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STRUCTURE OF GROUP INVARIANTS
OF A QUASIPERIODIC FLOW

LENNARD F. BAKKER

ABSTRACT. It is shown that the multiplier representation of the generalized
symmetry group of a quasiperiodic flow induces a semidirect product structure
on certain group invariants (including the generalized symmetry group) of the
flow’s smooth conjugacy class.

1. INTRODUCTION

The generalized symmetry group, Sy, of a smooth flow ¢ : R x T™ — T™ is the
collection of all diffeomorphisms of T™ that map the generating vector field of ¢ to
a uniformly scaled copy of itself (see next section for definitions). The multiplier
representation of Sy is the one-dimensional linear representation

pe : Sy — R* = GL(R)

that takes a generalized symmetry R € Sy to its unique multiplier py(R) (Theorem
2.8 in [B]), the multiplier being the scalar by which the generating vector field of ¢
is uniformly scaled by R. For each subgroup A of the multiplier group ps(Ss), the
multiplier representation induces the short exact sequence of groups,

idpn — kerpy — p;I(A) A 1,

in which idp» is the identity diffeomorphism of T™, ker pg — p;I (A) is the canonical
monomorphism, and ja : p(;l(A) — A= pgl(A)/ker P is p¢|p;1(A). This short
exact sequence indicates that p(;l(A) is a group extension of ker py by the Abelian
group A. When ¢ is a quasiperiodic flow on 7™, it will be shown that

(1) every element of py(Sy) is a real algebraic integer of degree at most n
(Corollary ,

(i) ker pg = T™ (Corollary [£.7)),

(i) every R € S, with py(R) = —1 is an involution (Corollary [£.8)),

(iv) pe(Sy) is isomorphic to an Abelian subgroup of GL(n,Z) (Theorem ,
and

(v) for each subgroup A < ps(S,) there is a splitting map hy : A — pgl(A) for
the extension (Theorem [5.4)).
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The main result (Theorem is that
,0;1(/\) = ker py 1 ha(A)

for every A < pg(Sy); that is, pgl(A) is the semidirect product of ker py by ha(A)
corresponding to the conjugating homomorphism I" : ha(A) — Aut(ker py).

2. MULTIPLIERS AND QUASIPERIODIC FLOWS

A generalized symmetry of a (smooth, i.e. C*) flow ¢ on the n-torus 7" (n > 2)
is an R € Diff(T™) (the group of smooth diffeomorphisms on T™) for which there
exists an a € R* such that

Ro(t,0) = ¢(at, R(A)) forallt € R andall § € T

This condition is R¢y = ¢o R for all t € R) where ¢; is the diffeomorphism of T
defined by ¢:(8) = ¢(t,0). A generalized symmetry of ¢ is characterized by its
action on the generating vector field X of ¢, which vector field is defined by

d
X(0) = Ze0)| . oerm

(In what follows, T is the tangent functor, and R,X = TRXR™! is the push-
forward of X by R.)

Theorem 2.1. An R € Diff(T") is a generalized symmetry of a flow ¢ on T™ if
and only if there exists a unique o € R* such that R. X = aX.

For the proof of this theorem, see Proposition 1.4 and Lemma 2.7 in [5].

The generalized symmetry group, Sy, of a flow ¢ on T™ is the collection of all
the generalized symmetries of ¢. The Abelian group Fy = {¢; : t € R} C Diff(7T™)
generated by ¢ is a subgroup of the normal subgroup ker pgs of Sy. On the other
hand, Sy is the group theoretic normalizer of Fy in Diff(7") (Theorem 2.5 [5]).

The unique « attached to an R € Sy in Theorem [2.1|is ps(R), the multiplier of
R. An R € Sy with pg(R) = 1 is known as a (classical) symmetry of ¢ (p.8 [10]);
the symmetry group of ¢ is ker p; = pgl({l}). An R € Sy with py(R) = —1 is
called a reversing symmetry (p.4 [10]); if R? = id7», then R is a reversing involution
or a classical time-reversing symmetry of ¢; the reversing symmetry group of ¢ is
pq_sl({l7 —1}) (p.8 [I0]). An R € Sy with py(R) # +£1, if it exists, is another type
of symmetry of ¢. Two flows ¢ and v are smoothly conjugate if and only if there
is a V € Diff(T™) such that V¢, = ¢V for all ¢ € R. (This is equivalent to
V.X =Y where X is the generating vector field for ¢, and Y is the generating
vector field for ¢.) A flow ¢ on T™ with generating vector field X is quasiperiodic
if and only if there exists a V' € Diff(T™) such that V. X is a constant vector
field whose coefficients are independent over Q (see pp.79-80 [7]). (Recall that real
numbers aq, as, ..., a, are independent over Q if for m = (my, ma,...,my,) € Z",
the equation Y77  mja; = 0 implies that m; = 0 for all j = 1,2,...,n.) The
frequencies of a quasiperiodic flow ¢ generated by a constant vector field X are the
components of X.

