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THE POISSON EQUATION FROM NON-LOCAL TO LOCAL

UMBERTO BICCARI, VÍCTOR HERNÁNDEZ-SANTAMARÍA

Communicated by Raffaella Servadei

Abstract. We analyze the limiting behavior as s→ 1− of the solution to the
fractional Poisson equation (−∆)sus = fs, x ∈ Ω with homogeneous Dirichlet

boundary conditions us ≡ 0, x ∈ Ωc. We show that lims→1− us = u, with
−∆u = f , x ∈ Ω and u = 0, x ∈ ∂Ω. Our results are complemented by

a discussion on the rate of convergence and on extensions to the parabolic

setting.

1. Introduction and statement of main results

Let 0 < s < 1 and let Ω ⊂ RN be a bounded and regular domain. Let us consider
the following elliptic problem

(−∆)su = f, x ∈ Ω

u ≡ 0, x ∈ Ωc.
(1.1)

Here (−∆)s indicates the fractional Laplace operator, defined for any function u
regular enough as the singular integral

(−∆)su(x) := CN,s P.V.
∫

RN

u(x)− u(y)
|x− y|N+2s

dy , (1.2)

where CN,s is a normalization constant

CN,s :=
s22sΓ(N+2s

2 )
πN/2Γ(1− s)

, (1.3)

where Γ is the usual Gamma function. Moreover, we have to mention that, for
having a completely rigorous definition of the fractional Laplace operator, it is
necessary to introduce also the class of functions u for which computing (−∆)su
makes sense. We postpone this discussion to the next section.

Models involving the fractional Laplacian or other types of non-local operators
have been widely used in the description of several complex phenomena for which
the classical local approach turns up to be inappropriate or limited. Among others,
we mention applications in turbulence [3], elasticity [10], image processing [14],
laser beams design [19], anomalous transport and diffusion [20], porous media flow
[26]. Also, it is well known that the fractional Laplacian is the generator of s-stable
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processes, and it is often used in stochastic models with applications, for instance,
in mathematical finance [17].

One of the main differences between these non-local models and classical par-
tial differential equations is that the fulfillment of a non-local equation at a point
involves the values of the function far away from that point.

The Poisson problem (1.1) is one of the most classical models involving the Frac-
tional Laplacian, and it has been extensively studied in the past. Nowadays, there
are many contributions concerning, but not limited to, existence and regularity
of solutions, both local and global [5, 8, 15, 16, 23, 21, 24], unique continuation
properties [11], Pohozaev identities [22], spectral analysis [13] and numerics [1].

In this article, we are interested in analyzing the behavior of the solutions to
(1.1) under the limit s → 1−. Indeed, it is well-known (see, e.g., [9, 25]) that, at
least for regular enough functions, it holds

• lims→0+(−∆)su = u.
• lims→1−(−∆)su = −∆u.

In view of this, it is interesting to investigate whether, when s→ 1−, a solution us
to (1.1) converges to a solution to the classical Poisson equation

−∆u = f, x ∈ Ω
u = 0, x ∈ ∂Ω.

(1.4)

In our opinion, this is a very natural issue which, to the best of our knowledge, has
never been fully addressed in the literature in the setting of weak solutions with
minimal assumptions. As we will see, the answer to this question is positive.

Before introducing our main result, let us recall that we have the following
definition of weak solutions.

Definition 1.1. Let f ∈ H−s(Ω). A function u ∈ Hs
0(Ω) is said to be a weak

solution of the Dirichlet problem (1.1) if

CN,s
2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

dx dy =
∫

Ω

fv dx (1.5)

holds for every v ∈ D(Ω).

Here Hs
0(Ω) denotes the fractional order Sobolev space which consists of all

functions u ∈ Hs(Ω) which are zero on Ωc, while H−s(Ω) is its dual. We will give
a more exhaustive description of these spaces in Section 2. The main result of our
work is the following.

Theorem 1.2. Let Fs = {fs}0<s<1 ⊂ H−s(Ω) be a sequence satisfying the follow-
ing assumptions:

(H1) ‖fs‖H−s(Ω) ≤ C, for all 0 < s < 1 and uniformly with respect to s;
(H2) fs ⇀ f weakly in H−1(Ω) as s→ 1−.

