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REGULARIZATION OF A DISCRETE BACKWARD PROBLEM
USING COEFFICIENTS OF TRUNCATED LAGRANGE

POLYNOMIALS

DUC TRONG DANG, NGOC LIEN TRAN

Abstract. We consider the problem of finding the initial temperature u(x, 0),
from a countable set of measured values {u(xj , 1)}. The problem is severely

ill-posed and a regularization is in order. Using the Hermite polynomials and

coefficients of truncated Lagrange polynomials, we shall change the problem
into an analytic interpolation problem and give explicitly a stable approxima-

tion. Error estimates and some numerical examples are given.

1. Introduction

Let u = u(x, t) represent a temperature distribution satisfying the heat equation

ut −∆u = 0 (x, t) ∈ R× (0, 1). (1.1)
The backward problem is of finding the initial temperature u(x, 0) from the final
temperature u(x, T ). For simplicity, we shall assume that T = 1. This is an ill-posed
problem and has a long history [3]. This problem has been considered by many
authors, using different approaches. The problem was studied intensively by the
semi-group method associated with the quasi-reversibility method and the quasi-
boundary value method; see for example [1, 2, 5, 7, 15, 22, 23, 12, 16, 13, 9, 26].
Using the Green function, we can transform the heat equation into

u(x, t) =
1

2
√
πt

∫ ∞

−∞
u(ξ, 0)e−

(x−ξ)2

4t dξ, x ∈ R, t > 0.

Hence
1√
π

∫ ∞

−∞
u(2ξ, 0)e−(x−ξ)2dξ = u(2x, 1).

In this form, we can consider the backward problem as the inversion Gaussian
convolution (or Weierstrass transform) problem of finding u(2x, 0) from its image
u(2x, 1). Many inversion formulae for the Gauss transform were given in [18, 19,
20, 21]. In [13], using the reproducing kernel theory, the authors gave analytical
inversion formulas which is optimal in an appropriate sense. In the latter paper, the
case of nonexact L2-data was studied and some sharp error estimates were given.
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Very recently, in [14], using the Paley-Wiener space and sinc approximation, the
authors established a powerful practical numerical and analytical inversion formulas
for the Gaussian convolution that is realized by computers. In [6, 27], the inversion
Weierstrass transform for generalized functions was studied.

In practical situations, we get temperature measurements only at a discrete set
of points, i.e.

u(xj , 1) = µj . (1.2)
So, the problem of finding the initial temperature from discrete final values is
necessary. In this case, the problem is severely ill-posed. Hence, a regularization
is in order. However, the literature on this direction is very scarce. In [17], the
authors used the shifted-Legendre polynomial to regularize a discrete form of the
backward problem on the plane. However, the assumption that the temperature
u(x, y) is of order e−(x2+y2)α(x,y)

(limx,y→−∞ α(x, y) = +∞) is very restrictive. In
the present paper, the condition is removed completely.

As discussed, in the present paper, we shall consider a discrete form of the
inversion problem for the Weierstrass transform

Wv(xj) ≡
1√
π

∫ ∞

−∞
v(ξ)e−(

xj
2 −ξ)2dξ = µj . (1.3)

where v(ξ) = u(2ξ, 0). For the rest of this paper, we shall denote by Wv the
sequence (Wv(xj)).

Before going to the content of our paper, we shall give some definitions. In this
paper, we denote

L2
ρ(R) = {f : R → R : f is Lebesgue measurable and e−x2/2f ∈ L2(R)}.

The latter space is a Hilbert space with the norm

‖f‖ =
( ∫ ∞

−∞
|f(x)|2e−x2

dx
)1/2

and the inner product

〈f, g〉 =
∫ ∞

−∞
f(x)g(x)e−x2

dx, for f, g ∈ L2
ρ(R).

We also denote
`∞ = {µ = (µj) : µj ∈ R, sup

j
|µj | <∞}

with the norm ‖µ‖∞ = supj |µj |.
For R > 0,we denote BR = {z ∈ C : |z| < R} and CR = {z ∈ C : |z| = R}. We

also denote by H1(BR) the Hardy space of functions

ψ(z) =
∞∑

n=0

αnz
n

analytic on the disc BR with the norm

‖ψ‖2H1(BR) =
∞∑

n=0

|αnR
n|2 <∞.