Example 2.2. Identify 7% with S* x S! x S! where S! = R/Z. Let § = (01,02, 03)
be global coordinates on 7T%. The quasiperiodic flow ¢ on T generated by vector

field
0 0

P
x= 9% ;139 o2 Y
o, V" ae, T aes
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is
¢ (0) = B(t,01,02,03) = (01 + 1,05 + 7/, 05 + 7/3¢),
where the addition in the components of ¢ is mod 1. For each ¢ = (c1,¢2,c3) € T?,
the translation
Re(61,02,03) = (61 + c1,02 + c2,03 + c3)
of T3 is a symmetry of ¢ because
Re(t,01,02,03) = (01 +c1+1,00 + co + 734,05 + c3 + 72/3t) = 0(t, Re(01, 05, 03).

The involution N(1,0s,05) = (—01,04,03) of T2 is a reversing symmetry of ¢
because

N§(t,01,00,03) = (=01 — t,—0s — T3, —03 — 7*/3t) = ¢( —t, N(61,62,05)).
Theorem 2.3. If ¢ is a quasiperiodic, then {1, —1} < py(Se).
Proof. Suppose ¢ is quasiperiodic. Then thereisa V' € Diff (T™) such that Y = V. X

is a constant vector field. Let ¢ be the flow generated by Y. For any ¢ € R, the
diffeomorphism 1, satisfies (¢,).Y =Y, so that 1 € py(Sy). On the other hand,

the map N : T™ — T™ defined by N(0) = —6 satisfies N.Y = —Y, so that
—1 € py(Sy). The flows ¢ and ¥ are smoothly conjugate because Y = V., X. This
implies that ps(Se) = py(Sy) (Theorem 4.2 [5]), and so {1, —1} < pe(Sy). O

Theorem 2.4. If ¢ is quasiperiodic and A is a nontrivial subgroup of ps(Ss), then
pdjl(A) is non-Abelian, and hence the generalized symmetry group of ¢ and the
reversing symmetry group of ¢ are non-Abelian.

Proof. Suppose ¢ is quasiperiodic and A is a nontrivial subgroup of p(Se). Then
there is an R € Sy such that o = ps(R) # 1. Thus Rp1 = ¢ R. If ¢1 = ¢q, then
¢ would be periodic. Thus, ,0;1(/\) is non-Abelian. By Theorem both pe(Sg)

and p¢(p;1({1, —1})) contain —1, so that Sy = p;I(p¢(5¢)) and py~ ({1, —1}) are
both non-Abelian. O

For any A < pg(Ss), p;I(A) is an invariant of the smooth conjugacy class of ¢
in the sense that if ¢ and v are smoothly conjugate, then pgl(A) and pll(A) are
conjugate subgroups of Diff (T™) (Theorem 4.3 [5]). Because a quasiperiodic flow
¢ is smoothly conjugate to a quasiperiodic flow v generated by a constant vector
field, the group structure of idy, — kerpy — pgl(A) — A — 1 is determined by
that of idpn — ker py — plzl(A) — A — 1. Attention is therefore restricted to a
quasiperiodic flow ¢ generated by a constant vector field X.

3. LIFTING THE GENERALIZED SYMMETRY EQUATION

The generalized symmetry equation of a flow ¢ on T™ is the equation R, X = aX
that appears in Theorem Lifting it from TT™ to TR", the universal cover
of TT™, requires lifting the diffeomorphism R of T" to a diffeomorphism of R™,
and lifting the vector field X on 7™ to a vector field on R™. The covering map
m:R™ — T" is a local diffeomorphism for which

m(x+m)=7(x)

for any © € R™ and any m € Z™. Let R : T™ — T™ be a continuous map. A lift
of R : R™ — T™ is a continuous map @ : R” — R"™ for which Rm = n(). Since 7
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is a fixed map, @ is also said to be a lift of R. Any two lifts of R differ by a deck
transformation of m, which is a translation of R™ by an m € Z".

Theorem 3.1. Let R : T" — T" and Q : R® — R". Then @ is a lift of a
diffeomorphism R of T™ if and only if Q is a diffeomorphism of R™ such that a)
for any m € Z", Q(x +m) — Q(x) is independent of x € R™, and b) the map
lo(m) = Q(x +m) — Q(x) is an isomorphism of Z™.

