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EXAMPLE OF AN co-HARMONIC FUNCTION WHICH IS NOT
C? ON A DENSE SUBSET

HAYK MIKAYELYAN

ABSTRACT. We show that for certain boundary values, McShane-Whitney’s
minimal-extension-like function is co-harmonic near the boundary and is not
C? on a dense subset.

1. RESULTS

Let us consider the strip {(u,v) € R? : 0 < v < §}, which is going to be the
domain for a function constructed in this article. Take a function f € C11(R) and

let Ly := ||f'||oc and L’ := Lip(f’). Let us consider an analogue of the minimal
extension of McShane and Whitney,
u(z,d) == sug[f(y) — L{(z,d) — (y,0)[], (1.1)
ye

where 0 < d < 0 and L > L. Note that to obtain the classical minimal extension
of McShane and Whitney we have to take L = Ly.

For the rest of this article we fix the function f and the constants L > Ly, § > 0.
We will find conditions on § > 0, which make our statements true. The real number
x will be associated with the point (z,8) € I's := {(u,v) € R? : v = §}, and the
real number y with the point (y,0) € T'g. In the sequel the values of u on the line
I's will be of our interest and we write u(z) for u(x,d) (see Figure [I)).

Proposition 1.1. The function u defined above satisfies
u(@) =sup[f(y) = Lv/* + (z —y)?| = max [f(y) = L&+ (z—y)?], (1.2)
yEeR ly—z|<Ds

2LL;
LZ-L%"

where D =

Proof. From the definition of u we have f(z) — L < u(z) so it is sufficient to show
that if |z — y| > D¢ then

fy) = Ly/6 + (z —y)* < f(z) — Lé.
On the other hand, from the bound of f’ we have

fy) = L/ + (. —y)? < f(z) + Lyl —y| = L/ 62 + (. — y)%.

2000 Mathematics Subject Classification. 35B65, 35J70, 26B05.
Key words and phrases. Infinity-Laplacian.

(©2005 Texas State University - San Marcos.

Submitted November 24, 2004. Published February 5, 2005.

1



2 H. MIKAYELYAN EJDE-2005/18

Thus we note that all values of y for which

f@@)+ Lyle —y| = Ly/62 + (z — y)* < f(x) - Lo
can be ignored in taking supremum in the definition of u. We write

Lile— gl + 16 < LV/@ 5 (&= 9
and arrive at
Lilw —y|* + 2LLs6|x — y| + L?6° < L*6* + L?|x — y|*.

Therefore,

2LL5 < (L? — L})|lx —y| <= |z —y|> Ds.

O

Let y(x) be one of the points in {|y — 2| < D§}, where the maximum in (1.2) is

achieved,
u(z) = f(y(x)) — Lv/& + (z — y(x))*. (1.3)
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FIGURE 1. Touched by hyperbola

Lemma 1.2. If § > 0 is small enough then for every x € T's the point y(z) is
unique and y(z) : R — R is a bijective Lipschitz map.
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Proof. For each x € T's consider the function g.(y) = u(x) + Ly/6? + (z — y)?
defined on I'y (see Figure [1). The graph of g, is a hyperbola and the graph of any
other function g,/ can be obtained by a translation. Obviously f(y) < ¢.(y) on Iy
and g, (y(z)) = f(y(x)). If at every point y € I'g the graph of f can be touched
from above by some hyperbola g.(y) then we will get the surjectivity of y(z). To
obtain this result, the following will be sufficient

gp(y) > L, forall [y — x| < Dé. (1.4)

For a fixed yo € T'o, we can find a hyperbola h,,(y) = C + L\/6? + (zg — y)?
such that hu,(yo) = f(yo) and A}, (y0) = f'(yo); then obviously f(y) < ha,(y) for

ly — zo] < DJ (see (1.4)) and for |y — z¢| > D4 (see Proposition [1.1). In other
words, Ry, (y) = guo (y). So (1.4) gives us

L
5 < W’ (1.5)
where D is defined in Proposition [1.1.
Note that also uniqueness of y(z) follows from (I1.4); assume we have y(x) and
g(z), then
/ ] (@)
flota) ~ i) < | [

y(x)

g’m’(t)dt‘ = f'(y(x)) — f'(§(2))| < Lyly(z) — ()]
We have used here that

f'y(x) = ¢ (y(z)) = L(y(z) — )

Vo2 + (y(x) — z)?

(1.6)

(derivatives in y at the point y(z)).

