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Quasi-geostrophic type equations
with weak initial data *

Jiahong Wu

Abstract

We study the initial value problem for the quasi-geostrophic type equa-
tions

% Fu V04 (—AY0=0, on R"x (0,00),

0(z,0) = bo(z), = e€R"™,
where A(0 < X < 1) is a fixed parameter and u = (u;) is divergence
free and determined from 6 through the Riesz transform u; = £R,;)0,

with 7(j) a permutation of 1,2,---,n. The initial data 6o is taken in the
Sobolev space L, , with negative indices. We prove local well-posedness
when

1
5<ASL 1<p<oo, %gz\—l, 7’:%—(2)\—1)§0.

We also prove that the solution is global if 6y is sufficiently small.

1 Introduction

In this paper we study the initial value problem (IVP) of the dissipative quasi-
geostrophic type (QGS) equations

% +u-VO0+ (A =0, on R"x (0,00), (1.1)
0(z,0) = Op(x), xe€R™

where AM(0 < A <1) is a fixed parameter and the velocity u = (u1,ug, -, u,) is
divergence free and determined from 6 by

uj = R0, m(j) is a permutation of 1,2,--- n (1.3)
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where u; may take either + or — sign and R; = 9;(—A)~/2 are the Riesz

transforms. Here Riesz potential operator (—A)® is defined through the Fourier
transform:

7€) = [e ™=t f(z) dx
(CA)F)(E) = @rleN> (&)

A particularly important special case of (1.1) is the 2-D dissipative quasi-
geostrophic equations in which the velocity v = (u1,u2) can also be defined
through the stream function :

oY 0O
u = (ug,uz) = (—8—;/}2, G—Z> , (—A)l/Qw =0 (1.4)

The 2-D QGS equations are derived from more general quasi-geostrophic ap-
proximations for flow in rapidly rotating 3-D half space, which in some im-
portant cases reduce to the evolution equation for the temperature on the 2-D
boundary given in (1.1), (1.2),(1.4) ([12, 2]). The scalar 6 represents the poten-
tial temperature and w is the fluid velocity. These equations have been under
active investigation because of mathematical importance and potential applica-
tions in meteorology and oceanography ([12, 2, 1, 6]). As pointed out in [2], the
non-dissipative 2-D QGS equations are strikingly analogous to the 3-D Euler
equations and thus serve as a simple model in seeking possible singular solutions.

We are interested mainly in the well-posedness result for initial data 6
in homogeneous Lebesgue spaces, 0y € I'/m,(R”) (defined below). By well-
posedness we mean existence, uniqueness and persistence (i.e. the solution
describes a continuous curve belonging to the same space as does the initial
data) and continuous dependence on the data.

Here the homogeneous Lebesgue space L ,(R") consists of all v such that

(~A)2velLl?l, seR, 1<qg<oo,
and the standard norm is given by

lolls.q = I(=2)*2v]|za

These spaces are also called the spaces of Riesz potentials. Kato and Ponce [10]
consider the Navier-Stokes equations with initial data in this type of spaces.
We prove that if % < A<1and 6y € L,, with r, p satisfying

l<p<oo, Z<o2A-1, r=2_(2r-1)<0,
p p
then the IVP (1.1), (1.3), (1.2) is locally well-posed. The solution is global if 6,

is sufficiently small. The detailed statements are given in Theorem 2.2 of the
next section.
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Although there is a large body of literature on quasi-geostrophic equations
( [12, 1, 6, 2]), not many rigorous mathematical results concerning the solu-
tions have been obtained. In [2] Constantin-Majda-Tabak proved finite time
existence results for smooth data and developed mathematical criteria char-
acterizing blowup for the 2-D non-dissipative QGS equation. In [13] Resnick
obtained solutions of 2-D QGS equations with L? data on periodic domain by
using Galerkin approximation. In a previous paper [15], the vanishing dissipa-
tion limits and Gevrey class regularity [3] for the 2-D dissipative QGS equations
are obtained. In this paper we consider the IVP of the general n-D QGS type
equations (defined by (1.1), (1.3, (1.2)) with initial data in Sobolev spaces of
negative indices and establish local well-posedness results. For sufficiently small
initial data, the solution is global. By taking n = 2 and p = 2, the well-posedness
reduces to the L? results in 2-D.

