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Nonexistence of Positive Singular Solutions for a
Class of Semilinear Elliptic Systems *

Cecilia S. Yarur

Abstract

We study nonexistence and removability results for nonnegative sub-
solutions to

Au = a(z)v

P N
Av — bz inQcRY, N>3,

where p > 1, ¢ > 1, pg > 1, and a and b are nonnegative functions. As a
consequence of this work, we obtain new results for biharmonic equations.

1 Introduction

The aim of this paper is to study nonexistence and removability results for
nonnegative solutions of the inequality system

Au > a(z)vP

- N
Av > blz)us } inQcRY, N2>3 (1.1)

where p > 1, ¢ > 1 and pg > 1. We assume that the functions a and b are
nonnegative functions defined in L{® ().

We will give a unified treatment for the cases Q = RY, Q = B;(0)\{0} and
Q = RM\{0} in (1.1). For this purpose we will base our arguments essentially on
a priori bounds results for (1.1) in the one-dimensional case in exterior domains
(Theorem 2.1, Theorem 2.2 and Corollary 2.1 below).

One reason for tackling this type of problem is the study of nonnegative
solutions for the semilinear biharmonic equation

A’u=u? in RY, N>3. (1.2)

As a consequence of our results for system (1.1) we will prove that all the non-
negative nontrivial solutions of (1.2) are super-harmonic functions in RY (Corol-
lary 3.1). Then, for instance, nonexistence results of positive super-harmonic
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functions for (1.2) proved by Mitidieri in [9, 10] are now nonexistence results of
positive solutions for the biharmonic equation.
Moreover, the system

_ — p—1
_ﬁz ol } inQcRY, N>3 (1.3)

ul ™ u

with u positive and v negative can be treated as a particular case of (1.1). For
the system (1.3) we refer to [13, 16] and the references therein.

In the case that 2 = RY, we will assume that a and b in (1.1) satisfy the
following condition at infinity:

1-p

ap(lo]) 1= (5 fs, , allelo) V@D do) > claf
1 11 o) 1 -5 (14)

ballal) = (s Sy, bllalo) @D do) T = o],

for some positive constant c. Let us define

a—2+(8—-2)p B—2+(a—2)q
a, ) = and v (o, ) = ——m8M8M8M . 1.5
71(; B) P Y2(a; B) P (1.5)

Our main result for the system (1.1) in R reads as follows

Theorem 3.4 Let (u,v) € (C (RN))2 be a positive solution of (1.1). Let
p>1,g>1 and pq > 1. Assume a and b are nonnegative functions defined in
RY satisfying (1.4) for |x| near infinity with o, 3 such that

min {’71(04 /6)772(04 6)} <0.

Then u=0 and v = 0.

Ni [12] has proven that, for a < 2, the equation
Ay = a(z)u? in RY (1.6)

does not have any positive solution. This result was improved by F.H. Lin [6]
for < 2. On the other hand for @ > 2, Ni [12], and Naito [11], among others,
have proven existence results. In this case, there is no sign restriction for the
function a, but now |a(x)| < c|z|~*. Thus a = 2 is a critical exponent for the
equation (1.6) in RY. We point out that for equation (1.6) we have a = 3,
p=gq,and 3 = 2 = %. Thus, the critical exponent a@ = 2 is represented
now by min{vy;,v2} = 0. Therefore, Theorem 3.4 generalizes the early works
[12] and [6] to the nonlinear system (1.1). In exterior domains the behavior near
infinity of any solution u of

Au = |u|Tu, (1.7)
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has been given by Véron [17].

In the case the Q@ = B1(0)\{0}, we are interested in removability results
for system (1.1), that is, when all nonnegative solutions of (1.1) are bounded
at zero and satisfy (1.1) in the sense of distributions in D’'(B1(0)). The main
result that we will prove in this direction is the following.

Theorem 4.3 Let (u,v) € (C (B1(0)\{0}))? be a positive solution of (1.1) in
B1(0)\{0}. Let p > 1,¢g > 1 and pq > 1. Assume a and b are nonnegative
functions defined in B1(0)\{0} satisfying (1.4) for |z| near 0, with a, such
that, either

(l) min{ﬂ}/l(oﬁ /6)7 72(a7 ﬂ)} > 2_N7 or

(i1) max {11 (a, B), 12(a, B)} >22—-N,p>(2—«a)/(N —2), and
g2 (2-0)/(N=2).

Then u and v are bounded near zero, and (u,v) satisfies (1.1) in D'(B1(0)).

