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EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR

QUADRATIC INTEGRAL EQUATION

CHU-HANG WANG, HUI-SHENG DING, GASTON M. N’GUÉRÉKATA

Abstract. In this article, we study the existence of positive solutions for the

nonlinear quadratic integral equation

x(t) = g(t, x(t))

∫ t

−∞
a(t, t− s)f(s, x(s))ds, t ∈ R.

By using fixed point theory on cones, we prove the existence and uniqueness

of bounded and continuous solution with positive infimum. An example illus-
trates the abstract result.

1. Introduction

The direct impetus of this paper comes from two sources. The first source is the
literature on the existence of positive solutions for the equation

x(t) =

∫ t

t−τ
f(s, x(s))ds, t ∈ R, (1.1)

which is a model for the spread of some infectious disease (cf. [6]). In fact, many
authors have studied the existence of positive solutions, especially periodic and
almost periodic solutions, of (1.1) and its variants (see, e.g., [1, 2, 3, 4, 5, 11, 12, 14,
19, 22] and references therein). There are several interesting works on generalized
variants of equation (1.1). For example, Torrejón [22] studied the integral equation

x(t) =

∫ t

t−τ(t)

f(s, x(s))ds, t ∈ R,

where the delay is state-dependent. Ait Dads and Ezzinbi [1] considered the neutral
integral equation

x(t) = γx(t− τ) + (1− γ)

∫ t

t−τ
f(s, x(s))ds, t ∈ R. (1.2)

Ait Dads and Ezzinbi [2] investigated the infinite delay integral equation

x(t) =

∫ t

−∞
a(t− s)f(s, x(s))ds, t ∈ R. (1.3)
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Afterwards, Ait Dads, Cieutat, and Lhachimi [4] generalized equation (1.3), i.e.,
they discussed the following more general infinite delay integral equation

x(t) =

∫ t

−∞
a(t, t− s)f(s, x(s))ds, t ∈ R. (1.4)

In fact, (1.1) is also a special case of (1.4). This is because, if

a(t, s) =

 1, s ∈ [0, τ ], t ∈ R,

0, s > τ, t ∈ R,

then equation (1.4) recovers equation (1.1). In fact, it is still of great interest for
several authors to work on this direction (see, e.g., [11, 5]). As noted in [4] and [5],
these variants of (1.1) include many important integral and functional equations
that arise in biomathematics.

The second source of this paper comes from the fact that quadratic functional
integral equations are one of the most attractive and interesting research area of
integral equations and functional integral equations. In fact, as noted in some earlier
literature (see, e.g., [20] and references therein), the nonlinear quadratic functional
integral equations has been applied to, for example, the theory of radiative transfer,
kinetic theory of gases, the theory of neutron transport, the traffic theory, plasma
physics, and numerous branches of mathematical physics. There is a lot of literature
on the existence of solutions for quadratic functional integral equations. We refer
the reader to [20, 18, 10, 21, 8, 17, 7, 16, 13] for some of recent results.

Motivated by the above works, in this paper, we study the nonlinear quadratic
integral equation

x(t) = g(t, x(t))

∫ t

−∞
a(t, t− s)f(s, x(s))ds, t ∈ R, (1.5)

where f, g, a satisfy some conditions stated in Section 3.

2. Preliminaries

Let E and F be two metric spaces. We denote by C(E,F ) the space of continuous
functions, and by BC(E,F ) the space of continuous and bounded functions defined
on E with values in F . Let R the set of real numbers, R+ the set of positive real
numbers, and R+ the set of nonnegative real numbers. In the case E = R and
F = R+, for every x, y ∈ BC(R,R+), we denote the distance between x and y by

‖x− y‖ = sup
t∈R
|x(t)− y(t)|.

We denote by L1(R+) the space of Lebesgue measurable functions on R+ with norm

‖x‖L1(R+) =

∫ +∞

0

|x(t)|dt.

Now, we recall some basic notation about cone (for more details see [9]). Let X
be a real Banach space, and θ be the zero element in X. A closed convex set K in
X is called a cone if the following conditions are satisfied:

(1) if x ∈ K, then λx ∈ K for any λ ≥ 0,
(2) if x ∈ K and −x ∈ K, then x = θ.
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A cone K induces a partial ordering ≤ in X by

x ≤ y ⇔ y − x ∈ K.
For any given u, v ∈ K with u ≤ v,

[u, v] := {x ∈ X : u ≤ x ≤ v}.
A cone K is called normal if there exists a constant k > 0 such that

θ ≤ x ≤ y ⇒ ‖x‖ ≤ k‖y‖,
where ‖ · ‖ is the norm on X. We denote by K◦ the interior of K. A cone K is
called a solid cone if K◦ 6= ∅.

