected images. From the initial results, it was found that face recognition accuracy at   

-15 degrees and +15 degrees yaw angle is the same. Pose correction was only performed 

for poses such as 30, -30, 45, -45, 60, -60, 75, and -75 degrees yaw angle. The 

hyperparameters of the StyleGAN ResNet encoder used to generate StyleGAN image are 
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shown in Table 8. The StyleGAN based pose correction required a GPU to perform 

computations. Even though we used a pre-trained StyleGAN model, generating a latent 

vector with the Resnet encoder, and optimizing the loss through stochastic gradient 

descent required almost 400 iterations. We used Google Colaboratory (Google Colab) 

GPU to perform the computations. The specifications of the GPU used are listed in Table 

8. It took 13 minutes to generate 4 images through the StyleGAN even with the GPU.  

Therefore, generating a synthetic image that looks exactly like the actual image and 

converting the non-frontal pose to a frontal pose is a compute-intensive process. 

Comparison of the Proposed Pose Improved Face Recognition for Non-frontal Poses 

 When comparing skin segmentation-based pose improvement and StyleGAN 

based pose correction, pose improvement with skin segmentation has more merits when 

compared to StyleGAN-based pose correction. In pose improvement with skin 

segmentation, we improved poses from -60 degrees to -90 degrees and 45 degrees to 90 

degrees yaw angle as shown in Figure 34 and Figure 35 whereas, in StyleGAN-based 

pose correction, we improved face recognition accuracy for poses from -60 degrees to -75 

degrees and 45 degrees to 75 degrees. The StyleGAN-based correction was not able to 

generate images for ± 90 degrees yaw angle. A comparison of improvement in face 

recognition accuracy for extreme non-frontal faces is shown in Figure 36.  

 Another advantage of skin segmentation-based pose improvement is that it is not 

compute-intensive. A GPU is not required to perform skin segmentation. On the other 

hand, StyleGAN based pose correction is compute-intensive and takes around 13 minutes 

for generating 4 images. A demerit of skin segmentation-based pose improvement is that 

skin segmentation only works well in images captured under controlled conditions. When 
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there is a lot of background or a background similar to skin color, skin segmentation does 

not work properly. 

 

Figure 34. Comparison of performance-pose 

 

Figure 35. Performance comparison-pose 
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Figure 36. Performance improvement for extreme non-frontal poses 
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VIII. RESULTS AND DISCUSSION-SKIN 

 This section presents the improvement of face recognition accuracy for dark-

skinned faces. Firstly, we present the initial results obtained after testing the Celeb-Skin 

dataset. Secondly, we present the improvement of face recognition accuracy of dark skin 

faces by creating different training datasets specific to the skin color. Finally, we 

compare the initial results with the results skin invariant face recognition system. We also 

compare the results of our proposed methodology with the method discussed in [2]. 

Previous studies on skin color bias on face recognition technology suggested that creating 

a diverse training dataset and creating a dataset specific to a particular race would 

improve the face recognition accuracy for dark skin faces. Table 9 presents the details of 

the test environment.  

Table 9. Test environment specifications for skin 

Parameters Specifications 

Workstation Intel ® core™ 15-8250U, 1.8 GHz (4 

cores) 

Development environment (IDE) Jupyter Notebook, Spyder 

Programming language Python 

Image processing libraries OpenCV 4.0 

Machine learning libraries Scikit-learn 

 

Initial Results on the Effect of Skin Tone on Face Recognition 

 The Celeb-Skin dataset consists of 480 frontal images of male celebrities of races 

such as White, African American, and Asian. The dataset is diverse and is uniformly 

distributed with an equal number of images for every class. There are 4 white, 4 African 

American, and 4 Asian classes. Each class consists of 20 training images and 20 testing 
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images. Therefore, our initial face recognition model was trained on 240 images of 12 

classes and tested on 240 images of 12 classes. The images were collected from the web 

and there is variation in illumination, scale, and resolution among images.  

 The first step of face recognition is face detection and we used a Haar cascade 

classifier in OpenCV for face detection because the Celeb-Skin dataset only contains 

images in frontal poses. The parameters of the Haar Cascade classifier played an 

important role in face detection. Since the images were of different resolutions and 

various scales, we used a scale factor of 1.1. The optimal hyperparameters of the Haar 

cascade classifier that detects most faces are shown in Table 10.  