Loewner and Nirenberg [8] proved removability results for (1.7) with p =
(N +2)/(N —2). Later, Brésis and Véron [3] improved the Loewner-Nirenberg
result for p > N/(N —2). If 1 < p < N/(N — 2), there are solutions of (1.7)
with isolated singularities. Therefore, for equation (1.7), the critical exponent
for removability results in a ball is p = N/(N —2), which is ezactly the condition
(i) ( or (ii)) in Theorem 4.3.

Finally, in the case that @ = RV \{0}, we prove nonezistence of nonnegative
solutions (singular or not) for the system (1.1). We remark that for the equation

Au — V(|z))u = a(z)uP, (1.8)

nonezistence of nonnegative sub-solutions was proven in [1] under decay condi-
tions on a(x) for x near zero and infinity. For existence results for (1.8) see
also [15] .

The rest of the paper is organized as follows: In Section 2, we give some
preliminary results for the one dimensional case in (1.1) in exterior domains.
Section 8 is devoted to the cases where Q in (1.1) is either the whole space or
an exterior domain and in Section 4 we study removability results for (1.1).
Finally, in Section 5 we prove nonezistence results in RV\{0}.

2  Preliminary results

In this section we prove some results that are needed later in the proof of our
main theorems. The first two lemmas are proven in [1] (see also [12] for the
second one). We also need the spherical average of a function f, which is defined
by

O p—

= ro)do,
S 1] SN*lf( )
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where do denotes the invariant measure on the sphere

N
Sle{:EERN : Zx?=1}.
i=1

Here, |Sn_1| denotes the volume of the unit sphere. We denote by RY the set
RM\{0}. We will say that (u,v) € (C(Q))* is a nonnegative solution of (1.1)
if u and v are nonnegative in Q and (u,v) satisfies (1.1) in D' ().

The following lemma is a nonexistence result for positive sub-harmonic func-
tions with prescribed behavior at zero and at infinity (see [1])

Lemma 2.1 Let u>0€ Ll _(RY) such that Au > 0 and assume

S N—2-0\
}%T a(r) =0 (2.1)
and
Tl;ngo a(r) =0. (2.2)

Then u =0 in RY.

The next lemma is used to reduce the study of a partial differential problem
to the study of an ordinary differential one (see [1] and [12])

Lemma 2.2 Let f(x,t) = a(x)t?, a(z) > 0, p > 1 and let v be a nonnegative
function. Then

avP(|z]) = ap(|z])v" (|2]) (2.3)
where

1-p

1

ap(r) = | =—— a(ro) ™Y dg for p>1
ISv-1] Jsn

and a1 (r) = mingesy , a(ro) forp=1. If [ a(re)~ PV do = oo, we put
ay(r) = 0.
Having reduced the partial differential problem to an ordinary differential

one, we need some previous results for solutions of system (1.1) in one dimen-
sion. To begin with, we give some power solutions for the system

(erlu/)/ _ aerlfavp
(N = N TBye (2.4)
with a and b positive constants, which will play an important role in determining

the regions of nonezistence as well as bounds for the solutions of (1.1). This is
not surprising, since for the equation
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(PN 1) = arN 1T (2.5)

those solutions have an outstanding role, too. If we try to get solutions to (2.4)
of power type, that is

u(’r) = llr’yl(avﬁ)
v(r) = [or72(@h) (2.6)
We then find that ly,1ls,v1 and yo must satisfy
hynm+N-2) = alb? (2.7)
loya(y2 + N —2) = bly? :
and
a—2+(8-2)p B—2+(a—2)q
_ = ) 2.8
’71(&,,@) pq—l ) 72(&,,6) pq—l ( )

We write at our convenience v1(a, 3) and y2(e, B), but y1,7v2 certainly depend
also on p and q.
The existence of positive constants l1,ly which satisfy (2.7) is equivalent to

Yi(yi+N—2)>0, for i=1,2.

We observe that for N > 3 and min{vy1,v2} > 0, we get the existence of power
solutions for the system (2.4) in the whole space. This fact is very relevant
in view of Theorem 38.4. Moreover, for some values of o, 3,p and q we have
existence of a solution of (2.4) satisfying (2.6) in RN\{0}, with u bounded near
zero and v going to infinity and vice versa.

Now, we state the main results of this section, that belong to the case N =1
for the system (1.1). Theorem 2.1 and Theorem 2.2, or their equivalents in
higher dimensions (Theorem 3.1 and Theorem 8.2), will be the key to demon-
strate nonexistence results for the coming sections. The proof will be shown at
the end of this section because some preliminary lemmas are required.

