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Removable singular sets of fully nonlinear elliptic
equations *

Lihe Wang & Ning Zhu

Abstract

In this paper we consider fully nonlinear elliptic equations, including
the Monge-Ampere equation and the Weingarden equation. We assume
that

F(D*u,z) = f(z) z€Q,
u(z) =g(z) =€ 9N

has a solution u in C?(Q) N C(Q), and

F(D*v(z),z) = f(z) z€Q\S,
v(z) =g(x) x €0

has a solution v in C%(Q\ S)NLip(2)NC(Q). We prove that under certain
conditions on S and v, the singular set S is removable; i.e., u = v.

1 Introduction

Removability of singularities of solutions to elliptic equations has studied ex-
tensible. Known results include the fact that isolated singularities of bounded
harmonic functions are removable. Jorgens [4] stated the related result that
the isolated singularity of the Monge-Ampere equation, in two dimensions, is
removable if the solution is C! along a curve passing though the singularity.
Jorgens’ result was extended in 1995 by Beyerstedt [1] who considered isolated
singularity for general equations in n-dimensions.

In this paper, we use rather elementary tools to prove removability of singular
sets in arbitrary dimensions . Our result for the Monge-Ampere equation is
optimal, as shown by the examples in [2].
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The Maximum Principle. In this paper, we use a generalized version of the
Aleksandroff Maximum Principle (see Lemma 2 below). Let us start out with
the following lemma.

Lemma 1 Let B = {z: Tv(x) = v(x)}, where
Tu(z) = sup{w(z) : w is conver and w < v on Q}.
If v € Lip(Q) and v|sq > 0, then {p: |p| < M/D} is contained in the set

{p : p is normal of the tangent plane of z(x) = v(z) at some xy € B}.

Proof. For each p satisfying |p| < M/D, suppose that v take its minimum at
xo, and v(xg) = —M. Consider the plane 7 defined by

Tpy1 = —M+p-(x—x0).
When x € 02, we have
< —M+|p-(z— o)
< —-M+|p/D<O.

But min pertiain v(z) > 0, so that, —M *p- (x —x0)|oa < v(x)|an. We can take
My < —M such that for all z € Q2 we have

Mo+p-(x—x0) <v(z)
and for all M’ > My, there exist z; € §, such that
M +p- (21 —x0) > v(21) -
We can also prove that the set
G={z:Mo+p-(x—2x0) =v(z)}

satisfies G C B. In fact, if there is a point y € G with y ¢ B, then I'v(y) <
v(y) = Mo +p-(y —xo). The set G1 = {y: Tw(y) < v(y),y € Q} is open in .
Since v(y) > v(y),y € G1, we can take

, | Tw(x) x ¢ G
Fv(x){Mo—l—p'(J}—J}o) reGy.
Then I'v is convex, and I'v < v,I"v(z) > T'v(z) for x € Gy, which is a

contradiction to the definition of I'v. Therefore, G C B and the present proof
is complete.

Lemma 2 Foru € Lip(R?), u|sq > 0, and ming u = M < 0, there is a constant
C depending only on the domain 2 and n, such that

—minu < C[(/ det D*u(z) dz) A (meas{Vu(z)|lz € SN B})l/n ,
Q B\S

where B is the set {z : Tu(z) = u(z)}, S = {z : D*u(x)does not exist }, and
Vu(zo) denotes all p € R™ satisfying

p(x—x0) +u(zo) <ulz).
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Proof. By Lemma 1, we have

]l/n

—minu < [meas{p : p is normal to the tangent plane at € {Tu = u}}

Q - KM

_ D ( meas{Vu(z) : z € {T'u = u}, D*u(z) exits })l/n

1/n
n

+meas{Vu(z) : z € {Tu = u}, D*u(z) does not exist }1/™
D

= 7 (/{Fu:u}\s det D%y dx)

( meas{Vu(z) : z € {T'u = u}, D*u(z) does not exist})l/n

1/n

+—
KLm

where D = dim 2, and K, is the volume of the unit ball in R™.

2 Main Theorem

Using the Lemmas 1 and 2, we can prove the following theorem.

Theorem 1 Let F(A,x) be a function defined on a convex cone C of symmetric
matrices S™, which satisfies the following conditions:

1. For A and B in C with A > B, F(A,z) > F(B,z).
2. The equation

F(D?u(z),z) =0 z€Q,
u(z) =g(z) =€

has a solution u in C*(Q) N C().
Also assume that v € C%(Q\ S) N Lip(Q) N C(Q) is a solution to

F(D*v(z),z) =0 z€Q\S,
v(z) =g(x) =z €9,

where S CC Q satisfies
1. The dimension of S is | with I < n.

2. For every x € S, there are | + 1 independent C? curves {r,;} through ,
with i € {1,2,---,1+ 1}, such that v(ry;) € CL.

Then v is in C?, satisfies the equation in Q, and u(x) = v(z).
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Proof. Let w(z) = u(z) —v(z). Then w(x)|zcan = 0. Suppose ming w < 0.
Then

1/n
—infw < C [/ det(D?w(x)) dx
Q {Tw=w}\S

+C [meas{Vw(z) : x € SN {Tw = w}}"" .

If there is 79 € {T'w = w}\ S such that det(D?w(xg)) # 0, then by the convexity
of Tw, D*w(xo) > D?*Tw(zo) > 0. So D*w(xg) > 0, or D?u(zo) > D?*v(xg). By
the structure conditions on F' we have

0 = F(D*u(z0),z0) > F(D*v(x0),20) =0

which is a contradiction.
Next, for o € SN{Tw = w}, there are [ + 1 independent C? curves through
T satisfying v(r,,:(t)) € C1, with i = 1,2,---,1+ 1. Without loss of generality,

we can assume that r,,;(0) = xo for ¢ = 1,2,---,1 + 1. Then for any p €
{Vw(zo)} ={p: w(ze) +p- (x —x0) < w(x)} we have
d

p (rxoi(())) :Ci(xo) for 1 = 1,277l+1

dt

Since r4,;(t) are independent, we obtain that {Vw(zg)} is a subset in the n —
(I + 1) dimensional space. We have that

meas,{Vw(z) : z € SN{Tw = w}}
< measy[{z € SN{Tw=w}} x {Vw(z)}].
From
dimS + dim {Vw} =1+ n—-Il-1)=n—-1<n,
and the boundedness of |Vw(z)|| and of S, we conclude that
meas{Vw(z)|z € SN{Tw=w}} =0,
which implies that

—infw <0,
Q

which, in turn, allows us to see that w > 0 or u > v. In a similar way, we can
prove that
u<wv.

Thus u = v. This completes the present proof.

For the Monge-Ampere equation, we have the following corollary
Corollary 1 Suppose that

det(D%*u(z)) = f(z) =€,
u(z) =g(z) =€
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has a convex solution u € C*(Q) N C(Q), and suppose that

det(D%*v(z)) = f(x) z€Q\S,
v(z) =g(x) z €0

has a convez solution v € C%(Q\ S)NLip(Q)NC(Q). Also assume that S CC
satisfies

1. The dimension of S is | with | < n.

2. For every x € S, there are | + 1 independent C? curves {ry;} through z,
with i € {1,2,---1+ 1}, such that v(ry;) € Ct.

Then v is in C?, satisfies the above equations in Q, and u(z) = v(x).

Remark It is straight forward to prove this Corollary the above equation with
a Vu term added.
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