The injectivity of the map y(z) follows from differentiability of f. Assume yo =
y(z) = y(@), so we have f(yo) = gz(y0) = 9z(y0). On the other hand, f(y) <
min(g,(y), gz(y)); this contradicts differentiability of f at yo.

The monotonicity of y(z) can be obtained using the same arguments; if z <
Z then the ‘left’ hyperbola g,(y) touches the graph of f ‘lefter’ than the ‘right’
hyperbola gz (y), since both hyperbolas are above the graph of f.

Now we will prove that y(x) is Lipschitz. From (1.6)) it follows that

6" (y(x))

—r= . 1.7
Y T ) o
Taking Y (x) := y(x) — = we can rewrite this as
_ (@) Aw) e
V) = S O =0 (Y ) +2)) (18)
where ®(t) = t/v/L? —t2. For § < %, we can use Banach’s fix point theorem

and get that this functional equation has unique continuous solution. On the other
hand, it is not difficult to check that
‘Y(xg) —Y(l‘l) 6C

< )
To — X1 —1-6C

277/
L7LY

where C = W.
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Corollary 1.3. If § is as small as in the previous Lemma, then the function u is
oo-harmonic in the strip between T'g and T's.

Proof. This follows from the fact that if we take the strip with boundary values f
on I'g and v on I's then McShane-Whitney’s minimal and maximal solutions will
coincide, obviously with u. (I

Remark 1.4. We can rewrite (1.7)) in the form
5f"(y
wly) =y- =L
VL2 = (f"(y))

where z(y) is the inverse of y(z). This together with (1.3) gives us

w(a(y)) = £(y) — 2

VIR = (F')?*

Using the recent result of O.Savin that u is C1, we conclude that function z(y) is
as regular as f’, so we cannot expect to have better regularity than Lipschitz.

Lemma 1.5. If§ > 0 is as small as above and function f is not twice differentiable
at yo, then the function u is not twice differentiable at xo := z(yo).

Proof. First note that for all z and y, such that = z(y) we have

u'(@) = f'(y)-
This can be checked analytically but actually is a trivial geometrical fact; the
hyperbola ’slides’ in the direction of the growth of f at point y, thus the cone
which generates this hyperbola and ’draws’ with its peak the graph of u moves in

same direction which is the direction of the growth of u at point x = z(y).
Now assume we have two sequences yx — Yo and gr — yo such that

’ o s L
I (k) — ' (yo) _}fil/(yo) and / (ylj) I (yo) _ f//(yo)
Y — Yo Y — Yo
and f"(yo) < f”(yo). Let us define appropriate sequences on I's denoting by
xg = z(yx) and by Zx := z(Jx) and compute the limits of

u' () — u'(xo) ' (Z) — w'(xo)

and ————————=.
T — X0 T — o
We have , . ) )
o (k) = ' (x0) _ f'(uk) = 1" (v0) v — vo
Tk — Zo Y — Yo Tk — To

the first multiplier converges to f”(yo), let us compute the limit of the second one.
From (1.9) we get that

TEZE0 1 - 69 (f (50)) £ (w0).
Y — Yo
where ®(t) = t/v/L? — t2. Thus
' (vg) — ' (wo) f" (o)

mo—mo 1= 0% (F(y0)["(wo)’
and analogously
u' (@) —u'(xo) T (o) _
T — xo 1—69"(f(y0)) " (vo)
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To complete the proof we need to use the monotonicity of the function

t !/ /
—_— t<L
1_oct 1St Ep
where + < C < L?/(L* — L)%/ O

Note that if the function f is not C? at a point y then u constructed here is
not C? on the whole line connecting y and x(y). So choosing f to be not twice
differentiable on a dense set we can get a function u which is not C? on the collection
of corresponding line-segments. A similar example is the distance function from a
convex set, whose boundary is C! and not C? on a dense subset. Then the distance
function is co-harmonic and is not C? on appropriate lines.

2. MOTIVATION

Our example u has the property of having constant |Vu| on gradient flow curves
(lines in our case). It would be interesting to find a general answer to the question:
What geometry do the gradient flow curves of an co-harmonic func-

tion u have, on which |Vu| is not constant?
From Aronsson’s results we know that u is not C? on such a curve. This is our
motivation for the investigation of C2-differentiability of co-harmonic functions.
The author has only one item in the list of references. The history and the
recent developments of the theory of co-harmonic functions, as well as a complete
reference list could be found in that paper.
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