The main result is presented in the next section, and it is proven using the
contraction-mapping principle.

2 Well-posedness

We need to use the spaces of weighted continuous functions in time, which
have been introduced by Kato, Ponce and others in solving the Navier-Stokes
equations ([8, 10, 11]).

Definition 2.1 Suppose T' > 0 and o > 0 are real numbers. The spaces Cq s 4
and Cq 5,4 are defined as

Ca,s,q = {f € C((OvT)a Ls,q)7 ”f”a,s,q < OO},

where the norm is given by

I flla,s,q = sup{t*|| flls,q» t€(0,T)}.

Note that Cos 4 is a subspace of Co s 4

Coa,s,¢ = {f € Cas,95 }g% t* N f ()]s, =0}

When a = 0, the spaces Cs 4 are used for BC([O,T),I'/M),

These spaces are important in uniqueness and local existence problems ([8,
10, 11]). Notice that f € Cq 5,4 (resp. f € Cq,s,q) implies that ||f(t)]]s,q =
O(t=%) (resp. o(t~?)).

The main result of this section is the well-posedness theorem that states

Theorem 2.2 Assume that A > 1/2 and 6 € I'/w, with r,p satisfying

Doon-1, r=2—@ -1)(<0) (2.1)

l<p<oo, -—
p p
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Then there exists T = T(0p) and a unique solution 0(t) of the IVP (1.1),(1.3),
(1.2) in the time interval [0,T) satisfying

0cYr= (ﬂpgq@oég_(z,\_n,q) N(Np<g<oo Os>2—(2x-1) C(s_%+(2A_1))/(2A)737q)
In particular,
0 € BC([0,T), Lyp) N (NerC((0,T), L)) -
Furthermore, for some neighborhood V' of 6y, the mapping
B:V—Yr: Gp—10
s Lipschitz.

Remark 2.3 If ||0o||,p is small enough, then we can take T = co.

We prove this theorem by the method of integral equations and contraction-
mapping arguments. Following standard practice ([4, 5, 7, 10]), we write the
QGS equation (1.1) into the integral form:

t
0 = Koo(t) — Gu,0)(t) = e 20y — / e AN (4 Vo) (rdr, (2.2)
0
where K(t) = e~A"t is the solution operator of the linear equation
90+ A0 =0, with A= (—A)Y2.
We observe that u- V@ = >, u;0;0 = V - (uf) provided that V - u = 0. This
provides an alternative expression for G:

G(u,0)(t) = G(ub)(t) = /0 Ve M) (uf) (r)dr

We shall solve (2.2) in the spaces of weighted continuous functions in time
introduced in the beginning of this section. To this end we need estimates for
the operators K and G acting between these spaces. These are established in
the two propositions that follow.

Proposition 2.4 (i) For 1 < g < oo and s € R, the operator K maps contin-
uously from L 4 into Cs g = BC([0,00), Ls,q).

(i) If g1, q2, 81, 82 and az satisfy g1 < g2, s1 < s2, and

_1( )+1 n n
02—2/\ §2 — 81 I\ @ % )

then K maps continuously from le,ql to C’az,SQ,qz (When ag = 0, C
should be replaced by C').
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Proof. To prove Assertion (i), it suffices to prove that for some constant C,
[KE¢(t)ze < Cl¢llLe, for any t € [0,00),
which can be established using the Young’s inequality

[1K¢@)|za < K@) L2 (1]l e

and the fact that

-~

RK(1)(€) = e 2™ K (t)]| 0 = K (1)(0) = 1.

