
Electronic Journal of Differential Equations, Vol. 2002(2002), No. 103?, pp. 1–15.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

On the unique constructive solvability of

Hammerstein equations ∗

Petronije S. Milojević

Abstract

We study the unique constructive solvability of Hammerstein operator
equation in Banach spaces using iterative and projection like methods.
Some error estimates are also given. The linear part is assumed to be
either selfadjoint or non-selfadjoint. Applications to Hammerstein integral
equations are given.

1 Introduction

In this paper, we shall study the unique constructive solvability of operator
equation

x−KFx = f (1.1)

where K is linear and F is a nonlinear map. We first study (1.1) in the oper-
ator form using an iterative process, the A-proper mapping approach and the
Brouwer degree theory. We shall consider (1.1) in a general setting between
two Banach spaces. To that end, we shall use two approaches. One is based on
applying the Brouwer degree theory directly to the finite dimensional approxi-
mations of the map I−KF , and the other one is based on splitting first the map
K as a product of two suitable maps and then use the Brouwer degree. Then
we apply the obtained results to Hammerstein integral equations. This work
is a continuation of our study of these equations in [11]. There is an extensive
literature on Hammerstein equations and we refer to [5, 6, 16].

2 Some preliminaries on A-proper maps

Let {Xn} and {Yn} be finite dimensional subspaces of Banach spaces X and
Y respectively such that dimXn = dimYn for each n and dist(x,Xn) → 0 as
n → ∞ for each x ∈ X. Let Pn : X → Yn and Qn : Y → Yn be linear
projections onto Xn and Yn respectively such that Pnx → x for each x ∈ X
and δ = max ‖Qn‖ <∞. Then Γ = {Xn, Pn;Yn, Qn} is a projection scheme for
(X,Y ).
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Definition A map T : D ⊂ X → Y is said to be approximation-proper (A-
proper for short) with respect to Γ if
(i) QnT : D ∩Xn → Yn is continuous for each n and
(ii) whenever {xnk ∈ D ∩ Xnk} is bounded and ‖QnkTxnk − Qnkf‖ → 0 for
some f ∈ Y , then a subsequence xnk(i) → x and Tx = f . T is said to be pseudo
A-proper with respect to Γ if in (ii) above we do not require that a subsequence
of {xnk} converges to x for which Tx = f . If f is given in advance, we say that
T is (pseudo) A-proper at f .

For the developments of the (pseudo) A-proper mapping theory and applica-
tions to differential equations, we refer to [9, 10, 12, 14, 15]. To demonstrate the
generality and the unifying nature of the (pseudo) A-proper mapping theory,
we state now a number of examples of A-proper and pseudo A-proper maps.

To look at φ-condensing maps, we recall that the set measure of non-compact-
ness of a bounded set D ⊂ X is defined as γ(D) = inf{d > 0 : D has a finite
covering by sets of diameter less than d}. The ball-measure of non-compactness
of D is defined as χ(D) = inf{r > 0|D ⊂ ∪ni=1B(xi, r), xi ∈ X, n ∈ N}.
Let φ denote either the set or the ball-measure of non-compactness. Then
a map N : D ⊂ X → X is said to be k − φ contractive (φ-condensing) if
φ(N(Q)) ≤ kφ(Q) (respectively φ(N(Q)) < φ(Q)) whenever Q ⊂ D (with
φ(Q) 6= 0).

Recall that N : X → Y is K-monotone for some K : X → Y ∗ if (Nx −
Ny,K(x − y)) ≥ 0 for all x, y ∈ X. It is said to be generalized pseudo-K-
monotone (of type (KM)) if whenever xn ⇀ x and lim sup(Nxn,K(xn−x)) ≤ 0
then (Nxn,K(xn − x)) → 0 and Nxn ⇀ Nx (then Nxn ⇀ Nx). Recall that
N is said to be of type (KS+) if xn ⇀ x and lim sup(Nxn,K(xn − x)) ≤ 0
imply that xn → x. If xn ⇀ x implies that lim sup(Nxn ,K(xn − x)) ≥ 0, N
is said to be of type (KP). If Y = X∗ and K is the identity map, then these
maps are called monotone, generalized pseudo monotone, of type (M) and (S+)
respectively. If Y = X and K = J the duality map, then J-monotone maps are
called accretive. It is known that bounded monotone maps are of type (M). We
say that N is demicontinuous if xn → x in X implies that Nxn ⇀ Nx. It is
well known that I−N is A-proper if N is ball-condensing and that K-monotone
like maps are pseudo A-proper under some conditions on N and K. Moreover,
their perturbations by Fredholm or hyperbolic like maps are A-proper or pseudo
A-proper [10, 11, 12, 14].

