

A HYBRID APPROACH FOR DEVELOPING, EXTENDING, AND IMPLEMENTING

INDUSTRIAL MAINTENANCE KNOWLEDGE GRAPHS AND SEMANTIC

ONTOLOGIES TO SUPPORT SMART MAINTENANCE DIAGNOSTICS

by

Renita Tahsin, M.S.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Engineering Management

December 2022

Committee Members:

 Farhad Ameri, Chair

 Meysam Khaleghian

 Dincer Konur

COPYRIGHT

by

Renita Tahsin

2022

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Renita Tahsin, authorize duplication of this work,

in whole or in part, for educational or scholarly purposes only.

iv

ACKNOWLEDGEMENTS

 First, I would like to express profound appreciation to my thesis advisor Dr.

Farhad Ameri who supported me at a time when I was sorely in need of it. Not only has

he provided an opportunity to diversify my career from core industrial engineering to

data analytics, but also did he guide me in each step of these two years journey. His door

was always open whenever I had trouble with my research project or adjusting to other

courses. His vast expertise in Ontology Engineering and data-driven decision-making

pushed me to expand my thought process. In the end, I am amazed to see how much I

have learned to deal with data and successfully implemented it in the thesis.

Second, I am thankful to my other committee members, who were incredibly

supportive from the very beginning. I have taken course works with all of my committee

members and am indebted that those course works are the reason I am working as a full

time healthcare system engineer even before graduating with this second masters. I am

whole heartedly grateful to my committee members and absolutely fascinated to be a part

of this wonderful institution.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. xi

