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POSITIVE SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS
OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

SHUQIN ZHANG

Abstract. In this paper, we consider the existence and multiplicity of posi-
tive solutions for the nonlinear fractional differential equation boundary-value

problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1

u(0) + u′(0) = 0, u(1) + u′(1) = 0

where 1 < α ≤ 2 is a real number, and Dα
0+ is the Caputo’s fractional deriva-

tive, and f : [0, 1]×[0, +∞)→ [0, +∞) is continuous. By means of a fixed-point

theorem on cones, some existence and multiplicity results of positive solutions
are obtained.

1. Introduction

Fractional calculus has played a significant role in engineering, science, econ-
omy, and other fields. Many papers and books on fractional calculus, fractional
differential equations have appeared recently, (see [6, 7, 8, 9]). As cited in [1]
“There have appeared lots of works, in which fractional derivatives are used for a
better description considered material properties, mathematical modelling base on
enhanced rheological models naturally leads to differential equations of fractional
order-and to the necessity of the formulation of initial conditions to such equations.
Applied problems require definitions of fractional derivatives allowing the utiliza-
tion of physically in interpretable initial conditions, which contain f(a), f ′(a), etc”.
In fact, there has the same requirements for boundary conditions. Caputo’s frac-
tional derivative exactly satisfies these demands. Here, we consider the existence
and multiplicity of positive solutions of nonlinear fractional differential equation
boundary-value problem involving Caputo’s derivative.

Dα
0+u(t) = f(t, u(t)), 0 < t < 1

u(0) + u′(0) = 0, u(1) + u′(1) = 0
(1.1)

where 1 < α ≤ 2 is a real number and Dα
0+ is the Caputo’s fractional derivative,

and f : [0, 1] × [0,+∞) → [0,+∞) is continuous. As far as we known, there has
few papers which deal with the boundary-value problem for nonlinear fractional
differential equation.
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In [7], the authors consider the existence and multiplicity of positive solutions of
nonlinear fractional differential equation boundary-value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1

u(0) = u(1) = 0
(1.2)

where 1 < α ≤ 2 is a real number. Dα
0+ is the standard Riemann-Liouville frac-

tional derivative, and f : [0, 1] × [0,+∞) → [0,+∞) is continuous. Due to the
reasons cited above, when conditions of (1.2) are not zero boundary value, the
Riemann-Liouville fractional derivative Dα

0+ is not suitable. Therefore, in the sense
of practicable demand, we investigate boundary-value problem (1.1) involving the
Caputo’s fractional derivative.

In this paper, analogy with boundary-value problem for differential equations of
integer order, we firstly derive the corresponding Green’ function-named by frac-
tional Green’ function. Consequently problem (1.1) is reduced to a equivalent
Fredholm integral equation of the second kind. Finally, using some fixed-point
theorems, the existence and multiplicity of positive solutions are obtained.

2. Preliminaries

For completeness, in this section, we will demonstrate and study the definitions
and some fundamental facts of Caputo’s derivatives of fractional order which can
been founded in [5].
Definition. [5, (2.138)] Caputo’s derivative for a function f : [0,∞) → R can been
written as

Ds
0+f(x) =

1
Γ(n− s)

∫ x

0

fn(t)dt

(x− t)s+1−n
, n = [s] + 1 (2.1)

where [s] denotes the integer part of real number s.

Remark 2.1. Under natural conditions on the function f(x), for s → n Caputo’s
derivative becomes a conventional n-th derivative of the function f(x). See [5, 79]

Definition. [6, Definition 2.1] The integral

Is
0+f(x) =

1
Γ(s)

∫ x

0

f(t)
(x− t)1−s

dt, x > 0

where s > 0, is called Riemann-Liouville fractional integral of order s.
Definition. [6, page 36-37] For a function f(x) given in the interval [0,∞), the
expression

Ds
0+f(x) =

1
Γ(n− s)

(
d

dx
)n

∫ x

0

f(t)
(x− t)s−n+1

dt

where n = [s] + 1, [s] denotes the integer part of number s, is called the Riemann-
Liouville fractional derivative of order s.