Table 10. Specifications of the Haar Cascade classifier 

Parameter Optimal value 

Color of image gray 

Scale factor ‘scaleFactor’ =1.1 

Minimum number of neighbors ‘minNeighbors’=5 

Minimum size of face detected ‘minSize’=(150,150) 

 After face detection, the most important features were extracted through PCA. In 

order to extract features with PCA, all faces should be of equal size, Therefore, the 

detected faces were resized to 500x500 pixels. Before applying PCA, the pixel intensities 

were standardized to optimize the performance of PCA and face recognition algorithm. 

The number of PCA components plays an important role in face recognition accuracy. 

Therefore, tuning the number of PCA components for maximum accuracy is essential. 

For the Celeb-Skin dataset, we found that 175 PCA components gave the highest 

accuracy for the model. Table 11 illustrates the performance of the face recognition 
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model for various classifiers such as LinearSVC, K-Nearest neighbors (KNN), and 

Support Vector Machine (SVM) with a linear kernel. Linear SVC has given the 

maximum accuracy compared to other classification algorithms. Hence LinearSVC was 

selected as the best classifier for Face recognition. Both LinearSVC and SVM are support 

vector machines. The only difference is that the LinearSVC model in Scikit-learn uses a  

‘liblinear’ solver whereas the SVM model uses ‘libsvm’ solver. ‘Liblinear’ has more 

control over losses and penalties when compared to ‘libsvm’. The optimal 

hyperparameters of LinearSVC that gave the highest accuracy are presented in Table 12.  

Table 11. Comparison of classification algorithms 

Classifier Training accuracy  

(%) 

Testing accuracy  

(%) 

Linear SVC 100 94.5 

K-Nearest Neighbors 

(KNN) 

72.5 50.4 

SVM-Linear kernel 100 87.5 

Table 12. Optimal hyperparameters of face recognition model-skin 

Parameter Optimal value 

Number of PCA components ‘n_components’=175 

Linear SVC ‘C’ ‘C’=0.1 

Linear SVC ‘dual’ ‘dual’ =False 

 The LinearSVC model gave a face recognition accuracy of 94.5%. The confusion 

matrix indicating the true positives, true negatives are shown in Figure 37. From the 

confusion matrix, the face recognition accuracy for White, African American, and Asian 

faces are calculated. The classes ‘Allan’, ‘Aziz’, ‘Dhanush’ and ‘Sendhil’ represent Asian 
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faces, ‘Chadwick’,’ Doncheadle’,’ KevinHart’ and ‘JamieFox’ represents African 

American faces, and ‘BradPitt’, ‘MattDamon’, ‘TomCruise’ and ‘TomHolland’ 

represents White faces. The accuracy for races such as White, African American, and 

Asian are presented in Table 13. From  Table 13, we can infer that face recognition 

accuracy for white faces is greater than the face recognition accuracy for African 

American and Asian races. Asian race was the most misclassified race. Therefore, we aim 

to improve the accuracy of the Asian and African American race. The accuracy of dark-

skinned faces in Asian and African American races was improved by creating a specific 

training dataset according to the skin tone of a person.  

 

Figure 37. Confusion matrix 
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Table 13. Face recognition accuracy for various races 

Race Recognition accuracy 

(%) 

White 97.5 

African American 93.75 

Asian 92.5 

Improvement of Face Recognition Accuracy for Dark-skinned Faces 

 The face recognition accuracy of dark-skinned faces was improved by creating a 

dataset based on the skin tone of a person. The skin tone of a face image was obtained by 

extracting the most dominant skin tone. The skin color of a person is dependent on 

illumination conditions and because of that, each person will have different RGB values 

for different images. To reduce the variance of RGB values, a Contrast Limited Adaptive 

Histogram Equalization (CLAHE) was applied to each image as a preprocessing step. 

CLAHE was performed on HSV color space rather than in RGB color space. Histogram 

equalization is performed only on the value component in HSV color space. Skin 

segmentation was performed on the contrast limited histogram equalized image to 

separate skin and non-skin pixels. Figure 38 illustrates an example of a contrast limited 

adaptive histogram equalized image and skin segmented image.        

