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NON-EXISTENCE OF PERIODIC SOLUTIONS TO
NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL
EQUATION WITH DISCONTINUOUS NONLINEARITY

ALEXANDER M. KAMACHKIN, DMITRIY K. POTAPOV, VICTORIA V. YEVSTAFYEVA

ABSTRACT. We consider a second-order differential equation with discontinu-
ous nonlinearity and sinusoidal external influence, and obtain conditions for
the non-existence of periodic solutions.

1. INTRODUCTION

Relay control systems have been studied for a long time (see, e.g. [I]-[3]). Nev-
ertheless automatic control systems with relay nonlinearity and external influence
are of interest nowadays [], since there are still open questions. In this arti-
cle the automatic system is described by a second-order differential equation with
time-independent coefficients. There are both a control function and an external
influence function in the right-hand side of the equation. We consider the signum
function as a relay control model. Since the time of Andronov [5] this model have
been used in automatic control systems. The system may be free from periodic
modes in case if there is no external influence. Moreover, it is possible that the
system does not have periodic modes when relay control is absent. However sta-
bilization of the system may occur under both external influence and control. By
stabilization we mean existence of stable oscillations of the certain configuration
and given period. If we can not affect on the dynamics of the object and the pa-
rameters of the external influence, then at switching the step height ¢ of function
u = 5 sgnz influences significantly on the system dynamics. Taking account the
stabilization type above, we set the task for choosing parameter ¢ that depends on
the other parameters of the automatic control system.

In recent years the second-order differential equations with discontinuous non-
linearities have been considered in [6]-[I0]. Applied problems for such equations
are discussed in [IT},[12]. Control problems for systems with distributed parameters
and discontinuous nonlinearity are studied in [I3]. On signification of the research
for non-existence of the solutions to the problem with singular potential, see [14].
Classification of discontinuities for real-valued functions is well described in [15]
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giving as an example for the function with discontinuity of the first kind at zero
the signum function to be defined as follows:

-1 ifz <0,
sgnz =<0 ifx=0,
1 ifz>0.

This article continues research stated above. We study the problem when there
are no periodic solutions of the automatic control system with a relay and a sine
function as external influence. The system dynamics is described by the equation

2" + a1’ + apr = gsgnx—i—ﬁsin('yt), (1.1)

where a1, ag, 3 are real constants, parameter ¢ > 0, the external influence frequency
~v > 0. Function sgn x describes the relay control.

We note that equation is investigated when a1 = a9 = 0 and ¢ < 0 in [6].
The autonomous equations of the form are studied in [7]-[I1]. In [12], we
consider nonperiodic external influence for the one-dimensional Lavrent’ev model
described by the equation —z" = psgn z, where parameter p > 0 means a vorticity.
Hence this paper develops [6]-[12].

2. SOLUTION OF THE PROBLEM

Let A1, A2 be the real roots of the equation A2+aj;A+ap = 0 and A\; # 0, Ay # 0,
A1 # Mg, 1.e. ag # 0 and a% > 4ag. Also, let a1 # 0 and A; < A2. Then the general
solution of equation (1.1]) has the form

z(t) = CreMt + Coe™2t + Cy 4 Qq cos(yt) + Qg sin(yt), (2.1)
where C1, Cy are the constants we have to define,

c a1y B(y* — ao)
C = —, = — N = — .
" N T @ T T wr ay
Since a; # 0 and v > 0, then (v2 —ag)? +a?v? # 0 and so that solution (2.1]) exists.
Thus the following theorem holds.

Theorem 2.1. Let a; # 0, ag # 0, a? > 4ag, ¢ > 0, 3 € R, and v > 0. Then
equation (L.1) has a solution of the form (2.1)) on half-planes x > 0 and x < 0 from
phase plane (xOx').

We assume that has a periodic solution with period T'. If we are interested in
the periodic solution with a desirable period, we set period T'. The closed trajectory
relating to a jump on axis Owxg at switching of u = $sgnx corresponds to the
periodic solution on plane (x;0x5), where z1 = x, x3 = 2’. The closed trajectory
consists of two phase trajectory pieces by virtue of the different systems

Ty = 9,

, ¢ ) (2.2)

Ty = —apT1 —a1T2 + 3 + Bsin(vt).
Let T = t; + to, where t; corresponds with the trajectory part at z; > 0, and 5
corresponds with the trajectory part at 1 < 0. Axis Oxs is a straight line on which
there is a gluing together of the closed trajectory pieces and the other trajectories
by virtue of systems . Therefore we suppose that the closed trajectory consists
of two pieces that are located on half-planes 1 > 0 or 7 < 0.
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Let the point with coordinates x; = 0, z2 = x{, belong to the closed trajectory
the image point passes for 7. We take this point as initial. Then, taking into
account that