Lemma 2.1 ([4]). Suppose that the function t 7→ a(t, ·) is in BC(R, L1(R+)) and
f ∈ BC(R,R). Then F ∈ BC(R,R), where

F (t) =

∫ t

−∞
a(t, t− s)f(s)ds, t ∈ R.

Theorem 2.2 ([11]). Let K be a normal solid cone in a real Banach space X,
D : K → K be a linear operator, and A,B be two operators from K◦×K◦×K◦ to
K◦ with

A(x, y, z) = B(x, y, z) +D(x), x, y, z ∈ K◦.
Assume that the following conditions hold:

(1) for every x, y, z ∈ K◦, B(·, y, z) is increasing in K◦, B(x, ·, z) is decreasing
in K◦, and B(x, y, ·) is decreasing in K◦;

(2) there exists a function ϕ : (0, 1)×K◦ ×K◦ → (0,+∞) such that for every
x, y, z ∈ K◦ and t ∈ (0, 1), ϕ(t, x, y) > t and

B(tx, t−1y, z) ≥ ϕ(t, x, y)B(x, y, z);

(3) there exist x0, y0 ∈ K◦ with x0 ≤ y0, A(x0, y0, x0) ≥ x0 and A(y0, x0, y0) ≤
y0 such that

inf
x,y∈[x0,y0]

ϕ(t, x, y) > t (2.1)

for all t ∈ (0, 1);
(4) there exists a constant L > 0 such that for all x, y, z1, z2 ∈ K◦ with z1 ≥ z2,

B(x, y, z1)−B(x, y, z2) ≥ −L(z1 − z2).

Then A has a unique fixed point x∗ ∈ [x0, y0], i.e., A(x∗, x∗, x∗) = x∗. In addition,
if (2.1) is strengthened to the case for all u, v ∈ K◦ with u ≤ v,

inf
x,y∈[u,v]

ϕ(t, x, y) > t

for all t ∈ (0, 1). Then x∗ is the unique fixed point of A in K◦.

In this paper, we utilize the following corollary of Theorem 2.2:

Corollary 2.3. Let K be a normal solid cone in a real Banach space X and A be
an operator from K◦ to K◦ satisfying the following conditions:

(1) A is increasing in K◦;
(2) there exists a function ϕ : (0, 1) → (0,∞) such that for every x ∈ K◦ and

λ ∈ (0, 1), ϕ(λ) > λ and

A(λx) ≥ ϕ(λ)A(x);
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(3) there exist x0, y0 ∈ K◦ with x0 ≤ y0 such that A(x0) ≥ x0 and A(y0) ≤ y0.

Then A has a unique fixed point x∗ in K◦.

3. Main results

In this section, we study the nonlinear integral equation

x(t) = g(t, x(t))

∫ t

−∞
a(t, t− s)f(s, x(s))ds, t ∈ R (3.1)

under the following assumptions:

(H1) f ∈ BC(R×R+,R+) such that for every s ∈ R, f(s, ·) is increasing in R+.
(H2) There exists α ∈ (0, 1) such that

f(s, λx) ≥ λαf(s, x)

for all x ≥ 0, λ ∈ (0, 1) and s ∈ R.
(H3) a is a function from R × R+ to R+, and the function t 7→ a(t, ·) is in

BC(R, L1(R+)).
(H4) g ∈ BC(R× R+,R+) such that for every t ∈ R, g(t, ·) is increasing in R+.
(H5) There exists Lg > 0 such that

|g(t, x1)− g(t, x2)| ≤ Lg|x1 − x2|

for all t ∈ R and x1, x2 ∈ R+.
(H6) There exists β ∈ (0, 1− α) such that

g(t, λx) ≥ λβg(t, x)

for all x ≥ 0, λ ∈ (0, 1) and t ∈ R.
(H7) There exists a constant c > 0 such that

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds ≥ c.

Theorem 3.1. Let (H1)–(H7) hold and LgMfD < 1, where

Mf = sup{|f(t, x)| : t ∈ R, x ∈ R+}, D = sup
t∈R

∫ +∞

0

|a(t, s)|ds.

Then equation (3.1) has a unique solution with positive infimum in BC(R,R+).

