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Abstract

The degree theory of mappings is applied to a two–dimensional semi-
linear elliptic problem with the Laplacian as principal part subject to a
nonlinear boundary condition of Robin type. Under some growth condi-
tions we obtain existence. The analysis is based on an equivalent coupled
system of domain–boundary variational equations whose principal parts
are the Dirichlet bilinear form in the domain and the single layer poten-
tial bilinear form on the boundary, respectively. This system consists of a
monotone and a compact part. Additional monotonicity implies conver-
gence of an appropriate Richardson iteration.
The degree theory also provides the instrument for showing conver-

gence of a subsequence of a nonlinear finite element — boundary ele-
ment Galerkin scheme with decreasing mesh width. Stronger assumptions
provide strong monotonicity, uniqueness and convergence of the discrete
Richardson iterations. Numerical experiments show that the Richardson
parameter as well as the number of iterations (for given accuracy) are
independent of the mesh width.

1 Introduction

In a bounded domain Ω ∈ Rn we consider the nonlinear boundary value problem,

−∆u = Ψ(x, u,∇u) in Ω,

−
∂u

∂n
= Φ(x, u) on ∂Ω = Γ.

For the homogeneous differential equation with Ψ = 0 and strictly monotone Φ,
this problem can be reduced to a strongly monotone boundary integral equa-
tion of Hammerstein type. These equations and their finite element – boundary
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element approximations with Galerkin as well as collocation methods have been
investigated in [2], [7], [10], [11], [15], [16], [21], [22], [23]. Spectral methods
for these equations have been considered in [5], [12]. In this paper, we consider
more general Φ and Ψ. With the general theory of the degree of mappings in
connection with a–priori estimates, we obtain existence and regularity results.
We also consider a finite element – boundary element Galerkin scheme which
approximates these equations in two and three dimensions. Additional restric-
tions for the nonlinear terms provide uniqueness of the solution u and allow
at the same time a convergence and error analysis of Galerkin schemes. The
solution of the nonlinear problem is constructed by an appropriate relaxation
method in combination with successive approximation — a constructive method
which also works for the discretizations.
Our paper is organized as follows: In Section 2 we present a brief introduction

to the degree theory of mappings in Banach spaces for a class of operators which
is adequate for our nonlinear boundary value problems. Here we follow the
presentations in [9], [14], [26]. If a–priori estimates are available then by using
homotopy we obtain the existence of solutions.

In Section 3 we apply this technique to our nonlinear boundary value prob-
lem. For this purpose we decompose the problem into a strongly monotone and
a non–monotone compact mapping where the latter also satisfies appropriate
growth conditions. These assumptions allow us to show the above–mentioned
a–priori estimates yielding existence and regularity of solutions.
Section 4 is devoted to uniqueness results which are obtained for “small”

perturbations of strongly monotone operators. Using potential methods we also
obtain convergence of a certain relaxation method and a successive iteration
scheme. Both iterations can also be performed for a coupled domain finite
element and boundary element approximation which is considered in Section 5.
The relaxation method is an improvement of the iteration in [2]. Our ap-

proach gives a constructive solution procedure for the discrete systems of non-
linear approximate equations, too. We also show asymptotic energy norm error
estimates of optimal order in terms of the corresponding mesh width.
In Section 6 we present numerical experiments for this iteration procedure

with finite and boundary elements.

2 Mapping degree theory

The degree theory of mappings in Banach spaces became one of the most im-
portant branches of global nonlinear analysis with applications in mathematical
physics. In particular, it can be applied to nonlinear elliptic boundary value
problems which can be reformulated as problems of infinite–dimensional geom-
etry in Banach spaces. Then the solutions of the nonlinear boundary value
problems can be considered as fixed points of nonlinear mappings or as the
preimage of a point under a nonlinear mapping or as the intersection of finitely
many submanifolds. Here we use the concept of preimages in connection with
degree theory of mappings in Banach spaces which extends the classical finite–
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dimensional theory. For the finite–dimensional case, let G be a domain in the
n–dimensional space Xn and consider a continuous mapping A : G → Xn.
Then, for arbitrary y ∈ Xn with distance dist(A(∂G), y) ≥ δ > 0, we can define
an integer d(A,G, y), the degree of the mapping A with respect to G and y in

the following way: To A choose a smooth mapping Ã : G→ Xn with

1) supx∈G ‖Ã(x)−A(x)‖ < δ/2,

2) Ã−1(y) = {x(1), . . . , x(N)} consists of a finite number of points such that

det
∂

∂x
Ã(x(j)) 6= 0, for j = 1, . . . , N.

Now define the degree deg(Ã, G, y) of Ã with respect to G and y in the usual
manner by

deg(Ã, G, y) :=

N∑
j=1

sgn det dÃ(x(j)).