The following result states that ball-condensing perturbations of stable A-
proper maps are also A-proper.

Theorem 2.1 ([8]) Let D ⊂ X be closed, T : X → Y be continuous and A-
proper with respect to a projectional scheme Γ and a-stable, i.e.,for some c > 0
and n0

‖QnTx−QnTy‖ ≥ c‖x− y‖ for x, y ∈ Xn, n ≥ n0

and F : D → Y be continuous. Then T + F : D → Y is A-proper with respect
to Γ if F is k-ball contractive with kδ < c, or it is ball-condensing if δ = c = 1.
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Remark The A-properness of T in Theorem 2.1 is equivalent to T being
surjective. In particular, as T we can take a c-strongly K- monotone map for a
suitable K : X → Y ∗, i.e., (Tx− Ty,K(x− y)) ≥ c‖x− y‖2 for all x, y ∈ X. In
particular, since c-strongly accretive maps are surjective, we have the following
important special case [8].

Corollary 2.2 Let X be a π1 space, D ⊂ X be closed, T : X → X be contin-
uous and c-strongly accretive and F : D → X be continuous and either k-ball
contractive with k < c, or it is ball-condensing if c = 1. Then T + F : D → X
is A-proper with respect to Γ.

To study error estimates of approximate solutions for non-differentiable
maps, we need a notion of a multivalued derivative. Let U ⊂ X be an open set
and T : Ū → Y . A positively homogeneous map A : X → 2Y , with Ax closed
and convex for each x ∈ X, is said to be a multivalued derivative of T at x0 ∈ U
if there is a map R = R(x0) : Ū − x0 → 2Y such that ‖y‖/‖x − x0‖ → 0 as
x→ x0 for each y ∈ R(x− x0) and

Tx− Tx0 ∈ A(x− x0) +R(x− x0) for x near x0.

A map A : X → 2Y is m-bounded if there is m > 0 such that ‖y‖ ≤ m‖x‖ for
each y ∈ Ax, x ∈ X. It is c-coercive if ‖y‖ ≥ c‖x‖ for each y ∈ Ax, x ∈ X.

The following result from [9] will be needed below.

Theorem 2.3 Let T : U ⊂ X → Y be A-proper with respect to Γ and x0 be a
solution of Tx = f . Suppose that A is an odd multivalued derivative of T at x0

and there exist constants c0 > 0 and n0 ≥ 1 such that

‖Qnu‖ ≥ c0‖x‖ for x ∈ Xn, u ∈ Ax, n ≥ n0. (2.1)

(a) If x0 is an isolated solution, then the equation Tx = f is strongly approxi-
mation solvable in Br(x0) for some r > 0.
(b) If, in addition, A is c1-coercive for some c1 > 0, then x0 is an isolated
solution, the conclusion of (a) holds and, for ε ∈ (0, c0), approximate solutions
xn satisfy

‖xn − x0‖ ≤ (c0 − ε)−1‖Txn − f‖ for n ≥ n1 ≥ n0. (2.2)

(c) If x0 is an isolated solution in Br(x0), A is c2-bounded for some c2 and

Tx− Ty ∈ A(x− y) +R(x− y) whenever x− y ∈ Br (2.3)

and z/‖x − y‖ → 0 as x → x0 and y → x0 for each z ∈ R(x − y), then the
equation Tx = f is uniquely approximation solvable in Br(x0) and the unique
solutions xn ∈ Br(x0) ∩Xn of QnTx = Qnf satisfy

‖xn − x0‖ ≤ k‖Pnx0 − x0‖ ≤ cdist(x0, Xn), (2.4)

where k depends on c0, c2, ε and δ and c = 2kδ1, δ1 = sup ‖Pn‖.
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3 Unique constructive solvability of Hammer-
stein operator equations

In this section, we shall prove a number of constructive solvability results for Eq.
(1.1) using an iterative process and finite dimensional approximations and give
the error estimates in the second case. We shall consider (1.1) in a general setting
between two Banach spaces. To that end, we shall use two approaches. One
is based on using the contraction mapping principal or applying the Brouwer
degree theory directly to the finite dimensional approximations of the map I −
KF , and the other one is based on splitting first the map K as a product of
two suitable maps and then use the Brouwer degree. We study (1.1) with A
selfadjoint as well as non selfadjoint. Our first result is an extension of a theorem
of Dolph [3].