As examples, for µ > −1, we have

Dα
0+xµ = µ(µ− 1) . . . (µ− n + 1)

Γ(1 + µ− n)
Γ(1 + µ− α)

xµ−α

Dα
0+xµ =

Γ(1 + µ− n)
Γ(1 + µ− α)

xµ−α

where n = [α] + 1.
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From the definition of Caputo’s derivative and Remark 2.1, we can obtain the
statement.

Lemma 2.2. Let α > 0, then the differential equation

Dα
0+u(t) = 0

has solutions u(t) = c0+c1t+c2t
2+ · · ·+cntn−1, ci ∈ R, i = 0, 1, . . . , n, n = [α]+1.

From the lemma above, we deduce the following statement.

Lemma 2.3. Let α > 0, then

Iα
0+Dα

0+u(t) = u(t) + c0 + c1t + c2t
2 + · · ·+ cntn−1

for some ci ∈ R, i = 0, 1, . . . , n, n = [α] + 1.

The following theorems will play major role in our next analysis.

Lemma 2.4 ([3]). Let X be a Banach space, and let P ⊂ X be a cone in X.
Assume Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P
be a completely continuous operator such that, either

(1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or
(2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖ w ∈ P ∩ ∂Ω2

Then S has a fixed point in P ∩ Ω2\Ω1.

Definition A map δ is said to be a nonnegative continuous concave functional on
K if δ : K → [0,+∞) is continuous and

δ(tx + (1− t)y) ≥ tδ(x) + (1− t)δ(y)

for all x, y ∈ K and 0 ≤ t ≤ 1. And let

K(δ, a, b) = {u ∈ K|a ≤ δ(u), ‖u‖ ≤ b}

Lemma 2.5 ([4]). Let K be a cone and Kc = {y ∈ K|‖y‖ ≤ c}, and A : Kc → Kc

be completely continuous and α be a nonnegative continuous concave function on
K such that α(y) ≤ ‖y‖, for all y ∈ Kc. Suppose there exist 0 < a < b < d ≤ c
such that

(C1) {y ∈ K(α, b, d}|α(y) > b} 6= ∅ and α(Ay) > b, for all y ∈ K{α, b, d},
(C2) ‖Ay‖ < a, for ‖y‖ ≤ a, and
(C3) α(Ay) > b, for y ∈ K{α, b, c} with ‖Ay‖ > d.

Then A has at least three fixed points y1, y2, y3 satisfying

‖y1‖ < a, b < α(y2), and ‖y3‖ > a with α(y3) < b

3. Main Results

In this section, we consider the existence and multiplicity of positive solutions of
problem (1.1) by means of the Lemmas 2.4 and 2.5. First of all, we find the Green’s
function for boundary-value problem (1.1).

Lemma 3.1. Let h(t) ∈ C[0, 1] be a given function, then the boundary-value prob-
lem

Dα
0+u(t) = h(t), 0 < t < 1

u(0) + u′(0) = 0, u(1) + u′(1) = 0
(3.1)
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has a unique solution

u(t) =
∫ 1

0

G(t, s)h(s)ds (3.2)

where

G(t, s) =

{
(1−s)α−1(1−t)+(t−s)α−1

Γ(α) + (1−s)α−2(1−t)
Γ(α−1) , s ≤ t

(1−s)α−1(1−t)
Γ(α) + (1−s)α−2(1−t)

Γ(α−1) , t ≤ s
(3.3)

Here G(t, s) is called the Green’s function of boundary-value problem (3.1).