It is well known that d does not depend on the special choice of Ã for all Ã
satisfying the above properties 1) and 2) which justifies the definition of the
degree d of A by

deg(A,G, y) := deg(Ã, G, y).

The basic properties of the degree deg(A,G, y) are the following (see [24]):

P1. If deg(A,G, y) 6= 0 then the equation Ax = y has at least one solution
x ∈ G.

P2. Let A : G × [0, 1] → Xn be a continuous mapping satisfying
dist(Aλ(∂G), y) ≥ δ > 0 with Aλ := A(·, λ) for all λ ∈ [0, 1]. Then the
degree is constant: deg(Aλ, G, y) = const.

P3. For the identity mapping I there holds deg(I,G, y) 6= 0 if y ∈
◦
G .

It is well known that these properties of the degree deg(A,G, y) provide a
method for proving existence of solutions of a nonlinear equation Ax = y. In
fact, if the mapping A1 := A admits a homotopy At to a simple operator A0
such that the conditions on ∂G are fulfilled, then deg(A0, G, y) 6= 0 yields the
existence of a solution x ∈ G of the original equation according to the properties
P1, P2. However, this theory does not permit a simple analogous procedure in
the infinite-dimensional case. This can be seen from the following two most
important paradoxical examples:

1. According to Kuiper’s theorem (see [17]), the group of invertible linear
continuous operators in a Hilbert space is connected and, hence, there is
no concept of orientation in the Hilbert space. Analogous results are also
true for most Banach spaces (see [19]).
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2. There exists a smooth diffeomorphic mapping of the unit ball B1 in a
Hilbert space onto B1\{0} under which the boundary ∂B1 remains mo-
tionless. Nevertheless, this mapping admits a homotopy to the identity
(see [3]), in the contrary to the properties P1-P3.

This shows that the mappings which are admissible in degree theory are singled
out among the general continuous ones by special additional geometrical prop-
erties allowing the definition of the degree and other topological invariants. In
fact, there are various degree theories of nonlinear mappings which generalize
the classical Leray-Schauder degree theory [4], [9], [14],[24], [26].
In our paper we will use the degree theory of mappings A which admit a

decomposition A = B+T with a strongly monotone operator B and a compact
operator T. For this class of mappings it is possible to define the degree, such
that the properties P1-P3 remain valid (see [9], [14], [26]). Following [9], we
give a brief description of the case when X is a Hilbert space.
Let G be a bounded domain in the Hilbert space X and A : G → X be a

continuous mapping of the form A = B + T as above. Then, for all y 6∈ A(∂G)
we define the degree deg(A,G, y) in the following way:
Let T (X) denote the set of all finite–dimensional subspaces of X. Then T (X)
is partially ordered by inclusion. For T ∈ T (X), the orthogonal projection onto
T will be denoted by PT . One can show that there exists a space T0 ∈ T (X)
with y ∈ T0 such that for any T ∈ T (X) with T0 ⊂ T the set PT (∂G ∩ T )
does not contain y. Then the Brower degree degB(PTA,G∩T, y) is well defined
and independent of the special choice of T. This mapping degree then has the
following additional property:

P4. If B is a strongly monotone operator, then deg(B,G, y) 6= 0 if y ∈
◦
G .

In many applications, the bounded domain G ⊂ X can be defined from an
a–priori estimate for all solutions uλ of the set of equations

Aλuλ = 0

associated with the homotopy Aλ. If such a uniform estimate

‖uλ‖H ≤ C

is available then we can choose G := {u ∈ H | ‖u‖H ≤ C + 1}.

3 The potential problem

Let Ω ⊂ Rn, (n = 2 or 3), be a bounded domain with smooth boundary Γ
satisfying diam(Ω) < 1 for n = 2 which is just a scaling assumption. We now
specialize the nonlinear boundary value problem to

−∆u = f(x, u,∇u) + d in Ω , (3.1)
∂u
∂n
+ b0(x, u) = b1(x, u) + g on Γ . (3.2)
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As in [2], [22] we suppose b0 to be a Carathéodory function i.e. b0(·, u) is mea-
surable for all u ∈ R and b0(x, ·) is continuous for almost all x ∈ Γ. Further we
assume that ∂

∂u
b0(x, u) is Borel measurable and satisfies

0 < c ≤
∂

∂u
b0(x, u) ≤ C <∞ for almost all x ∈ Γ and all u ∈ R.

These conditions imply that the Nemitzky operator B0 : L
2(Γ)→ L2(Γ) defined

by
[B0u](x) := b0(x, u(x)) for a.e. x ∈ Γ (3.3)

is Lipschitz continuous and strongly monotone; i.e. there are positive constants
l, L > 0 such that

‖B0u−B0v‖L2(Γ) ≤ L‖u− v‖L2(Γ)

and

(B0u−B0v, u− v)L2(Γ) ≥ l‖u− v‖2L2(Γ) for all u, v ∈ L
2(Γ).

