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NONEXISTENCE RESULTS FOR HYPERBOLIC TYPE
INEQUALITIES INVOLVING THE GRUSHIN OPERATOR IN
EXTERIOR DOMAINS

MOHAMED JLELI, BESSEM SAMET

ABSTRACT. We study the hyperbolic type differential inequality
ugt (t, z,y) — Lou(t, z,y) > |u(t,z,y)|P, (¢, z,y) € (0,00) X D1 x Do

under the boundary conditions

u(t,z,y) > f(z), (t,z,y) € (0,00) x 0D1 x D2,

u(t,z,y) 2 9(y), (t,2,9) € (0,00) x D1 x 8D,
where p > 1, Dy = {z € RNk : 2| > 1}, k = 1,2, N}, > 2, f € LY(8D1),
g € LY(0D3), and Ly, £ € R, is the Grushin operator

Lou = Agu + |z Ayu.

We obtain sufficient conditions depending on p, ¢, N1, Na, f, and g, for which
the considered problem admits no global weak solution. We discuss separately
the four cases: N1 = Nao =2; Ny =2, No > 3; N; > 3, No = 2; Nj, Ny > 3.

1. INTRODUCTION
This article concerns the hyperbolic type differential inequality
uge(t, z,y) — Lou(t, z,y) > Ju(t,z,y)|P, (t,z,y) € (0,00) X D1 X Do,
u(t,z,y) > f(x), (t,z,y)€ (0,00) x ID; X Do, (1.1)
u(t,z,y) > 9(y), (t,z,y) € (0,00) x D1 x OD3,

where p > 1, Dy = {x € RM : |z| > 1}, Dy = {y € RN2 : |y| > 1}, N1, Ny > 2,
f € LY9D1), g € L' (OD3), and Ly, ¢ € R, is the Grushin operator of the form

o0 M 92y 20 Yo 52
Lou = Agu+ |z] Ayu:zwﬂﬂ ZaT,zr (1.2)
i=1 " j=1 "7

Namely, our aim is to derive sufficient conditions for which problem admits
no global weak solution.

Several works have been made to investigate the nonexistence of solutions for hy-
perbolic type differential inequalities. In [13], among other problems, Kato studied
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the hyperbolic inequality
ug — Au > |uP,  (t,z) € (0,00) x RY. (1.3)

He proved that if the initial data satisfy some suitable positivity conditions, are
compactly supported, and

2
l<p<l+— (N>2),
pSltm— (N22)

then no weak solution to (T.3)) can exist in (0,00) x RY. Véron and Pohozaev [23]
studied the nonexistence of nontrivial global solutions to a wide class of nonlinear
hyperbolic type inequalities of the form

wn > Lu(ipp(w) + [ul?, () € (0,00) x R, (1.4)
where p > 0, ¢, is a locally bounded real valued function satisfying

lep(r)| < clrf?
for certain ¢ > 0, and Ly, (¢) = 3_ 4=, D*(aa(t, z)¢) is a homogeneous differential
operator of order m in which the coefficients a,, are bounded measurable functions.
By an appropriate choice of test functions and the dimensional analysis, it was
shown that problem (1.4)) admits no weak solution such that fRN ut(0,2) dz > 0,
provided that ¢ > max{1,p} and either 2N—m < 0 or 2N—m > 0 and %}p) <7
In [I0], the authors investigated the hyperbolic inequality

Ut — Au 2 |u‘p + |vu|q + f(tax)a (t,I) € (Oa OO) X RN7 (15)

where p,g > 1 and f > 0, f #% 0. Namely, they derived general criteria for the
nonexistence of global solutions to . In particular, when N > 3 and f depends
only on the variable space, it was shown that admits as Fujita critical exponent
the real number
p*(N,q) = {1+N2‘2 ?fQ> 1+¢’
00 ifg<l+ 5=
In all the above mentioned references the considered problems are posed in the
whole space RV.
The study of hyperbolic type differential inequalities in other infinite domains
was considered by some authors. In [I6], among other problems, Laptev considered
the hyperbolic inequality

ug — Au > |ul?,  (t,z) € (0,00) x K (1.6)
under the Dirichlet type boundary condition
u(t,z) >0, (t,z)€ (0,00) x IK, (1.7)
where K is the cone defined by
K={(r,w):r>0,weQ},
and Q is a domain of SN~ N > 3. It was shown that, if

2
l<p<l4+—r,
p= +s*+1
where
N -2

(= LY
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and \; is the first eigenvalue of the Laplace Beltrami operator Ay on €, then prob-
lem under the boundary condition has no nontrivial global weak solution.
In [I2] (see also [9]), motivated by Zhang [26], the authors investigated the nonex-
istence of global weak solutions for a system of inhomogeneous wave inequalities in
exterior domains under three type boundary conditions: Dirichlet type, Neumann
type and mixed boundary conditions. In particular, for the hyperbolic inequality

uy — Au > |z|*ul?,  (¢,2) € (0,00) x Q°,

u(t, ) > f@), () € (0,00) x Y, (1.8)

where a > —2, Q° denotes the complement of 2, Q is a bounded smooth open
set in RY containing the origin, and N > 3, it was shown that, if f € L'(9Q),
faﬂfda > 0, and

N+a

1< —
P<N_9

then problem admits no global weak solution. Moreover, for p > %fg, problem
(1.8) admits global solutions (namely, stationary solutions) for some f > 0. For
other works related to differential inequalities in exterior domains, see e.g. [111 20,
21] and the references therein.

A large amount of works have been made to study the Grushin operator £, of the
form as well as the properties of the solutions to —L,u = f (see [11 [6} [7, [§]).

Capuzzo Dolcetta and Cutri [2] studied the differential inequality

—Louw>uP, u>0, zeRM, yeRM, (1.9)

It was shown that, if £ > 1l and 1 < p < &, where @ = N + (£ + 1)Ns, then
(1.9) admits no nontrivial solution. D’Ambrosio and Lucente [4] investigated the

differential inequality
L(w,y, Dy, Dy) > 2| [y|[u]?,  (z,y) € R? x R,

where L is a quasi-homogeneous differential operator including as special cases
Tricomi or Grushin-type operators, ¢ > 1, 01,02 € R, and k,d > 1. Namely, they
provided necessary conditions for existence of weak solutions to the considered
inequality. For other nonexistence results for differential inequalities (stationary
inequalities) involving Grushin type operators, see [3|, Bl 14}, [15] 17, 18], 19, 22] 24
25 27] and the references therein.

Motivated by the above mentioned contributions, our aim in this paper is to
obtain sufficient conditions depending on p, ¢, N1, Na, f and g, for which problem
not to admits global weak solutions.

The rest of the paper is organized as follows. In Section 2 we define global weak
solutions to problem and provide the main results of this paper. In Section
[Bl we establish some preliminary estimates that will be used in the proofs of our
main results. In Section 4] we prove the main results of this paper. We discuss
separately the cases: Ny = No =2; Ny =2, Ny > 3; Ny > 3, No =2; N1, Ny > 3.