2 (t) = M CreMt + XoCae™2t — 7Qy sin(yt) + yQs cos(vt),

we can find C} and Cy corresponding to interval [0, ¢1].
On interval [0,%1], we denote C; = C}, Cy = C3 and, on interval [0, ], we do
C1 = C%, Cy = (% respectively. We obtain

zh+ M (Co+ Q1) — Qs

011202—00—621, 021: o — A\

where z{, is unknown. Then we calculate
.’ﬂ(f;l) = C116A1t1 —+ C21€)\2t1 —+ CO -+ Ql COS(’Ytl) —+ Q2 Sin(’ytl) = O’ (2 3)
2! (t) = M CTeMt 4 XoCheMht — yQ sin(yt) + 7Qa cos(t1). .

These values are initial for the solution on interval [0, t2]
2(0) =0=Cf +CF — Co + Qu,
2'(0) = 2/ (t1) — ¢ = MCF + X2C5 + Qo
from where it follows that
2'(t1) —c—M(Co — Q1) —7Q2
A2 — M

Completing the circle along the closed trajectory and remembering the gluing to-
gether on axis Oxy, we have

z(ty) = 0 = CZeM!2 4 C2eM!2 — Oy + Qq cos(ta) + Qo sin(vty),
o' (ty) = MC2eMt2 4 Xy C2eM2"2 — 4 Q) sin(vt) + 7Q2 cos(yta) = xf) — .
Constants C, C3 in (2.3)) contain ) and constants C?, C3 in (2.4) contain z’(¢;).
1, Ua 0 R

Further, we transform equalities (2.3), (2.4) after excluding z( and «’(¢1) from them.

Thus Q1 cos(yt1) + Q2 sin(yt1) = sin(yt1 + §), where § = arctan(Q1/Q2), Q2 # 0,
ie. B # 0, 7% # ag. After tedious transformations, we get two transcendental
equations with respect to t; and %o,

A2 i A ( N )\2)\_1)\1 e ﬁeml) {(VQQ ~ M@= MCp)et
— (A2 = A1)(Co + Q1)eM™ — (vQ2 — MiQ1 — M Co)e™™ + (A2 — A1) Co
1
A2 — A1

A
x [)\2 —1 A1 (YQ2 = MQ1 — MCo)e™™ — A1 (Co + Qr)e™ (2.5)

A
e f)q (YQ2 — MQ1 — MCo)e" + v cos(vty + 5)]

C?=Cy—-C2-Q,, (2=

(2.4)

+ (A2 — Ap)sin(vt; + )| + (6)\1t2 _ 6)‘2t2)

= (c+ A1(Co — Q1) +7Q2)e™ ™ + (Co — Q)M
A2 — A1

1

- Mo — s (c+M(Co+ Q1) + 7@2)6’\2t2 — Co + sin(vta + 9),
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and

(eM — M) (vQs — A2Q1 — A2Co)eM ™ — (YQ2 — M1Q1 — A1 Cp)et™
+ ()\2 — )\1)00 + ()\2 — )\1) sin('ytl + 5)] —cC

_ >\1 Aito )\2 )\2t2) { ( >\1 A1ty )\2 >\2t1)
*( PR Ve S W RS Ve v W

X (M= )7 (1@ — MaQu — AaCo)eM

— (7Q2 — M Q1 — M Co)e2™ + Ay — A\1)Co + (Mg — Ay) sin(yty + 5)}
2.6)
\ (
Ao _1)\1 (7Q2 — MQ1 — MCo)eM™ — A (Co + Qq1)eM™
A2
Ao — A\

+

(YQ2 — M Q1 — M\ Cp)e2™ + ycos(yty + 6)}

(c+ A1(Co — Q1) +7Q2)e™™ + A (Co — Q1)eM 2

BV (c+ M (Co — Q1) +7Q2)e™"™ + ycos(vta + 6).

If the system , is solvable for 1, to satisfying , then there is a periodic
solution with period T = t; 4 t5. However it is very difficult to solve system ,
(2.6). We suppose that the period of the appearing oscillations T is given, i.e.
to =T —t;. Next we write out equation depending only on ¢; and group the
expressions at identical multipliers in it. Then we have

A

o (1Qs = Xa(Co+ Q)N + [ (002 — o + Q1)

A f A
i : (@2 = M (Co+ Ql))} ety — 72(7@2 — A1(Co + Qq))e*2"
A2 =M A2 — A\
— M CoeMt £ XoCpe2t — \j cos deM cos(yty) — Ap sin e cos(vt1)

+ A cos 621 sin(yt;) + Mg sin de?2t cos(yt;)

A _
— 5 (1Q2 = Aa(Co + Qu))eM A
As — A\
A _
Y _2/\1 M (1Q2 = Ai(Co + Qu))ete
+ M Ty cos de Mt cos(yty) — eM Ty sin ge= b sin(vty) (2.7)

—(c+22(Co — Q1) + Q)M Te ™ 4 (c+ A\ (Co — Q1) + Qo) e 2!