ABSTRACT .. xii

CHAPTER

I. INTRODUCTION ..1

Problem Statement ...2

Assumptions, Limitations, and Delimitations ..3

Assumption ..3

Limitations ...3

Delimitations ..4

Research Questions ..5

Research Methods ..5

Research Plan ...10

Task 1: Creating and Extending Maintenance Thesaurus..............10

Task 2: Creating and Extending a Formal Ontology11

Task 3: Knowledge Generation and Expansion11

Task 4: Validation of the Developed Semantic Models11

II. LITERATURE REVIEW AND SEMANTIC DEFINITIONS13

Linguistic and Grammatical Maintenance Text Analysis27

Semantic Technology Definitions ..30

Simple Knowledge Organization System (SKOS)31

Resource Description Framework (RDF)33

RDF Triples Structure ..34

RDF Graph ...35

OWL Ontology ..38

vi

III. METHODOLOGY FRAMEWORK ...40

Task 1: Thesaurus Development ..41

SKOS Elements ...42

Concepts. ..42

Labels. ..43

Semantic relationships. ..44

Mapping properties. ...45

Concept collection. ..45

SKOS Tool Functions. ...45

Nestor Tool Experimentation. ..48

Task 2: MWOO Ontology ...50

Building OWL Ontology. ..51

Individuals..54

Properties. ..55

Classes..56

OWL Ontology Definitions. ..57

Owl Ontology Visuals..59

Task 3: Knowledge Graph Generation ..63

Example 1. ...66

Example 2. ...68

Example 3. ...71

Task 4: Validation ..73

Query Examples. ..77

Query Example 1. ..77

Query Example 2. ..80

Query Example 3. ..81

Query Example 4. ..82

Query Example 5. ..83

Query Example 6. ..85

Query Example 7. ..86

Query Example 8. ..87

Query Example 9. ..89

Validation Using Reasoner. ...91

IV. CONCLUSION..94

REFERENCES ..101

vii

LIST OF TABLES

Table Page

1. The Timetable of Tasks to Accomplish the Goal ..12

2. Test Maintenance Company Example Problem Statements ..28

3. Test Data Example with RDF Triple Structure ..35

4. Test Maintenance Raw Text Input and Subsequent Outputs Identified by Nestor50

5. Natural Language Definition of MWOO Ontology Classes ..57

6. Natural Language Definition of MWOO Object Properties ..58

7. Examples of State and Process in MWOO Ontology ..62

viii

LIST OF FIGURES

Figure Page

1. Few Examples of the Raw Maintenance Work Orders. ...6

2. Thesaurus and NLP for Hybridized Data Classification. ...7

3. Owl Ontology Classes and Object Properties in Protégé. ..8

4. Visualization of Single Raw MWO. ..9

5. What is Observed vs. What is Diagnosed. ...30

6. SKOS Model Example for Leaking. ..33

7. Test Data Example with RDF Graph. ..36

8. Use of RDF-type and RDF-label in SPARQL. ..38

9. Methodology Framework from Start-to-End. ..41

10. Partial View of User Interface in the Test Maintenance Thesaurus.44

11. Partial View of Java Tool Showing the Semantic Relationship in Thesaurus.45

12. The Opening View of the INFONEER SKOS Tool. ...46

13. Term Selector View with Example Raw Text in SKOS Tool.47

14. Entity Extractor View with Example Raw Text in SKOS Tool.48

15. Partial View of Nestor Tool used for Data Tagging. ...49

16. SKOS Thesaurus Concept Mapping in Protégé Owl Ontology.51

17. Protégé MWOO Ontology Class View. ...52

18. Protégé MWOO Properties View. ...54

19. Example of Artifact Instances in the MWOO..55

ix

20. Control Box Property Relations in the MWOO Ontology...56

21. Portion of Material Class Annotation and Description in MWOO.57

22. Simple Examples of Ontological Relations in MWOO. ..60

23. Class State vs Class Process in MWOO. ...61

24. Complex Example of Ontological Relations in MWOO Ontology.63

25. Maintenance Workorder Annotation Tool (MWOAT) Tool Full View.64

26. Example 1 Analysis in MWOAT Tool. ...67

27. Example 1 Knowledge Graph Visualization in RDF Grapher. 68

28. Example 2 Analysis in MWOAT Tool. ...69

29. Example 2 Knowledge Graph Visualization in RDF Grapher. 70

30. Example 2 Analysis in MWOAT Tool. ...71

31. Example 3 Knowledge Graph Visualization in RDF Grapher.72

32. Partial View of Star dog Studio Query Application. ...75

33. Simplest Query Structure using SELECT Command. ...76

34. Query Example 1. ..77

35. Query Example 1 Result Partial Visual Representation. ...78

36. Query Example 1 with LIMIT Command. ..80

37. Query Example 2 and Partial Result Visual Presentation. ...81

38. Query Example 3 and Partial Result Visual Presentation. ...82

39. Query Example 4 and Partial Result Visual Presentation. ...83

40. Query Example 5 and Validation from Ontology. ...84

x

41. Query Example 6 and Partial Result Visual Presentation. ...86

42. Query Example 7 Comparison. ..87

43. Query Example 8A. ...88

44. Query Example 8B. ..89

45. Query Example 9. ..90

46. Asserted Relations without Reasoner. ...92

47. Inferred Relations with Reasoner...93

48. Instance Count per Class in Ontology. ..97

49. Raw Text and Knowledge Graph Comparison. ...98

xi

LIST OF ABBREVIATIONS

Abbreviation Description

CMMS Computerized Maintenance Management

 Systems

SKOS Simple Knowledge Organization Systems

OWL Web Ontology Language

MWO Maintenance Work Order

NIST National Institute of Science and Technology

NLP Natural Language Processing

RDF Resource Development Framework

W3C World Wide Web Consortium

URIs Uniform Resource Identifiers

URLs Uniform Resource Locators

IRI Internationalized Resource Identifier

xii

ABSTRACT

The unstructured historical data stored in Computerized Maintenance

Management Systems (CMMS) is a mine of maintenance diagnostic information. This

data is often underused due to its unstructured and informal nature. This thesis will

propose a framework for transforming maintenance log data, which is often in the form

of natural language text, into formal knowledge graphs. The proposed method generates a

knowledge graph that encodes the semantic relationships between multiple maintenance

entities based on the historical data that can be found in maintenance work orders. The

knowledge graph is created semi-automatically through the hybrid application of text

analytics techniques and human-assisted semantic tagging of maintenance work order

text. The semantics of the knowledge graph proposed in this research will be provided

jointly by a SKOS thesaurus and an OWL ontology. SKOS (Simple Knowledge

Organization System) and OWL (Web Ontology Language) are both Semantic Web

standards that will enhance the reusability and portability of the final knowledge graph.

The knowledge graph created as an output of a java based tool will become an open-

source shared industrial maintenance knowledge base that can be extended incrementally

and be used for various decision support applications, including maintenance diagnostics

and root-cause analysis. An online knowledge graph platform will be used to conduct

querying and inferencing over the graph to support smart maintenance diagnosis.

Keywords: knowledge graph, thesaurus, Natural Language Processing, ontology

1

I. INTRODUCTION

Maintenance is the process of ensuring that machines and equipment operate

continuously and efficiently with reduced breakdown or malfunctioning. In the absence

of a maintenance management system, companies usually follow the corrective

maintenance strategy, which means they use their machines and equipment until they fail,

then repair and restore them when they can no longer function. However, downtime is a

critical issue that has a direct impact on a company's profit. To reduce downtime and

extend the life of assets, preventive, corrective, predictive, and periodic maintenance

procedures are often implemented jointly. These procedures are often supported by

software systems that enable maintenance technicians to plan their activities and to record

details about the nature of failures, their probable causes, and the recommended treatment

for the observed failure. These data are stored in large databases of software systems like

Computerized Maintenance Management systems (CMMS) or ERP solutions.

This thesis focuses on the unstructured text-based raw data in Maintenance Work Order

(MWO) that are often stored in CMMS databases. MWOs contain significant details such

as problem statements, asset information and failures, the type of maintenance done,

along with their scheduling, and the treatment used to address the observed problem. The

valuable data stored in CMMS databases are often underutilized because they are in

natural language format, which has several deficiencies, including ambiguity,

incompleteness, and informality. The objective of this thesis is to convert maintenance

work order data into a more computationally available format and enable the reusability

of the knowledge embedded in maintenance logs. For this purpose, a framework

supported by Semantic Web standards will be proposed for converting raw text into a

2

graph-based model, allowing historical maintenance information hidden in the text to be

revealed, easily interpreted, organized, and reused. Our thesis focus is on industrial

maintenance data, but the proposed method is applicable to other domains, such as

healthcare and biomedical practices, where vast amounts of textual data need to be

processed. We have conducted this thesis research in collaboration with the National

Institute of Standards and Technology (NIST). NIST researchers have provided us with

the necessary raw data and valuable information on the real-time picture of how the

industries use maintenance findings from their stored database. We will briefly illustrate

our vision of developing an industrial maintenance ontology enabling data-driven

discoveries to enhance smart maintenance.

Problem Statement

Even though maintenance databases CMMS have gotten more structured and

mature over time among researchers and companies, they still contain a significant

amount of unstructured data that is difficult to identify and use. Not only is the

maintenance data diverse across multiple industries, but operations also documented by

maintenance technicians often presume that the data does not need to be explicitly

represented. As a result, the MWO is often full of technical jargon and overloaded

meaning. Besides, the domain knowledge to manage and reuse the heterogeneous

maintenance data is a complex process and different for individual companies. Big to

mid-size companies oftentimes are reluctant to share their database. Nevertheless, it is

still possible in many domains to formalize the maintenance knowledge and share it

among the general public. Another big problem is achieving a total collaboration

throughout the data, semantic and application layers to retain the desired output

3

knowledge graph and ontology since the progression from raw data to ontology is tedious

and often cumbersome, resulting quickly in a productivity bottleneck. Hence, the main

objective of this thesis is to introduce a hybrid methodology for generating machine

actionable knowledge from unstructured raw data and constructing an open-source

knowledge graph as well as maintenance ontology.

Assumptions, Limitations, and Delimitations

Assumptions

• Our developed framework for semantic annotation will keep humans in the loop

for the 1st level tagging and construction of the three levels of data layers (data,

semantic, application) which includes thesaurus development for the

manufacturing company-specific data. From the literature review, we have seen

that maintenance operations are not always explainable, and human intuitions

play a big role in formalizing knowledge.

• It is difficult for standard NLP methods to parse through the engineering work

order jargon, and so we have to rely on the NLP tool for the 2nd level tagging of

single and multi-phrase words

• We have no control over how the data is entered in CMMS and collected. We

work with the raw data without changing its structure or giving instructions to

operators as to how to enter data.