The symbols C or C; denote always generic positive constants, which are in-
dependent of the scaling parameter R and the solution uw. Their values could be
changed from one line to another. We will use the notation p ~ v for two positive
functions or quantities, which satisfy Cipu < v < Cop.
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2. MAIN RESULTS
We first fix some notation that will be used throughout this paper. Let
D =Dy x Dy, Q=(0,00)%x D,
'y = (0,00) X 9Dy x Dy, Ty =(0,00) x D1 X 0Ds.
We denote by n; = nq(z) the outward unit normal vector on dD; relative to D;.
Similarly, we denote by ng = na(y) the outward unit normal vector on dDs relative

to D2.
We introduce the test function space

Oz Oy
o= C2():0>0 =0, 22 <0, 22 <0 2.1
{SOE c( ) Y = 7%0|8D1U8D2 78711 > ,8712 >~ }; ( )

where C2(Q) denotes the space of C? functions compactly supported in 2. Here,

O _ 8y<,0 _
oy =V:p-ny and Oy = Vyp - no.

Let us mention in which sense the solutions are considered.

Definition 2.1. Let f € L'(0D;) and g € L'(0D3). We say that
uwe L7 ([0,00) x D)
is a global weak solution to (1.1)), if

/ |ulP dx dy dt — / 833%0]”(:1:) do, dy dt — |z|2£ay—gpg(y) dx doy dt
Q Ty (9n1 Ty ang (2 2)

< / u (1 — Dpp — |33|22Ay§0) dx dy dt
Q

for every ¢ € ®. Here, do, denotes the surface measure on 0D, and do, denotes
the surface measure on 0Ds.

Our first main result is the following.

Theorem 2.2. Let Ny = Ny =2, f € LY(0D1), and g € L' (0Dy).
() Let £ < —1. If
(x)doy >0 or (x)do, =0, / g(y)doy, > 0,
0D oDy 9D>

then for allp > 1, (L1.1)) admits no global weak solution.
(I1) Let ¢ > —1. If

(x)doy >0 or / g(y)do, >0,

0D, 9D

then for all p > 1, (L.1)) admits no global weak solution.
Remark 2.3. Let Ny = Ny = 2. From Theorem we deduce that, if

(z)do, > 0,
0D

then for all £ € R and p > 1, (|1.1) admits no global weak solution.
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Clearly, Theorem [2.2] yields nonexistence results for the corresponding stationary
problem
—Leu(z,y) = u(z,y)[’,  (z,y) € D1 x Ds,
U(:E,y) > f(z)v (z7y) € aDl X D27 (23)
U(l’,y) Zg(y)v (l',y) €Dy XaD2
Namely, we deduce the following result.

Corollary 2.4. Let Ny = Ny =2, f € LY(0D1), and g € L*(9D3).
(I) Let £ < —1. If

(x)doy >0 or (x)do, =0, / g(y)do, > 0,
dDy 0D, 9D>

then for all p > 1, (2.3) admits no weak solution.
(I1) Let ¢ > —1. If

(x)doy >0 or / g(y)do, > 0,
8D1 3D2

then for all p > 1, (2.3) admits no weak solution.

Remark 2.5. Consider the differential inequality
vy —Av > 0P (v >0), (¢ x) € (0,00) x Dy,
v(t,z) > f(x), (t,z) € (0,00) x Dy,
where N1 = 2 and p > 1. Let v be a possible solution to and
u(t,z,y) =v(t,z), (t,x,y)€ (0,00) x Dy x Dy,
where Ny = 2. Then for all £ € R, u is a solution to with g = 0. Taking in

consideration Remark we deduce that, if [ oD, f(x)do, > 0, then for all p > 1,
(2.4) admits no solution.

Theorem 2.6. Let Ny =2, Ny >3, f € LY(0Dy), and g € L*(0D5).
W L(eit)gljff;; f(z)do, > 0, then for all p > 1, admits no global weak
i) Z(c)lutzon.
- ()do, =0 and o, g(y)do, >0,
then for all 1 < p < %, admits no global weak solution.
w L(eit)gl?f;; f(z)do, > 0, then for all p > 1, admits no global weak
i) Z(c)lutzon.
- ()do, =0 and o, g(y)do, >0,
then for all 1 < p < %, admits no global weak solution.
(III) Let -1 < €< 0. If

(x)doy >0 or / g(y)do, >0,
6D1 6D2

then for all p > 1, (L.1)) admits no global weak solution.
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(Iv) Let £>0.
) If fé)D x)do, > 0, then for all p > 1, admits no global weak
solutzon
(ii) IffaD g(y)doy, >0, then for all 1 <p < %
weak solutwn

1.1)) admits no global

,27

Remark 2.7. Let Ny = 2 and N, > 3. By Theorem [2.6) we deduce that, if
fBD z)do, > 0, then for all £ € R and p > 1, admits no global Weak
solutlon

Remark 2.8. Let Ny =2, Ny >3, £ >0, g € L'(0D3), and faD g(y)do, > 0.
Then by Theorem [2.6| (IV)-(ii), if

Ny
Ny —2’
then (1.1) admits no global weak solution for all f € L'(0D;). Moreover, for
p> NiQ’ we can can check easily that

1<p<

(2.5)

u(t,x,y) = A|y|_07 (t,:r,y) € (0700) X Dl X D27

where A > 0 is sufficiently small and p%l < o0 < Ny — 2, is a (stationary) solution
to (1.1)) with f =0 and g = A. This shows that (2.5) is sharp.

Remark 2.9. As in the previous case (see Corollary, the nonexistence results
given by Theorem hold true for the stationary problem (2.3) in the case N3 = 2
and Ny > 3.
Remark 2.10. Consider the differential inequality
v — Av > 0P (v > 0), (t,y) € (0,00) X Dy,
v(t,y) =2 g(y), (t,y) € (0,00) x OD2,

where Ny > 3. Let v be a possible solution to (2.6) and

u(t,z,y) =v(t,y), (t,z,y) € (0,00) X D1 X Da,
where N1 = 2. Then u is a solution to (L.1)) with f = 0 and ¢ = 0. Taking
m considemtion Remark we deduce that, if f8D2 g(y)doy > 0, then for all
1<p< .25, admits no solution. We find [12, Corollary 1.9] for the case of
positive solutwns
Theorem 2.11. Let Ny >3, No =2, f € LY(0D1), and g € L*(9D).