Theorem 3.1 Let K : X → X be a continuous linear map, λ−1 /∈ σ(K),
d = ‖(I − λK)−1K‖−1 and F : X → X be nonlinear and continuous.
a) If for some k ∈ (0, d),

‖Fx− λx− (Fy − λy)‖ ≤ k‖x− y‖ for all x, y ∈ H. (3.1)

then (1.1) is uniquely solvable for each f ∈ X and the solution is the limit of
the iteration process

xn − λKxn = KFxn−1 − λKxn−1 + f. (3.2)

b) If, in addition, either K is compact or δ = max ‖Pn‖ = 1 and k‖(I −
λK)−1‖ ‖K‖ < 1 and PnKx = Kx for x ∈ Xn, then (1.1) is approxima-
tion solvable with respect to Γ for each f ∈ X and the approximate solutions
{xn ∈ Xn} of x− PnKFx = Pnf satisfy

‖xn − x‖ ≤ c‖xn −KFxn − f‖ for some c and all large n. (3.3)

and
‖xn − x‖ ≤ c‖Pnx− x‖ ≤ c1 dist(x,Xn). (3.4)

c) If condition (3.1) holds with k = d, X is a uniformly convex space with δ = 1
and

‖Fx− λx‖ ≤ a‖x‖+ b for some a < k, b > 0, x ∈ X. (3.5)

then (1.1) is solvable for each f ∈ X.

Proof. Equation (1.1) is equivalent to Ax − Nx = f with A = I − λK and
N = K(F − λI). Hence, it is easy to show that A−1N is k1 = k‖A−1K‖-
contractive with k1 < 1. Thus, part a) follows from the contractive fixed point
principle and c) follows from Theorem 3.3 in [11]. Regarding part b), we need
only to show that condition (2.1) of Theorem 2.3 holds. Assume first that K is
compact. Then I −KF is A-proper with respect to Γ. Set B1x = {K(y− λx) :
‖y − λx‖ ≤ k‖x‖} and Bx = Ax − B1x for x ∈ X. Then B is homogeneous
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with Bx convex for each x ∈ X and A(x− y)− (Nx−Ny) ∈ B(x− y) for each
x, y ∈ X. Moreover, if 0 ∈ Bx, then Ax = K(y − λx) for some y and

‖x‖ ≤ ‖A−1K‖ ‖y − λx‖ < ‖x‖.

Hence, x = 0. Since B1 is upper semicontinuous and compact, B = A − B1

is a multivalued A-proper map with respect to Γ (cf. [14]). This implies that
condition (2.1) holds. Since also Nx −Ny ∈ B1(x − y), the conclusions follow
from Theorem 2.3.

Next, let δ = 1 and l = k‖(I − λK)−1‖ ‖K‖ < 1. Then I −KF is A-proper
with respect to Γ = {Xn, Pn}. Indeed, let {xn ∈ Xn} be bounded and xn −
PnKFxn → f . Set yn = (I−λK)xn. Then yn−PnK(F−λI)(I−λK)−1yn → f
and the map F1 = K(F −λI)(I −λK)−1 is an l-contraction with l < 1. Hence,
I −F1 is A-proper with respect to Γ and therefore, a subsequence ynk → y and
y−F1y = f . Hence, x−KFx = f with x = (I−λK)−1y, proving that I−KF
is A-proper.

Now, let y ∈ Pn(Ax − B1x) for some x ∈ Xn. Then y = Pn(Ax − Kv) =
Ax− PnKv for some v with ‖v‖ ≤ k‖x‖ and x = A−1Pn(y +Kv). Hence,

‖x‖ ≤ δ‖A−1‖
(
‖y‖+ k‖K‖ ‖x‖

)
and (

1− k‖A−1‖ ‖K‖
)
‖x‖ ≤ ‖A−1‖ ‖y‖.

Hence, (2.1) holds and similarly we show that B is c-coercive. Thus, Theorem
2.3 applies. �

Let Σ(K) be the set of characteristic values of K, i.e., Σ(K) = {µ | 1/µ ∈
σ(K)}, and µ∗ = inf{µ | µ ∈ Σ(K)∩ (0,∞)}. For c ∈ Σ(K)∩ (−∞, µ∗], define
d−c = dist(c,Σ(K) ∩ (−∞, c)). We have (cf. also [11])

Theorem 3.2 Let K : H → H be a selfadjoint map, F : H → H be nonlinear
and continuous. Assume that
(i) (Fx− Fy, x− y) ≥ α‖x− y‖2 for all x, y ∈ H,
(ii) ‖Fx− Fy‖ ≤ β‖x− y‖ for all x, y ∈ H.
(a) If (i)-(ii) hold and β2 < αd−c + c(d−c − c− 2α) for some c ≤ µ∗, then (1.1)
is uniquely solvable for each f ∈ X and the solution is the limit of the iteration
process (3.2). Moreover, if also PnKx = Kx on Xn and either K is compact or
β2 + λ2 is sufficiently small, then (1.1) is uniquely approximation solvable for
each f ∈ H and (3.3)-(3.4) hold.
(b) If β2 ≤ αd−c + c(d−c − c− 2α) and, for some a < λ = c− d−c /2 and b > 0,

‖Fx− λx‖ ≤ a‖x‖+ b for all x ∈ H

then (1.1) is solvable for each f ∈ H.