Proof. By the Lemma 2.3, we can reduce the equation of problem (3.1) to an
equivalent integral equation

u(t) = Iα
0+h(t)− c1 − c2t =

1
Γ(α)

∫ t

0

(t− s)α−1h(s)ds− c1 − c2t

for some constants c1, c2 ∈ R. On the other hand, by relations Dα
0+Iα

0+u(t) = u(t)
and Iα

0+Iβ
0+u(t) = Iα+β

0+ u(t), for α, β > 0, u ∈ L(0, 1) (see [6]), we have

u′(t) =
1

Γ(α− 1)

∫ t

0

(t− s)α−2h(s)ds− c2

As boundary conditions for problem (3.1), we have

−c1 − c2 = 0

−c1 − 2c2 = −Iα
0+h(1)− Iα−1

0+ h(1);

that is,

c1 = −Iα
0+h(1)− Iα−1

0+ h(1)

c2 = Iα
0+h(1) + Iα−1

0+ h(1)

Therefore, the unique solution of (3.1) is

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds +
1

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds

+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2h(s)ds− t

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds

− t

Γ(α− 1)

∫ 1

0

(1− s)α−2h(s)ds

=
∫ t

0

(
(1− s)α−1(1− t) + (t− s)α−1

Γ(α)
+

(1− s)α−2(1− t)
Γ(α− 1)

)h(s)ds

+
∫ 1

t

(
(1− s)α−1(1− t)

Γ(α)
+

(1− s)α−2(1− t)
Γ(α− 1)

)h(s)ds

=
∫ 1

0

G(t, s)h(s)ds

which completes the proof. �

Lemma 3.2. Let h(t) ∈ C[0, 1] be a given function, then function G(t, s) defined
by (3.3) has the following properties:

(R1) G(t, s) ∈ C([0, 1]× [0, 1)), and G(t, s) > 0 for t, s ∈ (0, 1);
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(R2) There exists a positive function γ ∈ C(0, 1) such that

min
1/4≤t≤3/4

G(t, s) ≥ γ(s)M(s), s ∈ (0, 1)

max
0≤t≤1

G(t, s) ≤ M(s),
(3.4)

where

M(s) =
2(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
, s ∈ [0, 1) (3.5)

Proof. From the expression of G(t, s), it is obvious that G(t, s) ∈ C([0, 1] × [0, 1))
and G(t, s) ≥ 0 for s, t ∈ (0, 1). Next, we will prove (R2). From the definition of
G(t, s), we can known that, for given s ∈ (0, 1), G(t, s) is decreasing with respect
to t for t ≤ s, we let

g1(t, s) =
(1− t)(1− s)α−1 + (t− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)
, s ≤ t

g2(t, s) =
(1− t)(1− s)α−1

Γ(α)
+

(1− t)(1− s)α−2

Γ(α− 1)
, t ≤ s

That is, g1(t, s) is a continuous function for 1
4 ≤ t ≤ 3

4 , and g2(t, s) is decreasing
with respect to t. Hence, we have

g1(t, s) ≥
(1− s)α

4Γ(α)
+

(1− s)α−2

4Γ(α− 1)
, for 1/4 ≤ t ≤ 3/4

max
0≤t≤1

g1(t, s) ≤
2(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)

min
1/4≤t≤3/4

g2(t, s) = g2(
3
4
, s) =

(1− s)α−1

4Γ(α)
+

(1− s)α−2

4Γ(α− 1)

max
0≤t≤1

g2(t, s) = g2(0, s) =
(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)

<
2(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
Thus, we have

min
1/4≤t≤3/4

G(t, s) ≥ m(s) =
(1− s)α−1

4Γ(α)
+

(1− s)α−2

4Γ(α− 1)
, s ∈ [0, 1) (3.6)

max
0≤t≤1

G(t, s) ≤ M(s) =
2(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
, s ∈ [0, 1) (3.7)

Let

γ(s) = m(s)/M(s) =
1
4

(1− s)α−1 + (α− 1)(1− s)α−2

2(1− s)α−1 + (α− 1)(1− s)α−2
, s ∈ (0, 1) (3.8)

It is obviously that γ(s) ∈ C((0, 1), (0,+∞)). The proof is completed. �

Remark 3.3. From the definition of function γ(s), we see that γ(s) ≥ 1
8 .

Let E = C[0, 1] be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all t ∈ [0, 1],
and the maximum norm, ‖u‖ = max0≤t≤1 |u(t)|, Define the cone K ⊂ E by

K = {u ∈ E|u(t) ≥ 0, min
1/4≤t≤3/4

≥ 1
8
‖u‖}
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and the nonnegative continuous concave functional ϕ on the cone K by

ϕ(u) = min
1/4≤t≤3/4

|u(t)|

Lemma 3.4. Assume that f(t, u) is continuous on [0, 1]×[0,∞). A function u ∈ K
is a solution of boundary-value problem (1.1) if and only if it is a solution of the
integral equation (3.2).