(I) Let ¢ < =21 If

f(z)dogy >0 or f(z)doy =0, / g(y)doy, >0,
0D 0D, 0D>

then for all 1 < p < 15, admits no global weak solution.
(I1) Let o<y < —1.
IffaD x)do, > 0, then for all 1 < p < {25, admits no global
weak solutzon

(il) If [yp, 9(y)doy > 0, then for all 1 < p < €+1’ admits no global

weak solutwn

(IT) Let ¢ > —1.
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) If faD x)do, > 0, then for alll <p < N L5, (L.1) admits no global
weak solutwn

(i) If faD g(y)doy > 0, then for all p > 1, admits no global weak
solutzon

Remark 2.12. Let Ny > 3, Ny = 2, f € L'(0D;), and faD x)do, > 0. By
Theorem we deduce that for all £ € R, g € L'(0Ds), and

1<p<

1
2.
s (27)

problem (|1.1)) admits no global weak solution. On the other hand, for p >

we can check easily that

u(t,z,y) = Alz|~%, (t,z,y) € (0,00) X Dy X Da,

Ny
N,—27

where A > 0 is sufficiently small and p%l < o < Nj —2,is a (stationary) solution
o (1.1)) with f = A and g = 0. This shows that (2.7) is sharp.

In the special case when [, f(z)do, > 0 and [, g(y)do, > 0, we deduce
from Theorem [2.11] the followmg results.

Corollary 2.13. Let Ny >3, Ny =2, f € LY(0D1), and g € L*(0D3). Suppose
that

f(x)doy >0 and / g(y)doy, > 0.
0D>

0D
(1) Let ¢ < —%. Then for all 1 < p < %, (1.1) admits no global weak
solution
(IT) Let —5+ < €< —=1. Then for all1 <p < £+1’ admits no global weak
solutzon

(IIT) Let £ > —1. Then for all p > 1, (L.1) admits no global weak solution.

Remark 2.14. The nonexistence results given by Theorem [2.11] and Corollary [2.13]
hold for the stationary problem ([2.3)) in the case Ny > 3 and Np = 2.
Theorem 2.15. Let Nl,NQ >3, f € LY0Dy), and g € L*(0D).

(1) Let r<—

) If faD x)do, > 0, then for alll <p < N 15, admits no global
weak solutzon

(i) If
Ny
(<2 f(z)do, =0, and 9(y)doy > 0,
2 oD, oD,
then for all 1 < p < min{ Nllvj N 2}, admits no global weak
solution.
(iii) If
N
/= _71, flx)do, =0, and / g(y)doy > 0,
2 oD, oD;

then for all 1 < p < mln{N L W2 2} orp = NEQ < %, 1.1))
admits no global weak solution.

(1) Let -8t <0< —1.
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) If faD x)do, > 0, then for alll <p < levi2, (1.1) admits no global
weak solutwn

(i) If faD g(y)doy > 0, then for all 1 < p < £+1’ admits no global
weak solutzon
(I1IT) Let -1</i< O
) If faD x)do, >0, then for all1 < p < {715, admits no global
weak solutwn
(i) If faD g(y)doy > 0, then for all p > 1, admits no global weak
solutzon
(Iv) Let £>0.
) If fBD x)do, >0, then for all 1 < p < {15, admits no global
weak solutwn
(i) If faD g(y)doy, >0, then for all 1 < p < %5, admits no global
weak solution.

Remark 2.16. From Theorem 1ff S Ll(aDl and faD x)do,, > 0, then for

alll € R, g € LY(ODy), and 1 < p < 72, admits no global weak solution.
We can check that the above condltlon is sharp (see Remark [2.12)). Similarly,
condition (IV)-(ii) is sharp (see Remark [2.8)).

In the special case when [, f(z)do, > 0 and [, g(y)do, > 0, we deduce
from Theorem [2.15] the followmg results.

Corollary 2.17. Let Ny, Ny >3, f € LY(0D,), and g € L*(0D5). Suppose that

f(z)doy >0 and / g(y)doy, > 0.
0D

0D
I) Ift < ==, then forall1 < p < 15, ) admits no global weak solution.
3
(In if —1\2'1 < é < —1, then for all 1 < p < €+1’ (1.1) admits no global weak
solution.

(I11) If —1 < £ <0, then for all p > 1, admits no global weak solution.
1IV) If £ > 0, then for all 1 < p < max T , (L.1) admits no global
N = N2 2
weak solution.

Remark 2.18. The nonexistence results given by Theorem [2.15]and Corollary [2:17]
hold for the stationary problem ([2.3)) in the case Ny, Ny > 3.

3. PRELIMINARIES
Let N > 2, k = 1,2. We introduce the following harmonic function defined in
Dy ={z € RNr : 2] > 1}:
Hy(z) = {lln_z|z|2_zvk i ];Z ; :237
We introduce two cut-off functions n,& € C*°([0,00)) satisfying respectively
n=0, n#0, supp(n) C (0,1)

and
0<6<1, €puy=1 ¢l =0.
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For sufficiently large R and A, let

a(t) = n”\(%), t >0,

bia) = ()6 (2]

Y
o) = B (W), yeb,,
where 0,0 > 0 are constants to be chosen later. Consider

er(tz,y) = at)b(z)c(y), (tz,y) € Q. (3.1)

Proposition 3.1. For sufficiently large R, the function @r belongs to the test
function space ®, where ® is defined by (2.1).

Proof. Clearly, we have

), £L'€D1,

er €CZ(Q), »r=>0, ¢rlop,uop, =0.
On the other hand,

Vapr(t,2,y) = a(t)e(y) Ve (Hl(fv)é“(m))

RY
2] 2]
=a(t)c(y) {SA(E)VmHl(x) + Hl(x)Vgﬁg’\(ﬁ)}_
By the definition of Hy, for x € 0D;, we obtain
x if Ny =2,

V., Hi(z) =
(@) {(N1 ~ 9 it Ny > 3.

By the properties of the function £, for © € D1, we obtain (since R is sufficiently
large)

oy =1, e o

R R
Hence, for (¢,z,y) € I'1, we deduce that
GR —alt if Ny =2
PRt 2 y) = a(t)e(y) ) (3.2)
ony —(N1 — 2)a(t)e(y) if Ny >3
Similarly, for (¢,z,y) € 'z, we obtain
0 —a(t)b if Ny =2
VOR (¢ gy = { ODRD) LT < (3.3)
ong —(N2 — 2)a(t)b(x) if Ny > 3.
This shows that ¢ € ®. O
The following estimates follow from standard calculations.
Lemma 3.2. (i) Let o € R and f > —1. As R — oo, we have
1 if o < —2,

/ |2|%(In|2])? dz ~ { (In R)#+1 if = =2,
ERL<|z| <R Re+*2(InR)? ifa > —2.