Theorem 2.1 Let (w1, w2) be a nonnegative solution of

wy(s) > c1s 0w
Wa(s) > cos 2w

} for all s > so, (2.9)

for some sy positive. Assume that p,q > 0 and pqg > 1. Moreover, we assume
that either

(i) 7m(01,02) <1, or
(i1) ¥2(01,d2) <1 and 62 < g+ 2.

Then wy 1s bounded.
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Similarly, we have the following

Theorem 2.2 Let (w1, w2) be a nonnegative solution of (2.9) with p,q > 0 and
pq > 1. Moreover, we assume that either

(i) 72(61,02) <1, or
(ll) ’)/1(51,52) <1landd <p+2.
Then wo 1s bounded.

Corollary 2.1 Let (w1, w2) be a nonnegative solution of (2.9) with p,q > 0
and pq > 1. Moreover, we assume that

min {71 (d1,d2), v2(d1,02)} < 1. (2.10)
Then wy or wa is bounded.

Corollary 2.2 Let (w1, ws2) be a nonnegative solution of (2.9) with p,q > 0
and pqg > 1. Moreover, assume that either

(1) max {y1(d1,02),72(d1, d2)} <1, or
(ii) &1 <p+2, 63 < g+ 2 and min {y1(d1,d2),72(d1, d2)} < 1.
Then wy and wo are bounded.
The next lemma is a generalization of Lemma 2.4 in [1] for a systems.

Lemma 2.3 Let p and q be two positive real numbers such that pg > 1, and let
(w1, wsz) be a nonnegative solution of

11}1(3)

>
in(s) > Xo(sul, (211)

for all s > sg, for some sg > 0. Here X1(s) > 0, Xa(s) > 0 are continuous
and non-increasing functions on s > sg. Moreover, we assume the following
hypotheses:

(Hl) J‘OO Xl(s) sP ds = oo and foo XQ(S) s?ds = 00,
(H2) There exist three positive constants a1 > 1, as > 1, and ¢ such that

(5] [6%)
=
p+1 qg+1

and, for all s large enough

max{s~ 1t gTa2 Tl < c/oo X (s)2/ @A) x, (g)2/(2(at1) gg
S

Then wy and wo are bounded.
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Remarks In the above lemma we have that oy = as = (p + 1)/2 for the
equation (2.5). Lemma 2.8 can be generalized for more general functions than
tP and t9.

Proof of Lemma 2.3. First, we will show that it is enough to consider the
case in which w1 and we are both unbounded near infinity. This fact will be
fundamentally a consequence of the hypothesis (H1).

Since Xo is nonnegative, the function ws is convex and we have the following
two possibilities. Fither:

(a) wa(s) <0, for all s, or
(b)  there is an s1, such that wa(s) > 0 for all s > s1.

If (a) holds then ws is bounded. If we assume that wy is not bounded, then
w1 (8) > 0 for all large s, then since wy is conver we get, wi(s) > cs for some
constant ¢ positive. By integrating (2.11), it follows that

’lUQ(S) > 1]]2(81) + f:l X ’U)llz(t) dt

> an(s1) +cf) Xot?dt.

Hence from (H1), wa(s) goes to infinity as s — oo, which contradicts (a). Thus
we conclude that wy is bounded if wo is bounded.

Now, if (b) holds, arguing as in case (a) we also have 11 (s) > 0 for large
s, and w;(s) goes to infinity as s — oo, for i = 1,2. Therefore, we can assume
that wy and wy are both unbounded.

Now, multiplying the first inequality in (2.11) by ws and the second one by
wy and then adding both expressions, we get

d, . . d [wht! d [wit
> JE— —_— .
I (unws) > X3 Is (p 1 + X5 a5 \ g1 (2.12)

for all s > 3, for some §. Integrating (2.12 ) from § to s we have

s d wp+1 s d wq+1
by i > [ x— =2 Xo— | =2 ) 2.1
w1w2(s)_/§ Lds <p+1>+/§ 2 ds <q+1 (2.13)

Moreover, since X1 and Xo are non-increasing functions for large s, from
(2.13) we get

riia(s) > X (s) (Wl B <§>> T Xa(s) (“’?H (5 - " <§>> .
= q+1
(2.14)
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If s is large enough, s > so for some sz, we can take w;(s) > % w;(§), for
1 =1,2, and we obtain

i (s)ia(s) > ¢ (Xl(s) W () + Xo(s) wg“(s)) : (2.15)

for all s > so. Here c is a positive constant.
Now, we use the following relation between the geometric and arithmetic
means .
ai + a pP11TD2
aPag? < (Pl ! P2_2) (2.16)
p1+ P2
where ay,asz,p1, and py are positive numbers. We can choose p1 and p2 as

follows
y4! a1 P2 a2

prip: P+l pitp qtl
Then if we apply (2.16) into (2.15) with a; and ag defined by

a a
biax — Xywp?t, b2a2 = Xow, T
p1+ P2 p1+p2
we get
w1z (s) +1 +1
o Zcxlal/(p )X;xz/(q ).
1 2
Hence,