• The framework will reuse some of the existing semantic models (thesaurus and

ontology) that have been developed previously.

Limitations

• We are limited by the availability of datasets provided by a few companies.

4

• We do not have access to maintenance technicians from the companies that have

provided us with data. We need to interpret the meaning of terms and phrases

ourselves based on our previous knowledge of maintenance.

• Every company produces valuable data, and often there are existing tools the

management uses to extract the data. Nevertheless, the question is whether all the

information available has been documented in the most beneficial way and

whether this data has been used for fact-based maintenance management. It is

similar to our circumstances since we are working with heterogeneous data across

the industries collected by the maintenance technician, who often presumes it as

part of a priori knowledge. But it is still possible to categorize the raw data to

improve the reusability and findability of the knowledge embedded in MWO.

• Sometimes the problem statements do not have enough information regarding the

failure or the reason and location of the failure. In those cases, human intervention

is needed to decide on the implicit meaning of the text or just ignore them.

• Since our research topic is comparatively novel, it required suitable tools to be

developed. As we find new words in the raw data that are not bucketed under the

concept, we make the corresponding updates in the thesaurus to accommodate the

new terms.

Delimitations

• We are only using input data that is generated by CMMS in CSV format. We are

not using other maintenance documents such as standards, procedures, and reports

in this work.

• We are only mapping the failures and associated relations with the items, not the

5

solutions. Solution could be the future addition to this research work.

• Currently, we are only using free software to analyze our data, such as Protégé

and Nestor. Besides, we have also developed our own java-based tools to utilize

the SKOS and ontology output as well as run the SPARQL query.

Research Questions

• What main concept categories and sub-categories can be used for classifying the

key terms that appear in MWO data?

• Does using tools with NLP support (such as Nestor) improve the efficiency of the

tagging process?

• How to categorize the Nestor-tagged problems under the correct category/bucket

in the manual thesaurus?

• How effective will our final model show the semantic relationship among various

entities?

• What should be the top-level concepts of the MD thesaurus?

• How would we express the queries to satisfy our competency questions, such as:

What is the cause of this maintenance problem, where is the location of the

problem, what are the WOs related to this problem (s), and so on?

• How to use rules to expand the knowledge graph automatically?

Research Methods

This study focuses on converting the raw maintenance log into a formal

knowledge graph that encodes semantic relationships among multiple maintenance

entities. Figure 1 is an example of the manufacturing company’s raw maintenance data

we will be using to generate the knowledge graph.

6

Figure 1. Few Examples of the Raw Maintenance Work Orders.

The methodology that will be used in this research leverages the existing

Semantic Web standards for knowledge and data representation, including OWL, SKOS,

and RDF. As mentioned in the introduction section, our thesis starts with collecting the

raw maintenance data stored in CMMS and building a maintenance thesaurus or SKOS

model. SKOS is a standard, published and recommended by World Wide Web

Consortium (W3C), that provides a more organized framework for building controlled

vocabularies such as thesauri, concept schemes, and taxonomies to be used and

understood by both human and machine agents. Besides, SKOS is in a stable,

standardized state; therefore, it can be incrementally and modularly extended by linking

its concepts to external concepts from other graphs if needed in the future. This SKOS

thesaurus will provide us with a formal vocabulary of maintenance terms and will be used

for the vectorization of maintenance work orders. A commercial tool called PoolParty

Taxonomy & Thesaurus Management System (https://www.poolparty.biz/) has been used

in accordance with the human-in-the-loop approach for creating and extending the

https://www.poolparty.biz/

7

thesaurus. PoolParty offers a secure server backend, analyzes the material, and semi-

automatically expands the taxonomies.

Humans have identified the essential terms in the maintenance work order text

and categorized them under appropriate broader concepts such as functional failure,

defect, and treatment actions shown in Figure 2. However, they have used NLP to

perform structured data extraction through the process called tagging.

Figure 2. Thesaurus and NLP for Hybridized Data Classification.

The next step was to create a knowledge graph which will also be used directly

for root cause analysis since it captures the relationship among different maintenance

artifacts. Hence, we first needed to build an axiomatic ontology based on OWL (Web

Ontology Language). OWL would enhance the expressivity of the SKOS model since,

without any internal relationships among the concepts of the thesaurus, it is just a

dictionary for maintenance terms. The concepts of the SKOS model have been mapped in

Protégé based OWL file in top-down and bottom-up approaches and Figure 3 is an

8

example representation of OWL ontology. In the top-down approach, top-level core

classes have been defined, guided by the International Ontology Foundry (IOF). A

bottom-up approach has been used to determine maintenance annotation in the thesaurus

aligned with ontological classes (Ameri & Yoder, 2019).

Figure 3. Owl Ontology Classes and Object Properties in Protégé.

Both the output of this OWL file and the SKOS thesaurus has been used as input

to the java based tool to build triples for the work orders. OWL contains details of the

appropriate linking properties along with the ontology classes to develop the triples, and

the output of this java based tool is our desired knowledge graph. The graphs could be

viewed in the web-based RDF (Resource Development Framework) Grapher to analyze

potential failure root causes in the maintenance work order. An example of raw data is:

“Damaged air bracket cleaner, key switch not working,” and Figure 4 illustrate how

informative a knowledge graph looks compared to that single line raw data. It elaborates

on information like air bracket cleaner, and switch are types of components, key switch is

not working due to damaged air bracket cleaner. We can also understand the relationship

9

between each individual, and when analyzing larger datasets, these internal relationships

result in extensive root cause analysis. Maybe this same damaged air bracket cleaner is

the cause of problem in other operations. Rather than repeatedly going through the raw

maintenance work order, we would build this knowledge graph to explore the entire

history.

Figure 4. Visualization of Single Raw MWO.

We have used secondary data provided by NIST, which they collected from

different manufacturing industries. Our data sets are descriptive since they consist of

unplanned failures rather than any external manipulation. We could state that the failure

data is collected by maintenance technicians’ observation without any external

intervention. We have used different tools to conduct our quantitative methodology, such

as Nestor to apply NLP in thesaurus development, SKOS tool for thesaurus generation,

Protégé for OWL ontology, and other Java-based tools to generate RDF triples and to

conduct SPARQL query. Nestor uses NLP in the background to identify the repetitive

terms, removing the unnecessary gaps and punctuation to perform structured data

extraction from the raw MWOs with minimal annotation time-cost. SKOS tool is used for

creating the top-level categories of terms and further populating the lower-level

categories by the terms extracted from the raw data. Those top and lower-level categories

10

have been mapped in the Protégé tool. A java based tool has been developed to use the

SKOS and Protégé tool output as input in the RDF and OWL format. Afterward, an

online enterprise knowledge graph platform was utilized to conduct queries for finding

necessary relationships in the database.