(3.4)

Here and in the sequel we denote by (z, w)Ω =
∫
Ω

zwdx and (u, v)Γ =
∫
Γ

uvdsΓ the

corresponding L2–dualities, by Hs(Ω) and Hs(Γ) the Sobolev spaces of order

s in Ω and on Γ, respectively. In particular, H−s(Ω) = (H̃s(Ω))′ where H̃s

denotes the completion of C∞0 (Ω) in H
s(Rn).

Furthermore, for every u ∈ Hs(Γ) and 0 ≤ s ≤ 1, we have B0u ∈ Hs(Γ)
and B0 : H

s(Γ)→ Hs(Γ) is bounded (see [22]). We suppose that b1, f are also
Carathéodory functions for which there exist positive constants c and α < 1
and functions β ∈ L2(Γ), ϕ ∈ L2(Ω) such that

|b1(x, u)| ≤ β(x) + c(1 + |u|)α,

|f(x, u, v)| ≤ ϕ(x) + c(1 + |u|+ |v|)α
(3.5)

for almost all x ∈ Γ and u ∈ R, v ∈ R. Then, the corresponding Nemitzky
operators B1 : L

2(Γ) → L2(Γ) with B1u(x) = b1(x, u(x)) and F : H
1(Ω) →

L2(Ω) with Fu(x) = f(x, u(x),∇u(x)) are Lipschitz continuous and satisfy the
estimates

‖B1u‖L2(Γ) ≤ c(1 + ‖u‖L2(Γ))
α for all u ∈ L2(Γ) and

‖Fv‖L2(Ω) ≤ c(1 + ‖v‖H1(Ω))
α for all v ∈ H1(Ω).

(3.6)

These estimates result from the following modification of a classical result [27,
pp. 561–562]:

Theorem 3.1 Suppose that f : Ω×Rm → R is a Caratheodory function which
satisfies the growth condition:

|f(x, u)| ≤ a(x) + b
m∑
i=1

|ui|
αri
q for all (x, u) ∈ Ω× Rm
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with fixed positive numbers α, b, with 0 < α < 1, a(·) ∈ Lq(Ω) and 1 ≤ q, ri <∞
for i = 1, . . . ,m. Then, the corresponding Nemitzky operator

(Fu)(x) := f(x, u1(x), . . . , um(x)) with F :

m∏
i=1

Lri(Ω)→ Lq(Ω)

is continuous and bounded satisfying

‖Fu‖Lq ≤ c

(
‖a‖Lq +

m∑
i=1

(‖ui‖Lri )
αri
q

)
for all u ∈

m∏
i=1

Lri(Ω) .

Inserting (3.1) and (3.2) into Green’s formula∫
Ω

(∆u)v dx+

∫
Ω

∇u · ∇v dx−

∫
Γ

∂u

∂n
v dsΓ = 0 , (3.7)

we obtain the weak formulation of our problem:

Let d ∈ H̃−1. Find u ∈ H1(Ω) such that for all v ∈ H1(Ω),

(Au, v)H1(Ω) := (∇u,∇v)Ω + (B0u|Γ, v|Γ)Γ − (B1u|Γ, v|Γ)Γ

−(g, v|Γ)Γ − (Fu, v)Ω − (d, v)Ω = 0 (3.8)

In order to apply mapping degree theory we consider the parameter–dependent
problem:

Find uλ ∈ H1(Ω) such that for all v ∈ H1(Ω),

(Aλuλ, v) := (∇uλ,∇v)Ω + (B0uλ|Γ, v|Γ)Γ − λ(B1uλ|Γ, v|Γ)Γ

−(g, v|Γ)Γ − λ(Fuλ, v)Ω − (d, v)Ω = 0 (3.9)

Theorem 3.2 There is a constant R > 0 not depending on λ ∈ [0, 1] such that
all solutions uλ of (3.9) are uniformly bounded:

‖uλ‖H1(Ω) ≤ R. (3.10)

Proof. First, we get with (3.9)

0 = (Aλuλ, uλ)H1(Ω) ≥ |uλ|
2
H1(Ω) + l‖uλ‖

2
L2(Γ) − ‖B0uλ‖L2(Γ)‖uλ‖L2(Γ)

−‖B1uλ‖L2(Γ)‖uλ‖L2(Γ) − ‖g‖H−
1
2 (Γ)
‖uλ‖

H
1
2 (Γ)

(3.11)

−‖Fuλ‖L2(Ω)‖uλ‖L2(Ω) − ‖d‖H̃−1(Ω)‖uλ‖H1(Ω).