(i) "/ a1 /(2(p+1)) 302/ (2(g+1))
w1a2/2w2a1/2 2 CX]- X2

which in turn implies

Wi W2 yen/@r+1) yoo/ (et D)
w10£2 wQOz

for all s > so. Then integrating from s > so to oo we get

/oo dt +/°° dt C/°° X/ 2D o/ 2arD) g
s

w1 (s) te2 wa(s) (2

which because of (H2), and since limg_, o w;(s)/s = +oo, for i = 1,2, gives us
a contradiction.

The next result is a particular case of the above lemma, and is the key for
proving the main results of this section.

Lemma 2.4 Let (w1,ws) be a nonnegative solution of (2.9). Assume that
p,q > 0 and pqg > 1. Moreover, assume that 61 < p+ 1 and o < g+ 1.
Then wy and wo are bounded near infinity.
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Proof. Let us call 6;7 = max{0;,0} for i = 1,2. We can take on the
above lemma, X; = cis*‘sﬁ, for i = 1,2. Then Xy and X5 are non-increasing
functions, and (w1, ws) is a nonnegative solution of
11)1 Z Xlwg
QI)2 Z X2wg7
for all s large. We have to prove the validity of the conditions (H1) and (H2)
given on the above result.
(H1): foo X1sP = o0, is equivalent with 6,7 < p + 1, which is satisfied since
61 < p+1. In the same way foo X587 = o0, since § < g+ 1.
(H2): We have to find aq and ag satisfying condition (H2) on Lemma 2.3. Let
us denote v = a1 /(p+ 1) and y = az/(q+ 1). The problem of finding oy
and ag is reduced to find x,y which verify the following conditions

1 1
il?-'-y:]., $>m, y>m,

(20@+1) =6 y>0"z, and 2(p+1)—6")z > 6Ty,

Let
52+ 2((] + 1) — 62+
a= - T and b= — T
2p+1)— 01" + 02 0 +2(q+1) =62

Then a and b are well defined and (a,1— a) is the intersection of the lines
r+y=1, (2(p+1) - 51+) = 08"y and (b,1 — b) is the intersection of
z4+y=1with (2(¢+1) - 52+) y=0"z.
Now, since pg > 1 and 67 <p+1, 5 < q+1, we always have

1
a<L and —— <b.
qg+1 p+1

Also a <b, so that

1
A=max{——,a < min L,b
p+1 q+1

If A # B, we can choose any x such that A < x < B. On the contrary, if
A = B, it can be proved that A =a =b. In this case, we choose x = a.

B.

The above systems can have only one component bounded but not the other.
This is enough for some of our purposes, as we will see on section 3. The
following two lemmas are concerned with the boundedness of at least one of the
components of the pair (w1, ws).

Lemma 2.5 Let (w1, w2) be a positive solutions of (2.9) for some p,q >0 and
pqg>1. Letuscall§y =61 —p—1, & =2 —q— 1. Assume that

51 S 0 and 72(51,52) S 1.

Then wo 1s bounded.
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Proof. The proof is divided into three cases, depending on the values of §1
and 6.

Case 1: &1 <0 and 9 < 0. We are in the previous lemma.

Case 2: Assw_ne next that 81 < 0 and v2(81,d2) < 1. The condition v2 < 1
1s equivalent to 61q+ 02 < 0. We proceed by contradiction. If we is not bounded,
then there exists an sg such that wa(sg) > 0. Now, since wy is conver we get
wa(8) > cs for all large s and for some nonnegative constant c. Going back to
(2.9) we get

iy > es 0L (2.17)
for all s large enough. Integrating twice from sq to s in the above inequality and
using the fact that 61 < 0, we obtain

wy(s) > cs_gl'H, (2.18)

for all s large. Applying the estimate (2.18) into (2.9), we have the following
for wa: o
wg(s) > cs—éz—élq+1

for all large s. Iterating the above process, as in [4], we get for n € N
wi(s) > csPn

wa(s) > cst

for s large, where

Pn = —01+2+Dpgn
Gny1 = —062+2+qpy
¢ = 1

(The constant ¢ represents any positive value). Due to the condition 01q+62 <0,
we deduce that the sequences {pn} and {qn} are strictly increasing. Let us call

P= lim p, and Q= lim g,.
n— oo n—r00
Then either P = Q = oo or
P=-6614+2+pQ and Q = —63+2+qP. (2.19)

Thus, multiplying the first equation on (2.19) by q and adding the second one,
we get

0=—01g—d2+(Q—1)(pg— 1),
which is a contradiction to Q > q1 =1 and —61q — 02 > 0.
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Now, if P = Q = oo, then for all p’ and ¢’ with, p’ < p and q' < q, we have
Wy > cs T weP > wh
Wy > cs 02w 9 > wi .

