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ABSTRACT 

The unstructured historical data stored in Computerized Maintenance 

Management Systems (CMMS) is a mine of maintenance diagnostic information. This 

data is often underused due to its unstructured and informal nature. This thesis will 

propose a framework for transforming maintenance log data, which is often in the form 

of natural language text, into formal knowledge graphs. The proposed method generates a 

knowledge graph that encodes the semantic relationships between multiple maintenance 

entities based on the historical data that can be found in maintenance work orders. The 

knowledge graph is created semi-automatically through the hybrid application of text 

analytics techniques and human-assisted semantic tagging of maintenance work order 

text. The semantics of the knowledge graph proposed in this research will be provided 

jointly by a SKOS thesaurus and an OWL ontology. SKOS (Simple Knowledge 

Organization System) and OWL (Web Ontology Language) are both Semantic Web 

standards that will enhance the reusability and portability of the final knowledge graph. 

The knowledge graph created as an output of a java based tool will become an open-

source shared industrial maintenance knowledge base that can be extended incrementally 

and be used for various decision support applications, including maintenance diagnostics 

and root-cause analysis. An online knowledge graph platform will be used to conduct 

querying and inferencing over the graph to support smart maintenance diagnosis.  

Keywords: knowledge graph, thesaurus, Natural Language Processing, ontology 
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I. INTRODUCTION 

Maintenance is the process of ensuring that machines and equipment operate 

continuously and efficiently with reduced breakdown or malfunctioning. In the absence 

of a maintenance management system, companies usually follow the corrective 

maintenance strategy, which means they use their machines and equipment until they fail, 

then repair and restore them when they can no longer function. However, downtime is a 

critical issue that has a direct impact on a company's profit. To reduce downtime and 

extend the life of assets, preventive, corrective, predictive,  and periodic maintenance 

procedures are often implemented jointly. These procedures are often supported by 

software systems that enable maintenance technicians to plan their activities and to record 

details about the nature of failures, their probable causes, and the recommended treatment 

for the observed failure. These data are stored in large databases of software systems like 

Computerized Maintenance Management systems (CMMS) or ERP solutions.  

This thesis focuses on the unstructured text-based raw data in  Maintenance Work Order 

(MWO) that are often stored in CMMS databases. MWOs contain significant details such 

as problem statements, asset information and failures, the type of maintenance done, 

along with their scheduling, and the treatment used to address the observed problem. The 

valuable data stored in CMMS databases are often underutilized because they are in 

natural language format, which has several deficiencies, including ambiguity, 

incompleteness, and informality. The objective of this thesis is to convert maintenance 

work order data into a more computationally available format and enable the reusability 

of the knowledge embedded in maintenance logs. For this purpose,  a framework 

supported by Semantic Web standards will be proposed for converting raw text into a 
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graph-based model, allowing historical maintenance information hidden in the text to be 

revealed, easily interpreted, organized, and reused. Our thesis focus is on industrial 

maintenance data, but the proposed method is applicable to other domains, such as 

healthcare and biomedical practices, where vast amounts of textual data need to be 

processed. We have conducted this thesis research in collaboration with the National 

Institute of Standards and Technology (NIST). NIST researchers have provided us with 

the necessary raw data and valuable information on the real-time picture of how the 

industries use maintenance findings from their stored database. We will briefly illustrate 

our vision of developing an industrial maintenance ontology enabling data-driven 

discoveries to enhance smart maintenance. 

Problem Statement 

Even though maintenance databases CMMS have gotten more structured and 

mature over time among researchers and companies, they still contain a significant 

amount of unstructured data that is difficult to identify and use. Not only is the 

maintenance data diverse across multiple industries, but operations also documented by 

maintenance technicians often presume that the data does not need to be explicitly 

represented. As a result, the MWO is often full of technical jargon and overloaded 

meaning. Besides, the domain knowledge to manage and reuse the heterogeneous 

maintenance data is a complex process and different for individual companies. Big to 

mid-size companies oftentimes are reluctant to share their database. Nevertheless, it is 

still possible in many domains to formalize the maintenance knowledge and share it 

among the general public. Another big problem is achieving a total collaboration 

throughout the data, semantic and application layers to retain the desired output 
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knowledge graph and ontology since the progression from raw data to ontology is tedious 

and often cumbersome, resulting quickly in a productivity bottleneck. Hence, the main 

objective of this thesis is to introduce a hybrid methodology for generating machine 

actionable knowledge from unstructured raw data and constructing an open-source 

knowledge graph as well as maintenance ontology. 

Assumptions, Limitations, and Delimitations 

Assumptions 

• Our developed framework for semantic annotation will keep humans in the loop 

for the 1st level tagging and construction of the three levels of data layers (data, 

semantic, application) which includes thesaurus development for the 

manufacturing company-specific data. From the literature review, we have seen 

that maintenance operations are not always explainable, and human intuitions 

play a big role in formalizing knowledge.  

• It is difficult for standard NLP methods to parse through the engineering work 

order jargon, and so we have to rely on the NLP tool for the 2nd level tagging of 

single and multi-phrase words 

• We have no control over how the data is entered in CMMS and collected. We 

work with the raw data without changing its structure or giving instructions to 

operators as to how to enter data.  

• The framework will reuse some of the existing semantic models (thesaurus and 

ontology) that have been developed previously.  

Limitations 

• We are limited by the availability of datasets provided by a few companies.  
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• We do not have access to maintenance technicians from the companies that have 

provided us with data. We need to interpret the meaning of terms and phrases 

ourselves based on our previous knowledge of maintenance.  

• Every company produces valuable data, and often there are existing tools the 

management uses to extract the data. Nevertheless, the question is whether all the 

information available has been documented in the most beneficial way and 

whether this data has been used for fact-based maintenance management. It is 

similar to our circumstances since we are working with heterogeneous data across 

the industries collected by the maintenance technician, who often presumes it as 

part of a priori knowledge. But it is still possible to categorize the raw data to 

improve the reusability and findability of the knowledge embedded in MWO. 

• Sometimes the problem statements do not have enough information regarding the 

failure or the reason and location of the failure. In those cases, human intervention 

is needed to decide on the implicit meaning of the text or just ignore them. 

• Since our research topic is comparatively novel, it required suitable tools to be 

developed. As we find new words in the raw data that are not bucketed under the 

concept, we make the corresponding updates in the thesaurus to accommodate the 

new terms.  

Delimitations 

• We are only using input data that is generated by CMMS in CSV format. We are 

not using other maintenance documents such as standards, procedures, and reports 

in this work.   

• We are only mapping the failures and associated relations with the items, not the 
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solutions. Solution could be the future addition to this research work.  

• Currently, we are only using free software to analyze our data, such as Protégé 

and Nestor. Besides, we have also developed our own java-based tools to utilize 

the SKOS and ontology output as well as run the SPARQL query.  

Research Questions 

• What main concept categories and sub-categories can be used for classifying the 

key terms that appear in MWO data? 

• Does using tools with NLP support (such as Nestor) improve the efficiency of the 

tagging process?  

• How to categorize the Nestor-tagged problems under the correct category/bucket 

in the manual thesaurus? 

• How effective will our final model show the semantic relationship among various 

entities? 

• What should be the top-level concepts of the MD thesaurus? 

• How would we express the queries to satisfy our competency questions, such as: 

What is the cause of this maintenance problem, where is the location of the 

problem, what are the WOs related to this problem (s), and so on?  

• How to use rules to expand the knowledge graph automatically? 

Research Methods 

This study focuses on converting the raw maintenance log into a formal 

knowledge graph that encodes semantic relationships among multiple maintenance 

entities. Figure 1 is an example of the manufacturing company’s raw maintenance data 

we will be using to generate the knowledge graph. 
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Figure 1. Few Examples of the Raw Maintenance Work Orders. 

The methodology that will be used in this research leverages the existing 

Semantic Web standards for knowledge and data representation, including OWL, SKOS, 

and RDF. As mentioned in the introduction section, our thesis starts with collecting the 

raw maintenance data stored in CMMS and building a maintenance thesaurus or SKOS 

model. SKOS is a standard, published and recommended by World Wide Web 

Consortium (W3C), that provides a more organized framework for building controlled 

vocabularies such as thesauri, concept schemes, and taxonomies to be used and 

understood by both human and machine agents. Besides, SKOS is in a stable, 

standardized state; therefore, it can be incrementally and modularly extended by linking 

its concepts to external concepts from other graphs if needed in the future. This SKOS 

thesaurus will provide us with a formal vocabulary of maintenance terms and will be used 

for the vectorization of maintenance work orders. A commercial tool called PoolParty 

Taxonomy & Thesaurus Management System (https://www.poolparty.biz/) has been used 

in accordance with the human-in-the-loop approach for creating and extending the 

https://www.poolparty.biz/
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thesaurus. PoolParty offers a secure server backend, analyzes the material, and semi-

automatically expands the taxonomies. 

Humans have identified the essential terms in the maintenance work order text 

and categorized them under appropriate broader concepts such as functional failure, 

defect, and treatment actions shown in Figure 2. However, they have used NLP to 

perform structured data extraction through the process called tagging.  

 

Figure 2. Thesaurus and NLP for Hybridized Data Classification. 

The next step was to create a knowledge graph which will also be used directly 

for root cause analysis since it captures the relationship among different maintenance 

artifacts. Hence, we first needed to build an axiomatic ontology based on OWL (Web 

Ontology Language). OWL would enhance the expressivity of the SKOS model since, 

without any internal relationships among the concepts of the thesaurus, it is just a 

dictionary for maintenance terms. The concepts of the SKOS model have been mapped in 

Protégé based OWL file in top-down and bottom-up approaches and Figure 3 is an 
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example representation of OWL ontology. In the top-down approach, top-level core 

classes have been defined, guided by the International Ontology Foundry (IOF). A 

bottom-up approach has been used to determine maintenance annotation in the thesaurus 

aligned with ontological classes (Ameri & Yoder, 2019). 

 

Figure 3. Owl Ontology Classes and Object Properties in Protégé. 

Both the output of this OWL file and the SKOS thesaurus has been used as input 

to the java based tool to build triples for the work orders. OWL contains details of the 

appropriate linking properties along with the ontology classes to develop the triples, and 

the output of this java based tool is our desired knowledge graph. The graphs could be 

viewed in the web-based RDF (Resource Development Framework) Grapher to analyze 

potential failure root causes in the maintenance work order.  An example of raw data is: 

“Damaged air bracket cleaner, key switch not working,” and Figure 4 illustrate how 

informative a knowledge graph looks compared to that single line raw data. It elaborates 

on information like air bracket cleaner, and switch are types of components, key switch is 

not working due to damaged air bracket cleaner. We can also understand the relationship 
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between each individual, and when analyzing larger datasets, these internal relationships 

result in extensive root cause analysis. Maybe this same damaged air bracket cleaner is 

the cause of problem in other operations. Rather than repeatedly going through the raw 

maintenance work order, we would build this knowledge graph to explore the entire 

history.  

 

Figure 4. Visualization of Single Raw MWO. 

We have used secondary data provided by NIST, which they collected from 

different manufacturing industries. Our data sets are descriptive since they consist of 

unplanned failures rather than any external manipulation. We could state that the failure 

data is collected by maintenance technicians’ observation without any external 

intervention. We have used different tools to conduct our quantitative methodology, such 

as Nestor to apply NLP in thesaurus development, SKOS tool for thesaurus generation, 

Protégé for OWL ontology, and other Java-based tools to generate RDF triples and to 

conduct SPARQL query. Nestor uses NLP in the background to identify the repetitive 

terms, removing the unnecessary gaps and punctuation to perform structured data 

extraction from the raw MWOs with minimal annotation time-cost. SKOS tool is used for 

creating the top-level categories of terms and further populating the lower-level 

categories by the terms extracted from the raw data. Those top and lower-level categories 
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have been mapped in the Protégé tool. A java based tool has been developed to use the 

SKOS and Protégé tool output as input in the RDF and OWL format. Afterward, an 

online enterprise knowledge graph platform was utilized to conduct queries for finding 

necessary relationships in the database.  

All of our methodology approaches are standardized, and it is possible to create a 

smart maintenance tool with the thesaurus-guided maintenance database development. 

Building the thesaurus is not hardcore data sorting, and hundreds of SKOS vocabularies 

exist on the web. Therefore, we believe that our proposed model can be linked and 

integrated with other vocabularies to enhance the semantic coverage of the knowledge 

graph. However, one shortcoming of the proposed methodology is since the thesaurus 

will be partially developed by humans, it will be time-consuming. They will also mitigate 

the effect as they can judge the quality of the data by decision-making and their past 

experience better than the NLP when data extraction is the preliminary task. Another 

shortcoming of the proposed approach is that the SKOS ignores the type of relations 

between two concepts and treats all relationships as the same. This caveat can be 

countered by superimposing more expressive ontologies on top of the lightweight 

thesaurus to enable more advanced reasoning. 

Research Plan 

The following specific tasks are planned to meet the objectives of the proposed 

project, followed by Table 1, which shows the timetable of our tasks.  

Task 1: Creating and Extending Maintenance Thesaurus 

The first step in developing the knowledge graph was to create a corpus of 

technical documents related to the maintenance domain, including MWOs, to be used as 
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the training dataset. Using techniques such as text mining and NLP, the relevant terms 

can be extracted and integrated with the taxonomy of SKOS concepts. The next step was 

creating the top-level categories of terms and further populating the lower-level 

categories with the terms extracted from the corpus. The thesaurus has three main 

concept schemes (collections), namely, Artifact, Maintenance Problem, and Maintenance 

Treatment. An alternate concept label could be created depending on different 

companies.  

Task 2: Creating and Extending a Formal Ontology 

An OWL ontology has been developed for the representation of the domain of 

industrial maintenance. The scope of the ontology will be determined based on the 

available datasets and motivating use cases. The final step was the creation of an OWL 

file in Protégé, and a modular approach will be followed for ontology development. 

Task 3: Knowledge Generation and Expansion 

 The java tool is used to tag work orders one by one of a certain manufacturing 

company and develop the triples relationship. Later, all the relations were added to a 

master turtle file, and the RDF graph web service was used to visualize the knowledge 

graph.  

Task 4: Validation of the Developed Semantic Models 

This task entails applying the semantic models that have been built to 

support search, retrieval, and decision-making. The first step (4-1) is to define a set of 

KPIs using precision and recall performance metrics, and then the necessary computer 

programs will be developed to extract the values of KPIs from the raw data. Maintenance 

KPIs provide information about common problems, such as considering a problem where 
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we want to know the undesirable behavior of assets caused by defective artifacts. Now, 

our query returns ten records, and after comparing them with the text inputs, we found 

out that only six undesirable behavior is related to asset caused by defective artifact. So, 

the KPI for this problem will be what percentage of undesirable behavior of asset caused 

by defective artifact is truly positive. Similar to this, other KPIs could be what percentage 

of failure events identified by the query are actually the failure events modeled correctly 

in the knowledge graph, what percentage of the hydraulic leak from O-ring is actually the 

hydraulic leak from O-ring in the knowledge graph, and so on. Maintenance operations 

management decisions can be taken depending on these KPIs with certainty rather than 

time consuming in determining the solution. The second step (4-2) was to determine if 

the semantic knowledge models capture the semantic relationship between concepts. This 

was done by running necessary queries formulated in SPARQL and analyzing if the 

output data was showing the root causes. This is similar to putting semantic models to 

work and applying them to the maintenance diagnostics process.  