 

Figure 38. Applying CLAHE and skin segmentation on an image 
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Figure 39. Extraction of dominant skin tone 

 The skin segmented image was given as input to a K-means clustering algorithm. 

The number of clusters was chosen as 2. Black will also be a dominant skin tone since the 

image is a skin segmented image,. Therefore, we have 3 skin clusters. The K-means 

clustering algorithm cluster the skin tones into 3 clusters and returns the mean pixel 

values of each skin tone. An example of the output of the K-means clustering algorithm 

for the image shown in Figure 38 is presented in Figure 39. From Figure 39, we can 

understand that there are 3 skin clusters and the centroid of each cluster represents the 

RGB values of each cluster. The most dominant skin tone was found by calculating the 

percentage of occurrence of each skin tone among three skin tones. The skin tone that has 

the highest occurrence percentage is the most dominant skin tone. From Figure 39, 

‘cluster_index 2’ is the most dominant skin tone, containing 41.6% of total pixels and the 

mean RGB values of the ‘cluster_index 2’ are 103.143,71.23,56.09. Figure 38 is an 

example image of class’ ‘Doncheadle’. The RGB values of all the images in the training 

dataset of class ‘Doncheadle’ are calculated. The RGB values are not constant because 
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RGB values depend on the lighting conditions in which the image was captured. Hence 

the range of RGB for class ‘Doncheadle’ was calculated and we found the range of RGB 

values for ‘Doncheadle’ as R: 95-120, G: 60-90, B: 40-80. Similarly, we have obtained a 

range of RGB values for all classes in the training dataset. The range of RGB values for 

each class is shown in Table 14.  

Table 14. RGB values for each class 

Class Race R G B 

BradPitt White 190-230 140-180 120-160 

MattDamon White 190-220 140-170 120-160 

TomCruise White 190-230 140-180 120-170 

TomHolland White 190-230 140-180 120-170 

Chadwick African American 105-130 70-100 40-70 

Doncheadle African American 95-120 60-90 40-80 

JamieFox African American 115-140 70-100 45-75 

KevinHart African American 95-120 60-90 40-70 

Allan Asian 105-115 60-80 40-60 

Aziz Asian 105-130 60-90 40-70 

Dhanush Asian 115-140 80-110 45-90 

Sendhil Asian 115-140 70-100 50-80 

 

 Based on the RGB values, the classes whose RGB values fall in the same range 

were considered as one group. After grouping classes based on the RGB values, we 

divided the training dataset into 4 training datasets such as White, Brown, Dark Brown, 

and Black as shown in Table 15. After creating 4 different training datasets based on skin 
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tone such as white, brown, dark brown, and black, 4 machine learning models were 

created for each training datasets. The hyperparameters of the machine learning model 

for different skin tone is presented in Table 16. The improved face recognition accuracy 

for dark skin tones is illustrated in Table 17. 

Table 15. Creating skin tone specific training dataset 

Class Skin tone R G B 

BradPitt  

 

White 

 

 

 

190-230 

 

 

140-180 

 

 

120-170 MattDamon 

TomCruise 

TomHolland 

JamieFox  

Brown 

 

115-140 

 

70-100 

 

45-90 
Sendhil 

Dhanush 

Chadwick  

Dark Brown 

 

105-130 

 

60-100 

 

40-70 
Allan 

Aziz 

Doncheadle  

Black 

 

95-120 

 

60-90 

 

40-80 
KevinHart 

Table 16. Optimal hyperparameters for skin tone specific datasets 

Dataset PCA components Linear SVC ‘C’ 

White 65 0.1 

Brown 55 0.1 

Dark Brown 11 0.1 

Black 11 0.1 
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Table 17. Face recognition accuracy for the proposed methodology 

Race Recognition accuracy  

(%) 

White 97.5 

Brown 100 

Dark Brown 100 

Black 100 

Comparison of the Proposed Methodology with Previous Research 

 Previous research suggested that face recognition accuracy for a particular race 

can be increased by specifically training on images of that race i.e. accuracy of African 

American faces can be increased by training on African American faces alone. The 

research [2] suggested that the accuracy of African American faces has increased 2 

percent by training specifically on African American faces. The reason the researchers 

find the improvement in accuracy while training specifically on a race is based on the 

idea that people in the same race can recognize better than from another race. For 

example, a white person can recognize white faces better than Asian faces and an Asian 

person can recognize Asian faces better than white faces.  