Proof. Let u ∈ K be a solution of boundary-value problem (1.1). Applying the
operator Iα

0+ to both sides of equation of problem (1.1), we have

u(t) = c1 + c2t + Iα
0+f(t, u(t))

for some c1, c2 ∈ R. By the same methods as obtaining the Green’s function of
problem (1.1) (Lemma 3.1), by boundary value conditions of problem (1.1), we can
calculate out constants c1 and c2, so

u(t) =
∫ 1

0

G(t, s)f(s, u(s))ds

From Lemma 3.2 and Remark 3.3, we obtain that
∫ 1

0
G(t, s)f(s, u(s))ds ∈ K.

Hence, u is also a solution of integral equation (3.2).
Let u ∈ K be a solution of integral equation (3.2). If we denote the right-hand

side of integral equation (3.2) by w(t), then, applying Caputo’s fractional operator
to both sides of integral equation (3.2), by the Definition of function G(t, s), since

w(t) =
∫ 1

0

G(t, s)f(s, u(s))ds

=
1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s))ds +
1

Γ(α)

∫ 1

0

(1− s)α−1f(s, u(s))ds

+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2f(s, u(s))ds− t

Γ(α)

∫ 1

0

(1− s)α−1f(s, u(s))ds

− t

Γ(α− 1)

∫ 1

0

(1− s)α−2f(s, u(s))ds .

Therefore,

w′(t) =
d

dt
Iα
0+f(t, u(t))− Iα

0+f(1, u(1))− Iα−1
0+ f(1, u(1))

= D1
0+Iα

0+f(t, u(t))− Iα
0+f(1, u(1))− Iα−1

0+ f(1, u(1))

= D1
0+I1

0+Iα−1
0+ f(t, u(t))− Iα

0+f(1, u(1))− Iα−1
0+ f(1, u(1))

= Iα−1
0+ f(t, u(t))− Iα

0+f(1, u(1))− Iα−1
0+ f(1, u(1))

and

w′′(t) = D1
0+Iα−1

0+ f(t, u(t)) = D2−α
0+ f(t, u(t))

Dα
0+w(t) = I2−α

0+ w′′(t) = I2−α
0+ D2−α

0+ f(t, u(t)) = f(t, u(t))

here, use the relation Is
0+It

0+g(t) = Is+t
0+ g(t), Ds

0+Is
0+g(t) = g(t), s > 0, t > 0,

g ∈ L(0, 1) and Is
0+Ds

0+g(t) = g(t), s > 0, g ∈ C[0, 1] (see [6]), where Ds
0+ is
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Riemann-Liouville fractional derivative. That is, Dα
0+u(t) = f(t, u(t)). On the

other hand, one has

u(0) =
∫ 1

0

(
(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
)f(s, u(s))ds

u′(0) = −
∫ 1

0

(
(1− s)α−1

Γ(α)
+

(1− s)α−2

Γ(α− 1)
)f(s, u(s))ds

u(1) =
∫ 1

0

(1− s)α−1

Γ(α)
f(s, u(s))ds

u′(1) = −
∫ 1

0

(1− s)α−1

Γ(α)
f(s, u(s))ds .

We obtain

u(0) + u′(0) = 0, u(1) + u′(1) = 0

which implies that u ∈ K is a solution of problem (1.1). �

Lemma 3.5. Assume that f(t, u) is continuous on [0, 1] × [0,∞), and define the
operator T : K → E by

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s))ds

Then T : K → K is completely continuous.