Moreover, choosing p' and ¢’ such that p'q’ > 1, from Lemma 2.3, we deduce
that wi and wy are bounded which is a contradiction.

Case 3: ~2(d1,02) = 1 and 61 < 0. As in the previous case, we proceed by
contradiction. If wo is not bounded, we claim that for all k > 0
wa(s)

. wi(s .
lim i)zooand lim —~* = o0
5—00 S §—00 S

If the claim is true, then arquing as we did at the end of Case 2, we will get a
contradiction. Next we will prove the claim. Since we are assuming that wo is
not bounded, one can prove the following estimate for wo near infinity:

wa(s) > cslog s,

so that
lim wa(s)
S§— 00 S

= 0. (2.20)

Also, w1 and ws are increasing functions for large s. Integrating the first in-
equality on (2.9) from s to 2s, we get

1 (28) > by (25) — by (s) > c/2st51w2p(t) dt. (2.21)
Hence,
i (28) > 0/25 t=0wB (t) dt > cwh(s)s 1 TL (2.22)
Integrating (2.22) from s to 2s, and arguing as above, we get
wi(45) > cwyP (s)s 012 (2.23)
In the same way, but now starting with the second inequality on (2.9), we get
wy(4s) > cwl(s)s %2 +? (2.24)
If we use (2.23) in (2.24) we obtain
wa(168) > cwgpq(s)s_glq_gﬁl_pq.
From the hypothesis §1q + 62 = 0, we then have

wa(165) > cwh?(s)s' 7P (2.25)
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We rewrite (2.25) in the form
w2 (165) > (wg(g))m'

16s s

(2.26)

For n €N, choose s = 2% in (2.26), and x, = c*/PI=Vw,(247) /24", Then
Tpt1 = TpPe, (2.27)

for all n large, n > ng, for some ng. A repeated iteration on (2.27) leads to the
estimate o

Tpt1 = Tng (pa) °,
for all n > ng. From (2.20), x,, — 00 as n — oo, then we can take ng € N such
that

Tpy > 1.
Therefore, for all B > 0 we obtain

lim _ Ontl 00
n—roo (24(n+1))ﬁ

Going back to the definition of x,,, we deduce

ws (247

300 (24m)P+L

Next, we prove that lim wg_(s) = 00. Let s be sufficiently large and n € N
s—oo gBt+1

be such that s € [2*7, 24"+ D] Since wa(s) is nondecreasing, then

wg(s) Wo (24n)
AL = 2A(nt D) (A1)’

which implies lim w;isl) = 00, for all B > 0 and the claim follows from (2.23).
s—00 8§

In analogous form, we obtain

Lemma 2.6 Let (w1,w2) be a positive solution of (2.9) with p,q > 0 and pg >
1. Letus call 61 =61 —p—1, 02 =02 —q— 1. Assume that

82 S 0 and ’71(51,52) S 1.
Then wy 18 bounded.

In the following lemmas, we prove that for certain values of §1,02,p and q
in (2.9), if one component of the pair (wi,ws) is bounded, then the other is
bounded, too. This allows extending the regions of boundedness of w1 and ws
obtained in previous lemmas.
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Lemma 2.7 Let (w1, w2) be a positive solution of (2.9) with p,q > 0 and pq >
1. Assume that wa is bounded and

min {’)/1((51,(52), 52} S 1.
Then wy 18 bounded.
With respect to the boundedness of wa, assuming boundedness of wi, we have

Lemma 2.8 Let (w1, w2) be a positive solution of (2.9) with p,q > 0 and pq >
1. Assume that wi is bounded and

min {72(51,52), 51} § 1.

Then wy 18 bounded.