Using the Parseval equality, we can rewrite the latter norm in another form

‖ψ‖2H1(BR) =
1
2π

∫ 2π

0

|ψ(Reiθ)|2dθ.
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If |ψ(Reiθ)| ≤M for every θ ∈ [0, 2π] then the latter equality gives

‖ψ‖2H1(BR) ≤M.

Let v be an exact solution of (1.3), we recall that a sequence of linear operator
Tn : `∞ → L2

ρ(R) is a regularization sequence (or a regularizer) of Problem (1.3) if
(Tn) satisfies two following conditions (see, [10])

(R1) For each n, Tn is bounded,
(R2) limn→∞ ‖Tn(Wv)− v‖ = 0.

The number “n” is called the regularization parameter. From (R1), (R2), we can
obtain

(R3) For ε > 0, there exists the functions n(ε) and δ(ε) such that limε→0 n(ε) =
∞, limε→0 δ(ε) = 0 and that

‖Tn(ε)(µ)− v‖ ≤ δ(ε)

for every µ ∈ `∞ such that ‖µ−Wv‖∞ < ε.
The number ε is the error between the exact data Wv and the measured data µ.
For a given error ε, there are infinitely many ways of choosing the regularization
parameter n(ε). In the present paper, we give an explicit form of n(ε).

The remainder of the paper is divided into three sections. In Section 2, we shall
transform the problem into an analytic interpolation problem and prove a unique-
ness result. In Section 3, we shall find regularization functions by an association
between Hermite polynomials and coefficients of Lagrange polynomials. Finally, in
Section 4, some numerical examples are given.

2. Reformulation of the problem and the uniqueness

Using Hermite polynomials (see [4, P. 65]) we can write

e−(z−ξ)2 =
∞∑

n=0

1
n!
e−ξ2

Hn(ξ)zn,

where we recall that

Hn(ξ) = (−1)neξ2 dn

dξn
e−ξ2

,

〈Hn,Hm〉 = δmn

√
π2nn!

where δmn = 0 when n 6= m and δnn = 1. We shall find a sequence (an) such that

v(ξ) = u(2ξ, 0) =
∞∑

n=0

anHn(ξ)

satisfies (1.3). From the orthogonality of {Hn} in the space L2
ρ(R) ,we can substitute

the latter expansion into (1.3) to get

µj =
∞∑

n=0

anx
n
j .

Now, if we put

φ(v)(z) =
∞∑

n=0

anz
n, (2.1)
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then we have
φ(v)(xj) = µj . (2.2)

Hence, the problem is reformulated to the classical one of finding the sequence (an)
(and of constructing a function v) from the prescribed values (µj) such that φ(v)(z)
satisfies (2.2). We first give some properties of the function φ(v).

Lemma 2.1. Let v(x) = u(2x, 0) be in L2
ρ(R). If v has the expansion

v(ξ) =
∞∑

n=0

anHn(ξ)

then
√
π

∞∑
n=0

|an|22nn! <∞ (2.3)

and that the function φ(v)(.) is an entire function of order ρ ≤ 2. Here we recall
that the order of an entire function f is the number

ρ = lim sup
r→∞

ln lnMf (r)
ln r

where Mf (r) = max|z|=r |f(z)|.

Proof. As mentioned before, 〈Hn,Hm〉 = δmn
√
π2nn! where δmn = 0 for m 6= n

and δmm = 1. Since

v(ξ) =
∞∑

n=0

anHn(ξ)

we get
√
π

∞∑
n=0

|an|22nn! = ‖v‖2 <∞. (2.4)

Now we prove that φ(v) is an entire function. In fact, we consider the power series

φ(v)(z) =
∞∑

n=0

anz
n.

From (2.4), one has

|an|2 ≤
‖v‖2

2nn!
.

It follows that
lim

n→∞
n
√
|an| = 0.