S (sin(yT') cos 0 4 cos(yT') sin ) cos(~yt1)
A2 — A1

- (sin(yT) sin 6 — cos(yT') cosd) sin(~ytq)
A2 — A1

A1 T . A2 AoT _
{5 T2 = Xa(Co+ Q)]+ e Q2 = M (Co + Qu)
1

+)\2—)\1

%}:a
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Also, we write out equation (2.6|) for ¢; and group the terms as above. We obtain

{ —c+7Q2 — X2(Co + Q1) — 01(7Q2 — A2(Co + Q1))

ALA A
- ﬁel\ﬂ(ﬁb — M (Co+ Q1)) — 92)\ ! (7@2 — M (Co+ Q1))
2
+ 0221 (Co + Q1) — ()\Zial)ge)\zT(’YQQ — A1 (Co + Ql))}e/\ltl

+ {C —7Q2 + M (Co + Q1) + 01(vQ2 — M1 (Co + Q1))

A2 NT 2
= e — X2(C 6 — M1 (C
+ Do — )" (vQ2 — A2(Co + Q1)) + 2)\2_>\1(7Q2 1(Co + Q1))
+ 2T+ Q) N T(1Qs — M(Co + Q) Je
A2 — A1 TRV (g = )2 ’
+ [()\2 — A1) cos0 — 01 (A2 — A1) cosd + Oy sin 6] sin(yty)
+ [(A2 — A1) sind — 61 (Mg — A1) sind — Oy cos 6] cos(yt1)
)\1)\2 oT A1)\2 AT
A2 o Y S S W(e
+ |:()\2_)\1)26 (V@2 — A2(Co + Q1)) Do — M2 (YQ2 — M (Co + Q1))
)\1>\2 AT (2>\1—A2)t1
N\ (Co+Q1)le
)‘1)‘2 >\2T A2 _ AT (A1 —X2)t1
+ [ C + =2 —(c+ M(Co— Q1) +7Q2)e™ e (2.8)
Ay — A2 — A1
>\1)\2 T At T
1 A _ 1
+[)\2_>\10 +)\2_/\1(C+ 1(Co — Q1) +7Q2)e
(- Qe
[ Ao cos 5eMT + ysin 576’\1T]e(>‘2_>‘1)t1 sin(vyt1)
Az — A X2 — A '
Atde en MTT (Ra=A)h
+ [)\2 . sin geMT — ’ycoséme T]e( )t cos(7yty)
+ [)\2)\1—)\?\1 cos det2T 781n5/\2 )\1 )‘ZT]e(/\l_’\Q)tl sin(~yt1)
[)\2/\1_)\2)\1 sin det2? — fycosé N ’\ZT]e()‘ﬁ)‘”tl cos(vt1)
+ ~(cos(yT) cos & — sin(yT) sin §)e ! cos(yt1)
— y(cos(yT) cos § — sin(yT) sin 6)e*2** cos(vty)
+ ~(cos(yT) sin § + sin(yT") cos §)e M sin(vty)
— y(cos(YT) sin § + sin(yT) cos §)e 2 sin(ytl)

[c+ A (Co — Q1) +7Qa)eM”

+ {()\2 = A0 = 1% = A)Co — - Al

[c+ A1(Co — Q1) +7Qa)e™" — A\ (Co — Ql)ehT} =0,

)\2—)\1



6 A. M. KAMACHKIN, D. K. POTAPOV, V. V. YEVSTAFYEVA EJDE-2016/04

where

(2 — A1)? SPES TEA R Fus v v v

The expressions in braces from , , which represent the last terms, are the
constants independent of ¢;. Obviously, equations , have equal solutions
with respect to t;. Next we find out the conditions under which it is possible. We
use the approach based on assumption that the coefficients of equations are equal
to each other. We add up the expressions at multipliers e(2 At Aty eAati from
([27) and set equal to the corresponding multipliers e*1’t, e*2't from (2.8). Then
we obtain

2 2
0, = M eMT A AT A1 T A2 AT

A
— MG+~ (YQs — M (Co + Q))eeh
Ao — A\

= —c+7Q2 — X2(Co + Q1) — 01(7vQ2 — X2(Co + Q1))
A1

- m&ﬁﬁ@z — M (Co+ Q1))

— 0 (vQ2 — M (Co + Q1)) + 6221 (Co + Q1)

(2.9)