Proof. Let

K = {y ∈ BC(R,R+) : y(t) ≥ 0,∀t ∈ R}.
Then

K◦ = {y ∈ BC(R,R+) : there exists ξ > 0 such that y(t) ≥ ξ,∀t ∈ R}.

It is easy to verify that K is a normal and solid cone in BC(R,R+).
For y ∈ BC(R,R+), define an operator Ay on BC(R,R+) by

(Ayx)(t) = g(t, x(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds, x ∈ BC(R,R+), t ∈ R. (3.2)

It is not difficult to verify that Ay is an operator from BC(R,R+) into itself.
Moreover, by a direct calculations, for every x1, x2 ∈ BC(R,R+), we can get

‖Ay(x1)−Ay(x2)‖ ≤ LgMfD‖x1 − x2‖.
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Thus, by the classical Banach contraction principle, we conclude that Ay has a
unique fixed point, which we denote by xy, in BC(R,R+).

Now, we define an operator A on BC(R,R+) by

(Ay)(t) = xy(t) = (Ayxy)(t) = g(t, xy(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds, t ∈ R,

where xy is the unique fixed point of Ay. Next, let us show that A satisfies all the
assumptions of Corollary 2.3. We divide the remaining of the proof into four steps.

Step 1. A is an operator from K◦ to K◦. It is easy to verify that A is an operator
from K◦ to BC(R,R+). Fix y ∈ K◦. There exists ξ > 0 such that y(t) ≥ ξ for all
t ∈ R. Thus, we have

inf
t∈R

(Ay)(t) = inf
t∈R

g(t, xy(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds

≥ inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, ξ)ds.

Using (H7), there exists a constant c > 0 such that

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds ≥ c.

If ξ ≥ c, we deduce that

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, ξ)ds ≥ inf

t∈R
g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds ≥ c > 0.

If 0 < ξ < c, we obtain

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, ξ)ds = g(t, 0)

∫ t

−∞
a(t, t− s)f(s,

ξ

c
· c)ds

≥ (
ξ

c
)αg(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds

≥ ξ

c
g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds.

Then

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, ξ)ds ≥ ξ

c
inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds

≥ ξ

c
· c = ξ > 0.

Thus, we conclude that

inf
t∈R

(Ay)(t) > 0.

By the above proof, we know that A is an operator from K◦ to K◦.

Step 2. A is increasing in K◦. Let y1, y2 ∈ K◦ and y1 ≤ y2. By the property of
partial ordering of cone K, we have A(y1) ≤ A(y2)⇔ A(y2)−A(y1) ∈ K. Thus, to
prove that A is increasing in K◦, we only need to prove that A(y2) − A(y1) ∈ K.
It is easy to know that A(y2)−A(y1) ∈ BC(R,R+).
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By Step 1, we know that Ay1 and Ay2 are both contraction mappings satisfying

‖Ayi(x1)−Ayi(x2)‖ ≤ LgMfD‖x1 − x2‖, i = 1, 2,

for all x1, x2 ∈ BC(R,R+). Fix an arbitrary γ0 ∈ BC(R,R+) and define two
sequences {γ1

n} and {γ2
n} in BC(R,R+) as follows

γ1
1 = Ay1γ0, γ1

n = Ay1γ
1
n−1, n = 2, 3, . . . ;

γ2
1 = Ay2γ0, γ2

n = Ay2γ
2
n−1, n = 2, 3, . . . .

Note that xy1 and xy2 are fixed points of Ay1 and Ay2 , respectively, we conclude
that

lim
n→∞

γ1
n = xy1 , lim

n→∞
γ2
n = xy2 .

For each t ∈ R, by (3.2), (H1) and (H4), we have

γ2
1(t) = (Ay2γ0)(t) = g(t, γ0(t))

∫ t

−∞
a(t, t− s)f(s, y2(s))ds

≥ g(t, γ0(t))

∫ t

−∞
a(t, t− s)f(s, y1(s))ds

= (Ay1γ0)(t) = γ1
1(t),

and

γ2
2(t) = (Ay2γ

2
1)(t) = g(t, γ2

1(t))

∫ t

−∞
a(t, t− s)f(s, y2(s))ds

≥ g(t, γ1
1(t))

∫ t

−∞
a(t, t− s)f(s, y1(s))ds

= (Ay1γ
1
1)(t) = γ1

2(t), t ∈ R.

