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EXISTENCE OF SOLUTIONS TO p-LAPLACIAN DIFFERENCE
EQUATIONS UNDER BARRIER STRIPS CONDITIONS

CHENGHUA GAO

ABSTRACT. We study the existence of solutions to the boundary-value problem
App(Au(k — 1)) = f(k,u(k), Au(k)), k€T N,
Au(0)=A, u(N+1)=B,

with barrier strips conditions, where N > 1 is a fixed natural number, ¢,(s) =
|s|P=2s, p > 1.

1. INTRODUCTION

Given a,b € Z and a < b, we employ T, ) to denote {a,a+1,a+2,...,0—1,b}.
In this paper, we are concerned with the following p-Laplacian difference equation

A(p(Au(k —1))) = f(k, u(k), Au(k)), k€ T ny, (1.1)
satisfying the boundary conditions
Au(0) = A,u(N + 1) = B, (1.2)

where N > 1 is a fixed natural number, f : Tj; nj X R? — R is continuous, op(s) =
|s[P725,0 > 1,(6p) " = ¢gr 3 + 5 = 1.

In recent years, p-Laplacian discrete boundary-value problems have been inves-
tigated in literature [1,2,4]. But, almost all of the works discussed these problems
when f satisfies growth restriction at co. Now, the question is: Is there still a
solution to those problems when f is not restricted at oo?

In 1994, Kelevedjiev [3] used Leray-Schauder principle to discuss the solutions
to the nonlinear differential boundary-value problem

a(t) = f(t,z(t),2' (1)), te0,1], (1.3)
2'(0) = A,2(1) = B. (1.4)

He established the following results:
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Theorem 1.1. Let f:[0,1] x R? — R be continuous. Suppose there are constants
Li, 1= 1,2,3,4, such that Ly > Lq > A, Lg < L4y < A,

ft,2,p) <0, (t,x,p) €[0,1] x R x [Ly, Ly],

f(t,$,p) 205 (taxvp) S [Oa 1] x R x [L37L4]'

Then (1.3)-(1.4) has at least one solution in C?[0,1], where C2[0,1] is the set of
functions whose second derivative is continuous on [0, 1].

Clearly, growth restrictions on f are not imposed in Theorem So, we use
the Leray-Schauder principle to discuss the existence of solutions to boundary-value

problem ([1.1)-(1.2)) when f is not restricted at oo.

2. PRELIMINARIES
Let X := {ufu : T ,n41] — R} be equipped with the norm

ullx = max |u(k
Jullx =, o Jui)

and Y := {u|u : Ty nj — R} with the norm

ully = max |u(k)|.
fully =, . Ju(k)

It is easy to see that (X,| - ||x) and (Y, || - ||y) are Banach spaces.
The main result of our work is based on the following special form of Leray-
Schauder principle.

Theorem 2.1. Let f : Tjy ny x R? — R be continuous, L : D(L) C X — Y be a
bijection, and L™ be completely continuous. If there exists a constant M such that
an arbitrary solution of the boundary-value problem

Lu(k) = Af(k,u(k), Au(k)), k€ Tpny, Ae€l[0,1], ueD(L)

satisfies ||ul|x < M, then the boundary-value problem

Lu(k) = f(k,u(k), Au(k)), k€ TpuN, ueD(L)
has at least one solution in X.

Define the operator L : D(L) C X — Y by

Lu(k) = Ay(Au(k —1))), we D(L), k€ Ty,
where D(L) = {u|u € X, Au(0) = A,u(N + 1) = B}.
Lemma 2.2. Let h € Y. Then the boundary-value problem

Adp(Bulk— 1)) = h(k), k€ Ty p, (2.1)
Au(0)=A, u(N+1)=DB

has a unique solution

N+1 s—

u(k) =B -y (%(Zlha)wpm))), k€ Tio, 11

s=k+1 =1
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Proof. Summing the equation (2.1)) from s =1 to s = k — 1, we obtain

k—1
Sp(Aulk —1)) = dp(A) + Y h(s).
s=1

Applying ¢, on both sides of the above equation, we obtain

k-1
Aulk = 1) = ¢g(dp(A) + Y _ h(s)).

Summing again from s =k + 1 to s = N + 1, we have

N+1 s—1
B—ulk)= Y (6,3 h(l) + dp(A))),
s=k+1 =1
N+1 sjl
u(k) =B — Z (éf’q(z h(l) + ¢p(A))), k€ Tjo,n11)-
s=k-+1 =1

Next, we show that there is only one solution to (1.1)-(L.2]). Suppose that u, us
are solutions. Then

A(dp(Aur(k = 1)) = A(dp(Auz(k —1))), k€ Ty, (2.3)

and Au;(0) = A, uw;(N +1) = B, i = 1,2. Now, summing (2.3) from s = 1 to
s=k—1, we get

bp( D (k — 1)) — 6y(Buz(k — 1) = 6p(Aus(0)) — 9y (Auia(0)),
furthermore, Au,;(0) = A,i =1,2,
¢p(Aui(k — 1)) = ¢p(Auz(k — 1)),
and since ¢y, is a bijection,
Aul(k — 1) = AUQ(k — 1)

Summing the above equation from s = k41 to s = N + 1, we have

N+1 N+1
> Au(k—1)= > Auy(k-1),
s=k+1 s=k+1

B — ul(k) =B - ’LLQ(IC),

so ui(k) = uz(k), k € Tp ), and from the boundary conditions Au;(0) = A,
u;(N + 1) = B, we have

ul(k) = UQ(,Z{J), ke T[O,N—i—l]-

We remark that from Lemma it follows that L is a bijection.
Lemma 2.3. L™ : Y — X is completely continuous.