Hence, the power series has the convergent radius R = ∞, i.e., φ is an entire
function. Now, we estimate the order of the entire function φ. We note that the
order ρ of φ can be calculated by the following formula (see [11, P. 6])

ρ = lim sup
n→∞

n lnn
ln(1/|an|)

.

From (2.4), one has
1/|an|2 ≥ C2nn!

where C = ‖v‖−2. On the other hand, we have the Stirling formula (see [24, P.
688])

n! =
√

2πnnne−neθn ,
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where
1

12(n+ 1)
≤ θn ≤

1
12(n− 1)

.

Hence

2nn! ≥
√

2πn(2/e)nnn.

It follows that

ln(1/|an|2) ≥ C1(1 + ln lnn+ n ln(2/e)) + n lnn

where C1 is a generic constant. Hence

ρ = lim sup
n→∞

2n lnn
ln(1/|an|2)

≤ lim sup
n→∞

2n lnn
C1(ln lnn+ n ln(2/e)) + n lnn

= 2.

This completes the proof of Lemma 2.1. �

Now we have a uniqueness result.

Theorem 2.2. Let δ > 0. If

∞∑
n=1

1
|xn|2+δ

= ∞

then Problem (1.3) has at most one solution v ∈ L2
ρ(R).

The latter condition means that the sequence (xn) has an accumulation point on
the extended real axis R ∪ {±∞}. Moreover, if the accumulation point is ∞ then
the sequence (xn) has to be “dense enough” near ∞.

Proof. Let v1, v2 ∈ L2
ρ(R) be two solutions of (1.3). Putting v = v1 − v2 and

assuming that v =
∑∞

n=1 anHn, we shall get as in the beginning of Section 2

φ(v)(xj) = 0, j = 1, 2, . . .

where φ(v) =
∑∞

n=1 anz
n. It follows that xj ’s are zeroes of the entire function φ. If

xj ’s has a finite accumulation point then the identity theorem shows that φ(v) ≡ 0.
If xj ’s do not have any finite accumulation points, we can assume, without loss of
generality, that |x1| ≤ |x2| < . . . . and limj→∞ |xj | = ∞. Since the order of φ(v) is
≤ 2, we get (see [11, P. 18])

inf
{
λ|

∞∑
n=1

1
|xn|λ

<∞
}
≤ ρ ≤ 2.

It follows that
∞∑

n=1

1
|xn|2+δ

<∞

which is a contradiction. Hence, in either cases, we have φ(v) ≡ 0. It follows that
an = 0, n = 1, 2, . . . . This completes the proof. �
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3. Regularization and error estimate

For the rest of this article, we shall assume that there exists an R > 0 such that
supj |xj | < R. Put ωn(z) = (z − x0) . . . (z − xn) and µ = (µj) ∈ `∞. We denote by
Ln(µ) the Lagrange polynomial of degree (at most) n,i.e.,

Ln(µ)(z) =
n∑

j=0

µj
ωn(z)

ω′n(xj)(z − xj)

which satisfies Ln(µ)(xj) = µj . Now, we denote by l(n)
j (µ) the coefficient of zj in

the expansion of the Lagrange polynomial Ln(µ), i.e.

Ln(z)(µ) =
n∑

j=0

l
(n)
j (µ)zj . (3.1)

We shall construct a regularization sequence. We denote by k0n the greatest integer
satisfying

n ln
(3
2
)
> (2k0n + 1) ln k0n. (3.2)

We can verify easily that limn→∞ k0n = ∞. We choose a sequence (kn) such that

0 < kn ≤ k0n, lim
n→∞

kn = ∞. (3.3)

For each n, we shall approximate the function v(x) = u(2x, 0) by the function

Tn(µ)(x) =
kn∑

j=0

l
(n)
j (µ)Hj(x). (3.4)

We shall verify that Tn is a regularization sequence. We first note that Tn : `∞ →
L2

ρ(R) is bounded, i.e., Condition (R1) (in Section 1) holds. In Theorem 3.1 below,
we shall prove that (Tn) satisfies (R2) and, in Theorem 3.6, we shall prove that
(Tn) satisfies (R3). In fact, we get the following regularization result for the case
of exact data.

