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ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS FOR

HÉNON TYPE PARABOLIC EQUATIONS WITH

EXPONENTIAL NONLINEARITY

CAIHONG CHANG, ZHENGCE ZHANG

Abstract. This article concerns the blow up behavior for the Hénon type

parabolic equation with exponential nonlinearity,

ut = ∆u+ |x|σeu in BR × R+,

where σ ≥ 0 and BR = {x ∈ RN : |x| < R}. We consider all cases in which

blowup of solutions occurs, i.e. N ≥ 10 + 4σ. Grow up rates are established
by a certain matching of different asymptotic behaviors in the inner region

(near the singularity) and the outer region (close to the boundary). For the
cases N > 10 + 4σ and N = 10 + 4σ, the asymptotic expansions of stationary

solutions have different forms, so two cases are discussed separately. Moreover,

different inner region widths in two cases are also obtained.

1. Introduction

1.1. Background. In this article, we consider the parabolic problem

ut = ∆u+ λ|x|σeu in BR′ × R+,

u(x, t) = 0 on SR′ × R+,

u(x, 0) = u0(x) in BR′ ,

(1.1)

where σ ≥ 0, λ > 0, BR′ = {x ∈ RN : |x| < R′} is the unit ball with the boundary
SR′ = {x ∈ RN : |x| = R′}. Problem (1.1) is known in stellar structure and
combustion theory [18, 30].

The geometric background of (1.1) is presented in [24, 53]. Let M be a compact
manifold and pi (i = 1, 2, . . . , k) be the puncture points. If there exists a nonsingular
conformal map φi from Ui (a neighborhood of pi, and Ui ∩Uj = ∅, i 6= j) to B (the
unit ball) such that φi(pi) = 0 and ds2 = ρ(φi)|φi|2βi |dφi|2, then for any continuous
function ρ, the point pi is a conical singularity of order βi of the metric ds2. In
particular, a singular Riemannian metric on U∗i = Ui\{pi} is defined as

ds2 = |x|2βids2
0, βi > −1, x ∈ B\{0},

where ds0 is the Euclidean metric. We extended to M0 = M\{p1, p2, . . . , pk} and
denote it by a conical metric. Researchers also look at the asymptotic behaviors at
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the singular point pi of solutions to the elliptic equation with the conical metric

−∆gu = up, x ∈M0, (1.2)

where N
N−2 < p ≤ N+2

N−2 . At each singular point pi, the conical metric gives the
Laplace-Beltrami operator ∆g in the form of

∆g =
1

|x|Nβi

N∑
j=1

∂

∂xj

(
|x|(N−2)βi

∂

∂xj

)
, x ∈ Ui\{pi}.

Hence, (1.2) in Ui\{pi} can be written as the weighted equation

− div(|x|γ∇u) = |x|σup, x ∈ B\{0}, (1.3)

where γ = (N − 2)βi, σ = Nβi, and σ − γ = 2βi > −2. Since the function eu can
be regarded as the limit of up when p → ∞, thus, (1.1) is a special case of (1.3)
when γ = 0 and p→∞. In this article, we discuss the impact of the singularity at
x = pi (i.e. x = 0) on the asymptotic behaviors of the solutions.

The weight |x|σ is essential. To describe the dynamics of globular cluster of
stars, Matukuma [37] in 1930 first proposed the model with weighted term: ∆u =

1
1+|x|2u

p. Based on numerical simulations, Hénon [25] in 1973 considered the equa-

tion

−∆u = |x|σup, σ > 0, p > 1. (1.4)

For the works on the existence and qualitative properties of solutions to (1.4), we
refer to [4, 3, 7, 21, 35, 39, 42, 45, 46, 47]. In 1982, Ni [39] first realized that the
weight |x|σ impacts the global homogeneity of (1.4) and widths the critical exponent
between existence and nonexistence. Moreover, he proved that (1.4) admits at least
one radial solution for p ∈

(
1, N+2+2α

N+2

)
. Recently, Barboza et al. [4] studied the

Hénon-type Dirichlet problem, and proved existence of at least one radial solution
using variational methods. Because the weight rσ is increasing with respect to r,
the classical moving plane method cannot be applied to (1.4), nonradial solutions
appear naturally. In [47], Smets et al. proved that ground state is nonradial for p ∈(
1, N+2

N−2

)
and sufficiently large σ. The property that |x|σ prohibits concentration

phenomena at zero is applied in the case p = N+2
N−2 for sufficiently large σ in [45],

and it is used to obtain multiplicity results in [3]. The problems with weighted
exponential source are also studied in [9, 41, 12].

1.2. Known results. For the stationary problem of (1.1),

−∆U = λ|x|σeU in BR′ ,

U(x) = 0 on SR′ ,
(1.5)

there exists a critical value of λ in the form of

λ∗ = sup {λ > 0 : (1.5) admits at least one solution} .

Thus,

(1) If λ > λ∗, (1.5) admits no solution, that is, any solution of (1.1) blows up
in the finite time.

(2) If λ < λ∗, (1.5) admits a bounded classical solution, that is, the solution of
(1.1) converges to stationary solution for sufficiently small initial data u0.
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(3) If λ = λ∗, (1.5) admits the extremal solution U∗(x) = U(x, λ∗). The
behavior of U∗(x) depends on the dimension N . When N < 10 + 4σ, U∗

is bounded, corresponding to the case of a closed spectrum. When N ≥
10 + 4σ, (1.5) admits no classical stationary solution and ‖U(x, λ)‖∞ →∞
as λ→ λ∗, corresponding to the case of an open spectrum.