Proof. Since the range of L=! has finite dimension, it is not difficult to check
that it is compact; and from the continuity of f and ¢4, we can see that L' is
continuous. (]
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3. MAIN RESULTS

Theorem 3.1. Let f : Ty n xR? — R be continuous. Suppose there exist constants
L;,1=1,2,3,4 satisfying Ly > L1 > A, L3 < Ly < A, such that

f(k,u,p) <0, (k,u,p) € T Ny x R x [L1, Lo, (3.1)

f(k,u,p) >0, (k,u,p) € Ty nyp x R x [Ls, Ly]. (3.2)
Then the boundary-value problem — has at least one solution in X.
Proof. Let us define the function ® : R — R as follows.

Lo, v > Lo,
®(v) =qv, Lz<v< Lo,
L3, v < Ls.
Now, we consider the problem
A¢p(Au(k —1))) = f(k, u(k), ®(Au(k))), k€ Tp,nj,ue D(L). (3-3)
Suppose that v € D(L) is an arbitrary solution to the family of problems
Agp(Au(k —1))) = Af(k, u(k), ®(Au(k))), k€ Tpn. (3-4)

To apply Theorem [2.1} we need a priori bounds for ||u||x independent of A € [0, 1].
First, let us examine Au(k). Now, we prove that the set

So = {k € To,ny|Au(k) > L1}
is empty. Suppose it is not empty. Let ko € Sp be fixed. Then Au(kg) > L;. From
the construction of ®, we know
L; < ®(Au(ko)) < Lo.
From and A(¢,(Au(ko — 1))) <0, we have
|Au(ko) P2 Au(ko) < |Au(ko — 1)[P~2Au(ky — 1). (3.5)

Now, we prove kg — 1 € Sp. It will be discussed in three cases:

Case 1: Au(ko) > 0. Then from (3.5, we know L; < Au(ko) < Au(ky — 1);
Case 2: Au(kg) = 0. Then the result is obvious;

Case 3: Au(ko) < 0. Then Au(ky — 1) will be discussed under two cases.

Case 3.1: Au(kg — 1) > 0. Then from (3.5), Au(ko — 1) > Ly;

Case 3.2: Au(ko — 1) < 0. Then p will be discussed under different situations.
Case 3.2.1: p is an odd number. Then (—Au(kg))?~2 = —(Au(ke))?~2. From
([B-F), we know —(Au(ke))P~t < |Au(ko—1)[P~2Au(ko—1). Moreover, Au(kg—1) <
0, we have —(Au(kg))P~! < —(Au(kg — 1))P~L. Since p — 1 is an even number and
Au(ko), Au(ko — 1) < 0, it’s not difficult to get

L < Au(ko) < Au(ko — 1),

Case 3.2.2: p is an even number. Then we have (Au(ko))P~! < (Au(ko — 1))P71,
and since p — 1 is an odd number, we know that

L < Au(ko) < Au(ko — ].)7
so, when Au(kg) < 0, Au(ko — 1) < 0, there also exists
L < Au(ko) < Au(ko — ].)
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From Case 1, Case 2, Case 3, we obtain
Ly < Au(ky) < Au(ky — 1),
so kg — 1 € Sp. If we continue the above process, we get
Au(0) > Au(l) > Ly,
which contradicts with Au(0) = A, so Sp = 0.
Similarly, we can obtain that the set
S1 = {k € Tpo,n)|Au(k) < La}

is also empty.
Then for k S T[O,N]v

i.e.,
Au(k)| < .
s [Au(b)] < C, (37)

where C' = max{|L1|,|L4|}.
On the other hand, for k& € Ty nj, since u(N + 1) = B, we can construct

u(k) = — Zi\;k Au(s) + B. Thus for u € D(L), we have
max |u(k)| < Ch, (3.8)

k€T, N+1)
where C; = (N 4+ 1) - C + |B|. From (3.8), we can see that all of the solutions to

problems (3.4 satisfy
l[ullx < C1.

Then there exists at least one solution v € D(L) to problem (3.3). And from ({3.6)),
we know that
Ly < Ly < @(Au(k)) <Li<Ly, ke T[I,N]v
together with the definition of ®, the following conclusion
®(Au(k)) = Au(k), k€ Tp ni,
can be obtained. Thus « is also a solution to the problem (|1.1))-(1.2).

Example. Consider the problem

A(dp(Aulk — 1)) = (Au(k))" — 6(Au(k))® + 11(Au(k))® — 6Au(k), k€ TNy,
Au(0) =2,u(N +1) =B,

where N > 1 is a fixed natural number, B is an arbitrary number. Let f(k,u,p) =

p* — 6p> + 11p? — 6p, L1 = %, Lo=3,Ls=1, L4y = %, A = 2. We can prove that

f(k,u,p) satisfies all conditions of Theorem so this problem has at least one

solution. 0O

The next theorem can be proved by similar arguments.

Theorem 3.2. Let f: T n) % R? — R be continuous. Suppose there are constants
L;, i =1,2,3,4 with Ly > Ly > B, Ly < Ly < B, such that (3.1)), (3.2)) are
satisfied. Then the boundary-value problem
A(gp(Aulk —1))) = f(k,u(k), Au(k)), k€ Tp,ny,
u(0)=A, Au(N)=DB

has at least one solution in X.
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