Theorem 3.1. Let (kn) be as in (3.3), let R ≥ 1 and let v ∈ L2
ρ(R) be as in

Theorem 2.2. Put Fn = Tn(Wv). Then ‖v − Fn‖ → 0 as n → ∞. Moreover, if
v′ ∈ L2

ρ(R) then we can find an n0 such that

‖v − Fn‖2 ≤ ‖v‖2e8R2(2
3
)n +

1
kn
‖v′‖2 for n ≥ n0.

If we choose kn = k0n, n = 1, 2, . . . . then the latter inequality can be rewritten as
follows

‖v − Fn‖2 ≤ ‖v‖2e8R2(2
3
)n +

1√
n
‖v′‖2 for n ≥ n0.

Before proving this theorem, some remarks are in order. We note that the
coefficients of zj (j ≥ kn +1) in the expansion of the Lagrange polynomial (3.1) are
truncated in (3.4). If we use coefficients of zj ’s (for j large) of Ln in (3.4) then we
shall get functions which are unstable approximation of v. To illustrate the latter
fact, in Section 4, we shall give a numerical example. In fact, we can say that the
polynomial

Lnkn
(z) =

kn∑
j=0

l
(n)
j zj
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is a truncated Lagrange polynomial (see [25] for a similar definition). Hence, our
method of regularization is of using the coefficients of truncated Lagrange polyno-
mials. We shall give an estimate for l(n)

j and the proof of Theorem 3.1. To this
end, some lemmas will be established.

Lemma 3.2. Let v, φ(v) be as in Lemma 2.1. Then φ : L2
ρ(R) → H1(BR) is a

bounded linear operator satisfying

‖φ(v)‖2H1(BR) ≤ eR2/2‖v‖2.

Proof. We have

‖φ(v)‖2H1(BR) =
∞∑

n=0

|an|2R2n ≤
√
π

∞∑
n=0

|an|2n2nn!
R2n

n2nn!

≤ ‖v‖2
∞∑

n=0

R2n

2nn!

= eR2/2‖v‖2.
This completes the proof �

Lemma 3.3. Let v, φ(v) and (an) be as in Lemma 2.1. Assume that (xj) is in the
disc BR. Then one has

n∑
j=0

R2j |aj − l
(n)
j |2 +

∞∑
j=n+1

R2j |aj |2 ≤
1
9
(2
3
)2n

e8R2
‖v‖2.

Proof. In the present proof, we shall denote φ(v) by φ. We have the Hermitian
representation (see [8, P. 58])

φ(z)− Ln(z) =
1

2πi

∫
C4R

ωn(z)
ωn(t)

.
φ(t)
t− z

dt.

Now, for every t ∈ C4R one has |ωn(t)| ≥ (3R)n. On the other hand, one has for
every |z| ≤ R

|ωn(z)| ≤ (2R)n.

We claim that
‖φ− Ln‖H1(BR) ≤

1
3
(2
3
)n‖φ‖H1(B4R).

In fact, we have for |z| = R, t = 4Reiθ

|φ(z)− Ln(z)| ≤ 1
2π

∫ 2π

0

(2R)n

(3R)n
.
|φ(4Reiθ)|
4R−R

Rdθ

≤ 1
3
(2
3
)n 1

2π

∫ 2π

0

|φ(4Reiθ)|dθ

≤ 1
3
(2
3
)n

( 1
2π

∫ 2π

0

|φ(4Reiθ)|2dθ
)1/2

=
1
3
(2
3
)n‖φ‖H1(B4R).

It follows that

‖φ− Ln‖2H1(BR) =
1
2π

∫ 2π

0

|φ(Reiθ)− Ln(Reiθ)|2dθ ≤ 1
9
(2
3
)2n‖φ‖2H1(B4R)
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as claimed. In view of Lemma 3.2, it follows that
n∑

j=0

R2j |aj − l
(n)
j |2 +

∞∑
j=n+1

R2j |aj |2 ≤
1
9
(2
3
)2n

e8R2
‖v‖2.

This completes the proof. �

Lemma 3.4. Let f ∈ L2
ρ(R) satisfy f ′ ∈ L2

ρ(R) and f =
∑∞

n=0 cnHn Then we have
∞∑

n=0

2nc2n
√
π2nn! = ‖f ′‖2.