All of our methodology approaches are standardized, and it is possible to create a

smart maintenance tool with the thesaurus-guided maintenance database development.

Building the thesaurus is not hardcore data sorting, and hundreds of SKOS vocabularies

exist on the web. Therefore, we believe that our proposed model can be linked and

integrated with other vocabularies to enhance the semantic coverage of the knowledge

graph. However, one shortcoming of the proposed methodology is since the thesaurus

will be partially developed by humans, it will be time-consuming. They will also mitigate

the effect as they can judge the quality of the data by decision-making and their past

experience better than the NLP when data extraction is the preliminary task. Another

shortcoming of the proposed approach is that the SKOS ignores the type of relations

between two concepts and treats all relationships as the same. This caveat can be

countered by superimposing more expressive ontologies on top of the lightweight

thesaurus to enable more advanced reasoning.

Research Plan

The following specific tasks are planned to meet the objectives of the proposed

project, followed by Table 1, which shows the timetable of our tasks.

Task 1: Creating and Extending Maintenance Thesaurus

The first step in developing the knowledge graph was to create a corpus of

technical documents related to the maintenance domain, including MWOs, to be used as

11

the training dataset. Using techniques such as text mining and NLP, the relevant terms

can be extracted and integrated with the taxonomy of SKOS concepts. The next step was

creating the top-level categories of terms and further populating the lower-level

categories with the terms extracted from the corpus. The thesaurus has three main

concept schemes (collections), namely, Artifact, Maintenance Problem, and Maintenance

Treatment. An alternate concept label could be created depending on different

companies.

Task 2: Creating and Extending a Formal Ontology

An OWL ontology has been developed for the representation of the domain of

industrial maintenance. The scope of the ontology will be determined based on the

available datasets and motivating use cases. The final step was the creation of an OWL

file in Protégé, and a modular approach will be followed for ontology development.

Task 3: Knowledge Generation and Expansion

 The java tool is used to tag work orders one by one of a certain manufacturing

company and develop the triples relationship. Later, all the relations were added to a

master turtle file, and the RDF graph web service was used to visualize the knowledge

graph.

Task 4: Validation of the Developed Semantic Models

This task entails applying the semantic models that have been built to

support search, retrieval, and decision-making. The first step (4-1) is to define a set of

KPIs using precision and recall performance metrics, and then the necessary computer

programs will be developed to extract the values of KPIs from the raw data. Maintenance

KPIs provide information about common problems, such as considering a problem where

12

we want to know the undesirable behavior of assets caused by defective artifacts. Now,

our query returns ten records, and after comparing them with the text inputs, we found

out that only six undesirable behavior is related to asset caused by defective artifact. So,

the KPI for this problem will be what percentage of undesirable behavior of asset caused

by defective artifact is truly positive. Similar to this, other KPIs could be what percentage

of failure events identified by the query are actually the failure events modeled correctly

in the knowledge graph, what percentage of the hydraulic leak from O-ring is actually the

hydraulic leak from O-ring in the knowledge graph, and so on. Maintenance operations

management decisions can be taken depending on these KPIs with certainty rather than

time consuming in determining the solution. The second step (4-2) was to determine if

the semantic knowledge models capture the semantic relationship between concepts. This

was done by running necessary queries formulated in SPARQL and analyzing if the

output data was showing the root causes. This is similar to putting semantic models to

work and applying them to the maintenance diagnostics process.

Table 1. The Timetable of Tasks to Accomplish the Goal

Tasks Year 1 Year 2

M

3

M

4

M

5

M

6

M

7

M

8

M

9

M

10

M

11

M

12

M

1

M

2

M

3

M

4

M

5

M

6

M

7

M

8

1

2

3

4-1

4-2

Spring 21 Summer 21 Fall 21 Spring 22 Summer 22

13

II. LITERATURE REVIEW AND SEMANTIC DEFINITIONS

According to Mohan (2015), The failure of the state-of-the-art NLP systems to

generalize correctly suggests that they are unable to learn meaningfully from their

training data. Text encountered in technical applications, like industrial processes, differs

greatly from normal benchmarks in certain aspects, such as lexical, grammatical, and

terminological variances, causing deployed NLP systems to perform poorly. Especially,

maintenance text is frequently written in a style that resembles shorthand notation, with

several stop words and no punctuations (Sexton et al., 2017). In addition, the reasoning

behind the NLP analysis results is easily buried by incomprehensible computational black

boxes obstructing human understanding. Dima et al. (2021) acknowledged the problem

by suggesting an approach to Technical Language Processing (TLP) for the dataset

explicitly containing industrial engineering case raw texts and mentioned ‘Nestor’ and

‘Redcoat’ as the ideal NLP-based TLP toolkits. Surprisingly, 'Nestor' was also employed

in our research to extract structured data from the raw industrial maintenance data. So, it

is easily derived from the approach these authors were trying to make, and we have

implemented that in our paper. The authors then talked about the domain adaption among

different sources which share similar syntactic structures and parts of speech (POS).

Besides, the affordability of NLP due to its high computational cost and the concurrent

TLP techniques such as the Convolutional neural networks (CNN), Support vector

machine (SVM) to achieve similar NLP performance were addressed to make the

engineering domain analysis simpler.

Gharehchopogh & Khalifelu (2011) elaborately compared Text Mining and NLP

for identifying useful information from the raw text for all businesses. They did not use

14

any specific methodology to conduct their research but instead illustrated how to utilize

both techniques depending on structured and unstructured data. They differentiated the

ideas of data, text, and web mining and concluded that the model that uses both Text and

Web Mining to retrieve structured data sets from the unstructured data is more successful

than the obtained structured data. They also focused on the fact that Text Mining is used

to find useful patterns in texts. In contrast, NLP deals with the underlying

information/metadata and supplies text classification, categorization, document

clustering, information extraction, summarization, etc. 1st step of the research tasks is

clarified in this article: how Text Mining uses NLP to create the final Text Analytics

model.