(ii) Let o, € R. As R — oo, we have

/ 121 (I |2])? dz ~ R***(In R)®.
z€R2:R<|z|<2R
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Lemma 3.3. Let N > 3.
(i) Let a € R and f > —1. As R — oo, we have

1 if a < —N,
/ 2] (1 - |z\2*N)ﬂ dz~{InR if a = =N,
z€RN: z .
ERN:1<|2|<R RN ifa > —N.
(ii) Let o, € R. As R — oo, we have

/ 21 (1= 227)" dz ~ RO
z€RN:R<|z|<2R

Lemma 3.4. Let p > 1. Then
(i) [y a(t)dt=CR.
(i) [ ar T (B)]a”(t)|7T dt = O(R'"7°T), as R — o.
Proof. (i) is immediate, so we omit its proof. On the other hand, we have

_9 x_a/ft
@"(t)] < CR™P 2 (5), te (O.R),

which yields
O ()77 < CRFE 7 (4

), te(0,R).
Then

0o R
—1 P —2p 2p t
av=1 (t)|a” (t)| 71 dthRF/ NPT (=) dt
J [ (7)
1
:C(/ n)‘_%(s)ds)lepfpl,
0

which proves (ii). O
Lemma 3.5. As R — oo, we have

O(R*InR) if Ny =2,
O(R'NY) if N1 > 3;

_ JO(R*IR) if No=2,
AQC(y)dy_{O(RUN2) ZfNQZS (35)

(3.4)

and

Proof. Let N1 = 2. We have

< / In |z| dx.
1<|z|<2R®

Hence, by Lemma (with @« = 0 and 8 = 1), we obtain

/ b(x)dez < CR* In R.
D,
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For Ny > 3, we have
/ b(x) dx g/ (1—]z|>™) da.
Dy 1<|z|<2R?
Using Lemma [3.3] (with a = 0 and 8 = 1), we obtain
/ b(x)de < CROM:,
D,

Therefore, (3.4) is proved. The same argument yields ((3.5)).

Lemma 3.6. As R — oo, we have

—26
_ > =11 if Ny =2
/ bl’ifll|AIb|F de — O<R72;p IIGIR;) Zf 1 )
Dy O(R# M) if Ny > 3;

1 . O(RFTInR) if Ny =2,
—1|A —1 dxr = 20p
/DQC I ycl €L {O(R =1 +UN2) ZfNQZS

and

Proof. By the properties of the function b, we have

/ b1 |Agb|7oT dx = / b1 |ALb|7ET da.
Dy RO <|z|<2R?

Let Ny = 2. For R? < |z| < 2R?, we obtain
A= A, ((nfehe (1))
ln|x|Aw§’\(|x|) +2V,(In|z|) -V ng(m)

1n|x|Az§>‘(| |)+2R “))\| |2£* 1(‘;;l) mé“(‘xl)

where - denotes the inner product in R, which yields

) ol "
8,8 < R In fa] 2(|Ro)+CR el 16 ()

and
bPT| AL 7T
< CR7H ()€1 () 1 R o7 o) =158 (1)
< C(R7 (2 +Rﬁ\x|ﬁ(1n|x|)ﬁ).

Then, by Lemma [3.2] we deduce that

/ b | ALb|7 da
D,

<C (R =y

< 0(R¥*¥ R m R+ 7% R (R

< CR*TInR.

/ ln|$|dm+R%/ |gg|;%’1(1n‘m|)p%11 dsc)
RO <|z|<2R? RO <|z|<2R?

11
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For Ny > 3 and R’ < |z| < 2R?, proceeding as above, and using Lemma we
obtain

BT |Agb| 7T <C<Rv £ (1= |22N) + RoE

(1 faN) )
and

b1 |ALb| 7T do < CR7T / (1— |z ™) da
RO<|z|<2R?

_ _ -1
+Cer’f/ 2 P (1= 2P M) T de
R9<|x\<2R9

< CR;ief’+9N1.
This proves (3.6). Similar calculations yield (3.7). O
The next Lemma follows immediately from Lemmas [3.2] and [3.3]

D,

< (R

Lemma 3.7. (i) Let Ny =2. As R — oo, we have
0O(1) ifp(f+1) <1,
24p
/ 2|75 b() de = 4 O((n R)?) iFplt+1) =1,
Dy

OR*GZ+)ImR) ifp(t+1)> 1.
(ii) Let Ny > 3. As R — oo, we have

o(1) if p(20 4+ Ny) < Ny,
/ M%b(az) dr = { O(In R) if p(2€ + Ny) = Ny,
” O(RPGETM)) if p(20 + Ny) > ;.

Lemma 3.8. As R — oo, we have

O(R'™# 1220 (I R)2) if Ny = N, = 2,
=t - O(R'"=#T+20+oNa InR)  if Ny =2, N, >3
T dy da dt = 42 = 9,
/§le (or)ul 7 dy O(R“FHEHNH2 N R)  if Ny >3, Ny =2,
O(R'~# 1+0N1+20) if N1, N; > 3.

Proof. By (3.1]), we obtain

=L p
o [(@R)u|P~T dydxdt
Q

= ( / a7 (D) (1) 757 di / b(a) de) ( / () dy).
0 Dy
Hence, using Lemmas [3.4] and [3.5] the desired estimates follow. O

Lemma 3.9. As R — oo, we have

O(Rl—ﬁ”” InR)?)  if Ny =Ny =2,
= RI=7 TNz 1y R) if Ny =2,Ny >3
PN op| 7T dy dr dt = ( 268 e

/QSDR | @Rl Y (R1+2a, 20p 19Ny th) if N1 > 3,Ny =2,

le&JrGNH’UNQ) if N1, Ny > 3.

S O O
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Proof. By (3.1), we have

=1 P
/ or | Arpr| 7T dydx dt
Q

0o ) »
([ awat / b | ALD|7ET da / c(y) dy).
() ewa)( [ viamra)( [ )
Using Lemmas and the desired estimates follow. O
Lemma 3.10. As R — oo, we have
O(R'*™#T(InR)A(R)) if Ny = Ny =2,
Rl—*“NZA (R)) if Ny =2,N; >3,

(
20 b -1 0
/Q|33|’”’1 [Ayep| 7T o7=T dy du dt = OERI = (InR)B(R)) if N1 >3,Ny =2,
O(R17 +0'N2B )) if N1, Ny > 3,
where
1 ifp(l+1) <1,
A(R) = { (In R)? ifpl+1)=1,
ROGED IR ifpt+1) > 1;
1 if p(20 4+ Nyp) < Ny, 35

B(R)={InR if p(20 4+ N1) = Ny,

ROGHTND 4f p(20 4+ Ny) > Ny
Proof. By (3.1), we have
2tp. _p_ =1
/Q|:c\p*1 |Ayp|P-Tpr=T dy dx dt

_ (/Oooa(t)dt)(/Dl |x|5£ﬁb(x)dm)(/D2 7 Byl 75T dy).

Hence, using Lemmas and the desired estimates follow. O

Proposition 3.11. Let f € L'(0Dy) and g € LY(8D3). Ifu € LY ([0,00) x D) is
a global weak solution to , then for all p € ®,

a:r‘p 2@({9
doy dy dt —
[ Gt dosdyar — [

<O [ o7 loul dydudt+ [ o7 |Apl7T dydo
Q Q

9(y) dz do, dt

+ / |x|%<pﬁ|Ay<p|ﬁ dy dx dt).