Proof. We note that Hn satisfies the differential equation

y”− 2xy′ + 2ny = 0,

(see [4, P. 66]). It follows that Hn satisfies

(e−x2
y′)′ + 2nye−x2

= 0.

Hence we have

(e−x2
f ′)′ =

∞∑
n=0

cn(e−x2
H ′

n)′ =
∞∑

n=0

−2ncnHne
−x2

.

Hence, taking the inner product in L2(R) with respect Hn, we get in view of the
orthogonality ∫ ∞

−∞
e−x2

f ′(x)cnH ′
n(x)dx = 2nc2n

√
π2nn!.

It follows that ∫ ∞

−∞
e−x2

f ′(x)f ′(x)dx =
∞∑

n=0

2nc2n
√
π2nn!.

This completes the proof. �

Lemma 3.5. For (k0n) as in (3.2), there exist a0, n0 > 0 such that(3
2
)n ≥

√
πj!2j for 0 ≤ j ≤ k0n

for every n > a0 and that k0n ≥
√
n for every n > n0.

Proof. For every k > 4π2e2, we have

ln
(
2πe

√
k (2ek)k

)
= ln(2πe) +

1
2

ln k + k(1 + ln 2 + ln k)

≤ ln(2πe) + k(1 + ln 2) +
1
2

ln k + k ln k

≤ (2k + 1) ln k ≡ g(k)

For every n > a0 = g(576) ln−1
(

3
2

)
, one has in view of the definition of k0n that

k0n ≥ 576 > 4π2e2. Hence, we have for n > a0

(2k0n + 1) ln k0n ≥ ln
(
2πe

√
k0n (2ek0n)k0n

)
.

Now, since k0n satisfies

n ln
(3
2
)
> (2k0n + 1) ln k0n,
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we have for n > a0

n ln
(3
2
)
> ln

(
2πe

√
k0n (2ek0n)k0n

)
.

Using Stirling formula we get
√
πk0n!2k0n ≤ 2πe

√
k0n (2ek0n)k0n .

It follows that (3
2
)n
> 2πe

√
k0n (2ek0n)k0n ≥

√
πk0n!2k0n .

Since
(2k0n + 3) ln(k0n + 1) ≥ n ln

(3
2
)
> (2k0n + 1) ln k0n

one has k0n →∞ as n→∞ and that

lim
n→∞

n ln
(

3
2

)
k0n ln k0n

= 2.

It follows that

lim
n→∞

√
n

k0n
= lim

n→∞

√
n√

2k0n ln k0n

.

√
2k0n ln k0n

k0n
= 0.

Hence, we can find an n0 > a0 such that k0n ≥
√
n for every n ≥ n0. This completes

the proof. �

Proof of Theorem 3.1. For R ≥ 1, it follows in view of the orthogonality of (Hn)
that

‖v − Fn‖2 =
kn∑

j=0

|aj − l
(n)
j |2

√
πj!2j +

∞∑
j=kn+1

|an|2
√
πj!2j

=
kn∑

j=0

R2j |aj − l
(n)
j |2

√
πj!2j

R2j
+

∞∑
j=kn+1

|aj |2
√
πj!2j

≤
kn∑

j=0

R2j |aj − l
(n)
j |2

√
πj!2j +

∞∑
j=kn+1

|aj |2
√
πj!2j .

Using Lemma 3.3, we have

‖v − Fn‖2 ≤ ‖v‖2e8R2 1
9
(2
3
)2n√

πkn!2kn +
∞∑

j=kn+1

|aj |2
√
πj!2j .

In view of Lemma 3.5,

‖v − Fn‖2 ≤ ‖v‖2e8R2(2
3
)n +

∞∑
j=kn+1

|aj |2
√
πj!2j .

Using Lemma 2.1, one gets

lim
n→∞

∞∑
j=kn+1

|aj |2
√
πj!2j = 0.