To prove Assertion (ii), we first note that the operator (—A)*/2K(t) has
the property
(=) 2K (8)]| agamy < Ct2(ms0-n1=D) (2.3)

where sg > 0, ¢ € [1,00) and C is a constant. The proof of this property is
similar to that for the heat operator ([4, 5, 10]). To show (ii),it suffices show
that for some constant C,

sup tOzzH(_A)STOK(ﬁ(t)Hqu < C’||¢HL(I1
t€[0,T)

with sg = s2 —s1 > 0. This can be proved using the property (2.3) and Young’s
inequality

[(=A)FE@(t)| Lo < C(—A)F K ()] zall@l Lor
with%zl—(i—i). 0

q1 q2

Now we give estimates for the operator

Glg)(t) = / V- K(t - 1)g(r)dr

Proposition 2.5 If q1, g2, s1, 82,1 and as satisfy q1 < g2,
81—1§82<sl+2)\—1—<qﬂl_qﬂ2)

a; <1, and a2:a1—1+%[82—51+1+qﬂl_qﬂ2}’

then G is a continuous mapping from Coy s1.q1 10 Coryosr.q0-
Proof. Let g € Ca, 5, .q,- Then clearly,

s1

1G(@)llaz saae = sup / I(=8)5 Kt =) (=) % g(r)) llzsedr

t€[0,T)
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where sy = so — s1. Using Young’s inequality,

G(0) e snae < sup 122 / I K(t=)l|zoll ((-8) % 9(7)) iz dr

€lo,T)

with 1 =1- (q1 — q%) If so+1 > 0, we can use the property (2.3) of operator
K and obtain

A

t

_ 1 _1 _

G llazssge < Clglansia sup 2 / (t — )2 (ot len(=3)) e gy
te(0,T) 0

pez—artl=gh (so+l+n(1-7)) o

IN

Cllgllas,s1,q: sUP
te[ov )

1 1
B<1—ﬁ{80+1+n(1—5)],1—a1>,

where C' is a constant and B(a, b) is the Beta function

1
B(a,b) :/ (1—z) a1 da.
0

By noticing that B(a,b) is finite when a > 0, b > 0 and that
1 1

1
q q1 q2

So =Sz — 81, 1—

we obtain
1G(9)laz,s2.00 < Cllgllas,s1,a1 5

if the indices satisfy 0 < so9 — 81 +1 < 2\ — qﬂl — q%, a; <1, and

1 n n
ag=01—14+——[s2—8s1+14+———
2\ a Q2
O
To prove Theorem 2.2, we also need the following singular integral operator
estimate whose proof can be found in [14].

Lemma 2.6 For u = (u;) with uj = £Rr;0( j = 1,2,---,n), where R; are

the Riesz transforms, we have the estimate
[ullze < Cyll0llLe, 1< g <o0

with Cy a constant depending on q.

Proof of Theorem 2.2. We distinguish between two cases: » < 0, and r = 0.
For r < 0, we define ~
X=Crpn C_ = 0,p

27
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with norm for § € X given by
16]]x = 110 — K6

and the complete metric space Xgr to be the closed ball in X of radius R.
Consider the operator A(6,6p) : Xg XV — X
A(B,00)(t) = K0o(t) — G(ub)(1),

where V is some neighborhood of 6 in I'/m, and T will be chosen. Using Propo-

0,r,p + ||‘9H—ﬁ70,p )

0<t<T,

sition 2.4 by substituting s =r,q = p in (i) and
0 r
=qg=p, s1=r S2=0 a=———
Q=9 =p 1 2 2 o

in (i), we find that Kfy(t) € Xg for §y € V if T is taken small enough and V

is chosen properly.
To estimate GG, we use Proposition 2.5 with
p r l
=35 ®=p 51=0, sa=I0+r, ar=—v, Qg =ov
to obtain for a constant ¢ such that
9”—%@@