Proof. Firstly, we prove that T : K → K. In view of the expression of G(t, s), it
is clear that, Tu(t) ≥ 0, t ∈ [0, 1], Tu(t) is continuous for u ∈ K. And that, for
u ∈ K, by means of the Lemma 3.1 and Remark 3.3, we have

min
1/4≤t≤3/4

Tu(t) = min
1/4≤t≤3/4

∫ 1

0

G(t, s)f(s, u(s))ds ≥ 1
8

∫ 1

0

M(s)f(s, u(s))ds

On the other hand,

‖Tu‖ = max
0≤t≤1

|Tu(t)| ≤
∫ 1

0

M(s)f(s, u(s))ds .

Thus, we obtain

min
1/4≤t≤3/4

Tu(t) ≥ 1
8
‖Tu‖

which implies T : K → K.
Let P ⊂ K be bounded, i.e. there exists a positive constant L > 0 such that

‖u‖ ≤ L, for all u ∈ P . Let M = max0≤t≤1,0≤u≤L |f(t, u)| + 1, then for u ∈ P ,
from the Lemma 3.1, one has

|Tu(t)| ≤
∫ 1

0

|G(t, s)f(t, u(s))|ds ≤ M

∫ 1

0

M(s)ds

Hence, T (P ) is bounded. For all ε > 0, each u ∈ P , t1, t2 ∈ [0, 1], t1 < t2, let

η = min{1
2
,
Γ(α)ε
12M

,
Γ(1 + α)ε

8M
}
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we will prove that |Tu(t2)− Tu(t1)| < ε, when t2 − t1 < η. One has

|Tu(t2)− Tu(t1)|

= |
∫ 1

0

G(t2, s)f(s, u(s))ds−
∫ 1

0

G(t1, s)f(s, u(s))ds|

≤
∫ t1

0

|(G(t2, s)−G(t1, s))f(s, u(s))|ds +
∫ 1

t2

|(G(t2, s)−G(t1, s))f(s, u(s))|ds

+
∫ t2

t1

|(G(t2, s)−G(t1, s))f(s, u(s))|ds

≤ M(
∫ t1

0

|(G(t2, s)−G(t1, s))|ds +
∫ 1

t2

|(G(t2, s)−G(t1, s))|ds

+
∫ t2

t1

|(G(t2, s)−G(t1, s))|ds)

= M(
∫ t1

0

(
(t2 − t1)(1− s)α−1 + ((t2 − s)α−1 − (t1 − s)α−1)

Γ(α)

+
(t2 − t1)(1− s)α−2

Γ(α− 1)
)ds

+
∫ 1

t2

(
(t2 − t1)(1− s)α−1

Γ(α)
+

(t2 − t1)(1− s)α−2

Γ(α− 1)
)ds

+
∫ t2

t1

(
(t2 − t1)(1− s)α−1 + (t2 − s)α−1

Γ(α)
+

(t2 − t1)(1− s)α−2

Γ(α− 1)
)ds)

≤ M(
∫ t1

0

(
η + ((t2 − s)α−1 − (t1 − s)α−1)

Γ(α)
+

η(1− s)α−2

Γ(α− 1)
)ds

+
∫ 1

t2

(
η

Γ(α)
+

η(1− s)α−2

Γ(α− 1)
)ds +

∫ t2

t1

(
η + (t2 − s)α−1

Γ(α)
+

η(1− s)α−2

Γ(α− 1)
)ds)

≤ M(
2η

Γ(α)
+

tα2 − tα1
Γ(1 + α)

+
2η

Γ(α)
+

2η

Γ(α)
+

2ηα

Γ(1 + α)
)

= M(
6η

Γ(α)
+

2ηα + (tα2 − tα1 )
Γ(1 + α)

)

< M(
6η

Γ(α)
+

2η + (tα2 − tα1 )
Γ(1 + α)

)

In order to estimate tα2 − tα1 , we can apply a method used in [7]; that is, for η ≤
t1 < t2 ≤ 1, by means of mean value theorem of differentiation, we have

tα2 − tα1 ≤ α(t2 − t1) < αη ≤ 2η

for 0 ≤ t1 < η, t2 < 2η, we have

tα2 − tα1 ≤ tα2 < (2η)α ≤ 2η .

while for 0 ≤ t1 < t2 ≤ η, there has

tα2 − tα1 ≤ tα2 < ηα < 2η .