 In this section, we compare our proposed methodology i.e. creating a training 

dataset specific to skin tone with creating a training dataset specific to a race. The results 

of the face recognition model while training specifically on race are shown in Table 18. 

The hyperparameters of the face recognition model that gave the best performance are 

tabulated in Table 19. Table 20 illustrates the improvement of face recognition accuracy 

for Asian and African American faces by specifically training on that particular race. 

Specifically training on race means that there will be separate training datasets for each 
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race rather than training on a diverse dataset. Our initial results for skin were captured 

with diverse data, yet the accuracy for dark-skinned faces was low compared to white 

faces. Researchers claim that a diverse dataset could not solve the dark skin bias in face 

recognition technology. By specifically testing African American faces on an algorithm 

trained on African American faces, the recognition accuracy was improved by 6.66 

percent. Similarly, testing an Asian face on an algorithm trained on Asian faces improved 

the accuracy of Asian faces by 5.4 percent. 

Table 18. Face recognition accuracy for training based on race 

Race Recognition accuracy  

(%) 

White 97.5 

African American 100 

Asian 97.5 

Table 19. Optimal hyperparameters for training based on race 

Race PCA components Linear SVC ‘C’ 

White 65 0.1 

African American 60 0.1 

Asian 60 0.1 

Table 20. Improved face recognition with training based on race 

Race Initial 

 

(%) 

Race-specific 

training dataset  

(%) 

Improvement 

 

(%) 

White 97.5 97.5 0 

African American 93.75 100 6.66 

Asian 92.5 97.5 5.4 
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 To compare our methodology with the method of training based on race, we have 

considered Asian and African American faces as ‘Dark’ skinned faces by calculating the 

average of face recognition accuracy for Asian and African American faces. Figure 40 

presents a graphical representation of a comparison of our methodology with previous 

research. The comparison results of the proposed methodology and method of creating 

datasets specific to ethnicity are illustrated in Table 21. From Figure 40, we can 

understand that specifically training on a white skin tone or specifically training on a 

white race did not improve the accuracy of white faces.  

 
 

Figure 40. Comparison of performance-skin 

Table 21. Comparison of performance-skin 

Skin tone Initial  

 

(%) 

Race-specific  

training dataset  

(%) 

Proposed method        

 

(%) 

White 97.5 97.5 97.5 

Dark 93.125 98.75 100 
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Table 22. Comparison of improvement in performance-skin 

Skin tone Race-specific training 

dataset improvement  

(%) 

Proposed method 

improvement  

(%) 

White 0 0 

Dark 6.04 7.38 

 The comparison of improvement in face recognition accuracy of dark-skinned 

faces for the proposed methodology and the method based on training specifically on 

ethnicity is presented in Table 22. Table 22 shows that the proposed methodology 

improved the accuracy of dark-skinned faces by 7.38 percent whereas the method based 

on training on a specific race enhanced the accuracy of dark-skinned faces by 6.04 

percent. Comparing both methods, our methodology offers higher performance on  

dark-skinned faces compared to the previous method by 1.34 percent.    

  Merits of the proposed method are that it offers a higher face recognition rate on 

dark-skinned faces compared to the method of specifically training on a particular race. 

However, skin color is not a reliable parameter, and the skin tone of a person varies 

according to the lighting conditions. Determining the appropriate training dataset based 

on extracted RGB values might be tricky. For instance, consider that RGB values are 

extracted from an image and the RGB values fall in the range of two skin tones, for 

example, brown and dark brown. To find out where the actual image does belong, we 

have to test the image on both brown and dark brown training datasets and determine the 

best dataset for testing the image. This problem of finding the best dataset based on skin 

tone can be solved if the image is captured under controlled conditions, similar to images 

captured for national security purposes, e.g. Driver’s license photo, then the range of 
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RGB values of the same person would be smaller compared to images with varying 

illumination. The images in the Celeb-Skin dataset are mostly images of male celebrities 

and the images were captured with high-resolution cameras and had variations in 

illumination, scale, makeup, and hairstyles. This is the reason why the images of the same 

class in the Celeb-Skin dataset had a variation of 25-pixel intensities i.e. R: 115-140. The 

image captured in controlled conditions had only a small variation of 5-pixel intensities 

i.e. R: 105-110 over 20 images. Therefore, using images captured in controlled conditions 

and training specifically on the skin tone improves the face recognition accuracy for 

dark-skinned faces. 
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IX. CONCLUSION 