Proof. Let λ = c − d−c /2. Then λ /∈ Σ(K) and d = dist(λ,Σ(K)) > 0. Since
(I − λK)−1K = −1/λ+ 1/λ(I − λK)−1, we have that ([4]) ‖(I − λK)−1K‖ =
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supµ∈σ(K) | − 1/λ + 1/λ(1 − λµ)−1| = supµ∈Σ(K) |(µ − λ)−1| = d−1. Using
conditions (i)-(ii), we get

‖Fx+ λx− (Fy + λy)‖ ≤ (β2 + λ2 + 2αλ)1/2‖x− y‖.

By our choice of λ and the condition on β, we get

β2 + λ2 + 2αλ = β2 + αd−c + c(d−c − c− 2α) + (d−c /2)2 < (d−c /2)2 = d2.

Hence, the conclusions follow from Theorem 3.1. �

Theorem 3.3 Let K : H → H be selfadjoint, F : H → H be a gradient map
and B± : H → H be selfadjoint maps such that
(i)(B−(x− y), x− y) ≤ (Fx− Fy, x− y) ≤ (B+(x− y), x− y) for all x, y ∈ H.
(ii) δ‖B± − λI‖ ≤ d = min{|µ| : µ ∈ σ(I − λK)−1K} for some λ.
(a) If the inequality is strict in (ii), then (1.1) is uniquely solvable for each
f ∈ X and the solution is the limit of the iteration process (3.2). Moreover,
if also PnKx = Kx on Xn and ‖B± − λI‖ is sufficiently small , then (1.1) is
uniquely approximation solvable with respect to Γ for H for each f ∈ H and the
approximate solutions satisfy (3.3)-(3.4).
(b) If, in addition, there are 0 < a < d and b ≥ 0 such that

‖Fx− λx‖ ≤ a‖x‖+ b for all x ∈ H

then (1.1) is solvable for each f ∈ H.

Proof. Since λI is a gradient of the functional x → λ(x, x)/2, N − λI is a
gradient map and

−‖B− − λI‖ ‖x− y‖2 ≤ ((B− − λI)(x− y), x− y),

((B+ − λI)(x− y), x− y) ≤ ‖B+ − λI‖ ‖x− y‖2.

Hence, by Lemma 1 in [7],

‖Fx− λx− (Fy − λy)‖ ≤ k‖x− y‖ for all x, y ∈ H

where k = max(‖B−−λI‖, ‖B+−λI‖). Since d = ‖(I −λK)−1K‖−1 ([4]), the
conclusions follow from Theorem 3.1. �

For c ∈ Σ(K) ∩ (µ∗,∞), define d+
c = dist(c,Σ(K) ∩ (c,∞)). We have the

following sharper version of Theorem 3.2 (cf. also [11]).

Theorem 3.4 Let K : H → H be selfadjoint, F : H → H be a gradient map
and α, β ∈ R be such that

α‖x− y‖2 ≤ (Fx− Fy, x− y) ≤ β‖x− y‖2 for x, y ∈ H.

(a) If either c ∈ Σ(K) ∩ (−∞, µ∗] and −c < α ≤ β < −c + d−c , or c ∈
Σ(K) ∩ (µ∗,∞) and −c− d+

c < α ≤ β < −c, then (1.1) is uniquely solvable for
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each f ∈ X and the solution is the limit of the iterative process (3.2). Moreover,
if also PnKx = Kx on Xn and α+λ and β+λ are sufficiently small, then (1.1)
is uniquely approximation solvable for each f ∈ H and (3.3)-(3.4) hold.
(b) If the conditions in (a) hold with each ”<” sign replaced by ”≤” and, for
some a < λ with λ = c− d−c /2 if c ≤ µ∗ and λ = c+ d+

c /2 if c > µ∗, and b > 0,

‖Fx− λx‖ ≤ a‖x‖+ b for all x ∈ H

then (1.1) is solvable for each f ∈ H.

Proof. As above, we have that

‖Fx+ λx− Fy − λy‖ ≤ max(|α+ λ|, |β + λ|)‖x− y‖.

By our choice of λ as given in b), we conclude that |α+λ| ≤ d = dist(λ,Σ(K)) =
d±c /2 and |β + λ| ≤ d with the inequalities being strict in part a). Hence,
Theorem 3.1 is applicable. �

Remark The unique solvability results of the type in Theorems 3.2-3.4 for
semilinear equations have been obtained in [2, 9, 13].