Thus, we obtain

|Tu(t2)− Tu(t1)| <
6Mη

Γ(α)
+

4Mη

Γ(1 + α)
<

ε

2
+

ε

2
= ε
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By means of the Arzela-Ascoli theorem, T : K → K is completely continuous. �

Theorem 3.6. Assume that f(t, u) is continuous on [0, 1] × [0,∞), and satisfies
one of the following conditions

(H1) There exist 0 < µ1, ν1 ≤ 1 such that

lim
u→∞

f(t, u(t))
uµ1

= 0, lim
u→0

f(t, u(t))
uν1

= ∞

for all t ∈ [0, 1]
(H1’) There exist µ2, ν2 ≥ 1 such that

lim
u→∞

f(t, u(t))
uµ2

= ∞, lim
u→0

f(t, u(t))
uν2

= 0

for all t ∈ [0, 1].

Then problem (1.1) has one positive solution.

Proof. By the Lemma 3.4, we know that we only need to consider existence of
fixed point of operator T in K. It follows from the Lemma 3.5 that T : K → K
is a completely continuous operator. Assume that (H1) holds, then there exist
N1 > 0, N2 > 0, such that for all 0 < ε < (2

∫ 1

0
M(s)ds)−1 and ρ > 64R 3/4

1/4 M(s)ds
> 0.

Then

f(t, u(t)) ≤ εuµ1 , for t ∈ [0, 1], u ≥ N1

f(t, u(t)) > ρuν1 , for t ∈ [0, 1], 0 ≤ u ≤ N2

So we have

f(t, u(t)) ≤ εuµ1 + c, for t ∈ [0, 1], u ∈ [0,+∞)

where

c = max
0≤t≤1,0≤u≤N1

|f(t, u(t))|+ 1

Let

Ω1 = {u ∈ K; ‖u‖ < R1}

where R1 > {1, 2c
∫ 1

0
M(s)ds}. For u ∈ ∂Ω1, from the Lemma 3.2, we have

|Tu(t)| =
∫ 1

0

G(t, s)f(s, u(s))ds

≤
∫ 1

0

M(s)(ε|u|µ1 + c)ds

≤ εRµ1
1

∫ 1

0

M(s) + c

∫ 1

0

M(s)ds

≤ R1

2
+

R1

2
= R1 ,

‖Tu‖ ≤ R1 = ‖u‖. Let

Ω2 = {u ∈ K; ‖u‖ < R2}



10 S. ZHANG EJDE-2006/36

where 0 < R2 < {1, N2}, then for u ∈ ∂Ω2, we obtain

|Tu(t)| = |
∫ 1

0

G(t, s)f(s, u(s))ds|

≥
∫ 3/4

1/4

G(t, s)f(s, u(s))ds

>
ρ

8

∫ 3/4

1/4

M(s)u(s)ν1ds

≥ ρ

64

∫ 3/4

1/4

M(s)‖u‖ν1ds

=
ρ

64

∫ 3/4

1/4

M(s)R2R
ν1−1
2 ds

≥ ρ

64

∫ 3/4

1/4

M(s)R2ds

> R2 = ‖u‖

so ‖Tu‖ ≥ R2 = ‖u‖. Then Lemma 2.4 implies that operator T has one fixed point
u∗(t) ∈ Ω1\Ω2. Then u∗(t) is one positive solution of problem (1.1).

For condition (H1’), we can obtain the result in a similarly way. Now, we give
a briefly description. Assume that (H1’) holds, thus, there exist M1 > 0,M2 > 0,