In this paper, we focus on the case λ = λ∗. We study the relation between the
asymptotic behavior of solutions and dimension N . The similar relation also holds
for the equations with nonlinearity λeu and λ(1 + s)p with p > 1 in [18, 30, 33, 40,

11, 6] and λf(x)
(1−u)2 in [19, 22].

During the past several decades, a lot of works regarding the existence and the
asymptotic behavior of blowup solutions have emerged in [1, 2, 10, 57, 51, 44], see
also [36, 43, 54, 55, 56, 48, 49, 50] for gradient blowup studies. Results include
blowup criteria, blowup locations, blowup rates, and blowup profiles. Blowup rates
are usually determined by the self-similar rates, which are related to the scaling
invariance of the equation. For the classical semilinear heat equation

ut = ∆u+ up in BR × R+,

u = 0 on ∂BR × R+,

u(x, 0) = u0(x) in BR,

(1.6)

the blowup rate of solutions is (T − t)−
1
p−1 for 1 < p < N+2

N−2 . This result shows
that the self-similar rate is not the only rate, there are other rates which are usually
refereed to as Type II rate, a vast literatures exist [14, 20, 26, 27, 28, 29]. If the large
time behavior of solutions is not self-similar, the blowup profiles could be obtained
by applying the matched asymptotic method, see [5, 13, 14, 15, 16, 17, 23, 32, 38,

50, 52]. For (1.6), the cases p = N+2
N−2 with N = 3, 4, 5 and p ≥ pu = N−2

√
N−1

N−4−2
√
N−1

with N > 10 were studied in [16] and [13], respectively. Galaktionov et al. [13] also
considered the semilinear Frank-Kamenetskii equation

ut = ∆u+ eu in BR × R+,

u = 0 on ∂BR × R+,

u(x, 0) = u0(x) in BR.

(1.7)

It was proved that for N > 10 and u0 belows the singular stationary solution Us(x),
then

‖u(x, t)‖∞ = α0t+O(1), t→∞,
where α0 = α0(N) > 0. Galaktionov and King [17] studied the critical case N = 10,
and showed that

‖u(0, t)‖∞ = α0t+O(log t), t→∞,
where α0 is given by the first eigenvalue of an associated linear differential operator.
Matched asymptotic expansions can also be applied to study other PDE models,
see [50, 34, 8, 31, 32, 52].

1.3. Main results. Motivated by [13, 17], we consider the blowup rates of solutions

of (1.1) in the critical case λ = λ∗. By rescaling x 7−→ (λ∗)
1

2+σ x, (1.1) with λ = λ∗

can be written as
ut = ∆u+ |x|σeu in BR × R+,

u(x, t) = 0 on SR × R+,

u(x, 0) = u0(x) in BR.

(1.8)
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It admits the explicit singular stationary solution

Us(x) = log
(2 + σ)(N − 2)

|x|2+σ
, N > 2. (1.9)

By the boundary condition, we have

R = [(2 + σ)(N − 2)]
1

2+σ .

The initial data u0 ∈ L1(BR) satisfies

u0(x) ≤ Us(x), u0(x) 6≡ Us(x). (1.10)

Our main results read as follows.

Theorem 1.1. Let N > 10+4σ and condition (1.10) hold. Then the global solution
to (1.8) satisfies

‖u(·, t)‖L∞(BR) =
(2 + σ)λ1

|γ+|
t+O(1), t→∞, (1.11)

where

γ+ =
1

2

[
2−N +

√
(N − 2)(N − 10− 4σ)

]
< 0,

and λ1 is defined in Lemma 2.5 as the first eigenvalue of an associated linearized
problem.

Theorem 1.2. Let N = 10+4σ and condition (1.10) hold. Then the global solution
to (1.8) satisfies

u(0, t) =
π2

1t

2(4 + 2σ)
4

2+σ

+O(log t), t→∞, (1.12)

where π1 is the first zero of the zeroth-order Bessel’s function, i.e. J0(π1) = 0.

Based on Theorems 1.1 and 1.2, we find that the asymptotic behavior of so-
lutions depends on N and σ. When N > 10 + 4σ, the lower order term of as-
ymptotic expansion of stationary solution is in the form of exponential function

times power function, i.e. e
µγ+
2+σ rγ+ (see (2.9)). When N = 10 + 4σ, it is in the

form of exponential function times power function times logarithmic function, i.e.

e−2µr−4−2σ log(re
µ

2+σ ) (see (2.10)). In the matching process, logarithmical term
makes it difficult to estimate the upper bound of solution. Following the general
strategy of [17, 20, 23], we find the term which matches the logarithmical term.

In the outer region (away from r = 0), the term rσ is a function with upper and
lower bounds and strictly greater than 0, so it is evaluated as a constant. But this
is not applied in the inner region (near r = 0), the degeneration of weight rσ will
lead some difficulties as follows.

Firstly, when the maximum of the solution is attained, the term rσeu in (1.1)
would be removed due to u(0, t) = supr u(r, t), which makes it impossible to apply
(1.1) to estimate. To solve this problem, we adopt the idea of limit (consider the

case r → 0), and use the inner region width to characterize r, i.e. r ≤ Ce−
u(0,t)
2+σ

(r → 0 as t→∞). However, when σ = 0, (1.1) can be used directly to obtain the
estimate due to the existence of the term eu.

Secondly, the weight |x|σ generates complex calculations in the asymptotic ex-
pansion of stationary solution (see Subsection 3.1). When N = 10+4σ, the asymp-
totic expansions in the inner and outer regions do not match directly, see Remark
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3.2. To solve this problem, we apply the method in [15] to obtain a more accurate
asymptotic expansion (exact coefficients and lower order terms) in the inner region.
An ODE of order (2+σ) is obtained during the calculation (see (3.3)). To solve this
ODE, we assume the solution has a perturbation term Ω (i.e. (3.4)). We apply Tay-
lor expansion to extract the terms with only Ω′′, Ω′ and Ω, and then solve the ODE
composed of these three terms to obtain the accurate expressions of Ω (i.e. (3.8),
(3.9)). Later on, we put the expressions of Ω into the remaining term G(ξ,N, σ) to
verify that G(ξ,N, σ)→ 0 as ξ →∞. However, when σ = 0, Galaktionov and King
[17] obtained a quadratical ODE, which can be solved directly without applying
Taylor expansion.