Using a suitable splitting of K, we can still prove the unique approximation
solvability of Eq. (1.1) without assuming condition (ii) in Theorem 3.2. Let
us first describe the setting for this approach (cf. [16]). Recall that a map K
acting in a Hilbert space H is called positive in the sense of Krasnoselskii if
there exists a number µ > 0 for which

(Kx,Kx) ≤ µ(Kx, x), x ∈ H.

The infimum of all such numbers µ is called the positivity constant of K and
is denoted by µ(K). The simplest example of a positive map is provided by
any bounded selfadjoint map K on H. Then µ(K) = ‖K‖ for such maps. A
compact normal map K in a Hilbert space is positive on H if and only if (cf.
[5]) the number

[ inf
λ∈σ(K),λ6=0

Re(λ−1)]−1

is well defined and positive. It that case, it is equal to µ(K).
LetX be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗), K : X∗ → X

be a positive definite bounded selfadjoint map in H, and C = K
1/2
H : H → X,

where KH is the restriction of K to H. We know that the positive square root
can be extended to a bounded linear map T : X∗ → H such that K = T ∗T ,
where the adjoint of T is T ∗ = K

1/2
H = C : H → X and C∗ = T (cf. [16]).

Hence, we can write K = CT . Set µ(K) = ‖C‖2. We have the following
extension of Theorem 3.2 as well as of a result of Vainberg [16].

Theorem 3.5 Let X be a reflexive embeddable Banach space ( X ⊂ H ⊂ X∗),
K : X∗ → X be a positive definite bounded selfadjoint map in H, and C =
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K
1/2
H : H → X, where KH is the restriction of K to H, and T : X∗ → H

be a bounded linear extension of K1/2
H . Suppose that F : X → X∗and c is the

smallest number such that

(Fx− Fy, x− y) ≤ c‖x− y‖2 for all x, y ∈ X

a) If cµ(K) < 1, then (1.1) is uniquely approximation solvable in X for each
f ∈ C(H) ⊂ X.
b) If cµ(K) = 1 and I − TFC satisfies condition (+) in H, then Eq. (1.1) is
solvable in X for each f ∈ C(H) ⊂ X.

Proof. a) We have that K = T ∗T , where the adjoint of T is T ∗ = K
1/2
H =

C : H → X and C∗ = T . Hence, we can write K = CT . Let f ∈ C(H) so
that f = Ch for some h ∈ H. We note that (1.1) is equivalent to the following
equation (cf. [16])

y − TFCy = h. (3.6)

The map I − TFC : H → H is 1− cµ(K)-strongly monotone. Indeed, for each
x, y ∈ H we have

(x− TFCx− y + TFCy, x− y) = ‖x− y)‖2 − (TFCx− TFCy, x− y)

= ‖x− y‖2 − (FCx− FCy,Cx− Cy)

≥ ‖x− y‖2 − c‖Cx− Cy‖2

≥ (1− cµ(K))‖x− y‖2.

Hence, I − TFC is A-proper with respect to Γ = {Hn, Pn} for H and coercive.
It follows that Eq. (3.6) is uniquely approximation solvable for each h ∈ H.
Therefore, (1.1) is uniquely approximation solvable for each f ∈ C(H).
b) If cµ(K) = 1, then as in part a) we get that I − TFC is monotone and
satisfies condition (+). Hence, (3.6) is solvable for each h ∈ H and therefore
(1.1) is solvable for each f ∈ C(H). �

Corollary 3.6 Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a positive definite bounded selfadjoint map in H, and C = K

1/2
H ,

where KH is the restriction of K to H, and T : X∗ → H be a bounded linear
extension of K1/2

H . Let F = F1 + F2 : X → X∗ and c be the smallest number
such that

(F1x− F1y, x− y) ≤ c‖x− y‖2 for all x, y ∈ X

and F2 is a Lipshitz map with constant k such that 1− (c+ k)µ(K) > 0. Then
(1.1) is uniquely approximation solvable in X for each f ∈ C(H) ⊂ X.
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Proof. It suffices to show that I − TFC : H → H is A-proper. For x, y ∈ H,
we have

(x− TFCx− y + TFCy, x− y)

= ‖x− y)‖2 − (TFCx− TFCy, x− y)

= ‖x− y‖2 − (F1Cx− F1Cy,Cx− Cy)− (F2Cx− F2Cx,Cx− Cy)

≥ ‖x− y‖2 − (c+ k)‖Cx− Cy‖2

≥ (1− (c+ k)µ(K))‖x− y‖2.