The proof of this theorem uses standard arguments in topology, we omit it.
The canonical projections mgn : TR® — R™ and 7p» : TT"™ — T" are smooth.
The former is a lift of the latter,

TTn Tr = TTR" ,

which lift sends w € T,R" to x € R"™. The covering map Txw : TR™ — TT" is a
local diffeomorphism.A vector field on 7™ is a smooth map Y : T™ — TT™ such
that 77»Y = idp». A vector field on R™ is a smooth map Z : R™ — TR™ such that
T]RnZ = ian.

Lemma 3.2. IfY is a vector field on T™, then there is only one lift of Y that is a
vector field on R™.

Proof. Let xg € R™, 6y € T™ be such that Y7 (zg) = Y (6p). Let wy, € Ty R™ be
the only vector such that Tw(w,,) = Y (6p). By the Lifting Theorem (Theorem
4.1, p.143 [6]), there exists a unique lift Z : R — TR" such that Y7 = TnZ and
Z(x0) = wg,. It needs only be checked that this Z is a vector field. Because Y is
a vector field on T™, Z is a lift of Y, and g~ is a lift of 7=, it follows that
7w(z) =, Yr(x) = 7 TnZ(z) = nrpe Z ().

So the difference x — 7gn Z(z) is a discrete valued map. Because R™ is connected,
this difference is a constant (see Proposition 4.5, p.10 [6]). This constant is zero
because Tgn Z(x9) = g, and so TrnZ = idg». The equation Y7 = TwZ implies
that Z is smooth because m and Tw are local diffeomorphisms and because Y is
smooth. The choice of the only vector w € Ty +,R" for any 0 # m € Z™ such
that Tw(w) = Y (6y) would lead to a lift Z,, of Y that is not a vector field on R™
because Trr Z, () = x + m. The collection {Z,, : m € Z}, with Zy = Z, accounts
for all the lifts of Y by the uniqueness of the lift and the uniqueness of the vector
w. Therefore Z is the only lift of Y that is a vector field on R™. O

For a vector field X on T™, let X denote the only lift of X that is a vector field
on R”™ as described in Lemma X satisfies X7 = TrX. For a diffeomorphism
R of T™, let R be a lift of R; the lift R is a diffeomorphism of R™ (by Theorem
for which Rt = 7R.

Lemma 3.3. The only lift of the vector field R.X on T™ that is a vector field on
R™ is R. X.

Proof. A lift of R, X is R*X because
TrR,X = TeTRXR™' = T(wR)XR™' = T(R7)XR™*
= TRT#XR ' =TRX7R ' =TRXR ‘r = R.X.

By definition, R, X is a vector field on R”. By Lemma it is the only lift of
R, X that is a vector field on R™. O
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Lemma 3.4. For any o € R*, the only lift of the vector field aX on T" that is a
vector field on R™ is aX.

Proof. A lift of aX is X because Tr(aX) = aTrX = aXn. Only one lift of a.X
is a vector field (Lemma, and aX is this lift. O

Theorem 3.5. Let X be a vector ﬁelfi onT", X the lift of X that is a vector field
on R™, R a diffeomorphism of IA’”,AR a lg'ft of R, and o a nonzero real number.
Then R.X = aX if and only if R, X = aX.

Proof. Suppose that R, X = aX. By Lemma R.X is alift of R, X: TrR, X =
R.Xm. By Lemma aX is a lift of aX: Tn(aX) = aXnw. Then

TF(R*X — aX) = (R*X — OéX)T( = O0pn,
where O7n is the zero vector field on T™. So R, X —aX is a lift of 0. The only lift
of Or» that is a Vector field on R™ is O]Rn the zero vector field on R". By Lemma

and Lemma [3.4] the difference R, X — aX is a vector field on R". By Lemma
- R.X —aX = ORn Thus, R, X = aX. Suppose that R.X = aX. Then

R.X7m=TRXR ' = TRX7R™' = TRTnXR™!
=T(Rm)XR ' =T#R)XR ™' = TaTRXR™!
=TrR.X = Trn(aX) = aTrX = aX7.
The surjectivity of 7 implies that R, X = o X. a
4. SOLVING THE LIFTED GENERALIZED SYMMETRY EQUATION

The lift of R, X = aX is an equation on TR" of the form Q,X = aX for Q €
Diff (R™). With global coordinates = (x1,x2,...,%,) on R™ the diffeomorphism
Q@ has the form

Q(xtha"'axn) = (fl(ﬂ?l,.’l)Q,...,Z'n),...,fn(xl,JTQ,...,l'n))
for smooth functions f; : R® — R, i =1,...,n. Let § = (01,04,...,0,) be global
coordinates on T" such that §; = x; mod 1,i=1,2,...,n. If
0 0
X(0) = ag — = 4ta,—
(0) = argg +aagg + o T angg
for constants a; € R, ¢ =1,...,n, then
. 0 0 0
X — te na_ 9
(@) =mgy Fag +tang

so that Q*X = aX has the form

n
> o1 L
a] —aai,z— ey

This is an uncoupled System of linear, first order equations which is readily solved
for its general solution.