This article is organized as follows. In Section 2, we consider the case N > 10+4σ
and prove Theorem 1.1. In Section 3, we study the case N = 10 + 4σ and prove
Theorem 1.2.

2. The case N > 10 + 4σ

2.1. Preliminary estimates. By (1.10), the maximum principle implies that

u(x, t) ≤ Us(x), u(x, t) 6≡ Us(x).

Set

w(x, t) = Us(x)− u(x, t). (2.1)

Clearly, w(x, t)→ 0 as t→∞. We find that w satisfies

wt = ∆w +
ν

|x|2
(1− e−w) in BR × R+,

w(x, t) = 0 on SR × R+,

w(x, 0) = w0(x) in BR,

(2.2)

where ν = (2 + σ)(N − 2) and w0(x) ∈ L1(BR). Applying a standard regularity
theory, we deduce that w(x, t) ∈ C∞

(
BR \ {0} ×R+

)
, it makes sense that w0(x) ∈

L2(BR).
Next, we give useful lemmas which are similar to the ones in [13], the proofs are

valid to ours with few modifications, so we omit them.

Lemma 2.1. Let N ≥ 10 + 4σ. Then as t→∞, we have

‖w(·, t)‖2 ≤ ce−mt,

where m = m(N) > 0.

By Lemma 2.1, the following lemma provides a linear lower bound of u, which
plays a key role in the inner analysis.

Lemma 2.2. Let N ≥ 10 + 4σ and condition (1.10) hold. Then

‖u(·, t)‖∞ ≥
2m

N
t(1 + o(1)), (2.3)

where m = m(N) > 0.

2.2. Asymptotic behavior in the inner region.
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2.2.1. Properties of radial stationary solutions for N ≥ 10 + 4σ. We consider the
radially symmetric stationary equation

∆U + rσeU = 0, U = U(r), r > 0. (2.4)

Set

S(U) = ∆U + rσeU .

Let U0(r) be the solution of (2.4) under the assumptions

U0(0) = 0, U ′0(0) = 0.

Clearly, U0(r) < 0 and U ′0(r) < 0 for all r > 0. In fact, it follows from (2.4) that
(rN−1U ′0)′ = −rN−1+σeU0 < 0, that is, the term rN−1U ′0 is decreasing with respect
to r. Recalling that U ′0(0) = 0, we have U ′0(r) < 0. By U0(0) = 0, we obtain
U0(r) < 0.

When N ≥ 10 + 4σ, for r > 0, we have

U0(r) < Us(r) = log
(2 + σ)(N − 2)

|x|2+σ
. (2.5)

Moreover, if N > 10 + 4σ, then as r →∞,

U0(r) = Us(r)− b0rγ+
(
1 + o(1)

)
, (2.6)

where b0 = b0(σ,N) > 0, γ+ = 1
2

[
2−N +

√
(N − 2)(N − 10− 4σ)

]
< 0. If

N = 10 + 4σ, then as r →∞,

U0(r) = Us(r)− b0r−4−2σ log r
(
1 + o(1)

)
(2.7)

where b0 = b0(σ,N) > 0. Notice that the asymptotic expansion of U0(r) includes
the logarithmic term.

For any given µ ∈ R, let Uµ(r) be the solution of (2.4) under the assumptions

Uµ(0) = µ, U ′µ(0) = 0.

By the scaling invariance of (2.4), we deduce

Uµ(r) = µ+ U0

(
re

µ
2+σ
)
. (2.8)

The maximum principle implies that Uµ(r) < Us(r). If N > 10 + 4σ, there exists
a sufficiently small δ such that, for r ≥ δ,

Uµ(r) = Us(r)− b0e
µγ+
2+σ rγ+

(
1 + o(1)

)
, µ→∞. (2.9)

If N = 10 + 4σ, we have for r ≥ δ,

Uµ(r) = Us(r)− b0e−2µr−4−2σ log
(
re

µ
2+σ
)(

1 + o(1)
)
, µ→∞. (2.10)

Summing up all the above cases, we find that as µ→∞,

Uµ(r)→ Us(r) unformly on [δ,∞).

Moreover, the solution Uµ(r) is strictly monotone increasing with respect to µ for
all r ≥ 0.

In Subsection 3.1, we will give more accurate asymptotic expansions of stationary
solutions. In particular, we obtain the lower order term which is in the form of power
functions, and the precise expression of coefficient b0 in (2.10).
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2.2.2. Inner analysis. We consider the asymptotic behavior of solutions in the in-
ner region, which is a small region near x = 0 for sufficiently large t. Based on
symmetrization and comparison argument, we suppose that u = u(r, t) ≥ 0 is sym-
metric and decreasing with respect to r for all t ≥ 0. It follows from Lemma 2.2
that

α(t) = sup
r
u(r, t) = u(0, t)→∞, t→∞. (2.11)

By intersection comparison with stationary, we find that α(t) is strictly monotonous
increasing with respect to t, that is,

α′(t) > 0, t→∞. (2.12)

Theorem 2.3. Let N ≥ 10 + 4σ. Then as t→∞,

u(r, t) = Uα(t)(r)
(
1 + o(1)

)
(2.13)

uniformly on compact subsets {ξ = re
α(t)
2+σ ≤ C} with C > 0.