We use the trace lemma ‖v‖L2(Γ) ≤ ‖v‖H
1
2 (Γ)

≤ c‖v‖H1(Ω) for all v ∈ H
1(Ω)

and the Friedrichs inequality [20]

C‖v‖2L2(Ω) ≤ ‖∇v‖
2
L2(Ω) + l‖v‖

2
L2(Γ). (3.12)
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Using (3.12) in (3.11) and dividing by ‖uλ‖H1(Ω) we get

C‖uλ‖H1(Ω) ≤ ‖B0uλ‖L2(Γ)+‖B1uλ‖L2(Γ)+‖g‖H−
1
2 (Γ)
+‖Fuλ‖L2(Ω)+‖d‖H̃−1(Ω) .

Inserting (3.6) into the inequality right above we obtain

‖uλ‖H1(Ω) ≤ c(1 + ‖uλ‖H1(Ω))
α

with α ∈ (0, 1) and, thus, the boundedness of ‖uλ‖H1(Ω). ♦

Theorem 3.3 The operator Aλ : H
1(Ω) → H1(Ω) is of the form Aλ = A0 +

λA1 with a Lipschitz continuous strongly monotone operator A0 : H
1(Ω) →

H1(Ω) and a compact operator A1 : H
1(Ω)→ H1(Ω).

Proof. Define A0 by

(A0u, v)H1(Ω) := (∇u,∇v)Ω + (B0u|Γ, v|Γ)Γ. (3.13)

Because of the Lipschitz continuity of B0 in L
2(Γ), the operator A0 : H

1(Ω)→
H1(Ω) is also Lipschitz continuous. Inequality (3.4) yields

(A0u−A0v, u− v)H1(Ω) ≥ ‖∇(u− v)‖
2
L2(Ω) + l‖u− v‖

2
L2(Γ) ≥ C‖u− v‖

2
H1(Ω).

The operator A1 defined by

(A1u, v)H1(Ω) := −(B1u|Γ, v|Γ)Γ − (g, v|Γ)Γ − (Fu, v)Ω − (d, v)Ω

is compact since F : H1(Ω)→ L2(Ω) is continuous and the imbedding L2(Ω) ↪→

H̃−1(Ω) is compact. B1 : L
2(Γ) → L2(Γ) is continuous and the imbeddings

H
1
2 (Γ) ↪→ L2(Γ) ↪→ H−

1
2 (Γ) are also compact. ♦

Applying the mapping degree theory sketched in Section 2 we finally have shown
the following theorem.

Theorem 3.4 For any given h ∈ H̃−1(Ω) and g ∈ H−
1
2 (Γ), the problem (3.8)

has at least one solution u ∈ H1(Ω). Furthermore, the set of solutions is a com-
pact subset of H1(Ω). If h ∈ L2(Ω) and g ∈ L2(Γ) then we obtain the regularity
result u ∈ H

3
2 (Ω). If, in addition, we assume b1 to be Lipschitz continuous, i. e.

|b1(x, u)− b1(x, v)| ≤ L|u− v| for all u, v ∈ R and x ∈ Γ (3.14)

and if g ∈ H
1
2 (Γ) then u ∈ H2(Ω).

This regularity result follows from the well known regularity properties of linear
elliptic equations [18] and the mapping properties of F, B0, and B1.
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4 Perturbations of the strongly monotone case

If the operators F and B1 are sufficiently small, then the solution of (3.8) is
unique due to the contraction principle.
Here we present a potential method in order to apply these arguments. As

is well known, any smooth function v satisfies the Green representation formula

v = KΓ,Ω v|Γ + VΓ,Ω
∂v

∂n

∣∣∣∣
Γ

+ VΩ,Ω 4v in Ω (4.1)

with the potentials

VΩ,Ω ψ(x) = −
1

2π

∫
Ω

ψ(y) log |x− y| dy for x ∈ Ω,

VΓ,Ω ψ(x) = −
1

2π

∫
Γ

ψ(y) log |x− y| dsΓ(y) for x ∈ Ω,

KΓ,Ω ψ(x) =
1

2π

∫
Γ

ψ(y)
∂

∂ny
log |x− y| dsΓ(y) for x ∈ Ω.

(4.2)

Inserting the differential equation (3.1) and the boundary condition (3.2) in
(4.1) we obtain the equation

u = KΓ,Ω u|Γ − VΓ,Ω (B0u|Γ −B1u|Γ − g)− VΩ,Ω (Fu+ d) in x ∈ Ω . (4.3)

The continuity of the single layer potential and the jump relations for the double
layer potential yield the following equation for the boundary values:

(I −KΓ,Γ) u|Γ + VΓ,Γ (B0u|Γ −B1u|Γ − g)− VΩ,Γ (Fu+ d) = 0 on Γ . (4.4)

The equations (4.3) and (4.4) can be considered as a system of equations for u
in Ω and the boundary values u|Γ on Γ.
Here, the operators that map into the boundary spaces are defined by

VΩ,Γ ψ(x) = −
1

π

∫
Ω

ψ(y) log |x− y| dy for x ∈ Γ,

VΓ,Γ ψ(x) = −
1

π

∫
Γ

ψ(y) log |x− y| dsΓ(y) for x ∈ Γ,

KΓ,Γ ψ(x) =
1

π

∫
Γ

ψ(y)
∂

∂ny
log |x− y| dsΓ(y) for x ∈ Γ.