Lemma 4.1. For real numbers ay,as, ...,a, and o with a,, # 0, the general solu-
tion of the system of n linear partial differential equations

n
ofi .
E aj—=aa;, i=1,...,n
, 8.73]‘

Jj=1
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18
a; a a Qp
fz(iv> = oz—lxn + hz(zl - ixnya@ - ixnv ceeyTpn—1 — - 1$n>7
n (7% [07% n
for arbitrary smooth functions h; : R"' - R,i=1,...,n.
Proof. For each i = 1,...,n, consider the initial value problem
ia- O = aaq;
- J@xj !
J=1
.Z'j(O,Sl,SQ,...,Snfl) =55 fOI“j = 17...,77,— 1
2n(0,81,82,...,8,-1) =0
fz((), 81,82,..., Sn—l) = hi(Sl, S92, ..., Sn—l)
for parameters (s1,s2,...,8,-1) € R*~! and initial data h; : R*~! — R. Using

the method of characteristics (see [9] for example), the solution of the initial value
problem in parametric form is

xj(t,sl,SQ,...,sn_l):ajt—l—sj forj=1,....,n—1
Tn(t, 81,82, -, Sn—1) = Qpt
fi(t,s1,82,...,8n—1) = aait + hi(s1,52,...,50-1)-
The coordinates (z1, 22, ..., z,) and the parameters (¢, s1, s2, ..., S,—1) are related
by
_$1_ -CL1 1 0 0 ... 0__t_
xT9 a9 01 0 ... 0 S1
I3 as 0 0 1 ... 0 S9
Tn—1 Ap—1 0 0 0 ... 1 Sn—2
| Tn | | an, 0 0 0 ... Of [sp-1]

The determinant of the n x n matrix is (—1)"a,,, which is nonzero by hypothesis.
Inverting the matrix equation gives

[t (0 0 ... 0 0 1a, [ =
s1 10 ... 00 =—ai/ay T
S9 01 ... 00 —ay/a, T3

Sn—2 00 ... 10 —an_g/an Tn—1

[ Sn—1] 0 0 ... 0 1 —ap1/an] | 2zn |

Substitution of the expressions for ¢ and the s;’s in terms of the x;’s into

fi(xy, w2, ..., 2,) = aait + hi(s1,52,. .., 8n-1)
gives the desired form of the general solution. O
Lemma 4.2. Ifay,a9,...,a, are independent over Q, then
a Ay
J = {(ml — —lmn,...,mn,l -2 1mn) :mq,dots, m,, € Z}
(07 n

is a dense subset of R*1.
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Proof. Suppose a1,as,...,a, are independent over Q. This implies that none of
the a;’s are zero. In particular, a,, # 0. Consider the flow

’(/Jt((gl, ceey Hn,l, Gn) = (91 — (al/an)t, ceey Hn,l — (an,l/an)t, 9n — t)
on 1" which is generated by the vector field

_ap 0 ay O Ap—1 O 0
T 4,001 a, 00 a, 00,1 09,
The coefficients of Y are independent over Q because a1, as, ..., a, are independent
over Q and
ai QAn—1
miay + -+ mpa, =0 —mp— — - —my_g —my, =0.
n n

So the orbit of 1 through any point 68y € T™,
Yo (00) = {¥e(bo) : t € R},
is dense in T™ (Corollary 1, p. 287 [2]).The submanifold
P = {(91, e 7071717071) : gn = 0}

of T", which is diffeomorphic to 7771, is a global Poincaré section for 1 because
X (0) & TyP for every 0 € P and because 7y (0y) NP # 0 for every 6y € T™. Define
the projection g : T — T"~! by

p(ela 927 s ,071—17071) = (917 92; B 91’7,—1)
and the injection ¢ : 771 — T™ by

1(01,00,...,0n 1) = (01,02,...,0,_1,0).
The Poincaré map induced on p(P) by ¢ is given by Y = g1 because 1 () € P

when 6y € P. For any k € Z, ¥" = pib.e. So, for instance, with 0 = (0,0,...,0) €
T" and 0 = p(0),

P(1(0)NP) ={"(0) : k € Z} = {(— ﬂlﬁ,—zili,...,—an_lfﬁ) (K E Z},

n n an

where for each ¢ = 1,...,n — 1, the quantity —(a;/a,)k is taken mod 1. With
7:R*" 1 — T as the covering map,
J =7 (p(y(0) N P)).
If p(v4(0) N P) were dense in p(P), then J would be dense in R"~! because 7
is a covering map. (That is, if p(7,(0) N P) N [0,1)"! is dense in the funda-
mental domain [0,1)"~! of the covering map 7, then by translation, it is dense in
R"~1.)Define y : R x T"~1 — T by
X(t, 91,92, ceey Gn_l) = 1/)(75,2((91, 92, ey 0n_1)).