Table 1. The Timetable of Tasks to Accomplish the Goal 

Tasks Year 1 Year 2 

M 

3 

M 

4 

M 

5 

M 

6 

M 

7 

M 

8 

M 

9 

M 

10 

M 

11 

M 

12 

M 

1 

M 

2 

M 

3 

M 

4 

M 

5 

M 

6 

M 

7 

M 

8 

1 
                  

2 
                  

3 
       

  
          

4-1 
                  

4-2 
                  

 
Spring 21 Summer 21 Fall 21 Spring 22 Summer 22 
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II. LITERATURE REVIEW AND SEMANTIC DEFINITIONS 

According to Mohan (2015), The failure of the state-of-the-art NLP systems to 

generalize correctly suggests that they are unable to learn meaningfully from their 

training data. Text encountered in technical applications, like industrial processes, differs 

greatly from normal benchmarks in certain aspects, such as lexical, grammatical, and 

terminological variances, causing deployed NLP systems to perform poorly. Especially, 

maintenance text is frequently written in a style that resembles shorthand notation, with 

several stop words and no punctuations (Sexton et al., 2017). In addition, the reasoning 

behind the NLP analysis results is easily buried by incomprehensible computational black 

boxes obstructing human understanding. Dima et al. (2021) acknowledged the problem 

by suggesting an approach to Technical Language Processing (TLP) for the dataset 

explicitly containing industrial engineering case raw texts and mentioned ‘Nestor’ and 

‘Redcoat’ as the ideal NLP-based TLP toolkits. Surprisingly, 'Nestor' was also employed 

in our research to extract structured data from the raw industrial maintenance data. So, it 

is easily derived from the approach these authors were trying to make, and we have 

implemented that in our paper. The authors then talked about the domain adaption among 

different sources which share similar syntactic structures and parts of speech (POS). 

Besides, the affordability of NLP due to its high computational cost and the concurrent 

TLP techniques such as the Convolutional neural networks (CNN), Support vector 

machine (SVM) to achieve similar NLP performance were addressed to make the 

engineering domain analysis simpler.  

Gharehchopogh & Khalifelu (2011) elaborately compared Text Mining and NLP 

for identifying useful information from the raw text for all businesses. They did not use 
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any specific methodology to conduct their research but instead illustrated how to utilize 

both techniques depending on structured and unstructured data. They differentiated the 

ideas of data, text, and web mining and concluded that the model that uses both Text and 

Web Mining to retrieve structured data sets from the unstructured data is more successful 

than the obtained structured data. They also focused on the fact that Text Mining is used 

to find useful patterns in texts. In contrast, NLP deals with the underlying 

information/metadata and supplies text classification, categorization, document 

clustering, information extraction, summarization, etc. 1st step of the research tasks is 

clarified in this article: how Text Mining uses NLP to create the final Text Analytics 

model. 

Ameri & Yoder (2019) discussed a similar methodology as Gharehchopogh & 

Khalifelu (2011) of using text analytics techniques to extract data from CMMS. 

However, they introduced a hybrid methodology by combining the human-assisted 

thesaurus development method to generate the formal knowledge graph. This knowledge 

graph uses the Simple Knowledge Organization System (SKOS) to show the semantic 

relationship between various entities in the maintenance domain. A Java-based tool is 

developed that uses the generated SKOS thesaurus as Resource Description Framework 

(RDF) format input, which results in a maintenance diagnosis output map. The 

researchers also mentioned that SKOS is widely accepted in companies, so the proposed 

MD thesaurus can be integrated with other vocabularies to enhance the semantic 

coverage of the knowledge graph. Our research plan is to implement this methodology in 

the manufacturing database we are working with and map the SKOS concept in the OWL 

ontology.  The creation of an OWL file will allow us to overcome the limitation of 
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treating all relationships the same between two concepts the researchers' team mentioned 

in their work.  

Gunay et al. (2018) also demonstrated text mining using two HVAC datasets to 

determine failure patterns, but their way of conducting the experiments differed from the 

previous two authors. They segregated the mining process into three steps: preprocessing 

datasets, clustering important terms (Ward’s method), and identifying coexistence 

tendencies among the clustered terms. Their noticeable finding for dataset one was that 

HVAC maintenance has a much stronger relationship with the building type (research, 

admin buildings) rather than with building vintage (old or new buildings). R 

programming software was used to fix the punctuation (eliminating gaps, and capital to 

small letters). Figure 2 shows the conversion of the datasets into a mathematical form 

known as a document-term matrix. A Term frequency-inverse document frequency 

(TFIDF) score was applied to estimate the relevance of terms within a data set. The main 

difference between this research team and our methodology is that they used the 

association rule-mining (ARM) method to discover the relationship among terms. Three 

key concepts: support, confidence, and lift (Witten et al., 2016), were used to set aside 

frequent terms of the datasets. The association rule-mining was then performed on 

clusters that only contained a large number of interesting phrases.  The authors developed 

the top 15 association rules based on their confidence and support, and FMEA analysis as 

well as box-whisker plots, were used to determine the failure modes. 

Another research team, Brundage et al. (2021), very recently published an article 

where they summarized the processing steps of NLP working with the technical language 

for the clinical notes of an asset management system. There is no doubt that the raw 
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maintenance data is unstructured, and according to Ameri and Yoder (2019), human 

experts' intervention is needed to validate the generated models. Brundage et al. 

implemented this human-in-the-loop approach and named it Technical Language 

Processing (TLP) to tailor NLP tools to engineering data. The researchers described all 

the steps of the NLP process and provided a detailed description of how TLP Industrial 

leaders, standards organizations, professional societies, and researchers should work 

together in reality. It seemed from their work that TLP is comparatively a new 

methodology to work with, and the research community has started developing 

maintenance resources. Their research methodology directly intersects with our research 

tasks of using the hybrid approach to validate the model, and we will be able to help this 

research team accelerate the TLP development.  

Sexton et al. (2017) also proposed a hybrid methodology in their research, 

showing a comprehensive description of raw maintenance log datafication. Datafication 

is a necessary step to transmit human contextual knowledge during the process of 

structuring the data in such a way that it creates value. They combined AI techniques for 

NLP, machine learning, and statistical processing augmented with human guidance to 

develop their modeling concept. They mainly focused on hybridized data tagging, where 

NLP is the way to optimize a human tagger’s time investment. They concluded that 

tagging is the best way to address maintenance log data problems and introduced us to a 

new term called Support-Vector Machine (SVM) to increase the data precision. We think 

the gap between their and our research purposes is that we want to develop a formal 

ontology, whereas they focused on datafication. Also, we found it difficult to understand 

some of the technical methods they were trying to utilize in their industry case study 
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compared to the other papers we reviewed earlier.   

Naïve Bayes (NB) and Support Vector Machine (SVMs) text classification 

approach is used by the researcher team Arif-Uz-Zaman et al. (2017) to extract accurate 

failure time data from two types of the dataset: work orders (WOs) and downtime data 

(DD) for the Australian electricity and sugar processing companies. WO data are often 

unreliable, refer to unplanned failure or defect due to machine breakdown, and DD 

contains machine stoppage time. None of the datasets referred to the root cause of the 

asset failure, and so the teams’ main objective was to link those datasets to determine the 

reason behind machine downtime. The sequence of their data analysis was: labeling, text 

cleaning, constructing a keyword dictionary, text feature extraction (a bag of words), 

tokenization, and matrix build-up. SVM showed higher accuracy while they were 

extracting data from WOs, and only the SVM classifier was applied to the DD to label 

each as failure or nonfailure. Their resultant graph showed that both the DD and WO 

events appear to overestimate the failure rate, and the number of cumulative failures is 

equal to or less than the raw number of DD events. The researcher explained the 

classifying process in simple words, and we found many similarities, such as the use of 

SVM in our ongoing research.  

Hodkiewicz et al. (2021) introduced us to a comparatively more recent term 

called prognostic health (PHM) technologies which can be implanted to detect potential 

failure. In order to make intelligent maintenance decisions about maintenance, it is 

necessary that PHM fits an organization and has enough past resources and pieces of 

information available. They focused on Structured Work and Corrective work since they 

account for approximately 80% of the maintenance work. Besides, a good explanation 
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has been found on whether to use preventive, predictive, or condition-based maintenance. 

They used two case studies to elaborate on measuring the effectiveness of a PHM 

initiative depending on different maintenance strategy output for three types of pump. 

They concluded that every corrective maintenance work order should have a detection 

code but concentrated on rethinking management matrices. We learned from this article 

that how PHM could be a game-changer in the future, and clearly, they agree with our 

research perspective that current maintenance matrices are not ready for fully machine-

actionable knowledge as well as industry 4.0 world. 

There are a few pools of other authors who worked with knowledge graphs and 

ontology together. Hossayni et al. (2020) are one of them who successfully developed a 

SemKoRe knowledge graph that gathers all failure data and shares it among connected 

users. The SemKoRe maintenance process includes diagnostics to determine the reasons 

for a failure and its impact and to apply the correct repair, which improves machine 

maintenance for failure occurrences. They mentioned two important drawbacks of 

traditional systems such as CMMS, and ERP, which included problems with sharing the 

maintenance data at two different locations and the lack of semantics in users, which 

worked as their research motivation. They developed a flat ontology using two types of 

machine parts, and when a failure occurs, the machines create instances of Failure 

Occurrence Class containing all the information about the failure, and hence, a 

knowledge graph is developed. The main difference between ours and this researcher's 

teams’ work is that they are considering a different type of knowledge graph rather than 

SKOS, and they also categorized the deployment option (local, cloud-based, and hybrid) 

to protect business data. Besides, they started with a simple ontology model with only 
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two machines, whereas we are developing a detailed ontology base knowledge graph 

depending on real company data with a large number of machine parts. 

Ringsquandl et al. (2017) created a RDF knowledge graph for Siemens smart 

factories by tailoring Ontology-Based Data Access (OBDA) for a smooth maintenance 

operation. They provided a graphical representation of how the digital twin works as an 

interface to the physical system allowing optimization and self-organization without 

interacting with the part. The major difference between our research is that they want to 

improve the performance of the system by identifying the missing information between 

the instances of the class. In contrast, we are developing the ontology-based knowledge 

graph primarily to determine failure. Their knowledge graph representation is also a bit 

different from ours since their knowledge graph talks about master, operational, and 

transactional data and enhances the vector space of log files generated by manufacturing 

equipment. After the OBDA was developed, a machine learning approach was used to 

identify the missing entity in the RDF triples (entity, predicate, entity). They mentioned 

that this missing data often is a result of new or replacement machines. 

Categorizing the maintenance failure with the CMMS drop down menu is 

a  common process many companies do to mimic human interpretation to analyze 

maintenance logs. However, collecting data is unique to AI, and one of the possible 

approaches to get a similar human conducted output is to hybridize the data collecting 

and sorting process. Sexton et al. (2017) conducted a study on manufacturing logs to 

determine how NLP as a part of AI can be used effectively to extract useful information 

as human participation can obtain. Their approach was to solve the problem through 

hybridization, datafication of the logs, and statistically analyzing the data trend. The 
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authors did not have any controlled vocabulary like us, rather, they only used NLP for 

tagging to assign characteristics to the data instances simply. For our, we did two step 

tagging, starting with NLP and then building a controlled vocabulary since our goal is to 

show the triples by graphical representation. To measure the quality of the automated 

tagging, texts with no unknown tags were considered fully datafied. But for texts with no 

known tags, a linear-kernel support-vector machine (SVM) was used to pick up the tag 

patterns. They also talked about diagnostics depending on the occurrence rate for certain 

tag combinations and future work needed for taxonomy development, which means what 

we are doing in our research.  

Without agricultural improvement, humankind cannot exist, and sadly, no good 

designed knowledge graph is available for the cultivation sector. To fulfill this need, Qiao 

et al. (2017) designed a knowledge graph consisting of schema and data layers from the 

agricultural thesaurus. The graphs are shown using the Echart tool. The schema and data 

layers combine to generate a huge graph known as a knowledge graph. They started with 

the schema level, which allows them to readily distinguish between concepts (classes) 

and entities (individuals). They defined relationships between individuals and classes in 

the data layer. The knowledge graph is then stored as RDF triples (entity, relation, entity) 

in the graph database by using Jena. The biggest similarity between their and our work is 

that the paper developed their agricultural knowledge graph as we did for our 

maintenance knowledge graph, and it is the foundation for the semantic-based knowledge 

graph. However, their focus was on building a knowledge graph to show the relationship 

among the entities and concepts (e.g., hybrid rice and paddy rice). Whereas we modeled 

the manufacturing problem statement collected by the operators to identify the root cause 
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of the failure.  

McKenzie et al. (2010) used The Natural Language Toolkit (NLTK) to detect 

faults from the Condition-based maintenance (CBM) database containing 100,000 

individual vibration data and historical maintenance records from Army helicopters. This 

research team realized long before Dima et al. (2021) that the existing systems need to be 

tailored to classify the unique dataset for future research. They used the inspection 

description, which accumulates forty percent of the entire record as their input data, 

which is quite similar to using problem statement description in our research. However, 

they conducted a partial parsing approach, also known as Chunking, to only detect the 

necessary information like inspection info, date, and time. In contrast, we did full text 

analysis so that no failure was left out. Also, the NLTK toolkit is open source, and the 

python programming language is well written, ensuring easy manipulation depends on 

specific needs rather than domain restrictions. On the contrary, we have used domain-

specific text mining to fulfill our goal of making a manufacturing maintenance ontology. 

Furthermore, their Part-of-Speech (POS) tagging had a default tag NM for all the 

untagged word in their trained tagger system, which was the researchers’ source of error 

when our tagging strongly required human intervention to achieve utmost precision. 

Regardless of how they did the initial data processing, they formed triples to show the 

relationship among the three extracted parts (inspection info, date, and time) after 

chunking. The researchers also analyzed the performance of the POS tagging and 

chunking using standard matrices, which we would do during our validation process.  