By induction, we can deduce that γ2
n ≥ γ1

n, n = 1, 2, . . ., and thus

xy2 = lim
n→∞

γ2
n ≥ lim

n→∞
γ1
n = xy1 . (3.3)

Then, by (H1), (H3), (H4) and (3.3), we obtain

A(y2)(t)−A(y1)(t)

= g(t, xy2(t))

∫ t

−∞
a(t, t− s)f(s, y2(s))ds− g(t, xy1(t))

∫ t

−∞
a(t, t− s)f(s, y1(s))ds

= g(t, xy2(t))

∫ t

−∞
a(t, t− s)f(s, y2(s))ds− g(t, xy1(t))

∫ t

−∞
a(t, t− s)f(s, y2(s))ds

+ g(t, xy1(t))

∫ t

−∞
a(t, t− s)f(s, y2(s))ds− g(t, xy1(t))

∫ t

−∞
a(t, t− s)f(s, y1(s))ds

= [g(t, xy2(t))− g(t, xy1(t))]

∫ t

−∞
a(t, t− s)f(s, y2(s))ds

+ g(t, xy1(t))

∫ t

−∞
a(t, t− s)[f(s, y2(s))− f(s, y1(s))]ds

≥ 0, t ∈ R.

Therefore, we infer that A(y2) − A(y1) ∈ K, which means that A is increasing in
K◦.
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Step 3. A satisfies assumption (2) in Corollary 2.3. Fix y ∈ K◦ and λ ∈ (0, 1).
Taking an arbitrary γ0 ∈ BC(R,R+), we define two sequences {γn} and {γ′n} as
follows

γ1 = Ayγ0, γn = Ayγn−1, n = 2, 3, . . . ,

γ′1 = Aλyγ0, γ′n = Aλyγ
′
n−1, n = 2, 3, . . . .

As in to step2, we have

lim
n→∞

γn = xy, lim
n→∞

γ′n = xλy.

Using (3.2), (H2) and (H6), for t ∈ R, we have

γ′1(t) = (Aλyγ0)(t) = g(t, γ0(t))

∫ t

−∞
a(t, t− s)f(s, λy(s))ds

≥ λαg(t, γ0(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds

= λα(Ayγ0)(t) = λαγ1(t),

i.e., γ′1 ≥ λαγ1. Moreover, we have

γ′2(t) = (Aλyγ
′
1)(t) = g(t, γ′1(t))

∫ t

−∞
a(t, t− s)f(s, λy(s))ds

≥ λαg(t, λαγ1(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds

≥ λαλαβg(t, γ1(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds

= λα(1+β)(Ayγ1)(t) = λα(1+β)γ2(t),

i.e., γ′2 ≥ λα(1+β)γ2. We also have

γ′3(t) = (Aλyγ
′
2)(t) = g(t, γ′2(t))

∫ t

−∞
a(t, t− s)f(s, λy(s))ds

≥ λαλαβ(1+β)g(t, γ2(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds

= λα(1+β+β2)(Ayγ2)(t)

= λα(1+β+β2)γ3(t),

i.e., γ′3 ≥ λα(1+β+β2)γ3. In general, we have

γ′n ≥ λα(1+β+···+βn−1)γn = λ
α(1−βn)

1−β γn ≥ λ
α

1−β γn,

which yields

xλy = lim
n→∞

γ′n ≥ λ
α

1−β lim
n→∞

γn = λ
α

1−β xy.

Then, for every t ∈ R, we have

A(λy)(t) = g(t, xλy(t))

∫ t

−∞
a(t, t− s)f(s, λy(s))ds

≥ λαλ
αβ
1−β g(t, xy(t))

∫ t

−∞
a(t, t− s)f(s, y(s))ds
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= λ
α

1−β (Ay)(t),

i.e., A(λy) ≥ λ
α

1−βAy. In addition, it is easy to verify that

λ
α

1−β > λ, λ ∈ (0, 1),

since β ∈ (0, 1− α).

Step 4. A satisfies assumption (3) of Corollary 2.3. Applying (H7), there exists a
constant c > 0 such that

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds ≥ c. (3.4)

Letting x0(t) = c for all t ∈ R, we have x0 ∈ K◦. By (3.4), we have

A(x0)(t) = g(t, xx0
(t))

∫ t

−∞
a(t, t− s)f(s, x0(s))ds

≥ g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds

≥ inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds

≥ c = x0(t), t ∈ R,

i.e., A(x0) ≥ x0. Moreover, let y0(t) = max{MgMfD, c} for all t ∈ R, where
Mg = sup{|g(t, x)| : t ∈ R, x ∈ R+}. We have

A(y0)(t) = g(t, xy0(t))

∫ t

−∞
a(t, t− s)f(s, y0(s))ds

≤MgMf

∫ t

−∞
a(t, t− s)ds

= MgMf

∫ +∞

0

a(t, s)ds

≤MgMf sup
t∈R

∫ +∞

0

a(t, s)ds

= MgMfD ≤ y0(t), t ∈ R,

i.e., A(y0) ≤ y0.
Now, all conditions of Corollary 2.3 are satisfied and thus A has a unique fixed

point y in K◦, which means that (3.1) has a unique solution with positive infimum
in BC(R,R+). �

4. An example

In this section, we present an example to illustrate our main result obtained in
the previous Section.