Proof. Let u € L, ([0,00) x D) be a global weak solution to (1.1)). Then by (2.2),
for all ¢ € ®, we have

[P odyazar— [ Z 1) doayar— [ S g(y) o dory i

Q Iy 8”1 s 3

< / u (e — App — [2*Ayp) dyda dt (3.9)
Q

§/ |u||<ptt|dydxdt+/ |u\|Aw<p|dydxdt+/ 2% |ul|A, p| dy dz dt.
Q ) Q
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On the other hand, by Young’s inequality, we obtain
1 = _p_
/ |u||ps| dy do dt < 3 / |ulPo dy dz dt + C/ gopfll |77 dydxdt.  (3.10)
Q Q Q
Similarly, we have

1 —1 P
/|u\|Ax<p|dydxdt§§/ |u|p<pdyda:dt+0/<ppfl|Ax<p|ﬁ dydxdt (3.11)
Q Q Q
and

[ el #5070l dydade

“ _— ) (3.12)

< §/ |u\pcpdyda:dt—|—0/ |z|7=T =T |Ayp|P-T dy dx dt.
Q Q

The desired estimate follows from (3.9)), (3.10]), (3.11), and (3.12). O

4. PROOFS OF MAIN RESULTS

Lemma 4.1. Let Ny = Ny = 2, f € LY(0Dy), and g € L'(0D3). Suppose that
ue LY ([0,00) x D) is a global weak solution to ([I.1)). Then, for sufficiently large

loc
R, we have

R*InR f(z)do, + G(R) / g(y)doy
0D, 0D
< C(R—%+29+20(1n R)?+ R 729 (I R)? + R~77 (In R)A(R)),
where A(R) is given by (3.8)) and
1 if 6 < 1,
G(R) = { (In R)? if 6 =—1, (4.1)
R¥HDInR if 0> —1.
Proof Let u € L{, ([0, 00) x D) be a global weak solution to (1.1)). By Propositions
1 and 3.1} for sufficiently large R, we have

895901%
r, ony

<o [ ek el ™ dydedt+ [ oF | Asprl T dydadt (42

f(z)doy dydt—/F |x\2£a§T@2Rg(y) dz doy, dt

/|93|” 1<PR 1|Ay<PR\P 1 dydxdt)
On the other hand, by (3.1] . . , and Lemma ( ), we obtain

— —— f(x) do, dy dt — T
/F1 oy (z) Y F2| | Oy 9

([N e[ o)
([ () e ha) ([ )

zOR(/ In [yl€*( ‘y' ) dy) / f(x)do, )
1<|y|<2R°

(y) de doy dt
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+ CR</1<w|<2Rs || 2 1n|x\£*(|1§7|) dx) </8D2 g(y)day),

Since

y
[ mblays [ wle(ays [ ay
1<|y|<Re 1<|y|<2R° 1<|y|<2Re

by Lemma [3.2] as R — oo, it follows that

/ In |y|§)‘(%) dy ~ R* InR.
1<|y|<2R®

Similarly, since

||
/ |z|? In || dz < / \x|2£ln|x\§)‘(ﬁ) dx
1<|z|<R? 1<|z|<2R?

< / \m|261n|x\d3:,
1<|z|<2R?

by Lemma [3.2] as R — oo, it follows that
||
/1<| o 2% 1n mgk(ﬁ) dz ~ G(R). (4.3)
Hence, for sufficiently large R, we deduce that

7/ aﬁarf(:c)damdydtf/ 2222 () da doy dt
T T (9n2

0
1 oM (4.4)
> OR(RQ" In R (z)do, + G(R) / g(y)d0y>.
D, 8Dy
Finally, using (4.2), (4.4), and Lemmas and |3.10, the desired estimate
follows. O

Proof of Theorem[2.3. Suppose that u € L}, ([0,00) x D) is a global weak solution
to (1.1]). Let

¢< -1 and (x)dog > 0.
0D

By Lemma and (3.8]), for sufficiently large R, we obtain

(2)do, < C(R™#H MR+ R-# IR+ R™772).
0D

In particular, for # = 1, we have

(2)doy < C(R*p% In R+ R*%*%).
0Dy
Passing to the limit as R — oo in the above inequality, we obtain a contradiction
with |, o, J (x)do, > 0. This shows that admits no global weak solution for
all p > 1.
Let
< —1, (x)doy =0, and / g(y)do, > 0.
oDy 0D>
By Lemma and , for sufficiently large R, we obtain

260

/ g(y)do, < c( “t 2020 (1 RY? 4 RTET T2 (In R)2 + R (In R)).
9D
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Taking 0 =1, 0 < 0 < zﬁ’ and passing to the limit as R — oo in the above
inequality, we obtain a contradiction with [ p, 9(y)doy > 0. This shows that (1.1)
admits no global weak solution for all p > 1. Therefore, part (I) of Theorem is

proved.
Let
¢> -1 and (x)dog > 0.
oD,
Using Lemma [4.1] with 6 = 1 and o > 2(¢ + 1), for sufficiently large R, we obtain

(z)do, < C (R—% IR+ R_%_%A(R)) .
8D1

If p(¢ + 1) < 1, by (3.8)), we have A(R) < (In R)?. Then

(x)do, < C (R—p% IR+ R 712 (In R)2) .
8D1

Passing to the limit as R — oo in the above inequality, we obtain a contradiction
with [, f(@)do, > 0. If p(¢ + 1) > 1, by (B8), we have A(R) = R**1*) I R.
Then

(z)doy < C(R*% R+ R 202 (524 R). (4.5)
0Dy
On the other hand, for o > 2(¢ 4 1), we have

20 —za+2(f—p+1) <0.
p—1 p—1
Hence, Passing to the limit as R — oo in (4.5), we obtain a contradiction with
/. oD, f(x)do, > 0. Then, we deduce that dmits no global weak solution for
all p > 1.
Let

¢>—-1 and / g(y)doy, > 0.
D3

Using Lemma [£.1] with § = 1 and 0 < 0 < £ + 1, for sufficiently large R, we obtain

RPEAD I R /

g(y)do, < C(R*%”"(ln R)?+ R 71 (In R)A(R)),
OD>

that is,
/ g(y)do, < C(R—%”U—W“) In R+ R—%—W“)A(R)).
0D2
If p(¢ + 1) <1, by (3.8)), we have A(R) < (In R)?. Then
/ g(y)do, < C(R—ﬁ“f’—?(“” InR+ R vt 2+ (1 R)Z).
0D

Hence, passing to the limit as R — oo in the above inequality, we obtain a con-
tradiction with [, g(y)do, > 0. If p(¢ +1) > 1, by (3.8), we have A(R) =

R2(p£fp1+1) In R. Then

/ g(y)do, < C( —pEr 220+ ) p oy RS 2D 2(5 5 +1) R). (4.6)
dDs
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Observe that for o > ¢,

20 Ip
p_1—2(e+1)+2(—1+1) <0.

Hence, for max{0,¢} < o < £+1, passing to the limit as R — oo in (4.6]), we obtain
a contradiction with [, p, 9(y)doy > 0. Therefore, we deduce that (1.1)) admits no
global weak solution for all p > 1. Then part (II) of Theorem is proved. O

Lemma 4.2. Let Ny =2, Ny >3, f € LY(0D), and g € L*(0D3). Suppose that
ue LY ([0,00) X D) is a global weak solution to (1.1)). Then, for sufficiently large

loc

7

RoN2 f(x)do, + G(R) / g(y)doy,

6D1 BDQ
< C( Pt2toNayy p o gt toNa g g4 R +UNZA(R)),

where A(R) and G(R) are given respectively by (3.8)) and .