Vibration data, engine oil debris measurements, and other indications are used in 

Condition-Based Maintenance (CBM) to determine maintenance schedules and 
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procedures. Hence, Bokinsky et al. (2013) concentrated on modifying the components of 

the Natural Language Processing tool for detecting CBM-related status. They used the 

same NLTK toolkit as McKenzie et al. (2010), and their work was kind of an extension to 

the helicopter maintenance data but for another V-22 Osprey project management 

database. Unlike us, their records are stored in Maintenance Action Form (MAF) records 

and the NLTK has been used to extract necessary information. The pre-processing of data 

is pretty much the same, including tokenizing, sterilizing, and POS  tagging using the N-

gram algorithm. The researchers used four taggers for extra precision, and if the first 

tagger could tag the words, it would stop there; otherwise, the word would be 

automatically sent to the next tagger. Chunking has been used to represent the noun, verb, 

and reference format meaningfully. Lastly, a file of hand-tagged and hand-chunked data 

was created for evaluation purposes; the tagger had 96.59% accuracy. 

Gao et el. (2020) proposed a text processing pipeline using technical language processing 

for unstructured data during the need for corrective maintenance work. This ensures 

knowledge about the failures as well as differentiates between the need for replacement 

and repair. Although they preprocessed the data like McKenzie et al. (2010), they 

proposed Named Entity Recognition and classification (NERC) to identify the action-

state-item from the unstructured data. N-gram named dictionary generation for the 

maintenance state was the following stage, partially similar to our maintenance thesaurus. 

The steps of the pipeline were illustrated well with detailed picturization and description, 

and validation of the pipeline was done afterward using part-of-speech (POS) tagging as 

a baseline which is also similar to the helicopter database validation. The POS tagging is 

described elaborately, which will guide us during our model validation.  
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The extent of maintenance data and how it is collected differ per industry. Many 

failed attempts to structure data by enforcing controlled vocabulary and problem code 

assignments for MWOs have been made in the past. To determine Median Time against 

Fail/MTTF, Sexton et al. (2018) contrasted a data-driven tagging method to a rules-based 

expert system (represented by Kaplan-Meier estimation and Weibull distribution models), 

which has indeed guided us to select the appropriate methodology for our own 

maintenance data extraction. In rule-based data processing, thorough human intervention 

is needed to transform the unstructured WOs into a predetermined format using explicit 

rule sets comprised of conditions between one to three logic statements. In comparison, 

NLP is employed to construct a machine learning pipeline to further capture the correct 

words in the WOs in data-driven tags. However, only using the NLP can fail to identify 

the important terms necessary to build the semantic relationship. As a result, they 

enforced future work requiring NLP automated data extraction with human-in-loop, 

which is the basis of our model development.   

Similar to the manufacturing industry, the volume of biomedical literature is 

increasing, and Spasic et al. (2005) proposed a text mining pipeline to further create a 

conceptual biomedical ontology framework. The researchers provided a very clear 

elaboration on terminology, which is the link between the text and ontology, as well as 

the problems while linking them, such as term ambiguity (Promoter means binding site in 

a DNA chain, but in chemistry, it increases catalyst’s activity) and variation (Advil, 

Brufen, Nurofen all refer to ibuprofen). Their proposed text mining methodology is very 

similar to the previous researchers, consisting of tokenization, part-of-speech tagging, 

stemming, and lemmatization. In our thesaurus, we implemented lemmatization by 
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putting the word to its base form (e.g., broken is an alternate for the break, and leaking 

and leaked are alternates for the leak). Likewise, McKenzie et al. (2010) and our 

thesaurus, named entity recognition (NER), have been proposed to extract and store the 

complex biomedical information to link with the ontology. Besides, a comparison 

between passive ontology and ontology driven information extraction (IE) was discussed. 

The authors preferred ontology driven IE due to the fact that passive ontology has a 

tendency to link between text terms and concepts of ontology without any explicit 

relation. On the other hand, ontology driven IE analyzes the constraints carefully, which 

we have also implemented on top of the thesaurus for semantic representation.  

The asset intensive industries deal with a lot of  maintenance data as a part of the 

operating cost and sudden failure can cause monetary and organizational data safety 

consequences. R than using external industry data for failure analysis, it is possible to 

analyze and cleanse the large internal company CMMS data in a timely manner by using 

rule based approach with a conflict resolution step. When two rules link differing text to 

the same field, conflicts are identified and appropriately noted, and the conflicts are 

resolved by modifying as needed. Hodkiewicz and Wei Ho (2016) analyzed rule based 

reliability of five mining sector data which requires lifetime data distribution to 

distinguish between different failures and corrective/preventive measures. Different WO 

issues, such as: not recording the utilization data of assets, inaccurate cost data for 

replacement/missing parts, alignment of subunits (turbochargers are commonly replaced 

when the engine is replaced), and WO duplication, were identified in the source data. The 

researchers developed a rule based syntactic data cleansing tool DEST, with an if 

condition platform, which relied on occurrences of words, whereas we did a semantic 
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analysis to link concepts. Although semantic analysis is unscalable, developing 407 rules 

for only a single case study, such as the researchers did, is very time consuming and 

lengthy. Besides, the cleansing tool is more like our thesaurus where text is only 

classified but we have implemented OWL ontology to give semantic meaning to the 

texts.  

To this date, there are currently no industry-wide guidelines for recording and 

evaluating unstructured data sources within an industrial site. Navinchandran et al. (2020) 

utilized NLP analytics to extract concepts from Maintenance WO and measure their 

effect on key factors (cost, time) to determine good or bad behaviors to achieve an 

optimized maintenance strategy rather than further development of a failure detection 

model. In simple words, if a MWO talks about the dollar amount spent on assets, parts, or 

any maintenance related cost, the decision maker could further break down the analysis to 

determine which assets have the strongest relation with cost. To do that, text 

preprocessing is needed to rectify any numeric entries, such as for time length; the lower 

bound should be a minimum of 5 minutes. Like us, the researchers have used Nestor to 

categorize the single and multi phrase words that carry important information regarding 

solutions, items, and so on. These text inputs, as well as the KPI inputs, could be used as 

an input of explanatory models, such as Continuous regression models, probabilistic 

models, and classifiers, to measure the effect on the output. The researchers later 

developed a decision tree and corresponding Gini importance to put weight on various 

assets linked with the KPI. Although we have used a similar tool Nestor, for initial 

processing, our goal is to build a smart maintenance tool, whereas the research team 

wanted to investigate the MWO relation with the performance indicator.  
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Extracting critical information has been a long vision of the owners of expensive 

manufacturing equipment to reduce downtime and determine an optimal maintenance 

schedule. Devaney and Ram (2005) made an interdisciplinary approach consisting of an 

advanced text analytics algorithm, artificial intelligence (AI), and OWL framework to 

address this issue. More specifically, their objective was to identify the component 

categories (e.g., Clamps), identify problem categories (e.g., hydraulic oil leak), and 

finally learn the distribution of the problem (e.g., hydraulic oil leak accounts for 20% of 

clamp problems). To satisfy the goals, the authors have used OWL to classify the input 

data under categories, and the categorized output is used to create a case library. The 

patterns in this output could predict future failure and diagnosis. The authors further 

proposed bootstrapping clustering algorithm to give natural categories for business 

process analysis. All of these steps ensure the proper utilization of the Case-based 

Reasoning Engine (CBR) as a next step which will provide recommendations for each 

hypothesis generated in the engine, which would aid the experts in making the right 

decision. Although this research team has taken similar steps to us, our goal is to analyze 

graphically presented triples relationship related to failure from a vast dataset. Whereas 

this paper focuses on combining three different models to have a solution to the detected 

failure.  

Our learning from this whole literature review is that the industries are not ready 

yet for fully automated maintenance since the raw data collection comes from both 

humans and machines. We need to create a semantic system that will show the 

relationship between the components and grow over time. By growing, we meant that we 

would have humans in the loop to feed the AI system continuously, and the AI would 
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eventually generate the cause and solution of the failure. As a result, our research will 

start with thesaurus development to give us a controlled vocabulary and, eventually, a 

knowledge graph. An OWL ontology will be developed to represent the industry domains 

depending on the knowledge graph output.  

Linguistic and Grammatical Maintenance Text Analysis 

 As mentioned earlier in Chapter 1, NIST provided us with a few companies’ 

manufacturing raw maintenance data. For the sake of confidentiality, we will be using the 

name Test Maintenance Company instead of the actual company name for our whole 

research methodology. The general rule is that whenever a breakdown happens with any 

machine or its parts in any manufacturing company, the maintenance technician would 

list them out as problem statements along with their resolution. This thesis only focuses 

on the problem statement to determine the root cause of the problems first, and then, the 

solutions can be added as future work. In this section, we will conduct a structural 

analysis of some work orders, showing why having a knowledge graph is better than just 

the raw maintenance texts. Table 2 represents a few Test Maintenance Company work 

orders which have been used for our knowledge graph development, along with the 

questions we asked during our model development. We can clearly see the inconsistency 

throughout the examples, such as operators having used both upper case and lower case. 

Words like GEN, and HYD are incomplete, and the model developer had to assume that 

GEN means generator and HYD means hydraulic. Besides, in any of these problem 

statements, the specific machine or part name and number are missing. It is likely that the 

company has multiple machines and parts, but it is impossible to determine which 

specific machine or part is having the issue from any examples. For example, one could 
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ask which fuel float pump is bad, as there could be multiple. Also, what does it mean by 

bad? Does it mean that there is a leak, or is it just not operating?  

Table 2. Test Maintenance Company Example Problem Statements 

Num Problem Statements  Example questions could be 

asked by the model 

developer 

1. GEN NOT WORKING, KEN W/ GENIE ADVISED TO 

CHANGE RESISTOR AND REPLACE POT SWITCH 

INSIDE BOX.     

What is GEN? 

2. fuel pump float is bad stuck doesn't work                           Fuel 

sending unit is bad 

Fuel pump float of what 

machine? What does it mean 

by bad? 

3. code 23/no functions, faulty lower module    What is code 23/? Is it 

different than no functions? 

What is the location of a 

faulty lower module?  

4. Unit does not move or work, tech found the gcon shorted out What are Unit and gcon?  

5. Charger Defect    Defected charger caused 

what issue? The charger of 

which machine or 

component? 

6. control box issue                                                   upper control 

box board is faulty    

Control box of what 

machine? 

7. Diagnos with genie for 154 egr code /clean connections at 

sensors /test and clear codes / 

What is genie and what is the 

problem here? 

8. OIL LEAK. Oil is leaking from where? 

9. Breakage        Which part or machine is 

broken? 

10. HYD LEAK                                                            FOUND 
BLOWN ORING AT CENTER POST ROTATOR                              

What is a HYD leak?  

Technical jargon like code 23, 154 egr code, gcon has been avoided during the 

thesaurus development since they do not add any value, and only the maintenance people 

understand the best meaning of these. In addition, some of the problem statements, such 

as problems 5,8, and 9, are incomplete, and there is no further information regarding the 
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problem. We are assuming there could be multiple machines that need a charger, and the 

machine number is missing. Only breakage and oil leak do not tell anything about the 

trouble making machine. There are unnecessary spaces between the words, and 

sometimes missing punctuation makes it challenging to understand the meaning of the 

sentence. In problem statement 4, one can see the word unit, and it took us quite 

sometime to understand that by unit, the operators mean a machine, but not a group of 

people or other entities the term ‘unit’ refers to.  

 It is difficult for domain experts trying to find the root cause of the maintenance 

problems only by going through the raw data in CMMS. Besides, it becomes time-

consuming, and sometimes the primary source of the breakdown could not be found due 

to the technical jargon, missing/incomplete sentences, let alone understanding the 

relationship among the individual machines and parts and their associated failures. 

Hence, our proposed knowledge graph will come in handy as we will only identify the 

keywords in the maintenance work order and cluster them under classes in our 

maintenance thesaurus. We have eliminated all the unnecessary stop words and spaces 

and gradually built semantic relationships among them, and the representation is the 

knowledge graph. The knowledge graph will unwrap how one maintenance failure is 

causing another failure as well as the nature of the root cause. Figure 5 clearly illustrates 

how a knowledge graph identifies the root of the problem rather than the tip. The 

maintenance work order describes both the observation and diagnosis. In the upper side 

of the figure, the present and past observations can be seen. These observations are of 

different types, and without any diagnosis on the historical data available, it is hard to 

understand what has actually happened and how those events are causing more 
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breakdowns. Such as, in the lower side of the example figure, defective artifacts and 

artifact malfunctioning are observed. However, the deeper diagnosis is that other defects 

cause the malfunctioning of an artifact. Hence, we want to know the root of the problem 

rather than the tip, and in this process, we create a knowledge graph that shows the 

internal relations among individuals that are not understandable only by reading the raw 

text.  

 

Figure 5. What is Observed vs. What is Diagnosed.  

Semantic Technology Definitions 

 The World Wide Web Consortium (W3C) is an international organization that 

creates open standards to ensure the Web's long-term growth. The Semantic Web, often 

known as Web 3.0, is an extension of the World Wide Web based on World Wide Web 

Consortium specifications (W3C). The Semantic Web's purpose is to create a common 

foundation for data sharing and reuse across applications and make Internet data 
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machine-readable (Semantic Web - W3C, n.d.). We will use SKOS, RDF, RDFS, and 

OWL standards to implement our methodology. These standards allow data from various 

sources to be linked and integrated, which is required by the tools and software we will 

be using. So, we will introduce the basics of these four W3C technology standards by 

briefly describing each standard in the next sections. 

Simple Knowledge Organization System (SKOS) 

 People have been using Knowledge organization systems to organize large 

collections of objects such as books or museum artifacts. Knowledge organization 

systems (KOS), and more specifically, controlled, structured vocabularies, are integral 

parts of data classification systems (SKOS Simple Knowledge Organization System - 

Home Page, n.d.). However, these controlled vocabularies need to be structured in a way 

that both humans and machines can understand the meaning. Linked open data and linked 

open vocabularies are Semantic Web technologies that allow for the publication of 

controlled vocabularies on the web in a way that both people and machines can 

understand. Besides, a controlled vocabulary allows certain content or knowledge to be 

organized so that it may be conveniently recalled at a later time. Here comes the  Simple 

Knowledge Organization System (SKOS), which provides a standard way to represent 

the KOS or controlled vocabulary as machine-readable data. It is a data-sharing standard 

that integrates several domains of knowledge, technology, and practice.  

 The Simple Knowledge Organization System (SKOS) provides better organizing 

of the vast amounts of unstructured (i.e., human-readable) information on the Web, 

providing new routes to discovering and sharing that information (SKOS Simple 

Knowledge Organization System Primer, n.d.). It was built on several pre-existing 
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Semantic Web formal logic and structure standards. One of them was Resource 

Description Framework (RDF) which will be discussed as the later semantic technology. 