The map x is a local diffeomorphism by the Inverse Function Theorem because

—aifa, 1 0 ... O
—asfa, 0 1 ... 0

Tx=| 1o
_an—l/an 0 O 1

-1 0 0 ... 0

has determinant of (—1)""!. Let O be a small open subset of p(P). For € > 0, the
set O, = (—¢,€) x O is an open subset in the domain of x. For € small enough, the
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image x(O,) is open in T™ because x is a local diffecomorphism. By the denseness
of 74(0) in T™, there is a point 8y in x(O¢) N v, (0). By the definition of x(O),
there is an € € (—¢,€) and a 6y € O such that x(€ 60y) = 6. Thus 2(fy) € 7, (0),
and so p(7,(0) N P) intersects O at fy. Since O is any small open subset of p(P),
the set p(74(0) N P) is dense in p(P). O

Theorem 4.3. If o € R* and the coefficients of X = Z?zl a;0/00; are independent
over Q, then for each R € Diff(T™) that satisfies R, X = aX there exist B = (b;;) €
GL(n,Z) and c € R™ such that

R(z) =Bx+c¢
forx = (x1,29,...,2,), in which
a——Zb” ,i=1,...,n.
Proof. Suppose that the ai,as,...,a, are independent over Q. For a € R*, sup-

pose that R € Diff(T") is a solution of R,X = aX. A lift R of R is a diffeo-
morphism of R™ by Theorem The lift of X that is a vector field on R™ is
X =", a;(0/dx;). By Theorem R is a solution of R, X = aX. With global
coordinates (x1,xa,...,x,) on R™ write

R(@) = (filz1, .. @)y fu(@e, . an)).

In terms of this coordinate description, the equation R.X = aX written out is

n
> o1 L
a] —aai,z— ey

The independence of the coefficients of X over Q implies that ay, # 0. By Lemma
there are smooth functions h; : R"! — R, i =1,...,n, such that

a
filwr, .. @) = a—xn + hi(s1,52,. .., Sn_1)
2%
where
a; )
§i =T; — —Tp, t=1,...,n—1.
an
By Theorem (3.1} . ]:2 m) — R(z) is independent of = for each m € R™. This
implies for each ¢ = ,n that
filx +m) — fi(x)
= filxy + my,xa + ma, ..., Ty +my) — fi(z1,22,...,2n)
a; a a
= aimn +h1(81 +mq — imn, oy Sp—1 T Mp—1 — n- 1mn) - hl—(sl, . ..,Sn_l)
29 2% QA
is independent of x for every m = (my,ms,...,my) € Z™. This independence
means that f;(z +m) — f;(x) is a function of m only. So for each j =1,...,n—1,

0
0= %[fi(ﬂh +mi, xa + Mo, .. Ty + M) —fi(ﬂﬁhxz,--ql"n)]

8h aq Ap—1
S1+my — —Mp,...,8p—1+Mp_1— ——Mp | — 75—
853 an an
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So, in particular

(9h1' ay Ap—1 ) 8hz
- My n—1 — n == 07...,0
0s; (ml anm MMn—1 " m st( )
for all (my,...,m,) € Z". By Lemmal[l.2] the set

a an—1 . 7,
my; — —Mp,...,Mp_1 — My ) :M1,...,My €
an Qn

is dense in R" ™!, which together with the smoothness of h; implies that Oh;/9s; is
a constant. Let this constant be b;; fori =1,...,n, j =1,...,n— 1. By Taylor’s