Proof. Let u € Lt ([0,00) x D) be a global weak solution to . By (1), (-2),
(3:3), ([@.3), and Lemma [3.4}(i), for sufficiently large R, we obtaln

a:cSDr 2@8
— | EEr ) do, dy di — da do, dt
[ e oyt~ [ 10l 52 o) o,

([ M@, O WG W) ([ s
PR b G (] a00m)

([ 00, )
+CRG(R)/ g(y)doy.

8D,
Since

[y [ e a
1<|y|<Re° 1<|y|<2R°

< / (1= yP~™2) dy,
1<|y[<2R~

by Lemma [3:3] as R — oo, we have

/1< |<2R (1= W) SA(%) dy ~ RO,
y o

Hence, we deduce that

8z50r 258
— | &P ) do, dy di — dz do, dt
[ e ) docdyat — [ 10l 52 oty o,
> CR(R™ [ fa)do, + G(R) [ g)do,).
8D1 8D2

Finally, using (4.2)), Lemmas and the desired estimate follows. a
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Proof of Theorem [2.6, Suppose that u € Li, ([0,00) x D) is a global weak solution
to (1.1]). Let

< -1 and (2)doy > 0.
9D
By Lemma (13.8), and (4.1)), for sufficiently large R, we obtain
RG‘N2 (1’)de < C(R—%+29+G'N2 InR+ R—%—i—a‘Nz InR+ R_%_,_g]vz)’

8D1
that is,

(z)do, < C(R—%Hf’ InR+ R s 1nR+R—%).
0D

Taking § = 1, we obtain

(z)doy < C(Rﬂ% In R + R*%).
0D
Passing to the limit as R — oo in the above inequality, we obtain a contradiction
with [, f(z)do, > 0. Hence, for all p > 1, admits no global weak solution.
This proves parts (I)-(i) and (II)-(i) of Theorem [2.6] Let

¢> -1 and (x)doy > 0.
9D,
Using (4.1)) and Lemma with § =1 and ¢ > £+ 1 (so oNa > 2(¢ + 1)), for
sufficiently large R, we obtain

RN (2)do, < O(R*%”N? IR+ R’%“’N?A(R)),
0D,

that is,

(z)do, < C (Rw% In R + R’%A(R)) .
oD,

If p(¢ + 1) <1, then by (3.8)), we have A(R) < (In R)?. Then
(z)do, < C (R—p% InR+ R 7% (In R)2> .
Dy
Passing to the limit as R — oo in the above inequality, we obtain a contradic-
tion with [, f(z)do, > 0. If p(¢ +1) > 1, then by (3.8), we have A(R) =
R*GGZ ) In R. Then

(z)do, < C (R—ﬁ InR+ —%“(%“)) . (4.7)
D,
Notice that for o > ¢ + 1,

Hence, passing to the limit as R — oo in (4.7), we obtain a contradiction with
faDl f(z)do, > 0. Then, we deduce that for all p > 1, (1.1)) admits no global weak
solution. This proves part (III) when faDl f(z)do, > 0, and part (IV)-(i).

Let

¢ < -1 and (x)do, =0, / g(y)doy, > 0.
0D, 0D
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In this case, by Lemma [4.2] (3.8), and (4.1)), for sufficiently large R, we obtain

/ g(y)do, < C’( — 22 420+0 N, lnR_’_R—pzfsl-‘rUNz lnR_FR—j%JmNQ).
9D

In particular, for # = 1, we have

/ 9(y)doy < C(R*ﬁ”Nz In R+ R*”(%*Nﬂ).
0D>

Let 1 <p< NJQVEQ. Taking 0 < 0Ny < %, and passing to the limit as R — oo in

the above inequality, we obtain a contradiction with [, oD g(y)do, > 0. Hence, for

all 1 <p< N12\/327 (1.1) admits no global weak solution. This proves part (I)-(ii) of

Theorem 2.6
Let

¢{=-1 and f(x)do, =0, / g(y)do, > 0.
8D1 8D2

In this case, by Lemma [4.2] (3.8), and (4.1)), for sufficiently large R, we obtain
260

(In R)>2 / g(y)do, < C(R—%“““Nz IR+ R it N R 4 R—%“’NZ),
0D

that is,

/ 9(y)doy
ODo
< c( “pti 20N (1 )1 4 RRTtON2 (In R) L+ RS Tt N2 (I R)‘2>.

In particular, for § = 1, we obtain

/ 9y)do, < € (R7TH N (m )~ 4+ R7V2 =) (n B)~2)
OD>

Let 1 <p < NJQViQ. Taking 0 < 0Ny < %, and passing to the limit as R — oo in

the above inequality, we obtain a contradiction with [, p, 9(y)doy > 0. Hence, for
alll <p< N];/iw (1.1) admits no global weak solution. This proves part (II)-(ii).
Let

—-1<¢<0 and / g(y)do, > 0.
ODo

By (4.1) and using Lemma [4.2] with § = 1 and 0 < 0Ny < 2(¢ + 1), for sufficiently
large R, we obtain

R2(€+1) IHR/

g(y)do, < C(R-%“N? IR+ R”(Nr%)A(R)),
8D2

that is,
/ g(y)do, < c( SRR toNa =200 1y oy gr(Nam3) 2D g(R)). (4.8)
oD,
If p(¢ +1) <1, by (3.8) we have A(R) < (In R)?. Then

/ gly)do, < C(R™7T+oNa=2E 0 1y gy r(Na=320) =260 (1 )2
ODo
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Passing to the limit as R — oo in the above inequality, we obtain a contradiction
Lp

with [, g(y)do, > 0. If p(¢ +1) > 1, by B8) we have A(R) = R*FT*) n R,

Then

/ 9(y)do,
aDs (4.9)

S C( —ﬁ—‘ra‘Nz—Q([—‘rl) 1nR+ RU(NQ—%)—Q(Z-‘,-l)-‘rQ(%—‘rl) In R).