1
A2 — A1
A3 AoT
- me (vQ2 — M (Co + Q1)),
and
MO+ 12 (10 — XalCo+ Q)M
2 — A1
=c—7Q2+ A (Co+ Q1) + 01 (vQ2 — A1 (Co + Q1))
A1

+ WG/\IT(’YQz — X2(Co + Q1))

(2.10)
i
Ao — AL

+ 05 (YQ2 — M (Co + Q1)) + eMT(Co+ Q1)

A2
A2 — A1

M ar
T e —a)” (V@2 — M(Co + Q1)),

where e*2’t is given by (2.9). From (2.10), we obtain e**. Then we equate
constants in , . We have the first condition on the parameters of the
system
(27Q2 + ) (AreMT + Xpe™T) — 20 X0Q: (M7 + 7))
+ Co(A2eMT 4 22er2T) — Co((Ay — M) — 1) = 0.
Further, we consider the terms in , without the sine and cosine functions.
We set equal the coefficients at multiplier e(*1=22)%1 Then

(2.11)

201 02Q1 — 7Q2(A1 + A2) = Aa(c+ M (o). (2.12)
Next we equate the coefficients at multiplier e(*>=*1)% Then
A A2Q1 — YQ2(A1 + A2) = Aic+ A1 (A 4+ 1)(Co — Q1). (2.13)

It should add the condition following from equalities of the sum of the rest terms

at sine and cosine multipliers from (2.7), (2.8) to conditions (2.11)—(2.13]). These

conditions are redundant. First, we have proceeded from the necessary conditions
for the existence of the periodic solution to the initial system with period T we
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do given. Secondly, parameters aj, ag (i.e. A1, A2), and (3, v are the parameters

influencing on the choice of ¢. All these parameters are in conditions (2.12]), (2.13]),
since Q1 = Q1(a1,a0,3,7), Q2 = Q2(a1,a0,p,7). In particular, from (2.12)) and

(2.13]), we have
1 14+ X — X\
o ney - HEER)
c=7(A1+ A2)Q2 2+1+>\17/\2
provided that Ay — A1 # 1 or a} — 4ag # 1. From (2.11]), we obtain

27Q2()\16)\1T + )\QeAzT) — 2)\1)\2Q1(6/\1T + 6)\2T)
1 1
— (X — N 2_1 _ )\2 T )\2 AT Y MT
0{2)\1)\2 (A2 = A1) ) 2)\1)\2( 1€+ Ae ) = Are (2.15)
- )\gesz}.

From ([2.15)), it is easy to express ¢ with respect to T'.
Now we return to (2.9)), (2.10). From ({2.9)), we get

\ -1
ot = [ (0Qe — MG+ Q)]

X {)\10076+’}/Q2 *)\2(00+Q1) (216)

(2.14)

T2, 3G+ Q)

From ([2.10)), we have

)\ —1
At = [ 00 - Xa(Co +Qu)]

X { —>\2C0+C—’YQ2+)\1(CQ+Q1) (2.17)
2
1

P (Co+Q1)}-

Thus the following two conditions must be satisfied

YQ2 — AM(Co + Q1) #0, Q2 — X2(Co + Q1) #0. (2.18)
Since A1 # Ag, conditions ([2.18)) hold and do not turn into equalities if
¢ 276X X2(2X2 + A1) — 200923 ¢+ 276X X2 (201 + A2) — 20193
VAP HAD) + AN YA+ A3) + ATAS
for the first and second conditions of (2.18)) respectively. In (2.19]), the condition
YHAPOTHAD) AN # 0
is carried out automatically owing to the conditions imposed on A1, Ag, i.e. for all
v > 0, equality to zero does not take place. Besides, the right-hand sides of (2.16]),
(2.17) have to be more than unit if A1, Ay are positive, and to belong to interval
(0,1) if A1, Ao are negative.
So, we formulate the conditions guaranteeing non-existence of the periodic solu-
tions to system (|1.1)) with given period T

Theorem 2.2. Let a; # 0, ag # 0, 0 < af —4ap #1, ¢ >0, B € R\{0}, v >0,
and v? # ag. Then equation (1.1) has no periodic solutions with given period T,
where T = t1 + ta, t1 is defined by (2.16), (2.17) under (2.19) if (2.14)), (2.15) are

not fair.

+eMT

(2.19)
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If the other coefficients of ([2.7)), (2.8]) are equated, we obtain the other equalities

for ¢1, t2 and therefore the other ratios linking ¢ with parameters a1, ag, 3, 7. In
the space of parameters ¢, a1, ag, (3, 7 the set of such ratios allows us to allocate
domains for the possible existence of the periodic solutions with given period T and
domains for which such solutions do not exist.
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