Hence, I − TFC is strongly monotone and therefore A-proper with respect to
Γ = {Hn, Pn}. �

Next, let us look at case when K is not selfadjoint. Our study of Eq. (1.1)
in this case is motivated by the work of Appel-Pascale-Zabrejko [1] for nonlinear
Hammerstein integral equations. Following their arguments about the existence
of solutions, we present an abstract version of their results and also prove the
constructive solvability of Eq. (1.1). We begin by describing the setting of the
problem. Let X be an embeddable Banach space, that is, there is a Hilbert
space H such that X ⊂ H ⊂ X∗ so that 〈y, x〉 = (y, x) for each y ∈ H,x ∈ X,
where 〈, 〉 is the duality pairing of X and X∗.

Let K : X∗ → X be a linear map and KH be the restriction of K to H
such that KH : H → H. Let A = (K +K∗)/2 denote the selfadjoint part of K
and B = (K −K∗)/2 be the skew-adjoint part of K. Assume that A is positive
definite. Under our assumptions on K, both A and B map X∗ into X. We
know that A can be represented in the form A = CC∗, where C = A1/2 is the
square root of A and C : H → X, and the adjoint map C∗ : X∗ → H.

We say that K is P -positive definite if C−1K(C∗)−1 exists and is bounded
in H. It is S-positive if K(C∗)−1 exists and is bounded in H. Clearly, P -
positivity implies the S-positivity but not conversely. It is easy to see that K
is P -positive if and only if C−1B(C∗)−1 is bounded in H, and is S-positive if
and only if B(C∗)−1 is bounded in H. Moreover, K is P -positive if and only if
K is angle-bounded, i.e.

|(Kx, y)− (y,Kx)| ≤ a(Kx, x)1/2(Ky, y)1/2 x, y ∈ H.

Denote by M and N the closure of the maps C−1K(C∗)−1 and K(C∗)−1, re-
spectively, in H. The mappings M and N are defined on the closure (in H )
of the range of C = A1/2 and suppose that their domains coincide with H. We
require the following decompositions to hold

K = CMC∗, K = NC∗.

Note that K, M and N are related as: N = CM, N∗ = M∗C∗ and we have
(Mx, x) = ‖x‖2 for all x ∈ H . Hence, both M and M∗ have trivial nullspaces.
Denote by µ(K) = ‖N‖2, which is the positivity constant of K in the sense of
Krasnoselskii.
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Let F : X → X∗ be a nonlinear map and consider the Hammerstein equation

x−KFx = f. (3.7)

As in [1], we reduce the solvability of Eq. (3.7) to the solvability of an equivalent
equation. For f ∈ N(H), let h ∈ H be a solution of

M∗h−N∗FNh = M∗k (3.8)

where f = Nk for some k ∈ H. Then M∗(h−C∗FNh− k) = 0 since N = CM
and N∗ = M∗C∗. Hence, h = C∗FNh+ k since M∗ is injective and therefore

Nh = NC∗FNh+Nk = KFNh+ f

since K = NC∗. Thus, x = Nh is a solution of (3.7). So the solvability of
(3.7) is reduced to the solvability of (3.8). We have the following extension of
Theorem 3.5. Its unique solvability part is an abstract extension of a result of
Appel-Pascale-Zabrejko [1] for Hammerstein integral equations.

Theorem 3.7 Let K : X∗ → X be P-positive in H, F : X → X∗ and c be the
smallest number such that

(Fx− Fy, x− y) ≤ c‖x− y‖2 for all x, y ∈ X

a) If cµ(K) < 1, then (3.7) is uniquely approximation solvable in X for each
f ∈ N(H) ⊂ X.
b) If cµ(K) = 1 and M∗ − N∗FN satisfies condition (+) in H, then (3.7) is
solvable in X for each f ∈ N(H) ⊂ X.

Proof. a) As in [1], we shall prove that the map M∗ − N∗FN : H → H is
1− cµ(K)-strongly monotone. Indeed, for each x, y ∈ H we have

(M∗x−N∗FNx−M∗y +N∗FNy, x− y)

= ‖x− y‖2 − (FNx− FNy,Nx−Ny)

≥ ‖x− y‖2 − c‖Nx−Ny‖2

≥ (1− cµ(K))‖x− y‖2.