RDF provides a common data abstraction and syntax for the web, and since SKOS is 

based on RDF, its data is expressed as RDF triples. Within the Semantic Web framework, 

SKOS is a data model for different KOS: thesauri, classification schemes, subject 

heading systems, and taxonomies. Furthermore, SKOS is a data sharing standard and so 

allows low-cost transferring of the existing KOS to RDF. Now we know a constructive 

definition of the SKOS data model, but one might wonder at this stage what how does the 

SKOS model look like, and Figure 6 will pour some light on that. Machines or 

components that are leaking oil are considered to participate in Undesirable Behavior 

since it is not expected from them. However, the difficulty is that the workorders consist 

of many types of leaking problems such as leaking oil, leaking fluid, hyd leak, lube leak 

and so on. Hence, in the SKOS model, Leaking is the broader concept for all types of 

leaking (in this example figure: Leaking Oil), and Undesirable Behavior is the broader 

concept of Leaking. The good thing is that SKOS provides scopes for creating an 

alternate label, so leaking fluid, hyd leak, lube leak etc., could be listed as an alternate 

label to Leaking Oil. Furthermore, users can also use related label just in case they want 

to analyze related individuals. In this example, an Oil Spill is related to leaking oil, so a 

related label has been shown. This explained example is for only one individual in the 

SKOS model, and we have defined other necessary individuals to construct the SKOS 

thesaurus model.  
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Figure 6. SKOS Model Example for Leaking. 

Our ultimate goal is to build a knowledge graph based on the SKOS model that 

can combine and connect heterogeneous data on a semantic level. Such as, we know the 

broader/narrower concept of leaking, and the alternate/related labels of leaking, but what 

if we want to know the entire history from where the leaking is coming, why the leaking 

is happening, and what the leaking caused to other parts? These questions would be 

answered by another model, which would be described eventually by OWL ontology 

models. Since SKOS models lack the expressivity of heavyweight, axiomatic ontologies 

like OWL models are considered lightweight ontologies. However, SKOS models can be 

created reasonably quickly without the need to spend a lot of money creating complex, 

logic-based ontologies for many applications that only need fundamental semantics in 

terms of the structural and lexical links between different things. 

Resource Description Framework (RDF) 

 RDF, or Resource Description Framework, is a W3C standard model for data 

interchange that is used for representing highly interconnected data (RDF - Semantic 

Web Standards, n.d.). RDF is the foundation of the Semantic Web, and all data in the 

Semantic Web is represented in RDF, including schema describing RDF data. While 
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there are many conventional tools for dealing with data and, more specifically, for 

dealing with the relationships between data, RDF is the easiest, most powerful, and most 

expressive standard. There have been various syntaxes to write it down. The original was 

called RDF/XML; XML was used because it was standardized and flexible and also 

because one of the original RDF use cases was to add arbitrary metadata to web pages—

the idea was that an additional block of XML would fit well into an HTML 

file’s head element. As it turned out, using XML to represent arbitrary collections of 

relationships could get verbose and messy. Now, most people use Turtle, which is much 

simpler and a W3C standard. RDF has features that facilitate data merging even if the 

underlying schemas differ, and it specifically supports the evolution of schemas over time 

without requiring all the data consumers to be changed. 

RDF Triples Structure 

 RDF describes the data in a three-part structure statement, namely triples, 

consisting of resources referred to as the subject, predicate, and object (“Learn RDF,” 

n.d.). The subject is the entity identifier, the predicate is the attribute name, and the object 

is the attribute value (What Is RDF?, 2021). The subject, predicate, and object are 

actually represented using URIs (Uniform Resource Identifiers). Now, if we consider the 

2nd workorder in Table 3 from our Test data, “THE UNIT NOT STARTING. FOUND A 

DEAD BATTERY,” we can create two RDF triples statements from here. They are: Unit 

has state not working and not working is caused by a dead battery. The URIs for the 

subject, predicate, and object are:  

 unit-> http://infoneer.txstate.edu/ontology/MWOO/WO2-Unit 

 dead battery-> http://infoneer.txstate.edu/ontology/MWOO/WO2-DeadBattery 

https://www.w3.org/TR/rdf-syntax-grammar/
http://infoneer.txstate.edu/ontology/MWOO/WO2-Unit
http://infoneer.txstate.edu/ontology/MWOO/WO2-DeadBattery
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 not working-> http://infoneer.txstate.edu/ontology/MWOO/WO2-NotStarting 

 caused by-> http://infoneer.txstate.edu/ontology/MWOO/causedBy 

 has state-> http://infoneer.txstate.edu/ontology/MWOO/causedBy 

Table 3. Test Data Example with RDF Triple Structure 

Problem Statement 

WO2 

THE UNIT NOT STARTING. FOUND A DEAD BATTERY 

Triple Statement 

Structure 

Subject 

(Entity identifier) 

Predicate 

(Attribute name) 

Object 

(Attribute value) 

Triple 1 unit has state not working 

Triple 2 not working caused by dead battery 

If we look at the URIs of unit, dead battery, and not working, they all belong to 

the second work order or WO2, which allows an absolutely clear understanding of what 

we are talking about. Besides, URIs are consistent across databases and enable us to 

create linkages between subject and predicate. This way, the same resource can be the 

object of some triples and the subject of others, which lets us connect triples into 

networks of data called the RDF Graph, which will be talked about in the next 

paragraph. If we carefully look at Table 3 above, we can see how the object in Triple 1 

became a subject in triple 2.  

RDF Graph 

The RDF graph is a bunch of nodes connected to each other by edges where both 

the nodes and edges have labels. Figure 7 visualizes the RDF graph of the above 

mentioned example. In the top side of Figure 7, the resources are labeled, such as Unit is 

a machine, not working is a defunct state and dead battery is a defective artifact. 

These labels are the normal concept in the SKOS data model mapped as ontology classes 

in the OWL ontology. To add more relations to the graph, we simply need to add more 

http://infoneer.txstate.edu/ontology/MWOO/WO2-NotStarting
http://infoneer.txstate.edu/ontology/MWOO/causedBy
http://infoneer.txstate.edu/ontology/MWOO/causedBy
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triples rather than making any structural change to the database.  Now if the problem 

statement was “ THE UNIT NOT WORKING AND LEAKING FLUID. FOUND A 

DEAD BATTERY AND HYD TANK WAS LEAKING,” we can add additional two triples 

on the knowledge graph, and they are the following: Unit participates in leaking fluid 

(Triple 3) and Hyd tank participates in leaking (Triple 4). The below side of the Figure 7 

is a representation of how the RDF network looks like with additional triples. This is how 

the RDF model triples the power of any given data piece by giving it the means to enter 

endless relationships with other data pieces and become the building block of greater, 

more flexible, and richly interconnected data structures. 

 

Figure 7. Test Data Example with RDF Graph. 

RDFS, or RDF Schema, is W3C standard specialized language for describing 

RDF vocabularies and data models. It is lightweight and very easy to get started with. In 

fact, many of the most popular RDF vocabularies are written in basic RDFS. The goal of 

RDFS is to allow data created in different semantic technology to be connected via RDFS 
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(“Learn OWL and RDFS,” n.d.). The use of RDF does not require any schemas. 

However, the commercial and open-source tools that can understand the RDFS 

vocabulary make it easier for applications to build user interfaces around RDF-based 

applications, integrate data from disparate datasets, and more. Whereas RDF is a graph 

database, RDFS is fundamentally about describing classes of objects. The rdfs:label 

property provides a human-readable name for the resource being described. This is 

especially helpful for reports and applications that use this data. 

 Now we will look at couple of examples from our Test Maintenance Company 

dataset where RDF is the object class, and RDFS is fundamentally about describing 

object classes. It is visible in Figure 8 that the schema or the structure of our example is 

in triple format, which we are utilizing for conducting the SPARQL query in the 

validation stage (What Is RDFS?, 2021). A SPARQL query can be executed on any 

database that contains RDF triples. The OWL ontology provides the semantics of the 

RDF dataset. Using triples made up of subject, predicate, and object, SPARQL interprets 

the data as a directed, labeled graph. Consequently, a SPARQL query is made up of a 

number of triple patterns where the subject, predicate, and object are all variables. The 

variables' answers are then retrieved by comparing the query's patterns to the dataset's 

triples. Going back to our examples, rdf:type predicate means is an instance of the 

following class. So, the first two lines in the 1st query at the upper side of Figure 8 are 

being used to declare comp (subject) as a type of Component class (object) and def 

(subject) as a type of Defect class. On the other hand, in the 2nd query at the lower side of 

Figure 8, rdfs:label is used to refer to a specific instance not starting. Not Starting is a 

type of State class, where State consists of several instances such as not moving, not 
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functioning, not working and, so on. The 1st query retrieves the components that are the 

bearer of defects, and the 2nd query retrieves states caused by other class instances.  

  

Figure 8. Use of RDF-type and RDF-label in SPARQL. 

 OWL Ontology 

 As described earlier under SKOS, the Test Maintenance Company thesaurus is a 

dictionary of controlled maintenance vocabularies which are classified under several 

concepts’ schemas. However, to create the knowledge graph, we need more than just 

concepts; we need to link the concepts. Here comes the Ontology part, which describes 

the concepts and the relationship between them in a domain. Ontology ensures a common 

understanding of information and represents complex knowledge about the concepts 

(OWL Web Ontology Language Overview, n.d.). Different ontology languages provide 

different facilities. OWL, a standard ontology language from the World Wide Web 

(W3C) Consortium, is the most recent advancement in this field. OWL is a computational 

logic-based language such that knowledge expressed in OWL can be exploited by 
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applications instead of just presenting information to humans (“Owl 101,” n.d.). OWL 

provides more vocabulary together with a formal semantical structure, enabling greater 

machine readability of Web content than that supported by XML, RDF, and RDF Schema 

(RDF-S). Formal ontologies offer a context or meaning that both humans and machines 

precisely understand. 

 Foundational concepts in ontologies that are domain independent and can be used 

across domains can be reused, thanks to ontologies. We will be using Protégé to develop 

our Owl Ontology, as OWL makes it possible for concepts to be defined as well as 

described. Protege is an open-source tool that allows developers to create and manage 

terminologies and ontologies. Protégé also permits the use of a reasoner that can identify 

which concepts fall under which definitions and determine whether all of the statements 

and definitions in the ontology are mutually consistent. Therefore, the reasoner can aid in 

maintaining the hierarchy appropriately. 
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III. METHODOLOGY FRAMEWORK 

In this chapter, we will describe how our methodology has been phased in and 

tied up together with semantic technologies. We will briefly describe how each tool has 

been developed, starting from the raw data collection to validation, which satisfies each 

task introduced in Chapter 1 and eventually resulted in our proposed methodology. 

Figure 9 outlines the steps needed to complete each task as well as the highlights of each 

step are bulleted along with their formal model. Task 1 included building the thesaurus 

from the raw data of Test Maintenance Company. The maintenance work order (MWO) 

in excel format was the output of raw data collection and input of the thesaurus using the 

SKOS tool. The 2nd task was to create the OWL ontology and map the concepts of 

thesaurus in the ontology. Protégé tool was used to develop the OWL ontology, and it 

contains the annotations for the subjects, predicates, and objects, which were obligatory 

to develop the knowledge graphs in the next task. The OWL formatted output from 

Protégé, as well as the SKOS formatted output from the SKOS tool, has been used to 

generate the knowledge graphs in Task 3. The ultimate goal of generating these RDF 

knowledge graphs (serialized in in turtle format) is to facilitate root cause analysis of 

breakdowns and prospective failures. Finally, we used the RDF knowledge graphs ( turtle 

files) to conduct queries and developed logic to express additional meanings that could be 

inferred from the dataset.  
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Figure 9. Methodology Framework from Start-to-End. 

Task 1: Thesaurus Development 

SKOS model has been used to develop the thesaurus-the first step in our 

knowledge graph development. A tool called INFONEER SKOS Tool or  SKOS Tool, 

for short,  has been developed for the generation and expansion of SKOS models (Ameri 

et al., 2020). SKOS tool provides a floor for easy classification of data by providing 

means for tokenizing and annotating documents using SKOS concepts, in our case, the 

maintenance data. The SKOS Tool runs as a Django web application. Python is used by 

the free and open-source web framework Django to implement the model-template-view 

paradigm. Numerous additional libraries, including BeautifulSoup4, are included in a 

virtual environment along with Django to support the tool's operations. Python was used 

to create the application's back end, whereas HTML and JavaScript were used to create 

the front end. At Texas State University, the most recent stable release of the web 



 

42 

application is installed on a development virtual machine running Red Hat Enterprise 

Linux, making it accessible to a select group of users via Secure Shell (SSH). Below are 

elaborately described the elements of our maintenance SKOS tool. 

SKOS Elements 

Concepts. The knowledge organization system is viewed as a Concept Scheme, 

including a set of Concepts in the SKOS data model or SKOS tool. URIs identify these 

SKOS concept schemes and SKOS concepts, allowing anybody to refer to them 

unambiguously out of any context and making them part of the World Wide Web. URIs 

are similar to URLs (Uniform Resource Locators), and often look like them, but they’re 

not locators or addresses; they’re just identifiers. The concepts are the primary building 

block of the SKOS data model, and the SKOS tool is required for initializing concept 

organization in our maintenance thesaurus.  

 This SKOS tool consists of certain classifications by grouping into concepts to 

enable easy identification of the vocabulary. Concept grouping will allow the 

maintenance terms of the retrieved Test Maintenance Company data problem statement 

to fall under the right bucket of classification. Semantic relation properties of the SKOS 

tool allow SKOS concepts to be related to one another and support hierarchical and 

associative relationships among SKOS concepts. For our maintenance data, we have 

different concept schemes, top concept and normal concept having hierarchical 

relations among them, which we have seen in Figure 2 previously. A good example of the 

top concept is Artifact along with a narrower classification into the normal concept. 

Also, in multiple concept schemes, our current maintenance SKOS concepts can be 

mapped to other SKOS concepts if necessary.  
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Labels. The labels are the descriptor of the concepts, and the concepts could be 

labeled with lexical strings. The labels are of three types: preferred (skos:prefLabel), 

alternate (skos:altLabel), and hidden label. When generating or developing human-

readable representations of a knowledge organization system, the preferred and 

alternative labels are useful due to their ability to give authorized and unauthorized name 

to a concept. The hidden labels are valuable when a user interacts with a knowledge 

organization system via a text-based search function. We are only using preferred and 

alternative labels while generating our maintenance SKOS data model. Each concept in 

SKOS has exactly one preferred label (skos:prefLabel) and can have multiple alternative 

labels (skos:altLabel). Hence, the community users can add more labels to the shared 

open source data which results into thesauri enrichment and validation. Description can 

also be provided for each SKOS concept in plain English to comprehend the meaning. A 

good example from our maintenance SKOS model in Figure 10 is: hyd leak is an 

alternate label for the preferred label hydraulic leak under Undesirable Behavior in the 

Condition Concept Scheme. Depending on the need, one can add the scope note, 

narrower concept, related label, and hidden label for the concepts.  
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Figure 10. Partial View of User Interface in the Test Maintenance Thesaurus. 