such that for all 0 < ε < (
∫ 1

0
M(s)ds)−1 and λ > (

R 3/4
1/4 M(s)ds

64 )−1 > 0, we have have

f(t, u(t)) > λuµ2 , for t ∈ [0, 1], u ≥ M1

f(t, u(t)) ≤ εuν2 , for t ∈ [0, 1], 0 ≤ u ≤ M2

Let
Ω1 = {u ∈ K; ‖u‖ < R1}, Ω2 = {u ∈ K; ‖u‖ < R2}

where R1 > {1, 8M1}, 0 < R2 < {1,M2}. Then for u ∈ ∂Ω1, for 1
4 ≤ t ≤ 3

4 , one
has u(t) ≥ min1/4≤t≤3/4 u(t) ≥ 1

8‖u‖ = R1
8 > M1. thus, from the Lemma 3.2, we

have

|Tu(t)| ≥
∫ 3/4

1/4

G(t, s)f(s, u(s))ds

≥ λ

64

∫ 3/4

1/4

M(s)‖u‖µ2ds

≥ λ

64

∫ 3/4

1/4

M(s)‖u‖ds

> R1 = ‖u‖

for u ∈ ∂Ω2, we obtain

|Tu(t)| ≤
∫ 1

0

M(s)ε‖u‖ν2ds ≤ εR2

∫ 1

0

M(s)ds ≤ R2

Thence, the Lemma 2.4 implies that operator T has one fixed point u∗(t) ∈ Ω1\Ω2,
then u∗(t) is a positive solution of problem (1.1). �
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Let

M = (
∫ 1

0

M(s)ds)−1, N = (
∫ 3/4

1/4

γ(s)M(s)ds)−1

Theorem 3.7. Assume that f(t, u) is continuous on [0, 1]× [0,∞), and there exist
constants 0 < b < c such that:

(H2) There exists r ≥ c such that f(t, u(t)) < Mu for all (t, u) ∈ [0, 1]× [0, r];
(H3) f(t, u) ≥ Nb, for all (t, u) ∈ [ 14 , 3

4 ]× [b, c].
Then problem (1.1) has at least three positive solutions u1, u2, u3 with

‖u1‖ < a, b < min
1/4≤t≤3/4

|u2(t)|

a < ‖u3‖, min
1/4≤t≤3/4

|u3(t)| < b

Proof. We will apply the Lemma 2.5 to prove this result. Next, we show that all
conditions of the Lemma 2.5 are satisfied. By the Lemma 3.4, we know that we
only need to consider existence of fixed point of operator T in K. It follows from
the Lemma 3.5 that T : K → K is a completely continuous operator.
By (H2), there exist r, such that

f(t, u(t)) < Mu, for t ∈ [0, 1], 0 ≤ u ≤ r

Let 0 < a < b < c ≤ r, then if u ∈ Kc (Kc = {u ∈ K|‖u‖ ≤ c},Kc = {u ∈ K|‖u‖ <
c}), we can obtain

‖Tu‖ = max
0≤t≤1

|
∫ 1

0

G(t, s)f(s, u(s))ds| < M

∫ 1

0

M(s)‖u‖ds = ‖u‖ ≤ c

Hence, combining with the Lemma 3.5, we know that T : Kc → Kc is completely
continuous. In the same way, let 0 < a < c, then if u ∈ Ka, we can also obtain
that ‖Tu‖ < a which satisfies the condition (C2) of the Lemma 2.5. Now, we
check condition (C1) of the Lemma 2.5. Let u(t) = b+c

2 , 0 ≤ t ≤ 1. It is obvious
that u(t) = b+c

2 ∈ K(δ, b, c), δ(u) = b+c
2 > b, thus, {u ∈ K(δ, b, c)|δ(u) > b} 6= ∅.

Thence, if u ∈ K(δ, b, c), then b ≤ u(t) ≤ c for 1/4 ≤ t ≤ 3/4, by assumption (H3),
we have f(t, u) ≥ Nb, for 1

4 ≤ t ≤ 3
4 , so, by the Lemma 3.2, there has

δ(Tu) = min
1/4≤t≤3/4

|Tu(t)| >
∫ 3/4

1/4

γ(s)M(s)Nbds = b

By Lemma 2.5, problem (1.1) has at least three positive solutions u1, u2, u3 with
the required conditions; which completes the proof. �
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Addendum posted on November 9, 2009.

The definition n = [α] + 1 in Lemmas 2.2 and 2.3 is incomplete. It should be

n =

{
[α] + 1 if n 6∈ {0, 1, 2, . . . }
α if n ∈ {0, 1, 2, . . . } .
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