(4.5)

It is well known [6] that the potential operators are linear continuous operators
in the spaces

VΩ,Ω : H̃
−1(Ω)→ H1(Ω), VΩ,Γ : H̃

−1(Ω)→ H
1
2 (Γ),

VΓ,Ω : H
− 12 (Γ)→ H1(Ω), VΓ,Γ : H

− 12 (Γ)→ H
1
2 (Γ),

KΓ,Ω : H
1
2 (Γ)→ H1(Ω), KΓ,Γ : H

1
2 (Γ)→ H

3
2 (Γ).

(4.6)

According to (4.4), let us introduce the operator

L0 := I −KΓ,Γ + VΓ,ΓB0 : H
1
2 (Γ)→ H

1
2 (Γ). (4.7)
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Theorem 4.1 The operator L0 is Lipschitz continuous, invertible and has a
Lipschitz continuous inverse.

Proof. First, the Lipschitz continuity is clear from (3.4) and the mapping
properties (4.6). We show that L0 is V

−1
Γ,Γ–monotone i.e. there is a constant γ

such that

(L0ϕ− L0ψ, V
−1
Γ,Γ(ϕ− ψ))Γ ≥ γ‖ϕ− ψ‖

2

H
1
2 (Γ) .

(4.8)

Using the symmetry of VΓ,Γ, we know that for T , the Steklov-Poincaré operator
on harmonic functions, which is defined by

T := V −1Γ,Γ(I −KΓ,Γ) (4.9)

G̊arding’s inequality is valid:

(Tϕ, ϕ)Γ ≥ γ̃‖ϕ‖21
2
− c‖ϕ‖20 for all ϕ ∈ H

1
2 (Γ) . (4.10)

Hence (4.8) follows from the semidefiniteness of T and inequality (3.4) (see [2]
and [22]).
For the construction of the inverse to L0 we consider the sequence ϕn defined

by

ϕn+1 := ϕn − α(L0ϕn − f) for n = 0, 1, . . . (4.11)

with an appropriate α ∈ R for some starting value ϕ0 ∈ H
1
2 (Γ) and a given

right hand side f ∈ H
1
2 (Γ). We get the estimate

(ϕn+1 − ϕn, V
−1
Γ,Γ(ϕn+1 − ϕn))Γ

= (ϕn − ϕn−1, V
−1
Γ,Γ(ϕn − ϕn−1))Γ − 2α(L0ϕn − L0ϕn−1, V

−1
Γ,Γ(ϕn − ϕn−1))Γ

+α2(L0ϕn − L0ϕn−1, L0ϕn − L0ϕn−1)Γ

≤ (ϕn − ϕn−1, V
−1
Γ,Γ(ϕn − ϕn−1))Γ − 2αγ‖ϕn − ϕn−1‖

2

H
1
2 (Γ)

+α2C‖ϕn − ϕn−1‖
2

H
1
2 (Γ)

≤ (1− c1α+ c2α
2)(ϕn − ϕn−1, V

−1
Γ,Γ(ϕn − ϕn−1))Γ .

Hence, for α <
c1

c2
the sequence ϕn is a Cauchy sequence in the norm ‖ ·‖2V −1 :=

( · , V −1Γ,Γ · )Γ which is equivalent to the H
1
2 (Γ)–norm. The limit ϕ0 = lim

n→∞
ϕn is

necessarily a solution of L0ϕ0 = f. Due to (4.8) this solution is unique. For f1,

f2 ∈ H
1
2 (Γ) we get

‖L−10 f1 − L
−1
0 f2‖

2

H
1
2 (Γ)

≤ γ−1((f1 − f2), V
−1
Γ,Γ(L

−1
0 f1 − L

−1
0 f2))Γ

≤ c‖L−10 f1 − L
−1
0 f2‖

H
1
2 (Γ)
‖f1 − f2‖

H
1
2 (Γ)

and, hence, L−10 is Lipschitz continuous. ♦
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For the solution of (4.3) and (4.4) now we consider the sequences un, vn defined
by u0 ∈ H1(Ω) and successive approximation

vn+1 := L−10 (VΓ,ΓB1un|Γ + VΓ,Γg − VΩ,ΓFun − VΓ,Ωd)
un+1 := KΓ,Ωvn+1 − VΓ,Ω(B0vn+1 −B1vn+1 − g)− VΩ,Ω(Fun + d) .