Semantic relationships. Semantic relations in the SKOS data model are the links 

between SKOS concepts. We generated this hierarchical semantic relationship referred to 

as the broader concept (skos:broader) and narrower concept (skos:narrower) to link the 

top concepts with the normal concepts. This is particularly useful while using the java 

tool in the knowledge graph development phase, which can be seen in Figure 11 below. 

The java tool not only shows the relation between the thesaurus concepts but also the 

appropriate OWL ontology class for each concept. Functional Unit is the broader 

concept for motor, and inversely, the motor is a narrower concept for Functional Unit. 
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Figure 11. Partial View of Java Tool Showing the Semantic Relationship in Thesaurus. 

Mapping properties. The definition of Mapping Properties is similar to the 

semantic relationship element. We use mapping to express the semantic relationships 

between concepts in a different concept scheme. Such as for broader and narrower 

concepts, the SKOS mapping properties are skos:broad match and skos:narrowMatch. To 

express the inherent meaning for other semantic relationships, these are the following 

mapping properties: skos:closeMatch, skos:exactMatch, and skos:relatedMatch.   

Concept collection. Concepts could have the same label when a group of 

concepts shares something in common. Such as, in our maintenance, thesaurus, air gun, 

pump, ECM unit have a common label or top concept Functional Unit.  

SKOS Tool Functions 

The INFONEER SKOS Tool consists of different gadgets such as Thesaurus 

Manager, Term Selector, Entity Extractor, Concept Model Builder, Concept Model 

Manager, and Capability Scorer, which can be seen in Figure 12. Figure 12 is a general 

representation of what the INFONEER SKOS tool looks like. A brief description of the 

Thesaurus Manager, Term Selector, and Entity Extractor has been provided, as these 

three tabs have been used mostly during the thesaurus development process.  
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Figure 12. The Opening View of the INFONEER SKOS Tool. 

  By developing a taxonomy of concepts, adding the appropriate preferred and 

alternative labels, defining each concept's natural language description, and connecting 

them to one another, we have built our thesaurus from scratch using the Thesaurus 

Manager tab. We have extended the thesaurus over time by adding more relevant 

concepts and vocabulary. However, the tab Term Selector and Entity Extractor were 

vastly useful when we needed to deal with a larger dataset and wanted to avoid any 

repetitive words in the thesaurus. In the Term Selector tab, we simply inserted raw text 

and added a new concept under a parent concept. The input text can be inserted directly; 

the raw data CSV file can be uploaded or grabbed from a given URL. We have inserted 

some lines of our maintenance raw text in the text box in Figure 13. The terms which are 

not highlighted mean they are yet not added to the thesaurus under any concept; green 

highlighted words are the existing ones in the thesaurus, and red highlighted means they 

are listed as an alternate label of a preferred label.  
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Figure 13. Term Selector View with Example Raw Text in SKOS Tool. 

 Entity extractor, on the other hand, is being used for tokenizing a text or 

document. Similar to the term selector, it highlights the words and shows how many 

times a word has been repeated in the inserted text laid out in Figure 14. The unstructured 

text had been vectorized as a result, and the concept vector that results had been 

downloaded as a CSV file. Advanced text analytics procedures like document 

categorization and clustering can be performed using each document's concept vector. 

After we have finished building the thesaurus, the output in rdf/json format has been 

exported to use in the next. 



 

48 

 

Figure 14. Entity Extractor View with Example Raw Text in SKOS Tool. 

Nestor Tool Experimentation  

SKOS is both a tool and platform which can be used for data classification under 

concepts and where the classified data results in an ultimate controlled maintenance 

vocabulary or thesaurus. As previously mentioned, we moved forward with a hybrid 

approach to extend the base thesaurus model, meaning we utilized NLP on top of the 

SKOS tool for a 2nd level classification. Nestor is a free NLP-based TLP toolkit that helps 

domain experts annotate their Maintenance Work Order (MWO) data through a process 

called tagging (Sexton & Brundage, 2019). Nestor's goal is to assist analysts in making 

their unstructured, frequently technical, jargon-filled, misspelled, and abbreviated natural 

language data computable to enhance analysis (Nestor, 2020/2021). Let us take a quick 

look at the tool in Figure 15 before going into more detail.  
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Figure 15. Partial View of Nestor Tool used for Data Tagging. 

 The raw CSV file can be loaded at first, and the tool automatically identifies 

words that might be necessary for the classification. The tool can perform both single and 

multi-word analyses. In the single-word analysis, the tool is internally built with three 

primaries (Item, Problem, and Solution) and two auxiliary (Ambiguous and 

Irrelevant) classifications. However, in the multi-word analysis, instead of having an 

item and problem, the tool has Problem Item and Solution Item. The other 

classifications are as same as single-word analysis. An example of these classifications is 

given below in Table 4. Once the words had been determined, we went through each 

word and manually tagged them under these classifications. Each time we loaded 20 

datasets to have a quicker tagging of the words. One of the drawbacks of this tool is that 

it almost identifies every word and so, it was very time consuming to only load the data 

first let alone the tagging process. Furthermore, this tool has an option of increasing the 

sensitivity and so, it would find all the similar word and those can be tagged together. 

Such as: leaks, leak, leaking all are classified as problem but if the sensitivity is 

increased, the tool would find words like leaving, locationfound and those relevant rows 
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will turn green so that the user understands that those cells have been tagged. The 

software application will automatically annotate the dataset after the user has finished, 

and it will then give a CSV file with annotations that may be used as an input for the 

SKOS thesaurus. Besides, this classification result can be used for failure prediction to 

reduce breakdowns. The input is for the 2nd level tagging, and by uploading the CSV file 

under the entity extractor, we identified the items, problems, and problem items that we 

might have missed during the tokenization process.  

Table 4. Test Maintenance Raw Text Input and Subsequent Outputs Identified by Nestor 

Raw Text Item    

(s) 

Problem 

(s) 

Solution 

(s) 

Problem 

Item(s) 

Solution 

Item(s) 

Ambiguous  Irrelevant 

HYDRAULIC 

GENERATOR 

IS LEAKING 

OUT SHAFT 

SEAL. 

SHAFT SEAL 

FAILURE. 

REQUESTED 

SERVICE. 

P/N 89065GT. 

REPLACED 

SEAL 

generator

, seal, 

shaft 

leaking, 

failure 

replaced generator 

leaking, 

seal 

failure 

replaced 

seal 

P/N 

89065GT 

requested

, service, 

requested 

service 

Task 2: MWOO Ontology 

 From the name, it could seem confusing, but we just simply named our owl 

ontology framework as Maintenance Work Order OWL Ontology (MWOO). Our 

Ontology consists of Individuals, Properties, and Classes, which roughly correspond to 

Portege Instances, Slots, and Classes. A domain is described in terms of an OWL 

ontology, which may contain annotations of classes and individuals as well as detailed 

descriptions of the properties of those objects. Such as maintenance technician is an 

object under the agent, whereas the semi-formal Natural Language Definition of the 
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agent is "A person who is bearer of a Maintenance Technician Role." Before going into 

the more technical section, let us discuss how an OWL ontology can be developed using 

Protégé and then we will discuss the components of OWL with respect to Protégé. 

Building OWL Ontology 

At first, we created a new ontology in Protégé and replaced the default URI with 

http://infoneer.txstate.edu/ontology/MWOO. Under the entity tab, we have added the 

classes and subclasses of classes in a way that the thesaurus could be mapped with the 

ontology. For better clarification, Figure 16 is provided for easy interpretation of the 

mapping from SKOS to Owl. Remember, we want to create a semantic relationship 

among the concepts of the thesaurus, and so we have created our class hierarchy or 

taxonomy complementary to the thesaurus.  

 

Figure 16. SKOS Thesaurus Concept Mapping in Protégé Owl Ontology. 

 Figure 17 resembles how the owl ontology looks like as well as the classes and 

subclasses of our maintenance ontology. We named our maintenance ontology 

http://infoneer.txstate.edu/ontology/MWOO
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Maintenance Work Order Ontology (MWOO), and we are going to use this name for 

further referring to the ontology. The 1st class, OWL Thing, is a built-in class, and all our 

newly added classes are subsets of this OWL Thing. Two types of classes that could be 

added are Subclasses and Sibling Classes. Sibling classes are the individuals which are 

vertically on the same line in our ontology and are subclasses of the OWL Thing as well 

as the top classes. In this stage, providing an example would be a better approach to 

having a coherent idea of the individual classes. Classes like Agent, Artifact, Attribute, 

and Defect are on the same vertical dotted line, and so they are the subclasses of OWL 

Thing.  However, these classes may or may not have subclasses under them. Such as, 

Artifact has three subclasses: Component, Functional Unit, and Machine, and they are 

sibling classes to each other.  

 

Figure 17. Protégé MWOO Ontology Class View. 
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Annotations of each class and subclass might have been provided at the right-side 

box depending on the need, and a general description of the individuals has been 

provided under the description. We have used the Disjoint With for some of the 

subclasses to ensure that the instances of that individual class only belong to that class. 

Such as, the cooling function disjoints with the heating, mixing, pumping, and washing 

function. It will not make sense if one instance is a subclass of multiple groups. Since 

OWL Classes tend to overlap, we used the disjoint class function when it was absolutely 

necessary. Now comes the most crucial part of making the Ontology, which is adding the 

relationship or predicate, which will add the semantic meaning on top of the SKOS 

thesaurus. Object properties and Datatype properties are the two basic categories of 

properties. Starting with the Object Properties tab presented in Figure 18, we have 

added different properties and sub properties that have been later used to create the triples 

relationship while building the knowledge graph. Again, we have provided annotations, 

including examples, notes, and elucidation for most of the object properties. Domain and 

range under the description box explain the appropriate triple relation between the subject 

and object. Each object property may have a corresponding inverse property. Such as a 

component is a part of a machine. This could also be written as the machine has part 

component. As a result, has part and part of share an inverse relationship.  
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Figure 18. Protégé MWOO Properties View. 

Individuals. Individuals are the objects under the classes. Instances are another 

name for individuals. Individuals can be regarded as instances of classes or the subclass 

of class. In OWL, it must be explicitly specified whether two individuals are the same as 

one or different from one another; otherwise, they may be defined as the same, or the 

opposite may be true. Each object has multiple instances coming from the Test 

Maintenance Company workorders. Let us consider an example below in Figure 19. 

Functional Unit is a sub-class of the class Artifact. A portion of examples for the 

instances of Artifact class which could be seen in the below figure, are ‘control box’, 

‘drive motor’, ‘Drive Selector’, ‘elect motor’ based on Test Maintenance data set. One 

might be confused as to why some of the instances are repeating themselves. The answer 

is the repeating instances are coming from different workorders. The two instances of the 

control box are from workorder 18 and 136 in the Test Maintenance data. Those 

instances are uniquely identified by distinct URIs even though they have similar labels.   
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Figure 19. Example of Artifact Instances in the MWOO. 

Properties. Properties link two individuals together, or if we want to compare it 

with the RDF triples structure, properties are the predicates. There are two types of 

properties in OWL: 1) object property and 2) data property. Object properties are the 

ones that accept only instances at their range, while data properties accept literals (such 

as strings, numbers, and date-time values) at their range. For example, the property ‘has 

part’ is an example of object property because it links the instances of class Artifacts. In 

Protégé, Object Properties is a  different tab, and by clicking on each, the annotation 

characteristics and description can be found. Figure 20 shows most of the object 

properties we have used to link the individuals and create our triple structure. Remember 

the example of the control box under Individuals, and if we click on the control box of 

workorder 18, it shows the property relationship ‘has part’ and ‘has state’. If we want to 

explain the properties in words, it would be: control box has a faulty part which is the 

board and control box is not operating which is expressed by the has state property. 

Annotation is being provided for ‘has state’ so that the meaning of the relationship is 
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clearly understood before making the triples. Besides, domains and ranges are given to 

clarify between which instances the has state relationship is feasible.  

  

Figure 20. Control Box Property Relations in the MWOO Ontology.  

Classes. OWL classes are read as sets with individuals within them. The concepts 

of thesaurus are mapped under the classes of OWL ontology. Due to that, the word 

concept is sometimes used in place of class. Classes are a concrete representation of 

concepts. Formal descriptions that explicitly define the conditions for class membership 

are used to characterize them. For example, in Figure 21 the class ‘Portion of Material’ in 

our ontology would contain all the individuals that are the portion of material in our 

domain of interest. This ‘Portion of Material’ has its own fourteen instances, such as 

hydraulic fluid, air, fluid etc., and two narrower subclasses Oil and Water. 
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Figure 21. Portion of Material Class Annotation and Description in MWOO. 

OWL Ontology Definitions 

Before visualizing the OWL ontology graphs, we need to know some of the 

definitions which we have used more frequently to elucidate some of the examples in the 

OWL Ontology Visualization coming up soon in the next passage. These definitions are 

called Natural Language Definitions, and human generated. These definitions make 

ontology easier to understand. In Table 5, the most used Class/Subclass definitions are 

provided, and in Table 6, the frequently used data properties have been defined. 

Table 5. Natural Language Definition of MWOO Ontology Classes 

Class/Subclass Name  Natural Language Definition 

Artifact object designed by some person or organization to realize a certain 

function 

Component A part or subassembly, that is intended to become part of a higher-level 

functional unit, or assembly, or machine, or the final product 

Functional Unit An Artifact that has one or more specific functions and is composed of 

multiple components and is intended to become part of a machine or 

equipment. 

Machine man-made artifact containing a set of physically connected components 

that work together as a unit to realize some intended function. 

Defect An attribute, characteristics, or feature inhered in some Artifact that does 

not conform to the Design Specifications of the Artifact. 
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Artifact Function A Function that inheres in an Artifact and is the primary reason for the 

existence of the artifact. 

Nonconforming 

Artifact 

An Artifact that participates in Defective State or Degraded Function State 

or Defunct State. 

Defective Artifact An Artifact that is bearer of one or more defects. 

Malfunctioning 

Artifact 

An artifact that has a missing function or a function that is partially 

realized or demonstrates some undesirable behavior 

Artifact with 

Undesirable Behavior  

An artifact that realizes some unintended and undesirable dispositions. 

Portion of Material portion of matter or man-made substance that is an input to some process 

and may be consumed in the process. 

Process p is a process =Def p is an occurrent that has some temporal proper part 

and for some time t, p has some material entity as participant 

Degraded Functioning 

Process 

An Artifact Functioning Process that is the partial realization of an 

intended function of some artifact. 

Undesirable Behavior  An Artifact Unintended Process that causes some undesirable 

consequences. 

Event An Event that initiates a Defective State or Defunct State or Degraded 

State 

State A Process in which one or more independent continuants endure in an 

unchanging condition. 

Defective State  A State that holds during a Temporal Interval when an Artifact is bearer of 

one or more Defects. 

Defunct State A State that holds during a Temporal Interval when an Artifact no longer 

maintains its designed set of Functions (or at least no longer maintains its 

primary functions). 

Degraded State A State of an artifact when the artifact function is realized at a degraded 

level of performance or when some undesirable disposition of the artifact is 

realized. 