For all fs ∈ Fs, let us ∈ Hs
0(Ω) be the unique weak solution to the Dirichlet problem

(1.1), in the sense of Definition 1.1. Then, as s→ 1−, us → u strongly in H1−δ
0 (Ω)

for all 0 < δ ≤ 1. Moreover, u ∈ H1
0 (Ω) and satisfies∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx, ∀v ∈ D(Ω),

i.e. it is the unique weak solution to (1.4).
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The proof of Theorem 1.2 will be based on classical PDEs techniques. Moreover,
the result will follow from the limit behavior as s → 1− of the operator (−∆)s

([9, 25]) and of the norm ‖ · ‖Hs(Ω) [7].
Furthermore, notice that Theorem 1.2 requires the existence of a sequence Fs

satisfying the assumptions (H1) and (H2). We point out that such sequence indeed
exists, and that it is possible to construct it systematically. We will give a proof of
this fact in Section 2.

This paper will be organized as follows: Section 2 will be devoted to introduce
some preliminary definitions and results that will be needed in our analysis. In
Section 3, instead, we will present the proof of Theorem 1.2, concerning the limit
behavior of the solutions to (1.1). Finally, in Section 4, we will present an addi-
tional result of convergence under weaker assumptions, a discussion on the rate of
approximation and an extension to the the parabolic setting.

2. Preliminaries

In this section, we introduce some preliminary results that will be useful for the
proof of our main theorem.

We start by giving a more rigorous definition of the fractional Laplace operator,
as we have anticipated in Section 1. Define

L1
s(RN ) :=

{
u : RN → R measurable,

∫
RN

|u(x)|
(1 + |x|)N+2s

dx <∞
}
.

For u ∈ L1
s(RN ) and ε > 0 we set

(−∆)sεu(x) := CN,s

∫
{y∈RN : |x−y|>ε}

u(x)− u(y)
|x− y|N+2s

dy, x ∈ RN .

The fractional Laplace operator (−∆)s is then defined by the singular integral

(−∆)su(x) = CN,s P.V.
∫

RN

u(x)− u(y)
|x− y|N+2s

dy = lim
ε↓0

(−∆)sεu(x), x ∈ RN , (2.1)

provided that the limit exists.
We notice that if 0 < s < 1/2 and u is smooth, for example bounded and

Lipschitz continuous on RN , then the integral in (2.1) is in fact not really singular
near x (see e.g. [9, Remark 3.1]). Moreover, L1

s(RN ) is the right space for which
v := (−∆)sεu exists for every ε > 0, v being also continuous at the continuity points
of u.

It is by now well-known (see, e.g., [9]) that the natural functional setting for
problems involving the Fractional Laplacian is the one of the fractional Sobolev
spaces. Since these spaces are not so familiar as the classical integral order ones,
for the sake of completeness, we recall here their definition.

Given Ω ⊂ RN regular enough and s ∈ (0, 1), the fractional Sobolev space Hs(Ω)
is defined as

Hs(Ω) :=
{
u ∈ L2(Ω) :

|u(x)− u(y)|
|x− y|N2 +s

∈ L2(Ω× Ω)
}
.

It is known that this is a Hilbert space, endowed with the norm (derived from
the scalar product)

‖u‖Hs(Ω) :=
(
‖u‖2L2(Ω) + |u|2Hs(Ω)

)1/2

,
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where

|u|Hs(Ω) :=
(∫

Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

is the so-called Gagliardo seminorm of u. For all 0 < s < 1, we set

Hs
0(Ω) := {u ∈ Hs(RN ) : u = 0 in Ωc},

and we indicate with H−s(Ω) = (Hs(Ω))′ its dual with respect to the pivot space
L2(Ω). Moreover, if s > 1/2, according to [12, Theorem 6] we have the identity

Hs
0(Ω) = Hs

0(Ω),

where
Hs

0(Ω) = Hs
0(Ω) := C∞0 (Ω)

Hs(Ω)

is the closure of the continuous infinitely differentiable functions compactly sup-
ported in Ω with respect to the Hs(Ω)-norm.