To prove Theorem 2.3, we introduce the rescaled function θ, which satisfies

u(r, t) = α(t) + θ(ξ, τ), ξ = re
α(t)
2+σ . (2.14)

It follows from (2.11) that
θ(0, τ) ≡ 0, θ ≤ 0. (2.15)

We set the new time variable τ in the form of

τ =

∫ t

0

e
2α(s)
2+σ ds→∞, t→∞. (2.16)

Substituting (2.14) into (1.1), we obtain that θ(ξ, τ) satisfies

θτ = S(θ) + g(τ)
[ 1

2 + σ
θξξ + 1

]
, (2.17)

where the operator S is defined in (2.4) and

g(τ) = −α′(t)e−
2α(t)
2+σ =

[2 + σ

2
e−

2α(t)
2+σ

]′
< 0. (2.18)

Equation (2.17) can be viewed as the time-dependent perturbation of (1.1). It
follows from (2.18) and (2.16) that∫ ∞

g(τ)dτ =

∫ ∞
g(τ)

dτ

dt
dt =

∫ ∞
−α′(t)e−

2α(t)
2+σ e

2α(t)
2+σ dt

= −
∫ ∞

α′(t)dt = −∞, i.e. g /∈ L1(R+),

that is, the perturbation g(τ) is not integrable in time. However, the following
lemma ensures that the perturbation vanishes as τ →∞.

Lemma 2.4. It holds limτ→∞ g(τ) = 0.

Proof. We claim that g(τ) is uniformly bounded on compact subsets of ξ. In fact,
by (2.11) and (2.14),

α′(t) = ut(0, t) ≤ lim
r→0

rσeu ≤ lim
r→0

rσeα(t) = lim
r→0

ξσe−
σα(t)
2+σ eα(t) ≤ Cσe

2α(t)
2+σ

on any compact subsets of ξ. It follows from (2.18) that |g(τ)| ≤ Cσ.
Next, we prove that g(τ)→ 0 as τ →∞ by contradiction. Since g(τ) is uniformly

bounded, we may assume that there exists a sequence {τk}k∈N → ∞ such that
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g(τk)→ −γ0 < 0. By the standard regularity, we deduce that θ(·, τk + s)→ h(·, s),
where h satisfies

hs = S(h)− γ0

[ 1

2 + σ
hξξ + 1

]
, s ≥ 0, (2.19)

and

h(0, s) ≡ 0, h(ξ, s) ≤ Us(ξ).

Let V0 be the solution of the stationary problem of (2.19), that is,

S(V0)− γ0

[ 1

2 + σ
V0ξξ + 1

]
= 0, V0(0) = 0.

The maximum principle implies that V0 ≤ Us. The function V0 comes from the
self-similar solution u∗ of (1.1) with finite time T in the form of

u∗(x, t) = −2 + σ

2
log
[ 2γ0

2 + σ
(T − t)

]
+ V0(η), η =

x√
2γ0
2+σ (T − t)

. (2.20)

We shall obtain that V0 must intersect Us by contradiction. Assume that V0 < Us.
It follows from (1.10) and the maximum principle that u∗ ≤ Us and u∗ 6≡ Us.
Recalling (2.20), V0 < Us and the fact − 2+σ

2 log[ 2γ0
2+σ (T − t)] → +∞ as t → T , we

deduce that u∗ ≤ Us is not valid. Thus, g(τ) vanishes at infinity. �

Proof of Theorem 2.3. Fix a sequence {τk}k∈N → ∞. Let θ = θ(·, τk + s). Apply-
ing the standard interior regularity, we obtain that θ, θξ, θξξ, θτ , θτξ are uniformly
bounded and θ(·, τk + s) → f(·, s) uniformly on any compact sets of ξ. Then f
satisfies the limit equation of (2.17), i.e.

fs = S(f) in R+ × R+ , (2.21)

f(0, s) = 0, f ≤ 0. (2.22)

Since coefficients in (2.21) are analytic, by the standard regularity theory, we know
that f is a C∞ function and analytic in ξ. Notice that (2.13) is equivalent to

f(ξ, s) ≡ U0(ξ).

We proceed by contradiction. Assume that f(ξ, s) 6≡ U0(ξ). By (2.22) and U0(0) =
0, we have that f(ξ, s) intersects U0(ξ) infinitely many times for all s ≥ 0. On the
other hand, based on the Sturmian argument, the number of intersections between
θ(ξ, τ) and U0(ξ) cannot increase with respect to time, and it is finite initially since
the solutions are analytic. This leads to a contradiction. �

The following lemma shows that the stabilization in (2.13) is from above, see
details in [13, Lemma 3.2].

Lemma 2.5. Let N ≥ 10 + 4σ. Then

θ(ξ, t) ≥ U0(ξ), t→∞. (2.23)

2.3. Asymptotic behavior in the outer region. We consider the asymptotic
behavior of solutions in the outer region, which is the region away from x = 0 for t
sufficiently large.
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2.3.1. Linearized analysis. (2.2) can be written as

wt = −Aw − F (w), (2.24)

where A is the linear operator in the form of

Aw = −∆w − ν

|x|2
w (2.25)

with ν = (2 + σ)(N − 2), and F is the nonlinear operator in the form of

F (w) =
ν

|x|2
(e−w − 1 + w) ≥ 0 for w ≥ 0. (2.26)

The corresponding radially homogeneous problem of (2.24) is given by

Aψ = 0 in BR.

If N > 10 + 4σ, we obtain two linearly independent solutions:

ψ+ = rγ+ and ψ− = rγ− ,

where

γ± =
1

2

[
2−N ±

√
(N − 2)(N − 10− 4σ)

]
< 0,

which are roots of the quadratic equation

γ2 + (N − 2)γ + (2 + σ)(N − 2) = 0.