It follows that
lim

n→∞
‖v − Fn‖ = 0.
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Now, if v′ ∈ L2
ρ(R) then we get in view of Lemma 3.4

∞∑
j=kn+1

|aj |2
√
πj!2j ≤ 1

kn
‖v′‖2,

which gives

‖v − Fn‖2 ≤ ‖v‖2
(2
3
)n +

1
kn
‖v′‖2.

This proves the first estimate of Theorem 3.1. Now if kn = k0n then Lemma 3.5
gives kn ≥

√
n for n ≥ n0. Hence

‖v − Fn‖2 ≤ ‖v‖2
(2
3
)n +

1√
n
‖v′‖2.

This completes the proof. �

Now, we consider the case of nonexact data. Let ε > 0 and let µε = (µε
j) be a

nonexact data of (Wv(xj)) = (u(xj , 1)) satisfying

sup
j
|u(xj , 1)− µε

j | < ε.

We first put

Dm = max
1≤n≤m

(
max
|z|≤R

∣∣ ωm(z)
(z − xn)ω′m(xn)

∣∣)
and

F ε
n = Tn(µε) =

kn∑
j=0

l
(n)
jε Hj ,

where l(n)
jε is the coefficient of zj in the expansion of the Lagrange polynomial

Lεn =
n∑

j=0

µε
j

ωn(z)
ω′n(zj)(z − zj)

.

Let ψ be an increasing function such that

ψ(n) ≥ (n+ 1)Dn

(3
2
)n/2

, lim
x→∞

ψ(x) = ∞

and
n(ε) = [ψ−1(ε−

1
2 )] + 1

where [x] is the greatest integer ≤ x. Using the latter function, we shall prove that
(Tn) satisfies the condition (R3).

Theorem 3.6. Let R > 1 and let v ∈ L2
ρ(R). Let ε > 0 and let (µε

j) be a measured
data of (u(xj , 1)) satisfying

sup
j
|u(xj , 1)− µε

j | < ε.

Then
‖v − F ε

n(ε)‖ ≤ δ(ε) = ‖v − Fn(ε)‖+
√
ε.

Moreover, if v′ ∈ L2
ρ(R) then

‖v − F ε
n(ε)‖

2 ≤ 2‖v‖2
(2
3
)n(ε) +

2
kn(ε)

‖v′‖2 + 2ε.
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In the latter inequality, if kn = k0n then there exists an ε0 > 0 such that

‖v − F ε
n(ε)‖

2 ≤ 2‖v‖2
(2
3
)n(ε) +

2√
n(ε)

‖v′‖2 + 2ε.

for 0 < ε < ε0.

Proof. We first claim that

‖Fn − F ε
n‖ ≤ (n+ 1)

(3
2
)n/2

εDn.

In view of Lemma 3.5,

‖Fn − F ε
n‖2 =

kn∑
j=0

|l(n)
j − l

(n)
jε |

2
√
πj!2j

=
kn∑

j=0

R2j |l(n)
j − l

(n)
jε |

2

√
πj!2j

R2j

≤
(3
2
)n

kn∑
j=0

R2j |l(n)
j − l

(n)
jε |

2.

Hence

‖Fn − F ε
n‖2 ≤

(3
2
)n‖Ln − Lεn‖2H1(BR). (3.5)

On the other hand

Ln(z)− Lεn(z) =
n∑

j=0

(µj − µε
j)

ωn(z)
ω′n(xj)(z − xj)

.

It follows that

‖Ln − Lεn‖H1(B1R) ≤
n∑

j=0

|µj − µε
j |Dn ≤ (n+ 1)εDn.

So that

‖Fn − F ε
n‖ ≤ (n+ 1)

(3
2
)n/2

εDn.

Now, we have
‖v − F ε

n‖ ≤ ‖v − Fn‖+ ‖F ε
n − Fn‖.

Hence

‖v − F ε
n‖ ≤ ‖v − Fn‖+ ε(n+ 1)Dn

(3
2
)n/2

.

For n = n(ε), we get in view of the definition of n(ε) that

‖v − F ε
n(ε)‖ ≤ ‖v − Fn(ε)‖+

√
ε.