Ameri & Yoder (2019) discussed a similar methodology as Gharehchopogh &

Khalifelu (2011) of using text analytics techniques to extract data from CMMS.

However, they introduced a hybrid methodology by combining the human-assisted

thesaurus development method to generate the formal knowledge graph. This knowledge

graph uses the Simple Knowledge Organization System (SKOS) to show the semantic

relationship between various entities in the maintenance domain. A Java-based tool is

developed that uses the generated SKOS thesaurus as Resource Description Framework

(RDF) format input, which results in a maintenance diagnosis output map. The

researchers also mentioned that SKOS is widely accepted in companies, so the proposed

MD thesaurus can be integrated with other vocabularies to enhance the semantic

coverage of the knowledge graph. Our research plan is to implement this methodology in

the manufacturing database we are working with and map the SKOS concept in the OWL

ontology. The creation of an OWL file will allow us to overcome the limitation of

15

treating all relationships the same between two concepts the researchers' team mentioned

in their work.

Gunay et al. (2018) also demonstrated text mining using two HVAC datasets to

determine failure patterns, but their way of conducting the experiments differed from the

previous two authors. They segregated the mining process into three steps: preprocessing

datasets, clustering important terms (Ward’s method), and identifying coexistence

tendencies among the clustered terms. Their noticeable finding for dataset one was that

HVAC maintenance has a much stronger relationship with the building type (research,

admin buildings) rather than with building vintage (old or new buildings). R

programming software was used to fix the punctuation (eliminating gaps, and capital to

small letters). Figure 2 shows the conversion of the datasets into a mathematical form

known as a document-term matrix. A Term frequency-inverse document frequency

(TFIDF) score was applied to estimate the relevance of terms within a data set. The main

difference between this research team and our methodology is that they used the

association rule-mining (ARM) method to discover the relationship among terms. Three

key concepts: support, confidence, and lift (Witten et al., 2016), were used to set aside

frequent terms of the datasets. The association rule-mining was then performed on

clusters that only contained a large number of interesting phrases. The authors developed

the top 15 association rules based on their confidence and support, and FMEA analysis as

well as box-whisker plots, were used to determine the failure modes.

Another research team, Brundage et al. (2021), very recently published an article

where they summarized the processing steps of NLP working with the technical language

for the clinical notes of an asset management system. There is no doubt that the raw

16

maintenance data is unstructured, and according to Ameri and Yoder (2019), human

experts' intervention is needed to validate the generated models. Brundage et al.

implemented this human-in-the-loop approach and named it Technical Language

Processing (TLP) to tailor NLP tools to engineering data. The researchers described all

the steps of the NLP process and provided a detailed description of how TLP Industrial

leaders, standards organizations, professional societies, and researchers should work

together in reality. It seemed from their work that TLP is comparatively a new

methodology to work with, and the research community has started developing

maintenance resources. Their research methodology directly intersects with our research

tasks of using the hybrid approach to validate the model, and we will be able to help this

research team accelerate the TLP development.

Sexton et al. (2017) also proposed a hybrid methodology in their research,

showing a comprehensive description of raw maintenance log datafication. Datafication

is a necessary step to transmit human contextual knowledge during the process of

structuring the data in such a way that it creates value. They combined AI techniques for

NLP, machine learning, and statistical processing augmented with human guidance to

develop their modeling concept. They mainly focused on hybridized data tagging, where

NLP is the way to optimize a human tagger’s time investment. They concluded that

tagging is the best way to address maintenance log data problems and introduced us to a

new term called Support-Vector Machine (SVM) to increase the data precision. We think

the gap between their and our research purposes is that we want to develop a formal

ontology, whereas they focused on datafication. Also, we found it difficult to understand

some of the technical methods they were trying to utilize in their industry case study

17

compared to the other papers we reviewed earlier.

Naïve Bayes (NB) and Support Vector Machine (SVMs) text classification

approach is used by the researcher team Arif-Uz-Zaman et al. (2017) to extract accurate

failure time data from two types of the dataset: work orders (WOs) and downtime data

(DD) for the Australian electricity and sugar processing companies. WO data are often

unreliable, refer to unplanned failure or defect due to machine breakdown, and DD

contains machine stoppage time. None of the datasets referred to the root cause of the

asset failure, and so the teams’ main objective was to link those datasets to determine the

reason behind machine downtime. The sequence of their data analysis was: labeling, text

cleaning, constructing a keyword dictionary, text feature extraction (a bag of words),

tokenization, and matrix build-up. SVM showed higher accuracy while they were

extracting data from WOs, and only the SVM classifier was applied to the DD to label

each as failure or nonfailure. Their resultant graph showed that both the DD and WO

events appear to overestimate the failure rate, and the number of cumulative failures is

equal to or less than the raw number of DD events. The researcher explained the

classifying process in simple words, and we found many similarities, such as the use of

SVM in our ongoing research.

Hodkiewicz et al. (2021) introduced us to a comparatively more recent term

called prognostic health (PHM) technologies which can be implanted to detect potential

failure. In order to make intelligent maintenance decisions about maintenance, it is

necessary that PHM fits an organization and has enough past resources and pieces of

information available. They focused on Structured Work and Corrective work since they

account for approximately 80% of the maintenance work. Besides, a good explanation

18

has been found on whether to use preventive, predictive, or condition-based maintenance.

They used two case studies to elaborate on measuring the effectiveness of a PHM

initiative depending on different maintenance strategy output for three types of pump.

They concluded that every corrective maintenance work order should have a detection

code but concentrated on rethinking management matrices. We learned from this article

that how PHM could be a game-changer in the future, and clearly, they agree with our

research perspective that current maintenance matrices are not ready for fully machine-

actionable knowledge as well as industry 4.0 world.