Hence, M∗ − N∗FN is A-proper with respect to Γ = {Hn, Pn} for H and
coercive. Hence, (3.8) is uniquely approximation solvable for each k ∈ H and
therefore so is (3.7) for each f ∈ N(H).
b) If cµ(K) = 1, then as in part a) we get that M∗ −N∗FN is monotone and
satisfies condition (+). Hence, (3.8) is solvable and therefore so is (3.6) for each
f ∈ N(H). �

Corollary 3.8 Let K : X∗ → X be P-positive in H, F = F1 + F2 : X → X∗

and c be the smallest number such that

(F1x− F1y, x− y) ≤ c‖x− y‖2 for all x, y ∈ X

and F2 is a Lipshitz map with constant k such that 1− (c+ k)µ(K) > 0. Then
(3.7) is uniquely approximation solvable in X for each f ∈ N(H) ⊂ X.
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Proof. It suffices to show thatM∗−N∗FN : H → H is A-proper and coercive.
For x, y ∈ H, we have

(M∗x−N∗FNx−M∗y +N∗FNy, x− y)

≥ ‖x− y‖2 − (c+ k)‖Nx−Ny‖2

≥ (1− (c+ k)µ(K))‖x− y‖2.

Hence, M∗−N∗FN is A-proper with respect to Γ = {Hn, Pn} and coercive. �

Next, we shall look at the case when the selfadjoint part A of K is not
positive definite. Suppose that A is quasi-positive definite in H, i.e., it has at
most a finite number of negative eigenvalues of finite multiplicity. Let U be
the subspace spanned by the eigenvectors of A corresponding to these negative
eigenvalues of A and P : H → U be the orthogonal projection onto U . Then
P commutes with A, but not necessarily with B, and acts both in X and X∗.
Then the operator |A| = (I − 2P )A is easily seen to be positive definite. Hence,
we have the decomposition |A| = DD∗, where D = |A|1/2 : H → X and
D∗ : X∗ → H.

As in [1], we call the map K P -quasi-positive if the map D−1K(D∗)−1 exists
and is bounded in H, and S-quasi-positive if the map K(D∗)−1 exists and is
bounded in H. Let M and N denote the closure in H of the bounded maps
D−1K(D∗)−1 and K(D∗)−1 respectively. Assume that they are both defined
on the whole space H. Suppose that we have the following decompositions

K = DMD∗, K = ND∗.

Then we have N = DM , N∗ = M∗D∗, and < Mh, h >= ‖h‖2 − 2‖Ph‖2 for all
h ∈ H.

Define the number

ν(K) = sup{ν : ν > 0, ‖Nh‖ ≥ (ν)1/2‖Ph‖, h ∈ H}.

Note that for a selfadjoint map K, ν(K) is the absolute value of the largest
negative eigenvalue of K. We have the following extension of Theorem 3.7. Its
unique solvability part is an abstact extension of a result in [1] for Hammerstein
integral equations.

Theorem 3.9 Let K : X∗ → X be P-quasi-positive in H, F : X → X∗ and c
be the smallest number such that

(Fx− Fy, x− y) ≤ c‖x− y‖2 for all x, y ∈ X

a) If cν(K) < −1, then (1.1) is uniquely approximation solvable in X for each
f ∈ N(H) ⊂ X.
b) If cν(K) = −1 and M∗ −N∗FN satisfies condition (+) in H, then (1.1) is
solvable in X for each f ∈ N(H) ⊂ X.
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Proof. a) As in [1], we have that the map M∗ − N∗FN : H → H is −(1 +
cν(K))-strongly monotone. Indeed, for each x, y ∈ H we have

(M∗x−N∗FNx−M∗y +N∗FNy, x− y)

= ‖x− y‖2 − 2‖P (x− y)‖2 − (FNx− FNy,Nx−Ny)

≥ ‖x− y‖2 − (2 + cν(K))‖P (x− y)‖2 ≥ −(1 + cν(K))‖x− y‖2.

Hence, M∗ − N∗FN is A-proper with respect to Γ = {Hn, Pn} for H and
coercive. Hence, (3.8) is uniquely approximation solvable for each k ∈ H and
therefore so is (3.7) for each f ∈ N(H).
b) If cν(K) = −1, then as in part a) we get that M∗ − N∗FN is monotone
monotone and satisfies condition (+). Hence, Eq. (3.8) is solvable and therefore
so is (3.6) for each f ∈ N(H). �

Corollary 3.10 Let K : X∗ → X be P-quasi-positive in H and F = F1 + F2 :
X → X∗ and c be the smallest number such that

(F1x− F1y, x− y) ≤ c‖x− y‖2 for all x, y ∈ X

and F2 is a Lipshitz map with constant k such that 1− (c+ k)µ(K) > 0. Then
(1.1) is uniquely approximation solvable in X for each f ∈ N(H) ⊂ X.

Proof. It suffices to show thatM∗−N∗FN : H → H is A-proper and coercive.
For x, y ∈ H, we have

(M∗x−N∗FNx−M∗y +N∗FNy, x− y)

= ‖x− y‖2 − (F1Nx− F1Ny,Nx−Ny)− (F2Nx− F2Ny,Nx−Ny)

≥ (1− (c+ k)µ(K))‖x− y‖2.