Observe that for 0 < oNy < I%Qf (s0 0 < 0Ny < min{2(¢+ 1), ;%f}), we have

2 14 1
0<N2 _ 71’) —2(+1) +2(—p +1) < oNy—2(6+1) +2(7p +1) <0.
p—1 p—1 p—1
Hence, passing to the limit as R — oo in (4.9), we obtain a contradiction with
J. 9D, g(y)doy, > 0. Consequently, (|1.1) admits no global weak solution for all p > 1.
This proves part (III) in the case [, g(y)do, > 0.
Let
£>0 and g(y)do, > 0.
0D
As previously, by (4.1)) and using Lemma with 6 =1 and 0 < o Ny < 2(€ + 1),
for sufficiently large R, we obtain (4.8]). Moreover, since £ > 0 and p({+1) > p > 1,
I3

by (3.8) we have A(R) = Rr2GE In R, and (4.9) holds. Observe that for all
1<p< 25,

a(Nz—%) — 20+ 1)+2(%+1) <0.

Hence, passing to the limit as R — oo in (4.9), we obtain a contradiction with

faDg g(y)doy > 0. Consequently, for all 1 < p < %, (1.1) admits no global weak

solution. This proves part (IV)-(ii). The proof of Theorem is complete. O

Case N; > 3 and N, = 2. Proceeding as in the proofs of Lemmas [I.1] and [1.2] we
obtain the following estimate.

Lemma 4.3. Let Ny >3, Ny =2, f € LY(0D,), and g € L*(0D5). Suppose that
u e LY ([0,00) x D) is a global weak solution to (L.1). Then, for sufficiently large
R,

R**InR (x)doy + G(R) / g(y)doy
0D, 9D
< C(RT#HNT I Ry 7N R+ R (nR)B(R) ),

where B(R) is given by (3.8)) and
. Ny
1 Zf[ < _N77
G(R)={InR ift=-2, (4.10)
R9(2€+N1) ng > 7%'

Proof of Theorem [2.11] Suppose that u € L}, ([0,00) x D) is a global weak solution
to (1.1]). Let

N-
(<-=L and (x)doy, > 0.
2 oD,
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Then, by Lemma [£.3] for sufficiently large R, we obtain

R*InR (x)doy
0D

< C(R’%“’Nl“" In R+ R2 55Ny R 4+ R™7%% (In R)B(R)),

that is,

(x)dox <C (Rf%+0N1 =+ R*%%»GNl _’_Rf%f&TB(R)) )
dD4

In particular, for § = 1, we obtain

| @), < C (R’%JFM + R’%’Q"B(R)) . (4.11)
1

Notice that in this case, p(2¢ + N;) < 0 < N;. Hence, by (3.8]) we obtain

(2)do, < C (RTFTHM 4 R38727).
0D

For 1 < p < leviQ’ passing to the limit as R — oo in the above inequality, we

obtain a contradiction with | op, J (x)do, > 0. Consequently, (1.1]) admits no global
weak solution for all 1 < p < <M_. This proves part (I) of Theorem when

N1-2
Jop, f(@)da, > 0.
Let

N-
> —71 and (x)doy > 0.

0D
In this case, using Lemma with @ = 1 and 20 > 2¢ + N;, for sufficiently large
R, we obtain (£11). Let 1 < p < 5. If p(20+ N1) < Ny, by (3.8) and @11 we
have B(R) <In R and

(z)do, < C (R—%Wl + Ry R) .
oD

Then, passing to the limit as R — oo in the above inequality, we obtain a contradic-
24p

tion with [, f(x)doy > 0. If p(20+Ny) > Ny, by (3.8) we have B(R) = R»-1"™.

Then

(x)daz S C(R_%J’_Nl + R_%_QU""%-i-Nl).
0Dy

Taking 20 > ]% + Ny (so 20 > max{2(+ Ny, 1% + N1 }) and passing to the limit as

R — 00 in the above inequality, we obtain a contradiction with |, oD, f(z)do, > 0.
Consequently, (1.1) admits no global weak solution for all 1 < p < levly This
proves parts (II)-(i) and (IIT)-(i).

Let

N-
(< ~1 and (z)do, =0, / g(y)day > 0.
2 8D, ODs

By Lemma and (3.8]), for sufficiently large R, we obtain

/ g(y)do, < C (R’%”}Nl“" MR+ R+ 5N R4+ R 7 In R) .
ODs
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In particular, for § = 1, we have
/ g(y)do, < c( “rr N2 Ry R In R).
8D2

Hence, for 1 < p < 15, taking 0 < 20 <53 — N; and passing to the limit as
R — oo in the above mequahty, we obtain a contradlctlon with f oD, g(y)do, > 0.

Consequently, (|1.1)) admits no global weak solution for all 1 < p < lev L. This

proves part (I) of Theorem when fé)Dl f(z)do, =0 and fé)D g(y)doy, > 0.
Let

N
—“L<t<-1 and / g(y)doy, > 0.
2 ODo

Using Lemma [£:3] with § = 1 and 0 < 20 < 2¢ + Ny, for sufficiently large R, we
obtain

RN [ g(y)do, < O (RN 20 0 Ry R+7T (W R)B(R) ),
oD Y
that is

/ g(y)do, < C(R’ﬁ”" 2R+ R Nl(mR)B(R)). (4.12)
9D
Let 1 < p < 4. If p(20 + Ny) < Ny, by (3.8) we have B(R) < InR. Then
/ g(y)do, < C (R—%“"—2Z In R+ R 752N 1p R)2> . (4.13)
8D2

Taking 0 < 0 < £+ ;5 (so 0 < 20 < min{2¢ + Ny, 2(¢ + ;E5)}) and passing

to the limit as R — oo in the above inequality, we obtain a contradiction with
2¢

faD g(y)doy, > 0. If p(2¢ + Ny) > Ny, by (3.8) we have B(R) = R»-1tV1 Then

/ g(y)do, < C ( P t20-20 Ry Rt (1 R)) (4.14)
0D>

Taking 0 < o < ¢ +5 ~£- and passing to the limit as R — oo in the above inequality,
we obtain a contradlctlon with [ oD g(y)do, > 0. Hence, we deduce that .

admits no global weak solution for all 1 < p < e%' This proves part (II)-(ii) of

Theorem 2.111
Let

£> -1 and / g(y)doy, > 0.
9Dy

As in the previous case, using Lemma 3] with & = 1 and 0 < 20 < 20+ Nl, for

sufficiently large R, we obtain (4.12) pr 2€+N1) < Ny, by (3.8 We obtain .
Notice that in this case, E + p > 0 So, taking 0 < o < £ + 7 and passing to

the limit as R — oo in (4.13)), we obtain a contradiction with f8D2 g(y)do, > 0.
If p(2¢ + Ny) > Ny, we obtain (4.14), and the same conclusion as above follows.

Consequently, (1.1) admits no global weak solution for all p > 1. This proves part
(IT1)-(ii). The proof of Theorem is complete. O
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Case Ni, N, > 3. Proceeding as in the proofs of Lemmas [4.1] and [£.2] we obtain
the following estimate.