There are a few pools of other authors who worked with knowledge graphs and

ontology together. Hossayni et al. (2020) are one of them who successfully developed a

SemKoRe knowledge graph that gathers all failure data and shares it among connected

users. The SemKoRe maintenance process includes diagnostics to determine the reasons

for a failure and its impact and to apply the correct repair, which improves machine

maintenance for failure occurrences. They mentioned two important drawbacks of

traditional systems such as CMMS, and ERP, which included problems with sharing the

maintenance data at two different locations and the lack of semantics in users, which

worked as their research motivation. They developed a flat ontology using two types of

machine parts, and when a failure occurs, the machines create instances of Failure

Occurrence Class containing all the information about the failure, and hence, a

knowledge graph is developed. The main difference between ours and this researcher's

teams’ work is that they are considering a different type of knowledge graph rather than

SKOS, and they also categorized the deployment option (local, cloud-based, and hybrid)

to protect business data. Besides, they started with a simple ontology model with only

19

two machines, whereas we are developing a detailed ontology base knowledge graph

depending on real company data with a large number of machine parts.

Ringsquandl et al. (2017) created a RDF knowledge graph for Siemens smart

factories by tailoring Ontology-Based Data Access (OBDA) for a smooth maintenance

operation. They provided a graphical representation of how the digital twin works as an

interface to the physical system allowing optimization and self-organization without

interacting with the part. The major difference between our research is that they want to

improve the performance of the system by identifying the missing information between

the instances of the class. In contrast, we are developing the ontology-based knowledge

graph primarily to determine failure. Their knowledge graph representation is also a bit

different from ours since their knowledge graph talks about master, operational, and

transactional data and enhances the vector space of log files generated by manufacturing

equipment. After the OBDA was developed, a machine learning approach was used to

identify the missing entity in the RDF triples (entity, predicate, entity). They mentioned

that this missing data often is a result of new or replacement machines.

Categorizing the maintenance failure with the CMMS drop down menu is

a common process many companies do to mimic human interpretation to analyze

maintenance logs. However, collecting data is unique to AI, and one of the possible

approaches to get a similar human conducted output is to hybridize the data collecting

and sorting process. Sexton et al. (2017) conducted a study on manufacturing logs to

determine how NLP as a part of AI can be used effectively to extract useful information

as human participation can obtain. Their approach was to solve the problem through

hybridization, datafication of the logs, and statistically analyzing the data trend. The

20

authors did not have any controlled vocabulary like us, rather, they only used NLP for

tagging to assign characteristics to the data instances simply. For our, we did two step

tagging, starting with NLP and then building a controlled vocabulary since our goal is to

show the triples by graphical representation. To measure the quality of the automated

tagging, texts with no unknown tags were considered fully datafied. But for texts with no

known tags, a linear-kernel support-vector machine (SVM) was used to pick up the tag

patterns. They also talked about diagnostics depending on the occurrence rate for certain

tag combinations and future work needed for taxonomy development, which means what

we are doing in our research.

Without agricultural improvement, humankind cannot exist, and sadly, no good

designed knowledge graph is available for the cultivation sector. To fulfill this need, Qiao

et al. (2017) designed a knowledge graph consisting of schema and data layers from the

agricultural thesaurus. The graphs are shown using the Echart tool. The schema and data

layers combine to generate a huge graph known as a knowledge graph. They started with

the schema level, which allows them to readily distinguish between concepts (classes)

and entities (individuals). They defined relationships between individuals and classes in

the data layer. The knowledge graph is then stored as RDF triples (entity, relation, entity)

in the graph database by using Jena. The biggest similarity between their and our work is

that the paper developed their agricultural knowledge graph as we did for our

maintenance knowledge graph, and it is the foundation for the semantic-based knowledge

graph. However, their focus was on building a knowledge graph to show the relationship

among the entities and concepts (e.g., hybrid rice and paddy rice). Whereas we modeled

the manufacturing problem statement collected by the operators to identify the root cause

21

of the failure.

McKenzie et al. (2010) used The Natural Language Toolkit (NLTK) to detect

faults from the Condition-based maintenance (CBM) database containing 100,000

individual vibration data and historical maintenance records from Army helicopters. This

research team realized long before Dima et al. (2021) that the existing systems need to be

tailored to classify the unique dataset for future research. They used the inspection

description, which accumulates forty percent of the entire record as their input data,

which is quite similar to using problem statement description in our research. However,

they conducted a partial parsing approach, also known as Chunking, to only detect the

necessary information like inspection info, date, and time. In contrast, we did full text

analysis so that no failure was left out. Also, the NLTK toolkit is open source, and the

python programming language is well written, ensuring easy manipulation depends on

specific needs rather than domain restrictions. On the contrary, we have used domain-

specific text mining to fulfill our goal of making a manufacturing maintenance ontology.

Furthermore, their Part-of-Speech (POS) tagging had a default tag NM for all the

untagged word in their trained tagger system, which was the researchers’ source of error

when our tagging strongly required human intervention to achieve utmost precision.

Regardless of how they did the initial data processing, they formed triples to show the

relationship among the three extracted parts (inspection info, date, and time) after

chunking. The researchers also analyzed the performance of the POS tagging and

chunking using standard matrices, which we would do during our validation process.

Vibration data, engine oil debris measurements, and other indications are used in

Condition-Based Maintenance (CBM) to determine maintenance schedules and

22

procedures. Hence, Bokinsky et al. (2013) concentrated on modifying the components of

the Natural Language Processing tool for detecting CBM-related status. They used the

same NLTK toolkit as McKenzie et al. (2010), and their work was kind of an extension to

the helicopter maintenance data but for another V-22 Osprey project management

database. Unlike us, their records are stored in Maintenance Action Form (MAF) records

and the NLTK has been used to extract necessary information. The pre-processing of data

is pretty much the same, including tokenizing, sterilizing, and POS tagging using the N-

gram algorithm. The researchers used four taggers for extra precision, and if the first

tagger could tag the words, it would stop there; otherwise, the word would be

automatically sent to the next tagger. Chunking has been used to represent the noun, verb,

and reference format meaningfully. Lastly, a file of hand-tagged and hand-chunked data

was created for evaluation purposes; the tagger had 96.59% accuracy.

Gao et el. (2020) proposed a text processing pipeline using technical language processing

for unstructured data during the need for corrective maintenance work. This ensures

knowledge about the failures as well as differentiates between the need for replacement

and repair. Although they preprocessed the data like McKenzie et al. (2010), they

proposed Named Entity Recognition and classification (NERC) to identify the action-

state-item from the unstructured data. N-gram named dictionary generation for the

maintenance state was the following stage, partially similar to our maintenance thesaurus.