Example 4.1. Let

f(s, x) =
(sin s+ 2)(x1/3 + 1)

x1/3 + 2
for all s ∈ R and x ∈ R+,

g(t, x) =
(sin t+ 2)[(x+ 1)1/2 + 2]

9π[(x+ 1)1/2 + 3]
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for all t ∈ R and x ∈ R+, and

a(t, s) =
1

1 + s2

for all t ∈ R and s ∈ R+.
Now, we show that f , a and g satisfy assumptions (H1)–(H7). It is easy to see

that f ∈ BC(R× R+,R+). Moreover,

0 < f(s, x) =
(sin s+ 2)(x1/3 + 1)

x1/3 + 2

≤ (sin s+ 2)(x1/3 + 2)

x1/3 + 2
= sin s+ 2 ≤ 3

for all s ∈ R and x ∈ R+, which means that Mf ≤ 3.
Letting 0 ≤ x1 ≤ x2, we have

f(s, x1)− f(s, x2) =
(sin s+ 2)(x

1/3
1 + 1)

x
1/3
1 + 2

− (sin s+ 2)(x
1/3
2 + 1)

x
1/3
2 + 2

= (sin s+ 2)
[ x

1/3
1 − x1/3

2

(x
1/3
1 + 2)(x

1/3
2 + 2)

]
≤ 0.

Thus, f(s, ·) is increasing in R+ for all s ∈ R. So (H1) holds.
There exists α = 1/3 ∈ (0, 1) such that

f(s, λx) =
(sin s+ 2)(λ1/3x1/3 + 1)

λ1/3x1/3 + 2
≥ (sin s+ 2)(λ1/3x1/3 + λ1/3)

x1/3 + 2
= λ1/3f(s, x)

for all x ≥ 0, λ ∈ (0, 1) and s ∈ R. Obviously, λ1/3 > λ. Thus, the assumption
(H2) holds.

For each t ∈ R, we have ∫ +∞

0

1

1 + s2
ds =

π

2
< +∞.

Therefore, a(t, ·) ∈ L1(R+). It is not difficult to see that the map t 7→ a(t, ·) is in
BC(R, L1(R+)). Thus, (H3) holds. Also, we have

D = sup
t∈R

∫ +∞

0

1

1 + s2
ds =

π

2
.

We have g ∈ BC(R× R+,R+), and for 0 ≤ x1 ≤ x2,

g(t, x1)− g(t, x2) =
(sin t+ 2)[(x1 + 1)1/2 + 2]

9π[(x1 + 1)1/2 + 3]
− (sin t+ 2)[(x2 + 1)1/2 + 2]

9π[(x2 + 1)1/2 + 3]

=
sin t+ 2

9π

[ (x1 + 1)1/2 − (x2 + 1)1/2

[(x1 + 1)1/2 + 3][(x2 + 1)1/2 + 3]

]
≤ 0.

Thus, g(t, ·) is increasing in R+ for all t ∈ R and (H4) holds.
The value Lg = 1/3π satisfies LgMfD < 1, and

|g(t, x1)− g(t, x2)| =
∣∣ (sin t+ 2)[(x1 + 1)1/2 + 2]

9π[(x1 + 1)1/2 + 3]
− (sin t+ 2)[(x2 + 1)1/2 + 2]

9π[(x2 + 1)1/2 + 3]

∣∣
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≤ 1

3π

∣∣ (x1 + 1)1/2 + 2

(x1 + 1)1/2 + 3
− (x2 + 1)1/2 + 2

(x2 + 1)1/2 + 3

∣∣
≤ 1

3π
|(x1 + 1)1/2 − (x2 + 1)1/2|

≤ 1

3π
|x1 − x2|.

for all t ∈ R and x1, x2 ∈ R+. Thus, (H5) holds.
Letting β = 1/2 ∈ (0, 1− α), we have

g(t, λx) =
(sin t+ 2)[(λx+ 1)1/2 + 2]