Lemma 4.4. Let N;,No > 3, f € LY(0D,), and g € L' (OD5). Suppose that
u € LP ([0,00) x D) is a global weak solution to . Then, for sufficiently large

R,
RUNQ( - f(a:)daw) +Q(R)( /8 . 9(?/>d‘7y>

<C (R—%+9N1+0N2 +R_%+6N1+UN2 + R—%-HTNQB(R)) ,

where B(R) and G(R) are given respectively by (3.8) and (4.10)).

Proof of Theorem [2.15, Suppose that u € L}, ([0,00) x D) is a global weak solution
to (1.1]). Let

loc

N
(< -1 and f(x)doy > 0.
2 oD,

Then by Lemma (13.8), and (4.10)), for sufficiently large R, we obtain
f(x)do, < C ( P HON | Rt tON B )

oD,
In particular, for § = 1, we have

f(@)do, < C (R—ﬁ““ + R—*) .
dD;

Hence, for 1 < p < {5, passing to the limit as R — oo in the above inequality,
we obtain a contradlctlon with f 8 o,/ (x )daw > 0. Therefore, ([1.1f) admits no global

(I)-(i) of Theorem m

Let

N
¢>-=1 and f(x)doy > 0.
2 oD,
In this case, using Lemma with # = 1 and oN; > 2¢ + Ny, by (4.10), for

sufficiently large R, we obtain

f(@)do, < C (R-#1+N 4+ B35 B(R)).
0D,

Let 1 <p

(20 + N7) < Ny, by (3.8) we have B(R) < In R. Then

f(x)do, < C (R—%Wl + R 1nR) .
8D1

Passing to the limit as R — oo in the above inequality, we obtain a contradlctlon
with [, f(z)doy > 0. If p(2¢ + N1) > Ny, by (3.8) we have B(R) = RN
Then

f( )dO’x<C’<R =1 TV + R 2”P+21’p+N1)
0D,

Taking o > ¢ + Mpl) (so 0Ny > max{2¢ + Ny, No({ + %1))} and passing
to the hmlt as R — oo in the above 1nequahty, we obtain a contradiction with
/. oD, dcrg,c > 0. Then, we deduce that (| admits no global weak solution for

all 1 <p< i (I1)-(i ) (IH) (i), and (IV)-(i) of Theorem [2.15}
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Let
Ny
{<—— and f(x)do, =0, / g(y)do, > 0.
2 8D1 8D2

In this case, using Lemma (13.8), and (4.10)), for sufficiently large R, we obtain
/ g(y)do, < C(R*ffpl”Nl*”Nz £ RTpETONioNz R*%“Nz).
OD<
In particular, for # = 1 we have

/ 9(y)doy < C(R*%Wﬁwva I Rfj%qug).
dD>

Hence, for 1 < p < mim{%7 %}, taking 0 < oNs < % — N;p and passing
to the limit as R — oo in the above inequality, we obtain a contradiction with
Js b, 9(y)doy > 0. Consequently, (L.1) admits no global weak solution for all 1 <
p< min{%, %} This proves part (I)-(ii) of Theorem
Let
Ny

{=——and f(x)do, =0, / g(y)do, > 0.
2 oD, D>

Using Lemma [4.4] with 6 = 1, (3.8), and (4.10), for sufficiently large R, we obtain

InR g(y)do, < C(R*%JerJmNQ + R*z%pl“ro'NQ)?
aDs

that is,
/aD gy)doy < C(R-FHHNFTN (1 R)~1 4 RN 1 )71,
2

No

Hence, for 1 < p < min{%,%} orp =74 < %, taking 0 < oNy <
2p_

P N; and passing to the limit as R — oo in the above inequality, we obtain

a contradiction with [, 2D, g(y)do, > 0. Therefore, (1.I)) admits no global weak

solution for all 1 < p < min{%7 %} orp= % < % This proves part

(D-(ii). -
Let

N
—“L<clt<-1 and g(y)do, > 0.
2 oD

In this case, using (4.10) and Lemma with 6 =1 and 0 < 0Ny < 20 + Ny, for
sufficiently large R, we obtain

RN [ g)do, < 0 (RPN 4 i)
ODo
that is,

/ g(y)do, < C’( — 2P+ Ny —2¢ +R—%+UN2—2€—NlB(R)).
0D
Let 1<p< “_Ll. If p(2¢ + N1) < Ny, by (3.8) we have B(R) < In R. Then

20p

/ g(y)do, < C(R’%”NQ’% 4+ RpSioNa—20=N R). (4.15)
0Dy
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Taking 0 < 0Nz < 2({+ ;27) (so 0 < oNo < min{2¢+ Ny, 2(¢+ £5)}) and passing

to the limit as R — oo in the above inequality, we obtain a contradiction with
2¢

faDg g(y)doy, > 0. If p(2¢ + Ny) > Ny, by (3.8) we have B(R) = R»-1TN1, Then

20p

/ g(y)do, < C (R7%+0N272Z n R7F+JN272Z+%) ) (4.16)
oD

Similarly, taking 0 < 0Ny < 2(£+527) (s0 0 < 0Nz < min{20+Ny, 2((+-25)}) and
passing to the limit as R — oo in the above inequality, we obtain a contradiction
with |, 2D, g(y)do, > 0. Hence, (1.1) admits no global weak solution for all 1 < p <

Hil' This proves part (IT)-(ii).

Let

—1<¢<0 and g(y)do, > 0.
ODo

We use Lemma[d.4with § = 1 and 0 < 0Ny < 2+ Nj. Proceeding as in the previous
case, if p(2¢4+ N7) < Ny, for sufficiently large R, we obtain (4.15). Notice that since
¢ > —1, one has £ + ;5 > 0. Hence, taking 0 < 0Nz <2({+ ;£5) (s0 0 <Nz <
min{2¢+ Ny, 2(¢+ £7)}) and passing to the limit as R — oo in (4.15)), we obtain a
contradiction with fBDz g(y)doy, > 0. If p(20+ N1) > Ny, then for sufficiently large

R, (#16) holds. Taking 0 < oN» < —-24 = min{—-25,2(¢ + ;27),2¢ + N1} and
passing to the limit as R — oo in (4.16)), the same conclusion follows. Consequently,
(1.1)) admits no global weak solution for all p > 1. This proves part (III)-(ii).

Let

£>0 and / g(y)do, > 0.
0D

Using (3.8), (4.10), and Lemma with @ = 1 and 0 < 0Ny < 20+ Ny, for
sufficiently large R, we obtain 14.16:. For 1 < p < %, taking 0 < oNy <
2(+ 357) (s0 0 < 0Nz < min{20 + Ny,2(¢ + ;£5)}) and passing to the limit as
R — oo in (4.16]), we obtain a contradiction with f8D2 g(y)doy, > 0. Hence, (1.1))

admits no global weak solution for all 1 < p < N];[32. This proves part (IV)-(ii).

The proof of Theorem [2.15]is complete. O
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