(4.12)
Since L−10 , B1 and F are Lipschitz continuous we obtain

‖vn+1 − vn‖
H
1
2 (Γ)

≤ ‖L−10 ‖
(
‖VΓ,Γ B1‖ ‖un − un−1‖

H
1
2 (Γ)
+ ‖VΩ,Γ F‖ ‖un − un−1‖H1(Ω)

)
and

‖un+1 − un‖H1(Ω) ≤ ‖KΓ,Ω − VΓ,ΩB0 + VΓ,ΩB1‖‖vn+1 − vn‖
H
1
2 (Γ)

+‖VΩ,ΩF‖‖un − un−1‖H1(Ω) .

By the trace theorem we obtain

‖un+1 − un‖H1(Ω) ≤
(
c1‖B1‖+ c2‖B1‖

2 + c3‖F‖
)
‖un − un−1‖H1(Ω) (4.13)

with

c1 = (‖KΓ,Ω‖+ ‖VΓ,Ω‖ · ‖B0‖) ‖L
−1
0 ‖ ‖VΓ,Γ‖ ‖Trace‖ ,

c2 = ‖VΓ,Ω‖ ‖L
−1
0 ‖ ‖VΓ,Γ‖ ‖Trace‖ ,

c3 = (‖KΓ,Ω‖+ ‖VΓ,Ω‖ · ‖B0‖) ‖L
−1
0 ‖ ‖VΩ,Γ‖ + ‖VΩ,Ω‖ .

(4.14)

where Trace(u) = u|Γ denotes the trace operator: H1(Ω)→ H
1
2 (Γ).

Hence, if the Lipschitz constants ‖B1‖ and ‖F‖ satisfy the additional con-
dition

c1‖B1‖+ c2‖B1‖
2 + c3‖F‖ < 1

we obtain un as a Cauchy sequence in H
1(Ω) and vn as a Cauchy sequence in

H
1
2 (Γ).

For the limits u and v one gets from (4.13) on the boundary

L0u|Γ = L0v

which implies u|Γ = v. Hence, u is the solution of (4.3). Inserting two solutions
u, v into (4.12) we find

‖u− v‖H1(Ω) ≤
(
c1‖B1‖+ c2‖B1‖

2 + c3‖F‖
)
‖u− v‖H1(Ω)

by the same procedure; hence, uniqueness follows.
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5 Finite element – boundary element approxi-
mations

In order to solve (4.3), (4.4) numerically by a boundary element scheme we

introduce finite dimensional subspaces of H
1
2 (Γ) and of H1(Ω), respectively.

For this purpose let ∆Γh be a sequence of quasi-uniform grids on Γ with meshsize
h → 0. Let S(∆Γh) be the corresponding space of piecewise linear continuous
splines with respect to a fixed parametric representation of Γ. By PΓh we denote
the orthogonal projection of L2(Γ) onto S(∆Γh).

Theorem 5.1 For any 0 ≤ t < 3
2 , t ≤ s ≤ 2,

1
2 ≤ s there exists a constant c > 0

such that the operator PΓh satisfies the approximation property∥∥PΓh v − v∥∥t ≤ c hs−t ‖v‖s for all v ∈ Hs(Γ) . (5.1)

For the proof of this proposition see e.g. [8, Theorem 6.1.2]. Let ∆Ωh be a
sequence of triangulations of Ω with mesh size h → 0. Again, H(∆Ωh ) denotes
the corresponding space of piecewise linear continuous finite element functions
(see [1]).
The L2(Ω)–projection onto this spline space is denoted by PΩh . For 0 ≤ t <

2, 1 ≤ s ≤ 2, t ≤ s, PΩh satisfies the estimate [1]∥∥PΩh u− u∥∥t ≤ c hs−t ‖u‖s . (5.2)

First, we follow the approach of [22] by approximating L0 defined in (4.7) by
the discrete approximation

Lh0 := P
Γ
h L0|S(∆Γh)

= I −Kh + Vh + Ph B0|S(∆Γh)
(5.3)

where Kh, Vh are defined by Kh := PΓh KΓ,Γ|S(∆Γh)
and Vh := PΓh VΓ,Γ|S(∆Γh)

,

respectively. It is well known that the operators Vh, V
−1
h are invertible and

satisfy the stability estimates

‖Vhϕ‖
H
1
2 (Γ)

≤ c ‖ϕ‖
H
− 1
2 (Γ)

for all ϕ ∈ H−
1
2 (Γ) ,∥∥V −1h PΓh ψ

∥∥
H−

1
2 (Γ)

≤ c ‖ψ‖
H
1
2 (Γ)

for all ψ ∈ H
1
2 (Γ)

(5.4)

where the constants c do not depend on h. Furthermore, we have

(Vhϕ,ϕ)Γ ≥ γ̃ ‖ϕ‖
2

H
− 1
2 (Γ)

for all ϕ ∈ H−
1
2 (Γ) (5.5)

and (
V −1h ψ, ψ

)
Γ
≥ γ ‖ψ‖2

H
1
2 (Γ)

for all ψ ∈ S(∆Γh) . (5.6)