Theorem,
n—1

hi(sl, ceey Snfl) =c; + Z biij
j=1
for constants ¢; € R. Thus,

n—1
a; Qj
filxy, .. xn) = ¢ + aa—mn + E bi; (l'j — 7xn)
n N
Jj=1

an

n—1 a n—1 a

= C; —+ bijZL’j + (OL* — b”f)l’n
X G - 2%
J=1 Jj=1

For each i =1,2,...,n, set
a g
i 2 : J
bzn =0— — bij
an — n
j=1

Then for each i = 1,2,...,n,
n
fi(xl,l‘g, .. .,:l?n) =c; + Zbijxj.
j=1

So R has the form R(x) = Bx+c where B = (b;;) is an nxn matrix, and ¢ € R*.By
Theorem the map l;(m) = R(z 4+ m) — R(z) is an isomorphism of Z". By the
formula for f; derived above,

n
f,-(acl +my,..., Ty —|—mn) — fi($1,1‘2,. . .,.Z‘m) = Zbijmj
j=1

for each i = 1,2,...,n. This implies that I 3(m) = Bm. Since [ is an isomorphism
of Z™, it follows that B € GL(n,Z). O

Theorem [4.3]restricts the search for lifts of generalized symmetries of a quasiperi-
odic flow on T™ to affine maps on R™ of the form Q(z) = Bz + ¢ for B € GL(n,Z)
and ¢ € R™. For an affine map of this form, the difference

Qx+m)—Q(x)=B(x+m)+c— (Bx+c)=Bm
is independent of z, and the map lg(m) = Q(xz + m) — Q(z) is an isomorphism
of Z", so that @ is a lift of a diffeomorphism R on 7™ by Theorem IfQisa
solution of @Q.X = aX, then by Theorem R is a solution of R, X = aX, so
that by Theorem [2.T} R € Sy.The following two corollaries of Theorem [4.3] restrict

the possibilities for the multipliers of the generalized symmetries of a quasiperiodic
flow on T™. One restriction employs the notion of an algebraic integer, which is a
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complex number that is a root of a monic polynomial in the polynomial ring Z[z].
If m is the smallest degree of a monic polynomial in Z[z] for which an algebraic
integer is a root, then m is the degree of that algebraic integer (Definition 1.1, p.1

[11]).

Corollary 4.4. If ¢ is a quasiperiodic flow on T™ with generating vector field
X =" a;0/00;, then each o € py(Se) is a real algebraic integer of degree at
most n, and py(Sy) NQ = {1,—-1}.
Proof. For each @ € py(Sy) (which is real) there is an R € S, such that ps(R) = a.
By Theorem 4.3/ there is a B € GL(n, Z) such that TR = B. Then by Theorem
and Theorem [3.5]

BX = R.X = aX.
So, « is an eigenvalue of B (and X is an eigenvector of B.) The characteristic
polynomial of B is an n-degree monic polynomial in Z[z]:

2" dy 12V 4 dyz + dy.

Thus « is a real algebraic integer of degree at most n. The value of dy is det(B),
which is a unit in Z (Theorem 3.5, p.351 [§]). The only units in Z are £1. So the only
possible rational roots of the characteristic polynomial of B are £1 (Proposition
6.8, p.160 [8]). This means that ps(Se) NQ C {1, —1}. But ps(Se) NQ D {1, -1}
by Theorem [2.3] Thus, pg(Ss) N Q = {1, —1}. O

The other restriction on the possibilities for the multipliers of any generalized
symmetries of ¢ employs linear combinations over Z of pair wise ratios of the entries
of the “eigenvector” X (which entries are the frequencies of ¢).

Corollary 4.5. If ¢ is a quasiperiodic flow on T™ with generating vector field
X =31 1 a;0/00;, then for any o € py(Sy) there exists a B = (b;;) € GL(n,Z)

such that .
as
a= bii-L, i=1,...,n.
; Zjai

Proof. Suppose that a € pg(Sg). Then there is an R € S, such that a = py(R).
By Theorem there is a B = (b;;) € GL(n,Z) such that TR = B with

n—1

a; aj .
bm:a—— E bijf, ’L:L...,TL.
Qn ; Qn
j=1
Solving this equation for a gives
- a
o = bijfj, Z:L,n
- a;
Jj=1
g

The multiplier group of any quasiperiodic flow ¢ always contains {1, —1} as
stated in Theorem For each t € R, the diffeomorphism ¢; is in Sy by definition.
A lift of ¢y is ¢¢(x) = Tx +tX, where I = 0;; is the n X n identity matrix, so that
by Corollary

- a; a;
@ ; Ta; @

(3



EJDE-2004/39 STRUCTURE OF GROUP INVARIANTS 11

for each i = 1,...,n. A lift of the reversing involution N defined in the proof of
Theorem is N(z) = —Iz, so that by Corollary

n

a; a;
o = — 51,],7]:_7’:_1
- ; a;
Jj=1
for each i = 1,...,n. Corollary [£.5]enables a complete description of all symmetries

and reversing symmetries of ¢.