Since n(ε) → ∞ as ε → 0, we can get from Theorem 3.1 and the latter inequality
that

lim
ε→0

‖v − F ε
n(ε)‖ = 0.

Now if v′ ∈ L2
ρ(R), Theorem 3.1 and (3.5) give

‖v − F ε
n‖2 ≤ 2‖v‖2

(2
3
)n +

2
kn
‖v′‖2 + 2(n+ 1)2ε2D2

n

(3
2
)n
.
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From the definition of n(ε), one has

‖v − F ε
n(ε)‖

2 ≤ 2‖v‖2
(2
3
)n(ε) +

2
kn(ε)

‖v′‖2 + 2ε.

Finally, if kn = k0n then Lemma 3.5 shows that, there exists an ε0 > 0 such that
kn(ε) ≥

√
n(ε) for every 0 < ε < ε0. Hence, we shall get the desired estimate. This

completes the proof. �

4. Numerical examples

We shall give two numerical examples. In the first example, we consider xj =
1

1+j , j = 0, 1, . . . , 100. We choose the exact function v(ξ) = 1 and the non-
exact data µε

j = 1 + 1
2.1020(j+1) . From the latter data, we can calculate (us-

ing MAPLE) the first six coefficients of the corresponding Lagrange polynomial
[l(100)0 , l

(100)
1 , l

(100)
2 , l

(100)
3 , l

(100)
4 , l

(100)
5 ] which are

s := [1 + 2575.000000× 10−20,−6.546062500× 10−14, 1.094478041× 10−10,

− 1.354054633× 10−7, 1.322015356× 10−4,−1.060903238× 10−1].

Using the first five coefficients of the corresponding Lagrange polynomial, we get
the approximation F1 =

∑4
j=0 l

(100)
j Hj of v

F1 := 1.001586418 + 0.000001624865429x− 0.006345673271x2

− 0.000001083243706x3 + 0.002115224570x4.

We have ∫ 20

−20

|F1(x)− v(x)|e−x2
dx ' 0.003448971524.

We have the graphs of two functions v and F1. The approximation is very good in
the interval [−2, 2].

0-2-4

2

1.8

1.6

1.4

1.2

x

1
42

Figure 1. the graphs of v and F1 on [−4, 4]
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If we use the first six coefficients of the Lagrange polynomial, we get the approx-
imation F2 =

∑5
j=0 l

(100)
j Hj of v

F2 := 1.001586418− 12.73083724x− 0.006345673271x2

+ 16.97445073x3 + 0.002115224570x4 − 3.394890362x5.

We have ∫ 20

−20

|F2(x)− v(x)|e−x2
dx ' 8.752434897.

In this case, we can see that the error is larger than the foregoing case.
In the second example, we consider xj = 1

1+j , j = 0, 1, . . . , 140. We choose the
exact function v(ξ) = 1, µε

j = 1+ 1
2.1020(j+1) . ¿From the latter data, we can calculate

the first six coefficients of Lagrange polynomial [l(140)0 , l
(140)
1 , l

(140)
2 , l

(140)
3 , l

(140)
4 , l

(140)
5 ]

which are

s := [1 + 5005.000000× 10−20,−2.481893750× 10−13, 8.126181478× 10−10,

− 0.1976424306× 10−5, 0.3808576622× 10−2,−6.056645660].

Using the first five coefficients of the corresponding Lagrange polynomial, we get
the approximation F3 =

∑4
j=0 l

(140)
j Hj of v

F3 := 1.045702918 + 0.00002371709117x− 0.1828116746x2

− 0.00001581139445x3 + 0.06093722595x4.

We have ∫ 20

−20

|F3(x)− v(x)|e−x2
dx ' 0.09936096138.

On the other hand, if we use the first six coefficients of the Lagrange polynomial,
we have the function F4 =

∑5
j=0 l

(140)
j Hj

F4 := 1.045702918− 726.7974555x− 0.1828116746x2 + 969.0632898x3

+ 0.06093722595x4 − 193.8126611x5.

We have an error estimate∫ 20

−20

|F4(x)− v(x)|e−x2
dx ' 499.6722779.

This case shows that the error is very large if we use too many coefficients of the
Lagrange polynomial.
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