The steps of the pipeline were illustrated well with detailed picturization and description,

and validation of the pipeline was done afterward using part-of-speech (POS) tagging as

a baseline which is also similar to the helicopter database validation. The POS tagging is

described elaborately, which will guide us during our model validation.

23

The extent of maintenance data and how it is collected differ per industry. Many

failed attempts to structure data by enforcing controlled vocabulary and problem code

assignments for MWOs have been made in the past. To determine Median Time against

Fail/MTTF, Sexton et al. (2018) contrasted a data-driven tagging method to a rules-based

expert system (represented by Kaplan-Meier estimation and Weibull distribution models),

which has indeed guided us to select the appropriate methodology for our own

maintenance data extraction. In rule-based data processing, thorough human intervention

is needed to transform the unstructured WOs into a predetermined format using explicit

rule sets comprised of conditions between one to three logic statements. In comparison,

NLP is employed to construct a machine learning pipeline to further capture the correct

words in the WOs in data-driven tags. However, only using the NLP can fail to identify

the important terms necessary to build the semantic relationship. As a result, they

enforced future work requiring NLP automated data extraction with human-in-loop,

which is the basis of our model development.

Similar to the manufacturing industry, the volume of biomedical literature is

increasing, and Spasic et al. (2005) proposed a text mining pipeline to further create a

conceptual biomedical ontology framework. The researchers provided a very clear

elaboration on terminology, which is the link between the text and ontology, as well as

the problems while linking them, such as term ambiguity (Promoter means binding site in

a DNA chain, but in chemistry, it increases catalyst’s activity) and variation (Advil,

Brufen, Nurofen all refer to ibuprofen). Their proposed text mining methodology is very

similar to the previous researchers, consisting of tokenization, part-of-speech tagging,

stemming, and lemmatization. In our thesaurus, we implemented lemmatization by

24

putting the word to its base form (e.g., broken is an alternate for the break, and leaking

and leaked are alternates for the leak). Likewise, McKenzie et al. (2010) and our

thesaurus, named entity recognition (NER), have been proposed to extract and store the

complex biomedical information to link with the ontology. Besides, a comparison

between passive ontology and ontology driven information extraction (IE) was discussed.

The authors preferred ontology driven IE due to the fact that passive ontology has a

tendency to link between text terms and concepts of ontology without any explicit

relation. On the other hand, ontology driven IE analyzes the constraints carefully, which

we have also implemented on top of the thesaurus for semantic representation.

The asset intensive industries deal with a lot of maintenance data as a part of the

operating cost and sudden failure can cause monetary and organizational data safety

consequences. R than using external industry data for failure analysis, it is possible to

analyze and cleanse the large internal company CMMS data in a timely manner by using

rule based approach with a conflict resolution step. When two rules link differing text to

the same field, conflicts are identified and appropriately noted, and the conflicts are

resolved by modifying as needed. Hodkiewicz and Wei Ho (2016) analyzed rule based

reliability of five mining sector data which requires lifetime data distribution to

distinguish between different failures and corrective/preventive measures. Different WO

issues, such as: not recording the utilization data of assets, inaccurate cost data for

replacement/missing parts, alignment of subunits (turbochargers are commonly replaced

when the engine is replaced), and WO duplication, were identified in the source data. The

researchers developed a rule based syntactic data cleansing tool DEST, with an if

condition platform, which relied on occurrences of words, whereas we did a semantic

25

analysis to link concepts. Although semantic analysis is unscalable, developing 407 rules

for only a single case study, such as the researchers did, is very time consuming and

lengthy. Besides, the cleansing tool is more like our thesaurus where text is only

classified but we have implemented OWL ontology to give semantic meaning to the

texts.

To this date, there are currently no industry-wide guidelines for recording and

evaluating unstructured data sources within an industrial site. Navinchandran et al. (2020)

utilized NLP analytics to extract concepts from Maintenance WO and measure their

effect on key factors (cost, time) to determine good or bad behaviors to achieve an

optimized maintenance strategy rather than further development of a failure detection

model. In simple words, if a MWO talks about the dollar amount spent on assets, parts, or

any maintenance related cost, the decision maker could further break down the analysis to

determine which assets have the strongest relation with cost. To do that, text

preprocessing is needed to rectify any numeric entries, such as for time length; the lower

bound should be a minimum of 5 minutes. Like us, the researchers have used Nestor to

categorize the single and multi phrase words that carry important information regarding

solutions, items, and so on. These text inputs, as well as the KPI inputs, could be used as

an input of explanatory models, such as Continuous regression models, probabilistic

models, and classifiers, to measure the effect on the output. The researchers later

developed a decision tree and corresponding Gini importance to put weight on various

assets linked with the KPI. Although we have used a similar tool Nestor, for initial

processing, our goal is to build a smart maintenance tool, whereas the research team

wanted to investigate the MWO relation with the performance indicator.

26

Extracting critical information has been a long vision of the owners of expensive

manufacturing equipment to reduce downtime and determine an optimal maintenance

schedule. Devaney and Ram (2005) made an interdisciplinary approach consisting of an

advanced text analytics algorithm, artificial intelligence (AI), and OWL framework to

address this issue. More specifically, their objective was to identify the component

categories (e.g., Clamps), identify problem categories (e.g., hydraulic oil leak), and

finally learn the distribution of the problem (e.g., hydraulic oil leak accounts for 20% of

clamp problems). To satisfy the goals, the authors have used OWL to classify the input

data under categories, and the categorized output is used to create a case library. The

patterns in this output could predict future failure and diagnosis. The authors further

proposed bootstrapping clustering algorithm to give natural categories for business

process analysis. All of these steps ensure the proper utilization of the Case-based

Reasoning Engine (CBR) as a next step which will provide recommendations for each

hypothesis generated in the engine, which would aid the experts in making the right

decision. Although this research team has taken similar steps to us, our goal is to analyze

graphically presented triples relationship related to failure from a vast dataset. Whereas

this paper focuses on combining three different models to have a solution to the detected

failure.