Theorem 4.6. Suppose that ¢ is a quasiperiodic flow on T" with generating vector
field X =370 1 a;0/00;. If py(R) = £1 for an R € Sy, then there is ¢ € R™ such
that R(x) = py(R) Iz + c.

Proof. Let R € Sy. By Theorem there exists a B = (b;;) € GL(n,Z) and a
c € R™ such that R(:E) = Bz + c¢. By Corollary the entries of B satisfy

for each i = 1,2,...,n. By hypothesis, ps(R) = £1. Then for each i =1,2,...,n,
birar + -+ (bii F D)a; + -+ + bina, = 0.

By the independence of a1, as,...,a, over Q, b;; = 0 when ¢ # j and b;; = pg(R)
for all i = 1,2,...,n. Therefore, R(x) = ps(R) Iz + c. O

Corollary 4.7. If ¢ is a quasiperiodic flow on T", then ker py = T™.

Proof. Let R € S4 such that ps(R) = 1. By Theorem R(z) = Iz + ¢ for some
¢ € R™. Now, for any ¢ € R”, the Q € Diff(T") induced by Q(z) = Iz + ¢ satisfies
Q+«X = X by Theorem because Q*X = X. So, by Theorem Q € ker pg.
Since c is arbitrary, Qm = 7Q, and w(R™) =T", it follows that ker p, = T™. O

Corollary 4.8. If ¢ is a quasiperiodic flow on T", then every reversing symmetry
of ¢ is an involution.

Proof. Suppose R € S, is a reversing symmetry. By Theorem R(z)=—Iz+c
for some ¢ € R, and so R?(x) = Iz. This implies that R? = idyn. (]

Example 4.9. Recall the quasiperiodic flow ¢ on T2 and its generating vector field

_ 0 L9 a0

=00 T e T ans

from Example [2.2] By Corollary [£.7] the symmetry group of ¢ is exactly the group

of translations {R. : ¢ € T"} on T™, where R.(0) = 6 + c¢. By Corollary

every reversing symmetry of ¢ is an involution. In particular, this implies that the

reversing symmetry group of ¢ is a semidirect product of the symmetry group of ¢

by the Zs subgroup generated by reversing involution N(0) = —0 (see p.8 in [I0]).
Are there symmetries of ¢ with multipliers other than +1? The GL(3,7Z) matrix

-2 1 0
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induces a @ € Diff(T®) by Theorem Since
Q.X =TQX = BX = (-2 +7/?)X,

Theorem implies that Q,X = (=2 + 7'/%)X. Hence, by Theorem Q € Sp.
The number —2+7/3 is p4(Q), the multiplier of Q, is an algebraic integer of degree
at most 3 by Corollary and satisfies

3
a; .
—24 73 = ;bija—z, i=1,2,3,
]:

by Corollary (The matrix B was found by using Theorem 3.1 in [3], a result
which characterizes the matrices in GL(3,Z) inducing generalized symmetries of a
quasiperiodic flow generated by a vector field of a certain type, of which X above
is.) Since Sy is a group and py : Sy — R* is a homomorphism, it follows for each
k € Z that QF € S, with ps(QF) = (p¢(Q))k = (=24 7Y%k and that NQ* € S,
with pg(NQF) = —(—2 + TV/3)F.

5. A SPLITTING MAP FOR THE EXTENSION

For a quasiperiodic flow ¢ on T", Theorem implies that TR € GL(n,Z) for
every R € S4. Set

I, = {B € GL(n,Z) : there is R € S, for which B = TR},
and define a map vy : Iy — pg(Ss) by vs(B) = py(R) where R € Sy with TR = B.

Lemma 5.1. If ¢ is a quasiperiodic flow on T™ with generating vector field X,
then vy is well-defined.

Proof. Let B € Ilg, and suppose there are R,Q € S, with TR=DB= TQ. Then
RQ™' € Sy and RQ~" is a lift of RQ™! for which T(RQ~') = BB~! = I. Hence
RQ~(x) = Iz + ¢ for some ¢ € R™. This implies that (RQ~"),X = X, so that by

Theorem (RQ71).X = X. By Theorem pe(RQ™) = 1. Because p, is a
homomorphism, py(R) = ps(Q). O

Lemma 5.2. If ¢ is a quasiperiodic flow on T™ with generating vector field X,
then Iy is a subgroup of GL(n,Z).