9π[(λx+ 1)1/2 + 3]

≥ (sin t+ 2)[(λx+ λ)1/2 + 2λ1/2]

9π[(x+ 1)1/2 + 3]
= λ1/2g(t, x)

for all x ≥ 0, λ ∈ (0, 1) and t ∈ R. Thus, (H6) holds.
When c = 1

48 ≈ 0.020833 > 0 we have

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds

=
( sin t+ 2

12π

)∫ t

−∞

( 1

1 + (t− s)2

)( (sin s+ 2)(c1/3 + 1)

c1/3 + 2

)
ds

=
( sin t+ 2

12π

)(c1/3 + 1

c1/3 + 2

)∫ +∞

0

sin(t− s) + 2

1 + s2
ds

≥ 1

12π

(c1/3 + 1

c1/3 + 2

)∫ +∞

0

1

1 + s2
ds =

c1/3 + 1

24c1/3 + 48

for all t ∈ R. Thus, we have

inf
t∈R

g(t, 0)

∫ t

−∞
a(t, t− s)f(s, c)ds ≥ c1/3 + 1

24c1/3 + 48
≈ 0.023353 > c,

i.e., (H7) holds. Thus, Theorem 3.1 yields that the quadratic integral equation

x(t) =
(sin t+ 2)[(x(t) + 1)1/2 + 2]

9π[(x(t) + 1)1/2 + 3]

×
∫ t

−∞

( 1

1 + (t− s)2

)( (sin s+ 2)[(x(s))1/3 + 1]

(x(s))1/3 + 2

)
ds,

for t ∈ R, has a unique solution with positive infimum in BC(R× R+).
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[12] H. S. Ding, G. M. N’Guérékata; A note on the existence of positive bounded solutions for an

epidemic model, Applied Mathematics Letters, 26 (2013), 881–885.

[13] H. S. Ding, M. M. Liu, J. J. Nieto; Multiple positive solutions for quadratic integral equations
of fractional order, Journal of Function Spaces, Volume 2017, Article ID 4571067, 8 pages.

[14] K. Ezzinbi, M. A. Hachimi; Existence of positive almost periodic solutions of functional equa-

tions via Hilbert’s projective metric, Nonlinear Analysis. Theory, Methods and Applications,
26 (1996), 1169-1176.

[15] A. M. Fink, J. A. Gatica; Positive almost periodic solutions of some delay integral equations,

Journal of Differential Equations, 83 (1990), 166-178.
[16] H. H. G. Hashem, A. M. A. El-Sayed; Stabilization of coupled systems of quadratic integral

equations of Chandrasekhar type, Mathematische Nachrichten, 290 (2017), 341–348.
[17] B. Hazarika, E. Karapinar, R. Arab, M. Rabbani; Metric-like spaces to prove existence of

solution for nonlinear quadratic integral equation and numerical method to solve it, Journal

of Computational and Applied Mathematics, 328 (2018), 302–313.
[18] A. Khchine, L. Maniar, M. A. Taoudi; Leray-Schauder-type fixed point theorems in Banach

algebras and application to quadratic integral equations, Fixed Point Theory and Applica-

tions, 2016, 2016:88, 20 pp.
[19] W. Long; Existence of positive almost automorphic solutions to a class of integral equations,

African Diaspora Journal of Mathematics, 12 (2011), 48–56.

[20] M. M. A. Metwali; On a class of quadratic Urysohn-Hammerstein integral equations of mixed
type and initial value problem of fractional order, Mediterranean Journal of Mathematics, 13

(2016), 2691–2707.

[21] L. N. Mishra, M. Sen; On the concept of existence and local attractivity of solutions for some
quadratic Volterra integral equation of fractional order, Applied Mathematics and Computa-

tion, 285 (2016), 174–183.
[22] R. Torrejón; Positive almost periodic solutions of a state-dependent delay nonlinear integral

equation, Nonlinear Analysis. Theory, Methods and Applications, 20 (1993), 1383–1416.

Chu-Hang Wang

College of Mathematics and Information Science, Jiangxi Normal University, Nan-
chang, Jiangxi 330022, China

Email address: 2227016700@qq.com

Hui-Sheng Ding (corresponding author)
College of Mathematics and Information Science, Jiangxi Normal University, Nan-

chang, Jiangxi 330022, China
Email address: dinghs@mail.ustc.edu.cn

Gaston M. N’Guérékata
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