Hence, M∗−N∗FN is A-proper with respect to Γ = {Hn, Pn} and coercive. �

4 Hammerstein integral equations

Let Q ⊂ Rn be a bounded domain, k(t, s) : Q × Q → R be measurable and
f(s, u) : Q×R→ R is a Caratheodory function. We consider the problem of a
solution u ∈ L2(Q) of the Hammerstein integral equation

u(t) =
∫
Q

k(t, s)f(s, u(s))ds+ g(t) (4.1)

where g is a measurable function. There is a vast literature on the solvability
of (4.1) and we just mention the books by Krasnoselskii [5] and Vainberg [16].
Define the linear map

Ku(t) =
∫
Q

k(t, s)u(s)ds

in H = L2(Q). Define Fu = f(s, u(s)) and note that (4.1) can be written in
the form u−KFu = g.
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Theorem 4.1 Let K : H → H be continuous, λ /∈ Σ(K), and let d−1 =
dist(λ,Σ(K)). Let δ = max ‖Pn‖ and for some k ∈ (0, d/k),

|f(s, u)− λu− (f(s, v)− λv)| ≤ k|u− v| for s ∈ Q, u, v ∈ R.

Then (4.1) is uniquely solvable for each g ∈ L2.

For the proof of this theorem, it is easy to see that the mappings K and F
satisfy all conditions of Theorem 3.1. Hence, its conclusions follow from it.

Theorem 4.2 Let K : H → H be selfadjoint and for some α, β ∈ R,

α|u− v|2 ≤ (f(s, u)− f(s, v))(u− v) ≤ β|u− v|2 for s ∈ Q, u, v ∈ R

(i) If −c < α ≤ β < −c+ d+
c for some c ∈ Σ(K) ∩ (−∞, µ∗) or −c− d+

c < α ≤
β < −c for some c ∈ Σ(K) ∩ (µ∗,∞), then (5.1) is uniquely solvable for each
g ∈ L2.

(ii) If < is replaced by ≤ in (i) and if, for some a < λ with λ = c − d−c /2 if
c ≤ µ∗ and λ = c+ d+

c /2 if c > µ∗, and some b ∈ L2, we assume

|f(s, u)− λu| ≤ a|u|+ b(s) for s ∈ Q, u ∈ R

then (4.1) is solvable for each g ∈ L2.

For the proof of this theorem, it is easy to see that the mappings K and F
satisfy all conditions of Theorem 3.4. Hence, its conclusions follow from it. Part
(i) of this theorem extends a result of Dolph [3]. Assuming compactness of K,
we can relax the condition on F .

Theorem 4.3 Let K : H → H be selfadjoint and compact and for some β > 0,

(f(s, u)− f(s, v))(u− v) ≤ β|u− v|2 for s ∈ Q, u, v ∈ R

If β is sufficiently small, then (4.1) is uniquely solvable for each g ∈ L2.

To prove this theorem, it is easy to see that the mappings K and F satisfy
all conditions of Theorem 3.5. Hence, its conclusions follow from it.

References

[1] J. A, Appell, E. de Pascale, P.P. Zabrejko, (2000) On the unique solvability
of Hammerstein integral equations with non-symmetric kernels, in Progress
in Nonlinear Differential Equations and Their Applications, vol. 40, pp. 27-
34.

[2] A.K. Ben-Naoum and J. Mawhin, (1992) The periodic-Dirichlet problem
for some semilinear wave equations, J. Differential Equations, 96, 340-354.



14 solvability of Hammerstein equations EJDE–2002/103

[3] C. Dolph, (1949) Nonlinear integral equations of Hammerstein type. Trans.
Amer. Math. Soc., 66, 289-307.

[4] T. Kato, (1966) Perturbation Theory for Linear Operators, Springer Verlag,
NY.

[5] M. A. Krasnosel’skii, (1964) Topological Methods in the Theory of Nonlin-
ear Integral Equations, MacMillan, N.Y.

[6] M. A. Krasnoselskii and P. P. Zabreiko, (1984) Geometrical methods of
Nonlinear Analysis, Springer-Verlag.

[7] J. Mawhin, (1981) Semilinear equations of gradient type in Hilbert spaces
and applications to differential equations, in Nonlinear Differential Equa-
tions: Invariance, Stability and Bifurcation, Acad. Press, NY, 269-282.
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[10] P. S. Milojević, (1994) Approximation-solvability of nonlinear equations
and applications, in Fourier Analysis (Ed.’s W. Bray, P. S.Milojević, C. V.
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