If N = 10 + 4σ, we obtain two linearly independent solutions:

ψ̃+ = r−4−2σ and ψ̃− = r−4−2σ log
( r

4 + 2σ

)
.

Let ψ1 and ψ̃1 be the first eigenfunctions of operate A in the cases N > 10 + 4σ
and N = 10 + 4σ, respectively. As shown in [13, 17], we find, if N > 10 + 4σ,

ψ1 = arγ+
(
1 + o(1)

)
, r → 0, (2.27)

and if N = 10 + 4σ,

ψ̃1 = ãr−4−2σ
(
1 + o(1)

)
, r → 0, (2.28)

where a = a(σ,N) > 0, ã = ã(σ,N) > 0.
We state some properties of symmetric Sturm-Liouville operator A. The proof

can be referred to [13, Lemma 4.1] and [17, Lemma 2.2].

Lemma 2.6. The operator A defined in (2.25) satisfies the following properties:

(i) If N > 10 + 4σ, the operator A admits a unique self-adjoint Friedrichs ex-
tension which is positive definite with a purely discrete spectrum. Moreover,
the first eigenvalue is strictly positive and satisfies

λ1 ≥ m = µ1
N − (10 + 4σ)

N − 2
> 0,

where µ1 > 0 is the first eigenvalue of −∆ in BR.
(ii) If N = 10 + 4σ, the operator A admits a unique self-adjoint Friedrichs

extension with a purely discrete spectrum of simple eigenvalues σ(A) =

{· · · < λ̃2 < λ̃1 < 0}. Moreover, the orthonormal set of eigenfunctions

{ψ̃k} for A is complete.
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2.3.2. Outer analysis. The following result gives the asymptotic behavior in the
outer region, which is proved as in [13, Lemma 5.1].

Theorem 2.7. Assume N > 10 + 4σ. Let λ1 and ψ1 be the first eigenpair of
operator A. Then there exists a positive constant C0 = C0(u0) such that as t→∞,

w(r, t) = C0e
−λ1tψ1(r)

(
1 + o(1)

)
uniformly in {δ ≤ |x| ≤ R}, (2.29)

where δ > 0.

2.4. Matching process. Combining Subsections 2.2 and 2.3, we obtain the desired
result by matching the asymptotic behaviors of solutions in the inner and outer
regions.

Proof of Theorem 1.1. The proof is divided into three steps. In step 1, we observe
the formal matching expansion of the global solution for (1.1). In steps 2 and 3,
we give the analytic proof. Step 2 gives the estimate of upper bound. Step 3 gives
the estimate of the lower bound.

Step 1: α(t) ≈ (2+σ)λ1

|γ+| t + O(1) as t → ∞. Set r = δ with δ � 1. By (2.13) and

(2.9), the function w = Us − u satisfies

w(δ, t) ≈ b0e
α(t)γ+
2+σ δγ+ , t→∞. (2.30)

Substituting (2.27) into (2.29), we obtain

w(δ, t) = aC0e
−λ1tδγ+

(
1 + o(1)

)
, t→∞. (2.31)

Combining (2.30) and (2.31), we deduce

α(t) = ‖u(x, t)‖∞ ≈
(2 + σ)λ1

|γ+|
t+O(1), t→∞.

Thus (1.11) is valid.

Step 2: α(t) ≤ (2+σ)λ1

|γ+| t + O(1) as t → ∞. For a fixed positive r � 1, by (2.23),

(2.8), and (2.9), we obtain

u(r, t) ≥ Us(r)− b0e
α(t)γ+
2+σ rγ+

(
1 + o(1)

)
, t→∞. (2.32)

It follows from (2.31) and (2.32) that

e
α(t)γ+
2+σ ≥ aC0

b0
e−λ1t

(
1 + o(1)

)
, t→∞. (2.33)

Based on the continuity and positivity of ex, there exists C ′ > 0 such that aC0

b0
=

eC
′
. By (2.33), we find

α(t) ≤ (2 + σ)λ1

|γ+|
t+

C ′(2 + σ)

γ+
, t→∞.

Therefore,

α(t) ≤ (2 + σ)λ1

|γ+|
t+O(1), t→∞. (2.34)

Step 3: α(t) ≥ (2+σ)λ1

|γ+| t + O(1) as t → ∞. A direct calculation shows that

w(r, t) = C0e
−λ1(t−T )ψ1(r) is a supersolution of (2.24), where we fix T � 1 such
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that w0(r) = Us(r)−u0(r) ≤ w(r, 0). Hence, u(r, t) = Us(r)−w(r, t) is a subsolution
of (1.1), i.e.

u(r, t) ≥ u(r, t) in BR × R+.

By the monotonicity of u(r, t) with respect to r, we deduce for t ≥ T ,

α(t) = sup
r
u(r, t) ≥ sup

r
u(r, t) ≡ (2 + σ)λ1

|γ+|
t+O(1), (2.35)

where the supremum is attained at r ≈ [ σ+2
aC0|γ+| ]

1
γ+ e

λ1t
γ+ . �

3. The case N = 10 + 4σ

This section concerns the asymptotic expansion of solutions for (1.1) in the
critical case N = 10 + 4σ. The estimates in the inner and outer regions are similar
to the ones in the case N > 10 + 4σ. The estimate in the inner region is given by
Theorem 2.3, we give the estimate in the outer region as follows. The proof can be
referred to [17, Lemma 2.4].