This implies that the forms on the left hand sides are equivalent to the inner
products in the spaces appearing on the right hand sides. These results were
proven in [13]. In order to analyze the convergence Lh0 → L0, we need

Lemma 5.2 The operator Lh0 defined in (5.3) is uniformly Lipschitz continuous

with respect to the H
1
2 (Γ)–norm and V −1h –strongly monotone, i.e. there exist

constants l, γ > 0, not depending on h, such that
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(
Lh0ϕ− L

h
0ψ, V

−1
h (L

h
0ϕ− L

h
0ψ)

)
Γ
≤ l ·

(
ϕ− ψ, V −1h (ϕ− ψ)

)
Γ
, (5.7)

(Lh0ϕ− L
h
0ψ, V

−1
h (ϕ− ψ))Γ ≥ γ · ‖ϕ− ψ‖21

2
(5.8)

for all ϕ, ψ ∈ S(∆Γh).

Proof. Inequality (5.7) follows immediately from the uniform boundedness of

V −1h in H
1
2 (Γ) ∩ ϕ(∆Γh) which can be found in [8] and with Theorem 4.1. By

the symmetry of Vh, inequality (5.8) is equivalent to

(L̃h0ϕ− L̃
h
0ψ, ϕ− ψ)Γ ≥ γ · ‖ϕ− ψ‖

2
1
2
for all ϕ, ψ ∈ S(∆Γh) (5.9)

with
L̃h0 := Th + P

Γ
hB0 := V

−1
h (I −Kh) + P

Γ
hB0 . (5.10)

In [2] inequality (5.9) was derived from G̊arding’s inequality for the Steklov-
Poincaré operator T := V −1(I − K) and the compactness of the double layer
potential operator K and [25]. ♦

Theorem 5.3 The operator Lh0 defined in (5.3) is invertible. For a suitable
choice of the constant α > 0, the sequence

un+1 := un − α(L
h
0un − ψ) (5.11)

converges to uh, the solution of

Lh0uh = ψ (5.12)

for any function ψ ∈ S(∆Γh) and any starting value u0 ∈ S(∆
Γ
h). L

h
0 satisfies

the inverse stability estimate

‖ϕ− ψ‖
H
1
2 (Γ)
≤ c ·

∥∥Lh0ϕ− Lh0ψ∥∥H 1
2 (Γ)

for all ϕ, ψ ∈ S(∆Γh) (5.13)

where c does not depend on h.

Proof. The inequality (5.8) implies that Lh0 is one to one. For α > 0, equation
(5.12) is equivalent to the fixed–point–equation

uh = uh − α(L
h
0uh − ψ) (5.14)

and (5.11) defines the corresponding iteration scheme. By using the estimates
(5.7) and (5.8) we obtain(
V −1h (un+1 − un), (un+1 − un)

)
Γ

=
(
V −1h (un − un+1), un − un+1

)
Γ
− 2α

(
Lh0un − L

h
0un−1, V

−1
h (un − un−1)

)
Γ

+α2
(
Lh0un − L

h
0un−1, V

−1
h (Lh0un − L

h
0un−1)

)
Γ

(5.15)

≤ (1− 2γα+ lα2)
(
V −1h (un+1 − un), (un+1 − un)

)
Γ
.
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Choosing 0 < α < 2γ
l
we find that (un) is a Cauchy sequence (in any norm in

S(∆Γh)). Taking the limit in (5.11) shows that (un) converges to a solution of
(5.12) and, hence, Lh0 is surjective.
The stability estimate (5.13) follows immediately from inequality (5.8) and

the properties of V −1h . ♦

The following approximation result for the operator Lh0 can be derived from
Theorem 5.3 and was proven in [2]. Related results for the boundary element
collocation method can be found in [11].

Theorem 5.4 For f ∈ Hs−1(Γ) and 12 < s ≤ 2 there holds the optimal asymp-
totic error estimate

‖L−10 V f − (Lh0 )
−1VhPhf‖

H
1
2 (Γ)

≤ c · hs−
1
2 · ‖f‖Hs−1(Γ). (5.16)

Now we are able to approximate the solution u ∈ H1(Ω) of (4.3) by the iterative
scheme

vn+1 := (Lh0 )
−1
(
PΓh VΓ,ΓP

Γ
h (B1vn − g)− P

Γ
h VΩ,ΓP

Ω
h (Fun + d)

)
,

un+1 := PΩh KΓ,Ωvn+1 − P
Ω
h VΓ,ΩP

Γ
h (B0vn+1 −B1vn+1 − g) (5.17)

−PΩh VΩ,ΩP
Ω
h (Fun + d)

with starting values v0 ∈ S(∆Γh), u0 ∈ H(∆
Ω
h ). With similar arguments as in

Section 4 we see that the scheme is convergent due to the contraction principle.
The limits uh, vh satisfy the equations

vh := (L
h
0 )
−1
(
PΓh VΓ,ΓP

Γ
h (B1vh − g)− PhVΩ,ΓP

Ω
h (Fuh + d)

)
,

uh := P
Ω
h KΓ,Ωvh − P

Ω
h VΓ,ΩP

Γ
h (B0vh −B1vh − g)− P

Ω
h VΩ,ΩP

Ω
h (Fuh + d) .