A more exhaustive description of fractional Sobolev spaces and of their properties
can be found in several classical references (see, e.g., [2, 9, 18]).

Coming back to our problem, let us recall that the existence and uniqueness of
weak solutions to (1.1) is guaranteed by the following result (see, e.g., [6, Proposi-
tion 1.2.23]).

Proposition 2.1. Let Ω ⊂ RN be an arbitrary bounded open set and 0 < s < 1.
Then for every f ∈ H−s(Ω), the Dirichlet problem (1.1) has a unique weak solution
u ∈ Hs

0(Ω). Moreover, there exists a constant C > 0 such that

‖u‖Hs
0 (Ω) ≤ C‖f‖H−s(Ω). (2.2)

In addition, we can take C =
√

2/CN,s.

We remind that our main interest in the present work is the analysis of the
behavior of the solutions of (1.1) when s → 1−. The proof of Theorem 1.2 is ob-
tained employing classical techniques in functional analysis, as well as the following
results.

Proposition 2.2 ([9, Proposition 4.4]). For any u ∈ C∞0 (RN ) the following state-
ments hold:

(i) lims→0+(−∆)su = u.
(ii) lims→1−(−∆)su = −∆u.

Proposition 2.3 ([7, Corollary 7]). For any ε > 0, let gε ∈ H1−ε(Ω). Assume
that

ε‖gε‖2H1−ε(Ω) ≤ C0,

where C0 is a positive constant not depending on ε. Then, up to a subsequence,
{gε}ε>0 converges in L2(Ω) (and, in fact, in H1−δ(Ω), for all δ > 0) to some
g ∈ H1(Ω).

Finally, as we pointed out in Section 1, our main result requires a sequence Fs
satisfying the assumptions (H1) and (H2). The existence of such a sequence is
guaranteed by the following result.

Proposition 2.4. For any f ∈ H−1(Ω) there exists a sequence Fs = {fs}0<s<1 ⊂
H−s(Ω) satisfying the assumptions (H1) and

(H2’) fs → f strongly in H−1(Ω) as s→ 1−.
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Proof. Recall that every f ∈ H−1(Ω) can be written as f = div(g) with g ∈ L2(Ω).
Furthermore, let us introduce a standard mollifier ρε defined as

ρε(x) :=

{
Cε−N exp

(
ε2

|x|2−ε2
)
, if |x| < ε

0, if |x| ≥ ε

and set gε := g ? ρε. It is knwon that:
(i) gε is well defined, since g ∈ L2(Ω), hence it is locally integrable.

(ii) gε ∈ C∞0 (Ωε), with Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.
(iii) ∂xi

gε is bounded uniformly with respect to ε for all i = 1, . . . , N .
(iv) limε→0+ gε = g, strongly in L2(Ω).
Thus we can take fε := div(gε) and, from Property (iii) above, we immediately

have that ‖fε‖H−1+ε(Ω) is bounded uniformly with respect to ε. In addition, using
Properties (ii) and (iv), it is straightforward that, for all i = 1, . . . , N , ∂xigε =
ρε ? gxi → gxi as ε→ 0+. Hence,

lim
ε→0+

fε = lim
ε→0+

div(gε) = div(g) = f,

where the convergence is strong in H−1(Ω). Therefore, by choosing ε = 1 − s,
following the above argument we can construct a sequence {fs}0<s<1 ⊂ H−s(Ω)
satisfying (H1) and (H2’). �

Remark 2.5. Notice that (H2’) is a property of strong convergence in H−1(Ω)
which, clearly, implies the weak convergence in the same functional setting (prop-
erty (H2)). Therefore, Proposition 2.4 provides a sequence Fs which is within the
hypotheses of Theorem 1.2.

3. Elliptic case: proof of Theorem 1.2

In this Section, we give the proof of Theorem 1.2 employing the definition of
weak solution that we gave in Section 2.