Lemma 3.1. Let N = 10 + 4σ. Then there exists a constant C0 > 0 such that, for
sufficiently large t,

w(r, t) ≤ min{Us(r), C0e
λ̃1tψ̃1(r)}. (3.1)

Remark 3.2. Using the proof of (2.34), we cannot deduce the estimate of upper
bound of α(t). In fact, by (2.23), (2.8), and (2.10), we have for r � 1,

u(r, t) ≥ Us(r)− b0e−2α(t)r−4−2σ log
(
re

α(t)
2+σ
)(

1 + o(1)
)
, t→∞.

It follows from Lemma 3.1 and (2.28) that

w(r, t) ≤ C0e
λ̃1tψ̃1(r) = ãC0e

λ̃1tr−4−2σ
(
1 + o(1)

)
, t→∞.

Then

b0e
−2α(t) log

(
re

α(t)
2+σ
)
≥ ãC0e

λ̃1t
(
1 + o(1)

)
, t→∞.

Clearly, there are no terms which matches the term log(re
α(t)
2+σ ).

The following lemma presents the estimate of lower bound of α(t).

Lemma 3.3. Suppose N = 10 + 4σ. Then α(t) defined in (2.11) satisfies

α(t) ≥ |λ̃1|
2
t+ C1, t→∞, (3.2)

where C1 > 0, λ̃1 < 0 is the first eigenvalue of operator A defined in (2.25).

Proof. The proof is similar to (2.35). By (3.1), we have for sufficiently large T ,

u(r, t) ≥ Us(r)− C0e
λ̃1(t−T )ψ̃1(r) in BR × (T,∞),

where λ̃1 < 0 and ψ̃1(r) are the first eigenpair of operator A. Therefore,

α(t) ≥ max
r

{
log

(2 + σ)(8 + 4σ)

r2+σ
− C0e

λ̃1tψ̃1(r)
}
,

where the supermum is attained at r ≈ e
λ̃1t

4+2σ . �
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From the later calculation, we obtain that λ̃1 = − π2
1

(4+2σ)
4

2+σ
, where π1 is the first

zero of the zeroth-order Bessel’s function, i.e. J0(π1) = 0. In other words, Lemma
3.3 gives the optimal coefficient of t in (1.12). Moreover, we find that the second
term C1 on the right-hand side of (3.2) is not optimal, and it turns out to be a
logarithmically growing function in the later proof.

3.1. The inner problem. As shown in Sub-subsection 2.2.2, we introduce the
rescaled function Φ0, which satisfies

u(r, t) = α(t) + Φ0(ξ, t), ξ = re
α(t)
2+σ ,

where α(t) = supr u(r, t) = u(0, t). Recalling the proof of Theorem 2.3, we find
that the leading-order term of expansion of Φ0 is quasi-steady as t → ∞, and Φ0

satisfies

Φ′′0 +
N − 1

ξ
Φ′0 + |ξ|σeΦ0 = 0, ξ ∈ (0, R),

Φ0(0) = Φ′0(0) = 0.

Indeed, Φ0 corresponds to U0 in Sub-subsection 2.2.1. Set

Φ0 = log(2 + σ)− (2 + σ) log Ψ0.

A simple calculation implies that

Ψ′′0Ψ1+σ
0 − (Ψ′0)2Ψσ

0 +
N − 1

ξ
Ψ′0Ψ1+σ

0 = ξσ, (3.3)

which is a nonlinear differential equation of order (2 + σ). Set

Ψ0(ξ) ∼ ξ

(N − 2)
1

2+σ

+ Ω(ξ), ξ →∞, (3.4)

where Ω(ξ)→ 0 as ξ →∞. Substituting (3.4) into (3.3), we obtain

0 = Ω′′
[ ξ

(N − 2)
1

2+σ

+ Ω
]1+σ

−
[ 1

(N − 2)
1

2+σ

+ Ω′
]2[ ξ

(N − 2)
1

2+σ

+ Ω
]σ

+
N − 1

ξ

[ 1

(N − 2)
1

2+σ

+ Ω′
][ ξ

(N − 2)
1

2+σ

+ Ω
]1+σ

− ξσ.

Using Taylor expansion on the term [ ξ

(N−2)
1

2+σ
+ Ω]β at the point ξ

(N−2)
1

2+σ
, we

deduce that

0 = Ω′′
[( ξ

(N − 2)
1

2+σ

)1+σ

+ (1 + σ)
( ξ

(N − 2)
1

2+σ

)σ
Ω + o(Ω)

]
−
[( 1

(N − 2)
1

2+σ

)2

+ (Ω′)2 +
2Ω′

(N − 2)
1

2+σ

]
×
[( ξ

(N − 2)
1

2+σ

)σ
+ σ

( ξ

(N − 2)
1

2+σ

)−1+σ

Ω + o(Ω)
]

+
N − 1

ξ

[ 1

(N − 2)
1

2+σ

+ Ω′
]

×
[( ξ

(N − 2)
1

2+σ

)1+σ

+ (1 + σ)
( ξ

(N − 2)
1

2+σ

)σ
Ω + o(Ω)

]
− ξσ.

(3.5)
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By sorting out the terms with Ω′′, Ω′ and Ω, we rewrite (3.5) in the form

0 =
[ ξ

(N − 2)
1

2+σ

]1+σ

Ω′′ +
[ ξ

(N − 2)
1

2+σ

]σ N − 3

(N − 2)
1

2+σ

Ω′

+
Nσ − 2σ +N − 1

(N − 2)
2

2+σ

[ ξ

(N − 2)
1

2+σ

]−1+σ

Ω−G(ξ,N, σ),

(3.6)

where

G(ξ,N, σ) = −Ω′′
[
(1 + σ)

( ξ

(N − 2)
1

2+σ

)σ
Ω + o(Ω)

]
+
( 1

(N − 2)
1

2+σ

)2[( ξ

(N − 2)
1

2+σ

)σ
+ o(Ω)

]
+ (Ω′)2

[( ξ

(N − 2)
1

2+σ

)σ
+ σ

( ξ

(N − 2)
1

2+σ

)−1+σ

Ω + o(Ω)
]

+
2Ω′

(N − 2)
1

2+σ

[
σ
( ξ

(N − 2)
1

2+σ

)−1+σ

Ω + o(Ω)
]

− N − 1

ξ

1

(N − 2)
1

2+σ

[( ξ

(N − 2)
1

2+σ

)1+σ

+ o(Ω)
]

− N − 1

ξ
Ω′
[
(1 + σ)

( ξ

(N − 2)
1

2+σ

)σ
Ω + o(Ω)

]
+ ξσ.