Proof. Let B,C € Ils. Then there are R, () € Sy such that TR = B and TQ =C.
The latter implies that TQ™! = (TQ)~' = C~!. Then BC~! = TRTQ ! =
T(RQ™'). The diffeomorphism z — RQ 'z of R™ satisfies conditions a) and b)
of Theorem and so is a lift of a diffeomorphism V' of T". Let a = pg(R)
and 3 = ps(Q). Then ps(Q~1) = B! because py is a homomorphism, and so
((,:2*1)*5( = A-'X. Thus, T(]:?Qfl)f( = (RQATI)*X = a7 1X. By Theorem [3.5
V.X = afB7'X, so that by Theorem V € 5;. The lifts ]:ZQ_I and V of V
differ by a deck transformation of 7, so that BC~! = T(RQ’l) = TV. Therefore,
BC~1 e Ily. O

Theorem 5.3. If ¢ is a quasiperiodic flow on T™ with generating vector field X,
then vy is an isomorphism and Iy is an Abelian subgroup of GL(n,Z).
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Proof. Let B,C € Il,. Then there are R, Q € S such that TR = B and TQ =C.
Let o = pg(R) and 8 = py(Q). By Theorem and Theorem TRX = aX
and TQX = fX. By Lemma BC € Ily, so that there is a V' € S4 such
that TV = BC. Hence, V,X = TVX = BCX = afX. By Theorem [3.5 and
Theorem ps(V) = af. Thus, v4(BC) = aff = vy(B)rg(C). By definition, vy
is surjective, and by Theorem kervy = {I}. Therefore, vy is an isomorphism.

The multiplier group pe(Sy) is Abelian because it is a subgroup of the Abelian
group R*. Thus II, is Abelian. (]

A splitting map for the short exact sequence,
idpn — kerpgy — p;I(A) A 1,

is a homomorphism hy : A — p;I(A) such that jaha is the identity isomorphism
on A. Take for hy the map where for each a € A, the image hy(«) is the diffeo-
morphism in p;I(A) induced by the GL(n,Z) matrix u;l(a).

Theorem 5.4. If ¢ is a quasiperiodic flow on T™, then ha is a splitting map for
the extension idpn — ker pg — pdjl(A) — A — 1 for each A < py(Sey).

Proof. For arbitrary a, 5 € A, set R = hp(a), @ = ha(58), and V = hp(af). Then
R(z) = Vgl(a)x, Q(z) = V;l(ﬂ).r, and V(z) = Vgl(aﬂ)m. By Theoremﬁ, 1/;1 is
an isomorphism, so that V(z) = qul(a)l/(gl(ﬂ)x. Because
ha(@)ha(B)r(z) = RQu(x) = 7RQ(x) = vy (a)v, ' (B)x
= vy (af)z =7V (x) = Va(z) = ha(aB)r(x),
and because 7 is surjective, ha(a)ha(8) = ha(a3). Let B = TR = l/djl(a). Then
vy(B) = pg(R), so that
aha(a) = ja(R) = po(R) = ve(B) = vs(vy ' (o) = o

Therefore, hy is a splitting map for the extension. O

Theorem 5.5. If ¢ is a quasiperiodic flow on T™, then
Py (A) = ker pg xr ha(A)

for each A < py(Sys), where I' : ha(A) — Aut(ker py) is the conjugating homomor-
phism. Moreover, if A is a nontrivial subgroup of ps(Sy), then T’ is nontrivial.

Proof. By Theorem ha is a splitting map for the extension
idpn — kerpy — pgl(A) L

Thus, pgl(A) = (ker py) (ha(A)) and ker py N hp(A) = idyn (Theorem 9.5.1, p.240
[12]). Since ker py is a normal subgroup of p(gl(A), then pgl(A) = ker py X ha(A)
where I' : hy (A) — Aut(ker py) is the conjugating homomorphism (see p.21 in [I]).
If I' is the trivial homomorphism, then qul(A) is Abelian since ker py is Abelian by
Corollary and ha(A) is Abelian by Theorem (see p.21 in [I]). But pgl(A)
is non-Abelian by Theorem [2.4) whenever A is a nontrivial subgroup of py(Ss). O
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Example 5.6. For the quasiperiodic flow ¢ on T3 with frequencies 1, 7*/3, and
72/3 it was shown in Example [4.9| that o = —2 + 7'/3 € p4(Ss). The set

A={(-1)a*:je{0,1},keZ}

is a nontrivial subgroup of py(Sy) that is isomorphic to Zs x Z. By Theorem

and Corollary

p;l(A) o~ 3 X1 (ZQ X Z),
where I' is the (nontrivial) conjugating homomorphism. In particular, every element
of pgl(A) can be written uniquely as R.N7Q* where R, € kerpy is a translation
by ¢ on T" (as defined in Example , N is the reversing involution (as defined

Example , and @ is the generalized symmetry of ¢ whose multiplier is « (as
defined in Example . Thus

pyt(A) ={R.NIQ":ceT",j€{0,1},k € Z}.
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