Proof of Theorem 1.2. First of all, since we are interested in the behavior for s→
1−, until the end of the proof we will assume s > 1/2. Moreover, from (H2) and
the definition of weak convergence we get

lim
s→1−

∫
Ω

fsv dx =
∫

Ω

fv dx, ∀v ∈ D(Ω). (3.1)

For all 0 < s < 1, let us ∈ Hs
0(Ω) be the solution to (1.1) corresponding to the

right-hand side fs. According to Proposition 2.1, for s sufficiently close to one we
have the estimate

√
1− s‖us‖Hs(Ω) ≤ C(s,N)‖fs‖H−s(Ω) , (3.2)

with

C(s,N) :=

√
2− 2s
CN,s

Moreover, for all N fixed, the constant C(s,N) is decreasing as a function of s
(see Figure 1). This of course implies

C(s,N) < C
(1

2
, N
)

=

√
π

Γ(N+1
2 )

.
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Figure 1. Behavior of C(s,N) as a function of s ∈ [1/2, 1] for
different fixed values of N .

Therefore, from (3.2) and the uniform boundedness of ‖fs‖H−s(Ω) we deduce
that √

1− s‖us‖Hs(Ω) ≤ C
with C depending only on N and Ω. This, thanks to Proposition 2.3, allows us to
conclude that us → u strongly in H1−δ

0 (Ω) for any 0 < δ ≤ 1, and that u ∈ H1
0 (Ω).

Notice that, according to [27, Section 6], for all φ ∈ Hs
0(Ω) and ψ ∈ D(Ω) we

have the identity〈
(−∆)sφ, ψ

〉
L2(Ω)

=
CN,s

2

∫
RN

∫
RN

(φ(x)− φ(y))(ψ(x)− ψ(y))
|x− y|N+2s

dx dy

=
〈
φ, (−∆)sψ

〉
L2(Ω)

.

This can be applied to the variational formulation (1.5), which can thus be
rewritten as 〈

us, (−∆)sv
〉
L2(Ω)

=
∫

Ω

fsv dx. (3.3)

Now, since us → u strongly in H1−δ
0 (Ω) for any 0 < δ ≤ 1 and v ∈ D(Ω),

Proposition 2.2 and Cauchy-Schwarz inequality imply that∣∣〈us, (−∆)sv〉L2(Ω) − 〈u,−∆v〉L2(Ω)

∣∣
=
∣∣〈us, (−∆)sv − (−∆v)〉L2(Ω) + 〈us − u,−∆v〉L2(Ω)

∣∣
≤ ‖us‖L2(Ω)‖(−∆)sv − (−∆v)‖L2(Ω) + ‖ −∆v‖L2(Ω)‖us − u‖L2(Ω) → 0,

as s→ 1−. Consequently,

lim
s→1−

〈
us, (−∆)sv

〉
L2(Ω)

=
〈
u,−∆v

〉
L2(Ω)

= −
∫

Ω

u∆v dx =
∫

Ω

∇u · ∇v dx.

This, together with (3.1) and (3.3) implies that u satisfies∫
Ω

∇u · ∇v dx =
∫

Ω

fv dx, ∀v ∈ D(Ω),

i.e. it is a weak solution to (1.4). �
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Remark 3.1. The result that we just proved is to some extent not surprising, due
to the limit behavior of the fractional Laplacian as s → 1−. In fact, a hint that
Theorem 1.2 had to be true comes from the very classical example

(−∆)sus = 1, x ∈ B(0, 1)

us ≡ 0, x ∈ B(0, 1)c,

whose solution is given explicitly by

us(x) =
2−2sΓ(N2 )

Γ(N+2s
2 )Γ(1 + s)

(1− |x|2)sχB(0,1).

Indeed, it can be readily checked that, for x ∈ B(0, 1),

lim
s→1−

us(x) =
1

2N
(1− |x|2) := u(x),

which is the unique solution to the limit problem

−∆u = 1, x ∈ B(0, 1)

u = 0, x ∈ ∂B(0, 1).

Of course, the above fact does not tell anything about the general case of problem
(1.1). To the best of our knowledge, this is an issue that, although natural and
probably expected, has not yet been fully addressed in the literature (at least, not
in the setting of weak solutions with minimal assumptions) and our contribution
helps to fill in this gap.

4. Additional results and further comments

4.1. Weakening the assumptions of Theorem 1.2. Scope of this section is
to show that a convergence result in the spirit of Theorem 1.2 can be obtained
under weaker assumption on the sequence Fs of the right-hand sides of (1.1). In
particular, we are going to prove the following result.