(5.18)

Theorem 5.5 Let d ∈ L2(Ω). Then the solutions uh, vh of (5.18) satisfy the
optimal asymptotic error estimate

‖u|Γ − vh‖
H
1
2 (Γ)
+ ‖u− uh‖H1(Ω) ≤ c

(
1 + ‖u‖H2(Ω)

)
· h . (5.19)

Proof. The inverse stability (5.16) of Lh0 and the approximation and bound-
edness properties of PΩh and P

Γ
h yield the estimates

‖z − uh‖H1(Ω) ≤ c1

(
1 + ‖u‖H2(Ω)

)
· h ,

‖w − vh‖
H
1
2 (Γ)

≤ c2

(
1 + ‖u‖H2(Ω)

)
· h

with

w := L−10 (VΓ,Γ(B1vh − g)− VΓ,Ω(Fuh + d)) ,
z := KΓ,Ωvh − VΓ,Ω(B0vh −B1vh − g)− VΩ,Ω(Fuh + d) .

(5.20)
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Inserting vh, uh as starting values into the iteration scheme (4.12), the contrac-
tion principle yields the estimates

‖u− z‖H1(Ω) ≤ c1 ‖ω − uh‖H1(Ω) ,

‖u|Γ − w‖
H
1
2 (Γ)

≤ c2 ‖w − vh‖
H
1
2 (Γ)

where the constants depend on the contraction properties of (4.12). Hence, the
desired estimate follows. ♦

6 Numerical results

The solution scheme (5.11) was implemented in the programming language C
and – in the case of the homogeneous differential equation in Ω – the iteration
(5.18), so that the program could be used either on a PC or on an arbitrary
UNIX-system. By a version partially written in FORTRAN we were able to use
the vector facility on an IBM 3090E which was rather efficient for analyzing the
dependence on the parameters practically. In order to keep the programming
effort low we used an interpolation Ih B0 instead of the orthogonal projection
PhB0 in the iteration schemes. That means that we used schemes which may
perform less efficiently than the theoretical schemes analyzed here.

Example 6.1 We choose Ω to be the circle of radius 0.25 centered at the origin.
Here, the harmonic function u(x, y) := x2 − y2 satisfies the nonlinear boundary
condition (see [22])

−
∂u

∂n
=
{
2u+ sinu− 4(x2 − y2)− sin(x2 − y2)

}
/ (x2 + y2)

1
2 (6.1)

which is of the type (3.2) with b1(x, u) = 0 and

b0(x, u) = {2u+ sinu} / (x
2 + y2)

1
2 . (6.2)

As a parametric representation of Γ we used

(x(t), y(t)) := 0.25(cos 2πt, sin 2πt) for t ∈ [0, 1].

The nodal points of ∆Γh were defined by ti :=
i
p
, i = 1, ..., p. Table 1 shows the

optimal choice of α in (5.11) and the resulting number of iterations N for the
different mesh sizes. The corresponding optimal results for the scheme in [2]
are listed in Table 2 and illustrate the advantage of our improved method. The
values of the H

1
2 –error performed better than predicted by Proposition 5.4 due

to the high regularity of the solution; and they lie between 9 ·10−3 and 3.5 ·10−6.

p — 20 40 80 160

α — 0.15 0.15 0.15 0.15

N — 13 13 13 13
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Table 1: Number of iterations in (5.11)

p 10 20 40 80 160

α 0.06 0.038 0.021 0.011 0.0058

N 8 10 35 60 110

Table 2: Optimal choice of α and number of iterations in [2].

Example 6.2 We replace the boundary condition (6.1) in Example 6.1 by

−
∂u

∂n
=
{
2u+ λ sinu− 4(x2 − y2)− λ sin(x2 − y2)

}
/ (x2 + y2)

1
2 (6.3)

and choose

b1((x, y), u) := {(1− λ) sinu} / (x2 + y2)
1
2 ,

g(x, y) :=
{
4(x2 + y2) + λ sin(x2 − y2)

}
/ (x2 + y2)

1
2 .

For λ = 4.0 the application of the scheme (5.17) required 6 iterations. The
complete computation needed 25 steps as described in (5.14). The number of
iterations increases with λ > 4.0 and the scheme is divergent already for λ = 7.0.
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