Proof of Lemma 2.7. We distinguish two cases, according to whether v3 <1
or 6o < 1. We assume first

Case 1: ~v; < 1. This case is equivalent to o1 —|—p52 < 0. Now, since ws s
bounded at infinity it must be a non-increasing function for all s large. Suppose
by contradiction that wy is not bounded near infinity. Then w; is increasing for
s large enough. Integrating the first inequality on (2.9) from s/2 to s it follows
that

wy(s) > ¢ (/:2 t51> wyP (s) > s~ hyP (s). (2.28)

Integrating once again from s/2 to s in (2.28), we obtain

wi(s) > s 2wyP(s). (2.29)

Similarly, but now integrating from s to 2s in the second inequality of (2.9), we
get

wy(s) > s 2 9(s). (2.30)

Therefore, by using (2.29) and (2.50), in the first inequality of (2.9) we have
the following for wq

cs01HP(=0242) ) Pg

g
v

(2.31)

cs™Twy P4,

where v = 01 — p(—d2 + 2). By the assumption 01 4+ pdy < 0, it follows that
v < pq+1. Thus, by Lemma 2.4 (see also [1]) w1 must be bounded.
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Case 2: §, < 1. Assume that w1 is not bounded, then w1 > cs for s large.
As before, from (2.9) it follows that

wa(s) > es02
which in turn implies that we — co as s = oo if d2 < 1. Now, if 0o =1 we
get the same conclusion by integrating in

wa(s) > cs 029 > s

Remark Theorem 2.1 is a consequence of Lemma2 2.5, 2.6, and 2.7. Simi-
larly, Theorem 2.2 is a consequence of the Lemmas 2.5, 2.6 and 2.8.

3 Nonexistence in rY

In this section we consider  in (1.1) to be either an exterior domain, for
instance Q0 = {z : |z| > 1}, or Q = RN. For exsterior domains, we will give
bounds near infinity for one or both of the components of the pair (u,v), where
(u,v) is a nonnegative solution of (1.1) (Theorem 3.1, Theorem 3.2 and Theorem
3.3). In the whole space we will prove a nmonexistence result, Theorem 3.4,
for nonnegative nontrivial solutions of (1.1). We remark that Theorem 3.4 is
optimal for the system (2.4).

Throughout this section we will assume that a and b are nonnegative func-
tions in Lo (). Moreover, there exist three constants o, 8 and ¢, with ¢
positive, such that

ap(|2|)
by(|2])

IV IV

cle|® o
c|z|* } at infinity, (3.1)

where a, and by are defined in Lemma 2.2.

Theorem 3.1 Let (u,v) € (C (|z| > 1))* be a positive solution of

Au > a(z)vP

Av > blz)ud } in lz] > 1, (3.2)

where p > 1,q > 1 and pg > 1. Assume a and b are nonnegative functions
defined in |z| > 1 and satisfying (3.1) with «, B such that either

(1) 71(&, /6) S 07 or
(ii)  y2(e, B) <0 and B < N.

Then |z|N~2u is bounded.
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For the equation (1.6) the conditions (i) and (ii) in Theorem 8.1 are equiv-
alent with o < 2.
Before proving Theorem 3.1 let us enunciate the boundedness for v.

Theorem 3.2 Let (u,v) € (C(|z| > 1)) be a positive solution of (3.2). Let
p>1,g>1and pqg> 1. Assume a and b are nonnegative functions defined in
|z| > 1 and satisfying (3.1) with o, 3 such that either

(l) 72(a7 /8) < 0; or
(i)  m(a, B) <0 and a < N.

Then |z|N~2v is bounded.

Proof of Theorem 3.1. From (3.1), (3.2) and Lemma 2.2, we have

’Q”—l— N;lﬁ/ > cr—o gP

o+ M=y > e B g, (3.3)

for all v large enough. Let s = rVN =2 and let

wi(s) = su(r)

wa(s) = sv(r)
Then wy and wo satisfy

w(s) > esTwh

wo(s) > esTO2wd (3-4)
where 5 59

o — _
51—N_2+p+1 and 62—m+q+1.

It follows from the hypothesis on «, 3,p,q and Theorem 2.1 that wy is bounded.
Thus, from the definition of w1, we get that ¥ 24 is bounded. To prove that
|z|N =24 is also bounded we use the following mean value inequality for sub-
harmonic functions (see [5])

1

u(z) < u(y) dy,
( Biai/2(2)l /b, 2 () )
then
3Jel/2
u(z) < c|:17|*N/ rN=la(r) dr. (3.5)
|| /2

Since vV =24 is bounded for r large enough and u satisfies (3.5), then the con-

clusion of the theorem follows.
Next we apply the previous results to the biharmonic.
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Corollary 3.1 Let ¢ > 1 and u € C? (RN) be a positive solution of
A%y = b(z)u? in RN (3.6)
Assume that b is a nonnegative function defined in RY and satisfying
be(z) > clz| =P, for all x| large,

with 8 < 2(q+1). Then u is a super-harmonic function in RN,

Proof. Let us define v := Au. Then, the pair (u,v) is a solution for

Au = wv .
Ao — b(a:)uq} in RV, (3.7)

Since v is a sub-harmonic function in RN we get the following two possibilities

for v, either

(1)  There is a positive ro so that v(r) > 0, for all v larger than ro. Moreover,
lim, 00 7V 20(r) = 00, or

(2)  o(r) <0, for all r > 0.