Theorem 4.1. Let Fs = {fs}0<s<1 ⊂ H−1(Ω) be a sequence such that fs ⇀
f weakly in H−1(Ω). For all fs ∈ Fs, let us be the corresponding solution to
(1.1). Then, as s → 1−, us ⇀ u weakly in L2(Ω), with u solution to (1.4) in the
transposition sense.

Proof. First of all, since we are interested in analyzing the behavior of us as s→ 1−,
until the end of this proof we will always assume s > 1/2. Moreover, observe that,
the right-hand side fs belongs to H−1(Ω), which is strictly greater than H−s(Ω).
Therefore, we cannot apply Lax-Milgram Theorem. Instead, we shall define the
solution to (1.1) in a different way.

For all φ ∈ L2(Ω), let y be solution of the elliptic problem
(−∆)sy = φ, x ∈ Ω

y ≡ 0, x ∈ Ωc.
(4.1)

Recall that, from the regularity of φ and the results in [5, 8], for all ε > 0 we
have y ∈ H2s−ε

0 (Ω) ↪→ H1
0 (Ω), with continuous and compact embedding.

Moreover, the map Λ : φ 7→ y is linear and continuous from L2(Ω) into H2s−ε
0 (Ω).

Thus, Λ is compact from L2(Ω) into H1
0 (Ω) and its adjoint Λ∗ is a compact operator

from H−1(Ω) into L2(Ω). In addition,

〈fs, y〉H−1(Ω),H1
0 (Ω) = 〈fs,Λφ〉H−1(Ω),H1

0 (Ω) = (Λ∗fs, φ)L2(Ω).
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Therefore, us := Λ∗fs ∈ L2(Ω) is a solution defined by transposition to (1.1), i.e.
it satisfies ∫

Ω

usφdx = 〈fs, y〉H−1(Ω),H1
0 (Ω). (4.2)

Moreover, we have
‖us‖L2(Ω) ≤ C‖fs‖H−1(Ω) ≤ C ′, (4.3)

with C ′ independent of s since, fs being in H−1(Ω), it is uniformly bounded in that
space.

In particular, {us}0<s<1 is a bounded sequence in L2(Ω), which implies that
us ⇀ u weakly in L2(Ω).

Notice that (4.2) is obtained multiplying (1.1) for y and integrating over Ω.
Observe also that in this expression the functional spaces involved (namely L2(Ω),
H1

0 (Ω) and H−1(Ω)) do not depend on s. Then, using the definition of weak limit
and (4.2) we have∫

Ω

uφ dx = lim
s→1−

∫
Ω

usφdx = lim
s→1−

〈fs, y〉H−1(Ω),H1
0 (Ω) = 〈f, y〉H−1(Ω),H1

0 (Ω),

i.e. u is a solution by transposition to (1.4). Moreover, since the L2(Ω)-regularity
of us cannot be improved, its convergence to a solution to (1.4) can be expected
only in the weak sense. �

4.2. Remarks on the convergence rate. Our interest in the subject of this
paper is motivated by previous results concerning the numerical approximation of
the fractional Laplacian. In more detail, the issue that we addressed came from the
observation that for the stiffness matrix Ash derived in [4] from the FE discretization
of (1.2) in dimension N = 1 the following holds:

(i) lims→0+ Ash = hTridiag(1/6, 2/3, 1/6) := Ih, an approximation of the iden-
tity;

(ii) lims→1− Ash = h−1 Tridiag(−1, 2,−1) := Ah, the classical tridiagonal ma-
trix for the FE approximation of the one-dimensional Laplacian.

The second property in particular implies that also the numerical solution ush
associated to Ash converges to the one corresponding to Ah. Therefore, investigating
whether this still holds in the continuous case was a question that arose naturally.

While we answered to this question in Theorem 1.2, there we did not specify
under which rate this convergence occurs. In what follow, we present an informal
discussion on this particular point.