Table 6. Natural Language Definition of MWOO Object Properties 

Property Name  Natural Language Definition 

Bearer of b bearer of c =Def c inheres in b 

Caused by this relationship is the general form of causal relationship when and entity 

(continuant or occurrent ) is caused by/a result of/a consequence of another entity 

(continuant or occurrent ). 

Disables x disables y when x is a state and y is a function of an artifact z and the function 

cannot be realized if artifact z is in state x. 

Enables x enables y when x is a state and y is a function of an artifact z and the function can 

be realized if artifact z is in state x. 
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Has disabled 

function 

a relationship between and artifact and one of its designed functions when the 

function is disabled due the state the artifact has. 

Has location this relationship is between a process or object and the location of the process or 

object. The location can be absolute or relative (relative to another object). 

Has part a relation that holds between a whole and its part 

Is cause of this relationship is the general form of causal relationship when and entity 

(continuant or occurrent ) is a cause of another entity (continuant or occurrent ). 

Part of a relation between a part and a whole  

Participates in a relation between a continuant and a process, in which the continuant is somehow 

involved in the process 

Has state  a relationship between a continuant and a state when the continuant participates in 

the state 

Has ambient 

condition  

a relationship between entity and the environmental conditions in which the entity 

exists.  

Owl Ontology Visuals 

We have built the entire MWOO ontology depending on the thesaurus. In this 

stage, we understand the very basic that ontology gives meaning to the thesaurus by 

enabling relationships among instances. Now we will share a few examples of the 

relationship among those instances, and the way ontology puts a semantic layer on top of 

the thesaurus, which results in a network of relationships. We will start with simpler 

examples followed by a bit more detailed ones to allow for better understanding. Figure 

22 represents three simpler examples of our MWOO ontology. The yellow color is for the 

concept classes, and the purple is for the instances under those classes. The upper left 

side of the figure shows that the class participates in undesirable behavior. Unit and 

Pump are the instances of class Machine that participates in Hydraulic Leak and 

Erratic Action, which are instances of class Undesirable Behavior. In our thesaurus, we 

only had these classes and the instances listed, whereas ontology uses properties like 

participates in to build the semantic relationships between instances. The right side of 

the figure shows an example raw text: Basket Not leveling. It means the level function of 
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basket has been disabled. It also infers two other relationships: that the basket has defunct 

state, meaning basket is no longer maintaining its primary function, and the disabled 

function leveling is causing the basket to be at defunct state.  

 

Figure 22. Simple Examples of Ontological Relations in MWOO. 

The lower left side of Figure 22 explains that Unit 1, Hydraulic Leak 1, Left 

Drive Motor Fitting 1, and Blown O-ring 1 are instances of Machine, Undesirable 

Behavior, and Component, respectively. Unit 1 participates in hydraulic leak, which is 

caused by a blown O-ring. As a result, the unit has an undesirable behavior state, and 

blown O-ring has a defunct state. Besides, the undesirable behavior leak has a location 

which is the drive motor fitting. Nevertheless, it is very difficult and time consuming to 

infer so many relational meanings only from the raw text and conduct the correct root 

cause analysis. Now, if we look at Table 6 again, an interesting finding can be seen, and 

that is the class State is a type of Process by definition. But why is that? Figure 23 will 

add some clarity to the State-Process definition and answer the question asked. The top 

section of the diagram states that the failure process is a Change and is initiated by an 
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External Event. When a process fails, it will result in a Failure Event and will make the 

Artifact go into a State. Simply put, a failure event and state are both processes, the 

process initiates a failure event, and the state is created.  

 

Figure 23. Class State vs Class Process in MWOO. 

State and process are comprised of other sub-states and sub-processes. The 

bottom section refers that Artifact is a bearer of Defect and could participate in several 

processes. These processes start the failure events, which in turn result in different states. 

Hence, we can conclude that the Artifact participates in several state, including Nominal 

State, Defective State, Lost Function State and so on. Table 7 will be helpful in 

understanding the basic difference between state and process in our maintenance 

ontology. Two examples from the Test Maintenance have been typed in to reveal the 

distinction. In the first example, unit has a state which is not starting. A defective artifact 



 

62 

initiates the state; there is no change process to trigger the initiation of state. However, in 

the 2nd example, leaking is a change in process, and the hydraulic pump participates in 

leaking and has obtained the state not starting. That leaking is caused by a broken seal 

which is a defective artifact.  

Table 7. Examples of State and Process in MWOO Ontology 

Num Problem Statements Artifact State Process Defective 

Artifact 

1. Unit not starting. Found 

dead battery. 

unit, battery not 

starting 

 
dead battery 

2. Hydraulic pump is leaking, 

not starting. Found broken 

seal.  

hydraulic 

pump, seal 

not 

starting 

leaking broken seal 

Our last example in Figure 24 is just a bit complex one with more semantic 

relationships among the individuals, and we will outline each relationship. In fact, this 

example works as our guideline for creating triples relationship between two instances in 

other examples. The machine is a subclass of Artifact; the functional unit and component 

are part of machines. So, we have used part data properties among them to express the 

internal relation. Five relation linkages evolve around Artifact, and we have bulleted 

them below to be coherent with the content of the figure.  

• Artifact is a bearer of Defect 

• Artifact participates in Process 

• Artifact is located in an Operational Area that has an Ambient Condition 

• Artifact has Function which could be a disabled function 

• Artifact has State which is both caused by the Process or Defect and other 

Artifact or Defective Artifact.  The Defect and Defective Artifact have a 

location and lastly, the State either enables or disables the Function.  
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The upper mentioned classes and object relationships have been mostly used to 

construct the knowledge graphs for our Test Maintenance Dataset. As a result, it was 

essential to picture the relationships beforehand we moved forward to our Task 3. The 

outcomes of these ontological relationships grow into a vast number of graphs, namely 

Knowledge Graph, which we will elaborate in the next paragraph. 

 

Figure 24. Complex Example of Ontological Relations in MWOO Ontology. 

Task 3: Knowledge Graph Generation 

We have already manifested how the ontology looks with the semantic 

relationships among the instances of the Test Maintenance Company raw texts. We have 

generated the relational figures using Microsoft Office tools while describing the 

ontology in Task 2. Now we will introduce the tool which we have used for the actual 

visualization of the ontology. Our developed ontology is a storehouse of all the mapped 

concepts from the SKOS thesaurus and object properties. We displayed a glimpse of our 

Maintenance Annotation Tool in Figure 11 while discussing the semantic relationship 

element of the SKOS tool. This java based tool is called Maintenance Workorder 

Annotation Tool (MWOAT). This java based tool uses the SKOS thesaurus and OWL 
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ontology as the input to generate the knowledge graphs. Figure 25 is our annotation tool 

view, and different tab sections can be seen to initiate the graph generation. The left side 

of the figure is the 1st part of the tool, and the right side is the 2nd page.  

 

Figure 25. Maintenance Workorder Annotation Tool (MWOAT) Tool Full View. 

The ontology we generated as a previous task is integrated into the tool and we 

load the maintenance thesaurus each time, so if needed we can also analyze other datasets 

with our developed ontology. In the paste text section, we copy and paste each workorder 

from the Test Maintenance dataset and analyze it to detect the concept. By detecting, we 

meant the tool detects the concept words in the work orders along with their broader and 

top concept that exists in the thesaurus and have been mapped to ontology. The tool also 

finds the related concepts in the same way, to provide us with extended options to show 

on the graph. The tool is able to find both single and multi-words from the thesaurus. As 

a result, the users will decide if they want to keep the single word, multi-word, or both 

concepts as well as how they want to model it. Such as for Broken O-ring, the tool will 

detect the O-ring as a Component, Broken as State, and Broken O-ring as Defective 

Artifact. Now one can only select components and state and build the triple relationship 
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between them, option two is to select Component and Defective Artifact, and the final 

option is select all of them to generate as many as relationship possible to convey clear 

meanings. 

  Furthermore, we work with large data sets; sometimes, it is possible that we might 

have missed tagging some individuals. But one of the tool's best features is that we can 

tag the un-tagged words as concepts under the Broader Concept of thesaurus and map 

them in the Ontology Class by using the User-defined concepts for the sake of building 

the knowledge graph on the next page. The newly added concepts in the tool do not 

automatically update in thesaurus or ontology, and the user has to go back and put them 

in both places. However, it makes users’ jobs a bit easy as they do not have to update the 

changes every time they find something new. They can just move forward with 

generating the knowledge graphs and simply make a list of the untagged concept to tag 

them altogether later. Once they go through the detected concepts and make essential 

changes, they would hit Next and go to the 2nd page to build the triples relationship 

among the subject, predicate, and concept.  

 In the mid column under Pasted Text, the work order text will automatically 

appear from the 1st page as well as the object properties from the Owl ontology. 

Remember the previously mentioned definition of Owl Properties “Properties link two 

individuals together, or if we want to compare it with the RDF triples structure, properties 

are the predicates.” The linkable individuals are the subject and object here, and the 

detected concepts will be clickable in both the 1st column and the 3rd column. The user 

will connect different subjects and objects using appropriate data properties to create 

multiple numbers of the RDF triples and add them in the below space of the tool. Once 
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all the triples are generated, they will put the workorder ID in the designated box and 

export the output in text form, which is our knowledge graph. Now, if the user wants to 

visualize the knowledge graph, a web service called RDF Grapher 

(https://www.ldf.fi/service/rdf-grapher) allows the user to paste the text form of the 

output and generate an image of the graph. The image provides an easy interpretation of 

the graph, and it serves as a cause diagram by showing the co-relation among 

individuals.  

Example 1 

In this section, a few examples from our Test dataset will be examined to see how 

the tool looks like when it detects the concepts and eventually generates the knowledge 

graphs. The first example of raw text is “Equipment will not move. Boom Basket won’t 

rotate to the left. Needs Rotator.” We paste the text in the paste box, and when we hit 

analyze, it detects the concepts that are already in the thesaurus. The detected concept 

consists of an instance's broader and top concept in the thesaurus and the ontology class 

in OWL. This lets the user see how a concept is mapped and if the detected concept is 

integral for the knowledge graph generation. As aforementioned, the tool will detect both 

single and multi phrases, and we can just unselect the recurrent concepts. For this 

example, the tool did not detect any repeating or related concepts, so we selected all the 

concepts identified by the tool. The leftmost and middle portion of Figure 26 shows the 

detected concept, such as Basket is a Component; Equipment is an Asset in the thesaurus, 

and an instance of the class Machine in the ontology. Not Moving is Nonconforming 

Condition in the thesaurus and the Defunct State class instance in the ontology. Now, one 

can question why concept classes of Equipment and Not Moving are not similar like 

https://www.ldf.fi/service/rdf-grapher
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basket. The easiest answer would be SKOS tool is company centric, and we want them as 

informative as it works as it can be treated as lightweight ontology. At the same time, 

using both the SKOS concept scheme and Owl ontology results in developing generic 

entities that can be applied to a wide range of maintenance applications and extended to 

meet specific use cases beyond our project. So, we can conclude that Machine and 

Defunct State are generic concepts in ontology and differ from the thesaurus class. This is 

the main reason why we map the SKOS concept in OWL ontology.  

 

Figure 26. Example 1 Analysis in MWOAT Tool. 

 Now moving forward with our example, the right side of Figure 26 explains the 

semantic relationship between the subjects and predicates. We chose from the drop-down 

list to generate the meaningful semantic triple relationships we wanted to visualize in our 

knowledge graph and added them one by one. Such as, Not Moving is a State, and so we 

created equipment has state Not Moving. Also, the annotations, if the predicate or the 

object property is correct or not coming out from the subject or domain, are provided 

within the Owl Ontology. A domain is a class to which the subject of an RDF statement 

using a given property belongs, and a range is the class of its object (value). The domain 

value restricts the class of the subject while formulating a triple structure, and the range 

value restricts the range of the property value. Afterward, we exported the result as 
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WO31 and pasted the exported raw text into the RDF graph to see what we generated. 

Figure 27 is the knowledge graph visualization for Example 1. Starting from the left, 

boom is a type of Machine which is labeled as Boom in Ontology. Equipment is a type of 

machine, too, labeled as Machine which has state Not Moving. Basket is a component, 

labeled as basket and since basket is not rotating, it results in Not Rotating state. Not 

moving and not Rotating both go under the sub-class of state, Defunct State. Rotator is a 

type of Component, which is labeled as rotator in Ontology. Lastly, boom, rotator, 

basket, equipment; all of them are instances in Owl ontology, and so they are all Owl 

individuals and linked with owl:NameIndividual.  

 

Figure 27. Example 1 Knowledge Graph Visualization in RDF Grapher. 

Example 2 

The second example shown in Figure 28 is the workorder 27 in our Test 

Maintenance Dataset, and that is “Unit will not go up at all the way o-ring on manifold 

leaking Found unit had a hyd leak.” Clearly, the problem statement is full of technical 

jargon. Our MWOAT tool successfully identified most of the essential concepts, but it 

identified both the single and multi-phrases. Hence, it is visible under the detected 
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concepts that it tagged both o-ring and ring. We unselected the ring since both of them 

were the same. Besides, the tool also found alternate and related concepts, such as the 

problem statement only had a leaking, which falls under Undesirable Behavior in the 

thesaurus and is the upper class for leaking oil. Leaking oil is an alternate concept for 

leaking, so the tool listed leaking oil under detected concepts as the tool does not still 

have any individual box or space for alternate concepts. The oil spill is a subclass of 

leaking and was entered as related concept of leaking, so oil spill is detected as a related 

concept, but since we do not need it for this workorder graph generation, we simply 

unchecked it.  

 

Figure 28. Example 2 Analysis in MWOAT Tool. 

The additional concept that we need to emphasize in the 2nd example is the User-

defined concept. We did not use will not go up under any bucket in the thesaurus, but 

from the basic understanding, we know that it means similar to not moving or not 

functioning. As a result, we used will not go up for the sake of this workorder knowledge 

graph generation. It will not be added to the thesaurus or ontology, and the user has to 

add it manually. Another alternate solution to similar situations where the concepts are 

untagged is to try finding similar meaning concepts. For instance, we could have simply 

used will not lift instead of will not go up and the tool would have identified it, and we 
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did not have to use User-defined concepts then. However, we just stayed with the 

alternate one, kept the raw text as it was, and added a user-defined concept. The 

relationship that we defined between the subject and predicate, is similar to the way we 

did for Example 1. Recall from Chapter 2 that the subject and object change depending 

on the inner object property relation between them. In the first triple, the Unit is the 

subject that has a defunct state, whereas, in the last structure, unit is the location of the 

hydraulic leak and became an object. The knowledge graph explanation of Example 2 is 

also homogeneous to Example 1 knowledge graph.  

 

 

Figure 29. Example 2 Knowledge Graph Visualization in RDF Grapher. 