 

 Pose and skin color are the two major factors that affect the performance of a face 

recognition system. Traditional face recognition algorithms like Eigenfaces has lower 

accuracy for non-frontal poses. Current face recognition technology is biased to dark skin 

tone and puts the people of color the most vulnerable when employed for law 

enforcement applications. In this research, we developed a pose invariant and skin tone 

invariant face recognition system for surveillance and law enforcement applications. This 

research studied the effect of pose and skin color on face recognition separately.  

 From the initial results conducted to study the effect of pose on face recognition, 

it was found that face recognition accuracy drops significantly from 45 degrees yaw 

angle to 90 degrees yaw angle and -60 degrees yaw angle to -90 degrees yaw angle. The 

face recognition accuracy for non-frontal poses from 45 degrees to 90 degrees yaw angle 

and -60 degrees to -90 degrees yaw angle are improved by performing skin segmentation 

in HSV color space, as an image preprocessing step before applying face detection. We 

also improved the face recognition accuracy from 45 degrees yaw angle to 75 degrees 

yaw angle and -60 degrees yaw angle to -75 degrees yaw angle through StyleGAN based 

pose correction. In StyleGAN based pose correction, a frontal image was created from a 

non-frontal image through StyleGAN based pose correction. The frontalized images were 

used for testing while the model was trained on frontal images. The comparison of the 

performance of face recognition accuracies for both methods was performed and pose 

improvement with skin segmentation was determined as the best method to improve the 

face recognition accuracy for non-frontal poses. 

 This research also conducted a study on the effect of skin color on face 
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recognition. For this study, we created the Celeb-Skin dataset that contains 480 images 

with 20 training images per person and 20 testing images per person. The Celeb-skin 

dataset only contains frontal images and is a diverse dataset that mostly contains images 

of male celebrities with races such as White, African American, and Asian. From our 

initial study, we found that face recognition accuracy of the White race was greater than 

that of African American and Asian races. Asian race had the least recognition rate. The 

face recognition accuracy for dark-skinned faces was improved by creating a training 

dataset specific to skin tone. The dominant skin tone of each image was obtained and 

RGB values were extracted for each person. Based on RGB values extracted, the range of 

RGB values for each class was determined, and classes whose RGB values fall in the 

same range are grouped as one skin tone. As a result, the Celeb-skin dataset was divided 

into 4 training datasets, based on skin colors, such as White, Brown, Dark Brown, and 

Black.  The face recognition for dark-skinned faces was increased by 7.38 percent after 

testing images on algorithms specifically trained on the same skin tone. We also 

compared our method of creating a training dataset specific to skin tone with the method 

of creating a training dataset specific to race and found that our method improved face 

recognition accuracy by 1.34 percent compared to that of creating race-specific training 

datasets. 

 One of the main concerns with the results accomplished from pose and skin color 

improved face recognition is the limited data. Therefore, the most significant future work 

of the research is scaling the machine learning model to include more data. In addition to 

training the model on more data, another area where research is required is to include 

male faces with facial hair and female faces for training the machine learning model. In 
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the future, while training on larger datasets, it is also better to use a deep learning neural 

network classifier that would give a robust performance for variation in poses and skin 

color. Apart from the future work discussed, automatic pose estimation of image and 

creating frontal faces when needed can be considered as another future work in the area 

of pose improved face recognition.  For improving the performance of face recognition of 

dark-skinned faces, we created a Celeb-skin dataset by collecting images from the web 

and it was difficult to determine the correct skin tone from the images. On the other hand, 

creating a dataset with images captured under controlled conditions would help us to 

predict the skin tone of a person without difficulty. This would help in creating a better 

model that provides a higher accuracy on dark-skinned faces. 
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