During the proof of Theorem (1.2), we showed that the sequence {us}0<s<1 of
solutions to (1.1) is bounded in Hs

0(Ω), with the estimate
√

1− s‖us‖Hs(Ω) ≤ C, (4.4)

with C a constant uniform with respect to s. This last inequality, in turn, was
obtained as a consequence of Proposition 2.1 and of the assumption (H1) on the
sequence {fs}0<s<1 of the right-hand sides.

Moreover, the factor
√

1− s in (4.4) already appears in [7] to correct the well-
known defect of the seminorm | · |Hs(Ω) which, as s → 1−, does not converge to
| · |H1(Ω).

In fact, if ζ is any smooth non-constant function, then for all 1 < p < ∞ we
have |ζ|W s,p(Ω) → +∞ as s → 1−. This situation may be rectified by multiplying
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by (1− s)1/p in front of |ζ|W s,p(Ω) → +∞. In particular, we have

lim
s→1−

(1− s)1/p|ζ|W s,p(Ω) = K(N, p,Ω)
(∫

Ω

|∇ζ|p dx
)1/p

. (4.5)

Also notice that the constant K in the expression above is uniform in s. In view
of these observations, we claim that the convergence that we obtained in Theorem
1.2 satisfies the rate

lim
s→1−

‖us − u‖Hs(Ω) ∼ O(
√

1− s).

Indeed, if this convergence were slower, then we would still have blow-up phenomena
in the Hs(Ω)-seminorm. On the other hand, if the convergence were faster, then
for some α > 1/2

lim
s→1−

(1− s)α| · |Hs(Ω) = lim
s→1−

(1− s)α− 1
2︸ ︷︷ ︸

→0

√
1− s | · |Hs(Ω)︸ ︷︷ ︸
→|·|H1(Ω)

= 0.

Clearly, the discussion that we just presented is not a rigorous proof of our claim.
Nevertheless, we believe that our statement is true, and a further confirmation is
given by the numerical simulations in Fugures 2 and 3, where we compared the
solution to (1.1) and (1.4) for different values of s and we computed the approxi-
mation error in the Hs(Ω)-norm. As expected, we observe a convergence of us to
u, with a rate of

√
1− s.

4.3. Parabolic case. As it most often happens, the properties of the solutions to
elliptic problems can be naturally transferred into the parabolic setting. In our
case, this translates in the fact that the solution φs to the fractional heat equation

∂tφs + (−∆)sφs = gs, (x, t) ∈ Ω× (0, T )

φs ≡ 0, (x, t) ∈ Ωc × (0, T )

φs(x, 0) = 0, x ∈ Ω,
(4.6)

converges as s→ 1− to the one to the local problem

∂tφ−∆φ = g, (x, t) ∈ Ω× (0, T )

φ = 0, (x, t) ∈ ∂Ω× (0, T )

φ(x, 0) = 0, x ∈ Ω.
(4.7)

First of all, let us recall that we have the following definition of weak solution
for the parabolic problem (4.6) (see, e.g., [16]).

Definition 4.2. Let gs ∈ L2(0, T ;H−s(Ω)). A function φs ∈ L2(0, T ;Hs
0(Ω)) ∩

C([0, T ];L2(Ω)) with ∂tφs ∈ L2(0, T ;H−s(Ω)) is said to be a weak solution to the
parabolic problem (4.6) if for every ψ ∈ D(Ω× (0, T )), it holds the equality∫ T

0

∫
Ω

∂tφsψ dx dt

+
CN,s

2

∫ T

0

∫
RN

∫
RN

(φs(x)− φs(y))(ψ(x)− ψ(y))
|x− y|N+2s

dx dy dt

=
∫ T

0

∫
Ω

gsψ dx dt.

(4.8)
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(a) Solutions to (−∆)sus = sin(πx2) for different values of s ∈ [1/2, 1]

(b) Decay of ‖us − u‖Hs(−1,1) with respect to s ∈
[1/2, 1]

Figure 2. Convergence of the solutions to (−∆)sus = sin(πx2)
with Dirichlet homogeneous boundary conditions as s → 1−, and
its corresponding error in the Hs(−1, 1)-norm.

Moreover, thanks to [16, Theorem 26], existence and uniqueness of solutions is
guaranteed.