Theorem 3.2 and the hypothesis on ( imply that case 1 is impossible and
then © < 0. Repeating the above argument for the functions vy(z) := v(zx + y)
with y € RN, we obtain that v, < 0 for all y. Then the conclusion follows. As
a consequence of the two previous theorems we obtain the following, which gives
us the boundedness of u and v at the same time.

Corollary 3.2 Let (u,v) € (C (|z| > 1))? be a positive solution of (3.2). Let
p>1,g>1 and pg> 1. Assume a and b are nonnegative functions defined in
|x| > 1 satisfying (3.1) with o, 3 such that either

(1) max {’71(0‘7/6)772(0‘7 ﬂ),} <0, or
(i) a<N, <N and min{y(a, B),72(a, 8)} <O0.
Then |z|V~2u and |z|N~2v are bounded.

Our main result of this section, in a way, extends those of [12] and [6].

Theorem 3.3 Let (u,v) € (C (RN))2 be a positive solution of

Au 2 a(“’)”p} in RV, (3.8)

Av > b(z)ul?

Letp>1,q>1 and pqg > 1. Assume a and b are nonnegative functions defined
in RN and satisfying (3.1) with o, 3 such that

min {71(&, /6)772(04 /6)} < 0 (39)
Then u=0 and v = 0.
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Proof. The proof follows from Lemma 2.1, Theorem 3.1, and Theorem 3.2.

Remark. For the equation (1.6), condition (3.9) in the above theorem is the
well known condition o < 2 (see [12] and [6]). If (3.9) in the above theorem is
not satisfied, then v, and 2 are both positive. Therefore, we can get a positive
radial solution (u,v) for the system (2.4) in RN, with u(r) = l177* and v(r) =
lor72,

4 Removable singularities

Brésis and Véron ([3]) have proven removable singularities for nonlinear elliptic
equations in a ball. In the sequel we give the same type of result but now for a
system. To obtain the behavior of solutions to (1.1) at zero, we use the Kelvin
transform together with the results in section 3. Let B1(0) be the open unit ball
centered at zero of RN, with N > 3. Throughout this section the functions a

and b are nonnegative functions in L3> (B1(0)\{0}) such that

ap(|z]) > clz[™

bo(z) > cla| P } for all x small, (4.1)

for some positive constant c, and a, and b, defined in Lemma 2.2.
Theorem 4.1 Let (u,v) € (C (B1(0)\{0}))? be a positive solution of

Au > a(m)vp}

Av > b(z)ul in B1(0)\{0} (4.2)

where p > 1,q > 1, and pqg > 1. Assume that a and b are nonnegative functions
satisfying (4.1) with «, 8 such that either
(i) mla B)=2-N, or
(i)  72(a, B)>2—-Nandq¢> (2 5)/(N - 2).
Then u is bounded near zero.
Proof. This result is a consequence of those of section 3; we transform our

problem near zero to a problem mnear infinity. Let ui and vi be the Kelvin
transform of u and v, that is

w(@) = a2 u(a/[sf?) -
ma i S S RS

then, (u1,v1) satisfies ([5])

Aup > al(a:)vf}

Avi > by(a)ul for |z|>1, (4.3)
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where a1 and by satisfy

aj(z) = |z NPV Fa (g /|af?)
bi(a) = |o| NN EDp(z/|af?)

clz|™
C|J}|_ﬁl,

and oy, B1 are defined by

apg = N+2—(N-2)p—«
B N+2-(N-2)qg—-8

Then we obtain

ﬂYi(ahﬂl) = _PYZ'(OZ?ﬂ) - (N - 2)7 fO’I’ 2:1;2
From here, we easily get that oy, 31, p and q satisfy the hypotheses of Theorem

3.1, thus |z|N~2u; is bounded at infinity. Therefore u is bounded near zero.

Remark. If in the previous theorem, p = q, « = 0 = 3 and u = v, then we
obtain Theorem 1 of [3]. In this case conditions (i) and (ii) on Theorem 4.1 are
equivalent to p > N/(N — 2). Analogously, we get for v the following theorem:

Theorem 4.2 Let (u,v) € (C(B1(0)\{0}))? be a positive solution of (4.2),
where p > 1,q > 1, and pq > 1. Assume that a and b are nonnegative functions
satisfying (4.1) with a, B such that either

(1) '72(0‘7 ﬂ) Z 2 - N} or
(i) e B)>2- N andp>(2-a)/(N-2).
Then v is bounded near zero.