(3.7)

To solve Ω(ξ), we consider the homogeneous equation of (3.6):

ξ2Ω′′ + ξ(N − 3)Ω′ + (Nσ − 2σ +N − 1)Ω = 0.

If N > 10 + 4σ,
Ω(ξ) = C1ξ

q+ + C2ξ
q− , (3.8)

where C1, C2 > 0, and

q± =
1

2

[
4−N ±

√
(N − 2)(N − 10− 4σ)

]
,

which are the roots of the quadratic equation

q2 + (N − 4)q + (Nσ − 2σ +N − 1) = 0.

If N = 10 + 4σ,
Ω(ξ) = C3ξ

−3−2σ log ξ + C4ξ
−3−2σ, (3.9)

where C3, C4 > 0.
Next, we consider the case N = 10 + 4σ. Since

lim
ξ→∞

ξ−3−2σ log ξ = lim
ξ→∞

1

(3 + 2σ)ξ3+2σ
= 0

and

lim
ξ→∞

ξ−3−2σ log ξ

ξ−3−2σ
= lim
ξ→∞

log ξ =∞,

we find that the convergence rate of term ξ−3−2σ to 0 is faster than that of term
ξ−3−2σ log ξ to 0. Hence,

Ω(ξ) = C3ξ
−3−2σ log ξ, ξ →∞. (3.10)

We compute

Ω′(ξ) = −(3 + 2σ)C3ξ
−4−2σ log ξ + C3ξ

−4−2σ = −(3 + 2σ)C3ξ
−4−2σ log ξ, (3.11)
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and

Ω′′(ξ) = (3 + 2σ)(4 + 2σ)C3ξ
−5−2σ log ξ − (7 + 4σ)C3ξ

−5−2σ

= (3 + 2σ)(4 + 2σ)C3ξ
−5−2σ log ξ.

(3.12)

Substituting (3.10)-(3.12) into (3.7), we obtain

G(ξ,N, σ) =
N − 1 + (N − 4)σ

(N − 2)
σ

2+σ
ξ−8−3σ(log ξ)2+

σ

(N − 2)
−1+σ
2+σ

ξ−12−5σ(log ξ)3+o(1).

Since

lim
ξ→∞

ξ−8−3σ(log ξ)2 = lim
ξ→∞

2

(8 + 3σ)2ξ8+3σ
= 0,

lim
ξ→∞

ξ−12−5σ(log ξ)3 = lim
ξ→∞

6

(12 + 5σ)3ξ12+5σ
= 0,

we have

G(ξ,N, σ)→ 0, ξ →∞. (3.13)

Thus, Ω(ξ) can be given by (3.8) and (3.9).
By (3.4), (3.9), and the fact log(1 + x) ∼ x as x→ 0, we have as ξ →∞,

Φ0(ξ) = log(2 + σ)− (2 + σ) log Ψ0

∼ log(2 + σ)− log
[ ξ

(8 + 4σ)
1

2+σ

+ C3ξ
−3−2σ log ξ + C4ξ

−3−2σ
]2+σ

= log(2 + σ)− log
[ ξ

(8 + 4σ)
1

2+σ

]2+σ

− (2 + σ) log
[
1 + (8 + 4σ)

1
2+σ

(
C3ξ

−4−2σ log ξ + C4ξ
−4−2σ

)]
∼ log

(4 + 2σ)2

ξ2+σ
− (2 + σ)(8 + 4σ)

1
2+σ ξ−4−2σ(C3 log ξ + C4).

Therefore,

Φ0(ξ) ∼ log
(4 + 2σ)2

ξ2+σ
− ξ−4−2σ(A0 log ξ +B0), ξ →∞, (3.14)

where A0 = (2 + σ)(8 + 4σ)
1

2+σC3 and B0 = (2 + σ)(8 + 4σ)
1

2+σC4.
For the case N > 10 + 4σ, we can also get an accurate estimate of lower order

term, which is not needed in this paper. Notice that the term e
µγ+
2+σ rγ+ in (2.9) is

sufficient to match the resulting terms in the outer analysis.

3.2. The outer problem. The leading-order term of expansion of u in the outer

region is log (4+2σ)2

r2+σ as t → ∞, which is given by the leading-order term in (3.14).
In order to study the correction term, we give the behavior of u in the form of

u(r, t) ∼ log
(4 + 2σ)2

r2+σ
− v(r, t), t→∞,
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where v corresponds to w in Subsection 2.1. The linearized problem of v is given
by

vt = vrr +
9 + 4σ

r
vr +

(4 + 2σ)2

r2
v in

(
0, (4 + 2σ)

1
2+σ
)
× R+,

v((4 + 2σ)
1

2+σ , t) ≡ 0.

(3.15)

To match logarithmic term in (3.14), we set

v(r, t) = e
− π2t

(4+2σ)
4

2+σ

[
β(t)φ0(r) + β̇(t)φ1(r) + . . .