Proposition 4.3. Assume that fs ∈ L2(0, T ;H−s(Ω)). Then problem (4.6) has a
unique finite energy solution, defined according to (4.2).

Then, adapting the methodology for the proof of Theorem (1.2), the following
result is immediate.

Theorem 4.4. Let Gs := {gs}0<s<1 ⊂ L2(0, T ;H−s(Ω)) be a sequence satisfying
the following assumptions for all 0 < t < T :

(H3) ‖gs(t)‖H−s(Ω) ≤ C, for all 0 < s < 1 and uniformly with respect to s.
(H4) gs(t) ⇀ g(t) weakly in H−1(Ω) as s→ 1−.

For any fs ∈ Gs, let φs ∈ L2(0, T ;Hs
0(Ω)) be the unique weak solution to the

corresponding parabolic problem (4.6) in the sense of Definition 4.2. Then, as
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(a) Solutions to (−∆)sus = f with f piecewise constant for different
values of s ∈ [1/2, 1]

(b) Decay of ‖us − u‖Hs(−1,1) with respect to s ∈
[1/2, 1]

Figure 3. Convergence of the solutions to (−∆)sus = f with
f piecewise constant and Dirichlet homogeneous boundary condi-
tions as s → 1−, and its corresponding error in the Hs(−1, 1)-
norm.

s→ 1−, (φs, ∂tφs)→ (φ, ∂tφ) strongly in L2(0, T ;H1−δ
0 (Ω))×L2(0, T ;H−1(Ω)) for

any 0 < δ ≤ 1. Moreover, φ ∈ L2(0, T ;H1
0 (Ω))× L2(0, T ;H−1(Ω)) and satisfies∫ T

0

∫
Ω

∂tφψ dx dt+
∫ T

0

∫
Ω

∇φ · ∇ψ dx dt =
∫ T

0

∫
Ω

gψ dx dt, ∀ψ ∈ D(Ω× (0, T )),

i.e. it is the unique weak solution to (4.7).

Proof. First of all, notice that a sequence Gs satisfying (H3) and (H4) exists. In
fact, it can be constructed following the methodology of Proposition 2.4, since both
properties are independent of the time variable. Moreover, it is evident that we shall
only analyze the first term on the left-hand side of (4.8), because of the following
two facts:
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• The functional space in which the integration in time is carried out is fixed
and does not depend on s. Therefore, the limit process does not affect the
regularity in the time variable.
• For the remaining two terms in (4.8), the limit as s→ 1− can be addressed

in an analogous way as in the proof of Theorem 1.2.
Moreover, multiplying (4.6) by φs, integrating by parts, and using a classical

methodology for heat-like equations, it is not difficult to obtain the energy estimate

‖φs‖L2(0,T ;Hs
0 (Ω)) + ‖∂tφs‖L2(0,T ;H−s(Ω)) ≤ C‖gs‖L2(0,T ;H−s(Ω)). (4.9)

From here, an analogous argument as the one presented in the proof of Theorem
1.2 can be developed to show that, as s→ 1−, φs → φ strongly in L2(0, T ;H1−δ

0 (Ω))
for all 0 < δ ≤ 1. Moreover, from (4.9) we have that {∂tφs}0<s<1 is bounded in
L2(0, T ;H−s(Ω)), which is compactly embedded in L2(0, T ;H−1(Ω)). Thus, as
s → 1−, ∂tφs → ∂tφ strongly in L2(0, T ;H−1(Ω)), and we can conclude that
(φs, ∂tφs) → (φ, ∂tφ) strongly in L2(0, T ;H1−δ

0 (Ω))× L2(0, T ;H−1(Ω)) for all 0 <
δ ≤ 1. In particular,

lim
s→1−

∫ T

0

∫
Ω

∂tφsψ dx dt =
∫ T

0

∫
Ω

∂tφψ dx dt.

This, together with the above remarks, implies that the function φ satisfies∫ T

0

∫
Ω

∂tφψ dx dt+
∫ T

0

∫
Ω

∇φ · ∇ψ dx dt =
∫ T

0

∫
Ω

gψ dx dt, ∀ψ ∈ D(Ω× (0, T )),

i.e. it is the unique weak solution to (4.7). �
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