1GUO)| & 1rp < cllub]l—z 0,2 < cllull- 5 0
for I € [0,—2r). To estimate u in terms of #, we use Lemma 2.6, i.e. for

1 <p<oo,
lullzr < Cpll0]] e

and eventually we obtain
IGEO .11np < CollOI 50, < Cp R

Notice that the restrictions (2.1) on r, p are necessary in order to apply Propo-

sitions 2.4, 2.5 and Lemma 2.6.
Furthermore,

A6, 00) — A(, 00)|| x = [|G(ub) — G(ad)|x ,
9)(j = 1,2,---,n). Using Proposition 2.5

where @ = (@;) with 4; = +R.;0(j
IG((@ — w)f)llx + 1G(u(® — 6))]x

again,
¢ (11— ullx0lx + 116 = l.x]ulx )

A8, 80) — A(8, 6o)|| x

VAN VAN

Since (@ —u); = :l:RW(j)(G~ —0), Lemma 2.6 implies
lullx < Cpllfllx, 1| —ullx < Cpllf —6]lx .
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Therefore, for constant satisfies C' = cC), and
14(8, 60) — A(9,60)]1x < C(10]1x + 10]1x)116 — 0]l x -

Our above estimates show that if we choose T small and R appropriately,
then A maps Xg into itself and is a contraction. Consequently there exists a
unique fixed point 6 € Xg: 6 = P(0y) satisfying 0 = A(6,0). It is easy to see
from these estimates that the uniqueness can be extended to all R’ by further
reducing the the time interval and thus to the whole X.

To prove the Lipschitz continuity of 3 on V, let 8 = PB(0y) and ¢ = B(o)
for 0y, (o € V. Then

0 —Cllx = [lA(0,60) — A(C, Co)ll x
< | A(8,60) — A(¢, 00) [ x + [[A(C, 00) — A(C, Go)ll x
< 0= Cllx + [[K(6o — o)l x

Since A is a contraction, v < 1. Therefore, the asserted property is obtained by
applying Proposition 2.4 to the second term of the last inequality.
To show that 6 is in the asserted class Y7 (defined in Theorem 2.2), we notice
that
0=A(0,00) = Kby — G(ub).

We apply Proposition 2.4 twice to K6y to show that

Koo € C%—(2A—1)7q? Kb € C(57%+(2)\71))/(2)\),s,q

for any p < g < oo and s > % — (2A = 1). To show the second part
G(ub) € Cz_(ar-1),q, P<g<00 (2.4)

we use Proposition 2.5 with

p n

=3 279 s1 =0, 8225—(”\—1), o = — oz =0

r
)\ )
and obtain

[G(ub)llo,2 —2x-1),¢ < Cllubl—5 0,3 < Cllull- .00l 5.0 -

q 22X 22X

The asserted property (2.4) is established after we apply Lemma 2.6 to u.
Once again, we apply Proposition 2.5 with

=5 q@=q¢ s5=0 s=s,
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to show that

G(uf) € C( for s > 2 — (2x - 1), (2.5)

s—24(23-1))/(2X),5,9°

2
3<2A_1_(_”_ﬁ>
p q

as required by Proposition 2.5. For large s, (2.5) can be shown by an induction
process (see an analogous argument in [8]).
We now deal with the case r = 0. Define

but s should also satisfy

X =CopNCy 02y
with the norm

1813 = 116 = Kbollo0,0 + 6113 0,573, -

For # € Xp, we have by Proposition 2.5,

GOl x = [Gwd)loop+ |Gy g a1z,
< cllublly oz,
< cllully a2, 10011 0,222,

Here c is a constant which may depend on the indices A, p, and n. Using Lemma
2.6 again, we obtain a constant C' such that

IGud)|x < Clol% < CR?.

Once the above estimates have been established, the rest of the proof in this
case is similar to that described in the case r < 0. a
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