The intersection of the region of (o, 3) where u is bounded with the region
where v is bounded gives us the main result of the section.

Theorem 4.3 Let (u,v) € (C(B1(0)\{0}))* be a positive solution of (4.2),
where p > 1,q > 1, and pq > 1. Assume that a and b are nonnegative functions
satisfying (4.1) with «, B such that either

(1) min{ﬂ}/l(oﬁ ﬂ)? 72(0‘7 ﬂ)} > 2_N; or

(i)  max{y(a, B), 22(a, B)} 2 2= N andp = (2-)/(N -2), ¢ 2
2-8)/(N-2).

Then u and v are bounded near zero, and (u,v) satisfies (4.2) in D' (B1(0)).

As a consequence of the above result we can state the following for the bi-
harmonic case:
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Corollary 4.1 Let u € C? (B1(0)\{0}) be a positive sub-harmonic solution of
A%y = |z|Pul, (4.4)
where ¢ > 1. Assume that either
(i) B=>4,or
(i) N>4,8<4dandg>(N+2-0)/(N-2).
Then u is bounded near zero. Moreover, u satisfies (4.4) in D' (B1(0)).

Soranzo [14] has proven removability results for nonnegative super-harmonic
solutions of (4.4). We remark that for a radially symmetric nonnegative solution
u of (4.4), we get that u is either sub-harmonic or super-harmonic near zero.

5 Nonexistence of singular solutions in r\{0}.

This section is devoted to nonexistence results of nonnegative solutions (singular
or not) for (1.1) in RV\{0}. These results can be obtained as a consequence of
those of the previous sections. We give them without proof.

Throughout this section the functions a and b are nonnegative functions in
Lcl’gc (RN\{O}). In some of the next results we need also the following properties
for a and b

an(|x > clx|T
bzgixB N Ci$i7ﬁ0 } for all x small (5.1)
and
> Qoo
Zj((||;”||)) Z zm’ﬁ"" } for all x large enough (5.2)

where a, and by are defined in Lemma 2.2, and c is some positive constant.

Au
Av

a(x)vP

Theorem 5.1 Let (u,v) € (C (RN\{O}))2 be a positive solution of
2 : N
> b(z)ul in RY\{0} (5.3)

where p > 1,q > 1, with pqg > 1. Moreover, we assume that a and b satisfy
(5.1), with ag, Bo satisfying either

(i) m(o, Bo) >2—N, or
(i1) y2(o, Bo) >2—N and ¢ > (2 —Fo)/(N —2) .

Then the system (5.3) does not possess any positive solution (u,v) with u going
to 0 at infinity.
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Likewise, we get the following

Theorem 5.2 Let (u,v) € (C (RN\{O}))2 be a positive solution of (5.3). Let
p>1,q>1, and pq > 1. Moreover, we assume that a and b satisfy (5.1), with
o, Bo satisfying either

(i) v2(0, Bo) >2—N, or
(ii) y1(, Bo) 22— N andp > (2 — ag)/(N —2).

Then the system (5.3) does not posses any positive solution (u,v) with v going
to 0 at infinity.

In [1] Benguria, Lorca, and Yarur prove, among others, the nonexistence of
nonnegative singular solutions for the equation (1.6), with decay conditions on
a(x) for x near zero and infinity. Our next two results extend those of [1] to the
system (5.3).

Theorem 5.3 Let (u,v) € (C (R(I)V))2 be a positive solution of (5.8). Let p >
1, > 1 and pg > 1. Moreover, we assume that a(x), b(x) satisfies (5.1) and
(5.2). Suppose that a and B are such that either

() mlaso, B) <0, or

(i)  72(@c; Bx) <0 and B < N.
For ag and By we assume that either

(o  m(ao, Bo) >2—N, or
(ii)o  72(@0, fo) 22— N, and ¢ > (2 — Bo)/(N — 2).
Then v =0 and v = 0.

Theorem 5.4 Let (u,v) € (C (Rév))2 be a positive solution of (5.3). Letp > 1,
q > 1 and pq > 1. Moreover, we assume that a(z), b(z) satisfy (5.1) and (5.2).
Suppose that o, and B are such that either

() 12(ase; B) <0, or
(il)  71(®oos Boo) <0 and aco < N.
For ag and By we assume that either
(o 72(@0, Bo) 22— N, or
(i)o  7(ao0, Bo) >2—N andp > (2 —ag)/(N —2).

Then u=0 and v = 0.
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