The hydraulic leak is labeled as hydraulic leak and located in the Unit. The rdf 

label for the unit in Owl ontology is Unit, which is a type of machine and has the user-

defined concept or defunct state. The leaking is undesirable behavior, and the leaking O-

ring has a location on the manifold. A quick note to mention here is that woo is the prefix 

name for our maintenance ontology and expands to an IRI (Internationalized Resource 

Identifier). For our case, it is woo: http://infoneer.txstate.edu/ontology/MWOO/, where 

http://infoneer.txstate.edu/ontology/MWOO/
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woo is the name, and the later portion refers to our ontology IRI.  

Example 3 

This will be our last example explanation, so let us look at a bigger, complex 

example and divide it into smaller parts for easy understanding. We will analyze 

workorder 10 in Figure 30, which states “front diff is making oil, front diff blew out snap 

ring internally, removed one side and found diff to be  no good snap ring blew apart 

causing damage to case.” After pasting the raw text, we realized that a number of 

concepts were untagged in the thesaurus, but few of them have closer meaning synonyms 

already present in the thesaurus. As a result, we changed some of the wordings in the text 

paste box, such as: making →leaking, blew out → blew apart, to be no good →damaged. 

We also added the user-defined concepts: diffuser, snap ring, and case to be visible in the 

knowledge graph. The tool identified the ring under the detected concept, but we 

specifically wanted to define the snap ring for a better root cause analysis of the 

maintenance problem. We kept the ring just to show it on the graph, as it does not impact 

the result. The oil spill was also detected like the previous example problem, and we have 

unchecked it. 

 

Figure 30. Example 2 Analysis in MWOAT Tool. 

 The last page of the tool shows the triple relationships generated. The diffuser 
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participates in leaking oil, and the snap ring participates in blew apart. The statement also 

states that snap ring internally blew apart is due to damaged diffuser and resulted in a 

damaged snap ring also. And finally, the case becomes damaged due to the blew apart 

snap ring. Figure 31 looks complex with all the interconnected links, but it is the exact 

reflection of the six triple relationships we just created.  

Figure 31 

Example 3 Knowledge Graph Visualization in RDF Grapher 

 

Figure 31. Example 3 Knowledge Graph Visualization in RDF Grapher. 

 Starting with the component Snap Ring, which participates in Blew Apart and 

bearer of Damage. Blew Apart is a defect caused by Diffuser; Diffuser participates in 

Leaking Oil and Damaged as well. The case is also a bearer of damage, and lastly, the 

ring does not have any relationship with other individuals as we have used the snap ring 

instead. The knowledge graph can be treated as a powerful tool because it identifies the 

root cause of a maintenance problem from simple to complex raw text. In addition, it is 

very difficult to have a concise idea of the failure only from the raw text as they are full 

of errors and technical vocabulary.  
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Task 4: Validation 

This is the last section of this chapter. In this section, we will illustrate the 

SPARQL query and how we have utilized it for our fourth task fulfillment. We will also 

show how the Reasoner plug-in on the Protégé tool automatically allows adding 

instances under different classes. Previously, a brief of SPARQL query has been provided 

in Chapter 2, where we explained that it is a semantic RDF query language to retrieve 

required information stored in RDF triple format. Queries could be done on raw data; 

however, in most cases, raw data needs additional processing in order to be used as 

information. Raw data lacks the built-in capacity for consistency and querying over the 

raw data needs reconstructing the schema, which ends up resulting in larger duplicate 

data. As the quantity and complexity of relationships rise, relationship queries in 

traditional raw text databases will come to a standstill.  

In contrast, the RDF knowledge graph allows new relationships over time without 

endangering current functionality resulting in more useful query results. Of course, raw 

data is necessary to trace back the data source, but a knowledge graph is a single place 

where all data and the interlocking relationships behind that data can be found. This 

enables one to find information faster, uncover hidden insights into text data, and 

understand how everything is connected on a broader scale. We require the connected, 

reusable, and flexible data foundation to reflect the complexity of reality in order to 

address difficult challenges that require the integration of several unstructured raw text 

data. Multiple interpretations of the same data can be made possible by connected, 

meaning-rich data, making it easier to find answers to complex queries and more quickly 

extract insights. These answers will be helpful to our validation purposes, meaning 
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depending on the SPARQL query results, we can always go back to our ontology and rule 

out the detected classes as well as the instances under them to verify the true positive 

mentioned in chapter 1. We will also elaborate on the process with our query examples in 

this chapter.  

We have used java based Stardog (https://www.stardog.com/) application 

platform, which supports SPARQL query for querying RDF knowledge graphs. The most 

cutting-edge graph data virtualization and high-performance graph database are available 

from Stardog. Stardog uses the RDF triples knowledge graph and OWL ontology as 

input. After creating RDF triples for each raw text data in the Test Maintenance Dataset, 

we have created a master file, which is an accumulation of all the two hundred and fifty 

RDF triples. We have simply loaded our RDF triples master file on Stardog, written it 

down, and run the queries to find out the expected information we needed. In Addition, 

ontology IRI is used at the start of the query writing so that the tool can refer to it. The 

platform also sends error messages to the user if any structural issue is found in the 

queries. We have used several queries to validate our model, and a number of queries will 

be elaborately described below in the next paragraph. As soon as we open the Stardog 

Studio application, a blank workspace with several tabs appears. Such as in Figure 32, we 

can see the tool's built-in database is detected as stardog-tutorial-beatles. Users can load 

their work specific datasets, write the queries in the workspace console and run them to 

retrieve the results. Once run, another console appears below the first console, which 

shows the result.  

https://www.stardog.com/
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Figure 32. Partial View of Stardog Studio Query Application. 

In addition, built-in dataset as well as their tutorials, are available in this 

application which is specifically useful for the new user to guide them in building 

queries. Some examples of query operations are SELECT, ASK, DISTINCT, COUNT, 

LIMIT, ORDER BY, and GROUP BY, and we will break down some of their usage in 

our maintenance database queries. We will start with the simplest query and move 

forward with a bit more complex one to provide a better understanding of the query 

framework. Before jumping into the main query examples, let us get familiarized with the 

basic query structure which we have used in all our examples. The main query form in 

SPARQL is a SELECT query which is used to extract results from the knowledge graph 

tripes and can be modified to match the desired pattern. A SELECT query has two main 

components: a list of selected variables and a WHERE clause for specifying the graph 

patterns to match. The SELECT structure looks like this, 

SELECT <variables> 

Where{ 

<graph-patterns> 

} , where the variables are the output, and the graph patterns are descriptions to match  
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Triple patterns are the fundamental building component for SPARQL searches. A 

triple pattern is identical to an RDF graph triple, with the exception that any one of the 

three positions can include a variable after the SELECT command. We search the 

knowledge graphs for matching triples using triple patterns, and variables function as 

wildcards that can match any node. For example, the simplest query to retrieve the 

subject(?S), predicate (?P), and object (?O) from our knowledge graphs are shown in 

Figure 33. Here, the SELECT query returns the triples from the maintenance knowledge 

graphs. The output variables ?S ?P, and ?O tell the SELECT query what to return. The 

output variables belong to the declared type or label between the WHERE clause, and 

simply put, the WHERE is used to extract only the records that fulfill a specified 

condition. In this case, we want to retrieve all the triples structure in our knowledge 

graph, so we write the variables ?S ?P, and ?O, showing we want triple structures where a 

subject, predicate, and object exist, with any value in any position. This simplest query 

retrieves 1000 results in 170 milliseconds in the lower console. We can also visualize 

each of the results in a graphical mode which we will see with our query examples.  

 

Figure 33. Simplest Query Structure using SELECT Command. 
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Query Examples 

Query Example 1 

What are the causes of undesirable behavior? 

We want to know what the causes of undesirable behavior from this query are. In 

other words, how many caused by object property relationships we have with the 

instances under Undesirable Behavior class in our knowledge graph. In Figure 34, 

starting from the 1st line of the query is the declaration of our ontology prefix. Whenever 

pound (#) sign is put at the beginning of the sentence, it becomes a comment, and we 

have used it to write down our query in the workspace. We have used ub for undesirable 

behavior and ca for caused by as dynamic parameters. A dynamic parameter is a 

parameter to a SPARQL statement for which the value is not specified when the 

statement is created. Instead, the statement has a question mark (?) as a placeholder for 

each dynamic parameter. The rest of the information on the dynamic parameters would 

be given inside the WHERE clause.  

 

Figure 34. Query Example 1. 

Next, we have told the query a place where the necessary information for ub and 

ca could be found. In our ontology, we have the Undesirable Behavior class, and so, we 
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have declared the ub as a rdf:type of undesirable behavior. The prefix name is 

woo:UndesirableBehavior and one condition is that the exact prefix name has to be used 

to get the result. We have to use a dot (.) at the end of each line inside WHERE clause; 

only the last line can skip the dot. We were only interested in how the undesirable 

behaviors are caused by other class instances and declared the ontology prefix caused by 

as woo:causedBy and closed the bracket. After that, we closed the bracket and ran the 

query, which resulted in 26 undesirable behaviors caused by instances of classes. Such as 

in the 1st line of the results reflected that in our Test maintenance workorder 10, the 

undesirable behavior Blew Apart is caused by Diffuser. We can also click on each 

workorder row to see the result visually and validate it. Let us consider validating the 1st 

result against the maintenance workorder which was, “front diff is making oil, front diff 

blew out snap ring internally, removed one side and found diff to be no good snap ring 

blew apart causing damage to case.” The resultant graph page in Figure 35 is very 

informative as it provides the total number of classes and properties expressed via nodes 

and edges.  

 

Figure 35. Query Example 1 Result Partial Visual Representation. 
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For the 1st result workorder, we have a total of 9 nodes and 15 edges. The nodes 

include the instances of class Component, Undesirable Behavior, and Defect, and these 

are connected by edges which include the type and the object property. Each of the color-

coded tabs, as well as the nodes/edges, could be clicked for the ease of easier root cause 

of the problem. Such as, we set our cursor on the pink tab in the 2nd row and two nodes 

‘blew apart’ and ‘leaking oil’ popped up. So, why our query gave us only one undesirable 

behavior? Because only blew apart maintains the caused by the relationship with 

‘diffuser’ node. On the other hand, diffuser participates in ‘leaking oil’ node and so, the 

query did not show this triple relation in the result. All of the possible relations in the raw 

maintenance workorder have been correctly presented in the graph, and after comparing 

the visual result with the raw text, it is much easier to conclude that the diffuse is the root 

cause of the failures. This visualization is similar to the RDF Grapher online based tool 

we have used for our knowledge graph visualization. However, Stardog provides 

information in much better way and with color-coded nodes/edges. Since the graphs tend 

to have a lot of semantic relations, analyzing the root cause of failure using Stardog is a 

much-preferred way.  

Another interesting addition in query 1 would be adding the command LIMIT, 

meaning the query will show a limited result. Such as, we have used LIMIT 3 after 

closing the WHERE clause, so only three outputs will be in the result section.  
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Figure 36. Query Example 1 with LIMIT Command. 

Query Example 2 

What are the states caused by undesirable behavior? 

This query structure is similar to the first one, but the only difference is that we 

specifically wanted to know about undesirable behavior causing the state rather than all 

causes of the state. Hence, we have parameterized state and undesirable beside the 

SELECT clause and declared their classes in the next two lines in Figure 37. The last line 

of the query is the duplication of our text query but just in the triple format. The query 

provided only one result, which is excess vibration is causing the state broken. We also 

checked the raw workorder text, which is “exhaust bracket cracked and broken due to 

excessive vibration” as well as the graph to validate our findings. 
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Figure 37. Query Example 2 and Partial Result Visual Presentation. 

Query Example 3 

What states are caused by Defective Artifacts? 

From the ontology, we know that one of the sub-states of the state is Defunct 

State and we want to know if there are both state and defunct state, which are caused by 

Defective Artifacts. The other seven states do not have any instances which is caused by 

defective artifacts. So, putting those altogether in the query would not affect the result. 

Figure 38 presents the new 3rd query, where a new command, UNION, has been used to 

merge the sub-state with the state. The ?st has been declared as both state and defunct 

state to accommodate the merging. The query resulted in 9 outputs, and after checking 

ontology, we confirmed that all nine of them are coming from Defunct State class. We 

chose to visualize maintenance workorder 187, which was “SC C: machine won't drive or 
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go into gear.  C: blown 1amp fuse on slot 15 for switch power.” Clearly, the raw text is 

full of technical jargon, but from the picture illustration, it is clear that a blown fuse is 

causing the not driving defunct state.  

  

Figure 38. Query Example 3 and Partial Result Visual Presentation. 

Query Example 4 

What are the reasons for not moving state? 

Till now, we only needed to define rdf:type to express the belonging under a 

specific ontology class. However, if we are interested in a specific instance, we will be 

using rdfs:label to refer to that variable shown in Figure 39. In query 4, we were 

interested to know about the not moving state, and we had two results from the query. 
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We compared the workorder 48 “machine won't move failed foot switch” and validated 

the visualization.  

 

Figure 39. Query Example 4 and Partial Result Visual Presentation. 

Query example 5 

Is boom a bearer of crack? 

This query is different from the previous ones, and the SELECT or WHERE 

Clause is not used here. When we simply want to know the answer in true and false 

format, we will use ASK query to do that. Such as, if we want to know whether there is 

any component in the dataset that is bearer of a defect, the query would be, 

ASK { 

?a rdf:type woo:Component. 
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?b rdf:type woo:Defect. 

?a woo:bearerOf ?b. 

} 

We are simply defining the component and defect parameter within their class and 

linking those with the object property bearer of to verify the result. Depending on this 

structure we built, ask Stardog if the boom bearer of crack and used the rdfs:label since 

we want to know about a specific component. The query returned the answer true, but 

without any work order numbers. Hence, to validate if the result was correct or not, we 

went back to the Ontology and checked all instances of boom under Machine class. 

Figure 40 reflects that workorder 25 “jib on unit is loose. Boom to jib pivot bushings 

found to be cracked and breaking” is the one with the detected relation, so our query was 

giving us the right answer. There is no visualization option available for this query since 

we are asking a question rather than wanting to know any triple relations.  

  

Figure 40. Query Example 5 and Validation from Ontology. 
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Query Example 6 

How many events  have property caused by and if those caused by have any state? 

This query is a bit more complex than the previous ones. We want to know 

multiple information, so if  we simply divide the query into two sections, 1st part is to 

know the causes of class event but only when the cause occurred due to any state. So, we 

are targeting to determine two object properties has state and caused by with our query. 

We started with parameterized event, cause, and state, eventually by ?e, ?ca, and ?st. 