]
, (3.16)

where π and β(t) will be chosen later. Substituting(3.16) into (3.15), we obtain

φ′′0(r) +
9 + 4σ

r
φ′0(r) +

[(4 + 2σ

r

)2

+
π2

(4 + 2σ)
4

2+σ

]
φ0(r) = 0,

φ′′1(r) +
9 + 4σ

r
φ′1(r) +

[(4 + 2σ

r

)2

+
π2

(4 + 2σ)
4

2+σ

]
φ1(r) = φ0(r).

Let

φ0(r) = r−4−2σP0(r), φ1(r) = r−4−2σP1(r).

Then

P ′′0 (r) +
1

r
P ′0(r) +

π2

(4 + 2σ)
4

2+σ

P0(r) = 0, (3.17)

P ′′1 (r) +
1

r
P ′1(r) +

π2

(4 + 2σ)
4

2+σ

P1(r) = P0(r). (3.18)

Equation (3.17) is the zeroth-order Bessel’s equation and P0(r) = J0

(
πr

(4+2σ)
2

2+σ

)
.

On the other hand, by (3.14), we have

v(r, t) ∼ A0

2 + σ
α(t)e−2α(t)r−4−2σ + e−2α(t)

(
A0r

−4−2σ log r +B0r
−4−2σ

)
, (3.19)

as t→∞. To match (3.16) and (3.19), it suffices to show that

β(t)e
− π2

1t

(4+2σ)
4

2+σ ∼ A0

2 + σ
α(t)e−2α(t), t→∞. (3.20)

We choose π1 to be the first zero of zeroth-order Bessel’s function, and J0(π1) = 0.
It follows from (3.17) and (3.18) that

r(P ′1P0 + P ′0P1)

= −
∫ (4+2σ)

2
2+σ

s

rP 2
0 (s)dr

= − (4 + 2σ)
4

2+σ

2
J2

1 (π1) +
r2

2

[
J2

0

( π1r

(4 + 2σ)
2

2+σ

)
+ J2

1

( π1r

(4 + 2σ)
2

2+σ

)]
.

(3.21)

Since P0(0) is a constant, we deduce form (3.21) that

P1(r) = − (4 + 2σ)
4

2+σ

2
J2

1 (π1) log r +O(1), r → 0.
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By (3.16) and (3.19), we require

− (4 + 2σ)
4

2+σ

2
J2

1 (π1)β̇(t)e
− π2

1t

(4+2σ)
4

2+σ ∼ A0e
−2α(t). (3.22)

Combining (3.20) and (3.22), we find

α(t) =
π2

1t

2(4 + 2σ)
4

2+σ

+ α1(t), t→∞. (3.23)

The function β(t) is determined by

β(t) ∼ A0π
2t

(4 + 2σ)
6+σ
2+σ

e−2α1(t), β̇(t) ∼ − 2A0

(4 + 2σ)
4

2+σ J2
1 (π1)

e−2α1(t).

Therefore,

β(t) ∼ β∞t
− 8+4σ

π2
1J

2
1 (π1) t→∞,

where β∞ > 0 depends only on u0. Then

α1(t) ∼ 1

2

[
1 +

8 + 4σ

π2
1J

2
1 (π1)

]
log t+

1

2
log
[ A0π

2t

(4 + 2σ)
6+σ
2+σ

]
, t→∞. (3.24)

We deduce from (3.23) and (3.24) that, as t→∞,

u(0, t) ∼ π2
1t

2(4 + 2σ)
4

2+σ

+
1

2

[
1 +

8 + 4σ

π2
1J

2
1 (π1)

]
log t+

1

2
log
[ A0π

2t

(4 + 2σ)
6+σ
2+σ

]
.

It follows that u(0, t) grows linearly as t→∞ with a logarithmic correction term.

Remark 3.4. Combining the estimates in the inner and outer regions, we derive

the widths of the inner layer, which are estimated as O(e
− λ1
|γ+|

t
) if N > 10+4σ and

O
(
e
− π2

1t

(4+2σ)

6+σ
2+σ t−

1
2+σ
)

if N = 10 + 4σ. Indeed, since inner analysis is studied on

compact set {ξ = re
α(t)
2+σ ≤ C} with C > 0, we have that r = O

(
e−

α(t)
2+σ
)
. It follows

from Theorem 1.1 that

r = O
(
e−

α(t)
2+σ

)
= O

(
e
− 1

2+σ [
(2+σ)λ1
|γ+|

t+O(1)]
)

= O
(
e
− λ1
|γ+|

t
)
.

It follows from Theorem 1.2 that

r = O
(
e−

α(t)
2+σ

)
= O

(
e
− 1

2+σ [
π2
1t

2(4+2σ)
4

2+σ

+O(log t)])
= O

(
e
− π2

1t

(4+2σ)

6+σ
2+σ t−

1
2+σ

)
.
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equation, J. Math. Anal. Appl., 278 (2003), 1–17.
[8] C. H. Chang, Q. C. Ju, Z. C. Zhang; Asymptotic behavior of global solutions to a class of heat

equations with gradient nonlinearity, Discrete Contin. Dyn. Syst., 40 (2020), 5991–6014.

[9] H. Y. Chen, D. Ye, F. Zhou; On Gaussian curvature equation in R2 with prescribed nonpos-
itive curvature, Discrete Contin. Dyn. Syst., 40 (2020), 3201–3214.

[10] G. Conner, C. P. Grant; Asymptotics of blowup for a convection-diffusion equation with

conservation, Differential Integral Equations, 9 (1996), 719–728.
[11] M. G. Crandall, P. H. Rabinowitz; Some continuation and variational methods for positive

solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975),
207–218.

[12] T. D’Aprile; Sign-changing blow-up solutions for Hénon type elliptic equations with expo-
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