Then we the event and state parameters to their respective classes. Finally, we added two 

additional lines where we want to know the events which are caused by states. The query 

is shown in Figure 41, and it has provided only one answer, which is failed is caused by a 

solenoid that is contaminated. It comes from workorder 17, which is “machine will not 

move. found brake solenoid failed.” The two object properties are the edged among 

solenoid, metal contamination, and failed. One might get confused with the view of the 

graph, which is much easier to understand compared to the other ones we have shown 

above. The visibility could be controlled for easy understanding of the semantic 

relationship, and here, we have only chosen the resultant nodes and edges to be visible.  
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Figure 41. Query Example 6 and Partial Result Visual Presentation. 

Query example 7 

How many components participates in undesirable behavior and their location is known? 

This query structure is similar to query example 6. However, we want to show a 

side-by-side comparison of changing a simple query structure. Such as, in this query, we 

want to know the components which participate in undesirable behavior, but their 

location must be known. We will also show what happens if we just eliminate the 

condition of known locations; rather, we want components participate in all kinds of 

undesirable behavior. The alternate query structure is similar to the 2nd query example 

we presented earlier. Figure 42 illustrates only four undesirable behaviors have known 

locations out of 46. This also tells us our query structure is correct. We also checked the 

resulting workorder numbers to see if the query had missed any other location by any 

chance, but the query was able to detect all the locations successfully. 
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Figure 42. Query Example 7 Comparison. 

Query Example 8 

A. How many portions of materials are there? 

B. How many undesirable behaviors per component? 

Although our focus here will be on 8B but before that we will introduce COUNT 

query with the simpler example 8A. The COUNT function counts the number of 

instances of a variable, and it is used beside the SELECT function. We have also used 

DISTINCT function no eliminate any repeated instances in the result. Figure 43 

picturizes the of portion of material identified by COUNT. The function says that the 

query wants to count portion of material referred as ?pom, and the result will be shown 

with the name ?countpom. Then, we simply added the class type where the ?pom 
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belongs, and we can see there are 14 portion of material present in our knowledge graph 

database.  

 

Figure 43. Query Example 8A. 

Now, this brings us to our next query, which is counting the number for each 

component class instances. In Figure 44, the count function states that we want to know 

distinct undesirable behavior ?ub for the component class ?comp. As a result, we wrote 

down the class types for the two parameters. But we still need to tell the query what 

property relationship we have between the component and undesirable behavior to enable 

the COUNT function to be worked. Participates in is the object property a component 

could have with undesirable behavior, and that is why we define the relational prefix in 

the 8th line. The query ends with GROUP BY, which is another new function that will 

allow grouping the undesirable behavior depending on the instances. Such as in Figure 

44, the number of undesirable behaviors for each instance resulted. FrontAxle 

participates in one undesirable behavior, whereas RunningKeySwich has two 

undesirable behaviors. The undesirable behaviors (edges highlighted in orange) for work 

orders are also visualized in the simple graphical representation and provide validation of 

results. 
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Figure 44. Query Example 8B. 

Query Example 9 

Find all components excluding seal which participate in leaking, and if that leaking 

causes a state. 

 The query question asked for three different pieces of information. First, it is 

trying to find out only the components which participates in leaking and these 

components should not include ‘seal’. In addition, it also wants to know if these leaking 

are resulting in any state. This query can be solved using other different functions, but we 

have chosen to move forward with the straightforward approach shown in Figure 45.  
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Figure 45. Query Example 9. 

We have started with the COUNT function to know the number of leaking for 

each component followed by the WHERE function. It is visible that we first wanted to 

know the components that participates in leaking as well as the states the leaking has 

caused from line 5-15 of the query structure. We used a semi-colon beside component 

rather than a dot, which allow us to not rewrite the 1st part of the triple structure, and in 

our case, it is ?comp for Component. Degraded Function State, Defunct State, and 

Undesirable Behavior State are the subset of State in our OWL ontology. Hence, we have 
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used the UNION function to structure that. Subsequently, we used a new function called 

MINUS to exclude the seal from the list of components and ended with GROUP BY 

function to get the result categorized for each component. The query resulted in only one 

result WO 38, and we have validated the result by going back to our raw text “ Brakes 

not working brake cylinder leaking down.” The not working is the only state leaking is 

causing, and the visualization shows that the component cylinder participates in leaking.  

Validation Using Reasoner 

 Protégé tool has the plug-in called Reasoner and by running this plug-in, we can 

generate the inferred relationship between two instances of the ontology classes. When 

we are generating knowledge graphs to show meaningful relationships among instances, 

we called these relationships Asserted type. Whereas, if our ultimate goal is to build a 

semantic model, meaning both human and machine will have equal understanding 

understand of the model and they will have a common ground of communicating with 

each other, then the next step should be utilizing the Reasoner. It creates the inferred 

relationship among instances and allow better understanding of how one instance is 

connected to other. Figure 46 is an example of our ontology without using the Reasoner 

function and how the asserted relationships look like. The Unit With Leak Failure is an 

instance of Nonconforming Artifact and the definition of the instance is provided as a 

natural language definition. This definition is for the use of human model developer for 

creating meaningful triple relations while generating the knowledge graphs. However, 

Protégé does not understand this definition and requires an equivalent definition so that 

by hitting the Reasoner plug-in, it can generate indirect relationships.  
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Figure 46. Asserted Relations without Reasoner. 

The right side of the image is an example of how the asserted type of relation 

looks like without using the reasoner. We can see that robot has part hydraulic system 

which also has a part called oil pump. Besides, gasket is also a part of the oil pump. But 

previously shown in Chapter 3, Figure 24, we talked about how the knowledge graph 

could be extended and, in the description, we mentioned that if machine has part 

functional unit and functional unit has part component, then the inferred relation ship is 

that the component is also a part of the machine. Same for this example, we can see that 

the asserted relationships are robot has part hydraulic system, hydraulic system has part 

oil pump and oil pump has part gasket. It also means that both oil pump and gasket are 

part of the robot as well as gasket is also a part of hydraulic systems. The other inferred 

relation is if oil pump participates in leaking, then both robot and hydraulic systems are 

type of unit with leak failure. Furthermore, if gasket is a bearer of defect than robot is 

type of defective artifact too. The inferred relations can be seen in Figure 47.  

 If we put the equivalent definition of the natural language definition under 

Equivalent To correctly and run the reasoner, the instances among which the inferred 

relationship works, would pop up under the instances. As example, in figure 46, we did 

not have any instances for unit with leak failure but after running the reasoner we can see 
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automatically generated instances- hydraulic systems, oil pump and robot. It validates 

that we have correctly provided the equivalent definition and one can easily understand 

the difference between asserted and inferred relations. The instance background will turn 

yellow, and the user can also go back and forth between asserted and inferred from the 

drop-down menu. Hence, we used this plug-in to analyze if our reasoning is correct and if 

the inferred relations could be generated successfully.  

 

Figure 47. Inferred Relations with Reasoner. 
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IV. CONCLUSION 

In this chapter, we will discuss how our implemented methodology has satisfied 

the research questions we have identified in Chapter 1.  

What main concept categories and sub-categories can be used for classifying the 

key terms that appear in MWO data? What should be the top-level concepts of the MD 

thesaurus? 

When we started working with the raw text data, the most appeared terms were 

different machine and component types, the failures they cause and how those affect 

other individuals, the location of parts and the failures, as well as the environmental 

condition. As a result, we classified and sub-classified them to create a standardized 

framework that can be used not only for our dataset but also for any maintenance dataset. 

The main class concepts were the top concepts, and they are: Artifacts, Condition, 

Event, Function, Maintenance Treatment, Material Substances and Property. The 

thesaurus and ontology are both extendable, and we have earlier visualized the main 

concept classes and sub-classes in Figure 2 and Figure 3 and provided their definition in 

Table 5.  

Does using tools with NLP support (such as Nestor) improve the efficiency of the 

tagging process? 

The answer is both yes and no. There is a lot of noise in raw data and tools such 

as Nestor can be helpful by removing noise factors. In our case, Nestor was able to detect 

the required taggable words filtering the noise as well as identifies both single and multi-

phrase words together. However, the tool is newly created and still needs appropriate 

updates to work faster. Since we were able to use the primitive version of the tool, it was 
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very time consuming to tag our larger number of datasets. Each time we uploaded only 

ten raw work orders to achieve a faster result out of five hundred total maintenance raw 

data. Also, we got access to the tool in the middle of our research work, so by then, we 

already had tagged most of the required terms of our dataset by utilizing the Entity 

Extractor functionality of the SKOS tool. Nestor has been used mostly for our tagging 

check to identify any of the important terms we missed during manual tagging.  

How to categorize the Nestor-tagged problems under the right category/bucket in 

the thesaurus? 

As previously mentioned, Nestor is a generalized NLP tool and mainly identifies 

the Items, Problems, Solution, Problem Items, and Ambiguous terms in the raw text. 

Adding the solution was not the scope of this research, and the ambiguous terms were 

subject to our manual exploration if they would fall under any concept bucket of the 

thesaurus.  

• The Items were mapped under the Asset, Component, and Functional Unit. 

• Problems were mapped under  Nonconforming Condition and Failure Event. 

• Problem Items were also mapped under Nonconforming Condition. 

How effective our final model will be in showing the semantic relationship among 

various entities? 

The final model was extremely effective in showing the semantic relationship 

among the entities. We started with the raw text and were able to cluster the terms in the 

thesaurus, which in the end, resulted in the knowledge graph. When we have a set of 

standardized concept sets, it also impacts our mental ability to recognize the list of 

problems in the maintenance workorders easily. It allows a better understanding of the 
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root cause of the problem when visualizing the knowledge graphs and what relationship 

one instance posses with others in the same work order. Especially, the workorders 

consisting of a lot of issues were often cumbersome to spot the root cause due to the 

technical jargon, and these graphical representations were a big aid to meet that need. We 

have presented examples from both the RDF Grapher online visualization tool and the 

Stardog query platform to illustrate the internal semantic relations. 

How would we express the queries to satisfy our competency questions, such as: 

What is the cause of this maintenance problem, where is the location of the problem, 

what are the WOs related to this problem (s), and so on.  

The SPARQL structure is fixed, and any knowledge graph platform could be used 

to generate the SPARQL queries. We have followed the Stardog platform query tutorials 

to understand how we can generate meaningful queries which would retrieve whatever 

information we want to know. We have provided nine query examples using our 

knowledge graphs as required input and the queries were successfully able to show the 

maintenance problems, location along with their work order numbers. Such as, our query 

retrieved the Artifacts along with their Workorders that participates in the undesirable 

behavior as well as the Undesirable Behavior results presented in Query Example 1 and 

2. In addition, Query example 7 retrieved the known location for the Undesirable 

Behavior of the Artifacts.  

 One other advantage of using the SPARQL was to be able to determine the true 

percentage of the retrieved result. We are dealing with a larger dataset, and the number of 

instances under the concept classes in our ontology was approximately 700 from the two 

hundred and fifty workorders presented in Figure 48. The SPARQL returns the count of 
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individuals under all classes, and we have put them on a histogram after sorting them 

from largest to smallest. Since the individual count is pretty big, duplication of the result 

is possible as well as getting a larger output. In those cases, we have effectively used the 

DISTINCT and LIMIT functions to get rid of any duplication or limit the output number. 

 

Figure 48. Instance Count per Class in Ontology.  

However, we did our own sanity check by every time getting back to the ontology and 

raw text data to validate the true percentage, meaning if a query is showing ten Defunct 

State, is it true that all of them are Defunct State. This is called the precision and recall 

performance metrics we talked about as a part of our Task 4.  

 Getting back to our raw maintenance text data, we have seen in our provided 

examples that the raw texts are full of technical jargon, and especially if somebody is not 

from the manufacturing or maintenance field, it is a struggle for them to find out the 

meaning. Having thesaurus followed by Ontology allows data all the data collection 

schema to use this shared vocabulary. Knowledge graphs also have these technical terms 

in a graphical form but without any jargon, stop words, unnecessary punctuation, and 

ambiguous words. The concepts and relationships that are allowed in knowledge graphs 

are defined by ontology. The structure of a knowledge graph facilitates the integration of 

several heterogeneous data sets from various companies of varying quality. With each 
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item or instance represented only once, together with all of its relationships, in the 

context of all of the other subjects and their relationships, Knowledge Graphs offer a 

model of how everything is related. This enables one to understand how everything is 

connected on a broad scale. They enable users to quickly conduct exploratory queries 

against massive amounts of data without creating indexes or otherwise tailoring datasets 

for particular queries. Figure 49 is a side-by-side comparison of raw text and a 

knowledge graph.  

 

Figure 49. Raw Text and Knowledge Graph Comparison.  

Clearly, the raw text consists of a lot of smaller issues such as Broken Wire, 

Wiring problem, No high speed, and unnecessary terms like Off rent. Lack of 

punctuation and grammatical structure is making the text hard to understand and is the 

difficult root cause of the problem. Whereas the knowledge graph on the right side is not 

only expressing explicit meaning but also their exhibiting the relationships between each 

individual. One can easily understand that the bigger failure is that the boom is running at 

a low speed which is caused by both broken wire and the nonfunctioning limit switch. 



 

99 

Besides, the broken wire is located in boom, and the limit switch is a part of the boom. 

Without converting the texts into a graph, one can hardly imagine how many hidden 

meanings a raw text can convey. In our case, each raw text of the five hundred total raw 

texts possesses useful information and that can lead to fruitful failure cause mapping. 

Furthermore, it is not possible to conduct such a structured breakdown of the problem 

only from the raw text. Raw text is the storehouse of our knowledge graph where we can 

reflect back to build the graphs piece by piece. However, when we are progressing fast 

toward Industry 4.0, we definitely need to have smart failure detection, and the 

knowledge graph indeed accomplishes that need.  

The first future work of this research work includes adding more work orders to 

the master triples file and to examine how Stardog or our internally developed query tool 

can perform query and retrieve accurate data. Currently we have utilized two hundred and 

fifty workorders to generate the knowledge graph. Other half of the workorders could be 

loaded to generate the knowledge graphs for entire workorder dataset and then conduct 

the query to validate the date retrieving accuracy. The second future work would be 

adding the solution of each work order. This research work has only focused on 

analyzing and tagging the problem statement of related to a work order. Nevertheless, 

adding the solution would be the next approach as the ultimate goal is to find a solution 

to a maintenance breakdown or failure as soon as possible and use the knowledge graph 

as a medium of preventive measure.  

Finally, generating SWRL rules to expand the knowledge graph is one possible 

direction for future work. SWRL allows automatically adding new triples to the graph by 

combining two entities of indirect relationships. Such as considering a concept called 
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State in the Owl ontology. The state directly relates to the Event, another concept of the 

ontology, and the instances of the Event, such as failed or ruptured, could be caused by a 

defective artifact. Although the state and the defective artifact do not directly connect 

with the SWRL approach, we can generate the indirect triple relationship visible in the 

knowledge graph. Using SWRL will search the entire graph and add this new triple 

whenever a similar pattern appears, which will result in a lot of new triples. It will ensure 

a greater root cause analysis of the maintenance work orders’ problems. 
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