Our learning from this whole literature review is that the industries are not ready

yet for fully automated maintenance since the raw data collection comes from both

humans and machines. We need to create a semantic system that will show the

relationship between the components and grow over time. By growing, we meant that we

would have humans in the loop to feed the AI system continuously, and the AI would

27

eventually generate the cause and solution of the failure. As a result, our research will

start with thesaurus development to give us a controlled vocabulary and, eventually, a

knowledge graph. An OWL ontology will be developed to represent the industry domains

depending on the knowledge graph output.

Linguistic and Grammatical Maintenance Text Analysis

 As mentioned earlier in Chapter 1, NIST provided us with a few companies’

manufacturing raw maintenance data. For the sake of confidentiality, we will be using the

name Test Maintenance Company instead of the actual company name for our whole

research methodology. The general rule is that whenever a breakdown happens with any

machine or its parts in any manufacturing company, the maintenance technician would

list them out as problem statements along with their resolution. This thesis only focuses

on the problem statement to determine the root cause of the problems first, and then, the

solutions can be added as future work. In this section, we will conduct a structural

analysis of some work orders, showing why having a knowledge graph is better than just

the raw maintenance texts. Table 2 represents a few Test Maintenance Company work

orders which have been used for our knowledge graph development, along with the

questions we asked during our model development. We can clearly see the inconsistency

throughout the examples, such as operators having used both upper case and lower case.

Words like GEN, and HYD are incomplete, and the model developer had to assume that

GEN means generator and HYD means hydraulic. Besides, in any of these problem

statements, the specific machine or part name and number are missing. It is likely that the

company has multiple machines and parts, but it is impossible to determine which

specific machine or part is having the issue from any examples. For example, one could

28

ask which fuel float pump is bad, as there could be multiple. Also, what does it mean by

bad? Does it mean that there is a leak, or is it just not operating?

Table 2. Test Maintenance Company Example Problem Statements

Num Problem Statements Example questions could be

asked by the model

developer

1. GEN NOT WORKING, KEN W/ GENIE ADVISED TO

CHANGE RESISTOR AND REPLACE POT SWITCH

INSIDE BOX.

What is GEN?

2. fuel pump float is bad stuck doesn't work Fuel

sending unit is bad

Fuel pump float of what

machine? What does it mean

by bad?

3. code 23/no functions, faulty lower module What is code 23/? Is it

different than no functions?

What is the location of a

faulty lower module?

4. Unit does not move or work, tech found the gcon shorted out What are Unit and gcon?

5. Charger Defect Defected charger caused

what issue? The charger of

which machine or

component?

6. control box issue upper control

box board is faulty

Control box of what

machine?

7. Diagnos with genie for 154 egr code /clean connections at

sensors /test and clear codes /

What is genie and what is the

problem here?

8. OIL LEAK. Oil is leaking from where?

9. Breakage Which part or machine is

broken?

10. HYD LEAK FOUND
BLOWN ORING AT CENTER POST ROTATOR

What is a HYD leak?

Technical jargon like code 23, 154 egr code, gcon has been avoided during the

thesaurus development since they do not add any value, and only the maintenance people

understand the best meaning of these. In addition, some of the problem statements, such

as problems 5,8, and 9, are incomplete, and there is no further information regarding the

29

problem. We are assuming there could be multiple machines that need a charger, and the

machine number is missing. Only breakage and oil leak do not tell anything about the

trouble making machine. There are unnecessary spaces between the words, and

sometimes missing punctuation makes it challenging to understand the meaning of the

sentence. In problem statement 4, one can see the word unit, and it took us quite

sometime to understand that by unit, the operators mean a machine, but not a group of

people or other entities the term ‘unit’ refers to.

 It is difficult for domain experts trying to find the root cause of the maintenance

problems only by going through the raw data in CMMS. Besides, it becomes time-

consuming, and sometimes the primary source of the breakdown could not be found due

to the technical jargon, missing/incomplete sentences, let alone understanding the

relationship among the individual machines and parts and their associated failures.

Hence, our proposed knowledge graph will come in handy as we will only identify the

keywords in the maintenance work order and cluster them under classes in our

maintenance thesaurus. We have eliminated all the unnecessary stop words and spaces

and gradually built semantic relationships among them, and the representation is the

knowledge graph. The knowledge graph will unwrap how one maintenance failure is

causing another failure as well as the nature of the root cause. Figure 5 clearly illustrates

how a knowledge graph identifies the root of the problem rather than the tip. The

maintenance work order describes both the observation and diagnosis. In the upper side

of the figure, the present and past observations can be seen. These observations are of

different types, and without any diagnosis on the historical data available, it is hard to

understand what has actually happened and how those events are causing more

30

breakdowns. Such as, in the lower side of the example figure, defective artifacts and

artifact malfunctioning are observed. However, the deeper diagnosis is that other defects

cause the malfunctioning of an artifact. Hence, we want to know the root of the problem

rather than the tip, and in this process, we create a knowledge graph that shows the

internal relations among individuals that are not understandable only by reading the raw

text.

Figure 5. What is Observed vs. What is Diagnosed.

Semantic Technology Definitions

 The World Wide Web Consortium (W3C) is an international organization that

creates open standards to ensure the Web's long-term growth. The Semantic Web, often

known as Web 3.0, is an extension of the World Wide Web based on World Wide Web

Consortium specifications (W3C). The Semantic Web's purpose is to create a common

foundation for data sharing and reuse across applications and make Internet data

31

machine-readable (Semantic Web - W3C, n.d.). We will use SKOS, RDF, RDFS, and

OWL standards to implement our methodology. These standards allow data from various

sources to be linked and integrated, which is required by the tools and software we will

be using. So, we will introduce the basics of these four W3C technology standards by

briefly describing each standard in the next sections.

Simple Knowledge Organization System (SKOS)

 People have been using Knowledge organization systems to organize large

collections of objects such as books or museum artifacts. Knowledge organization

systems (KOS), and more specifically, controlled, structured vocabularies, are integral

parts of data classification systems (SKOS Simple Knowledge Organization System -

Home Page, n.d.). However, these controlled vocabularies need to be structured in a way

that both humans and machines can understand the meaning. Linked open data and linked

open vocabularies are Semantic Web technologies that allow for the publication of

controlled vocabularies on the web in a way that both people and machines can

understand. Besides, a controlled vocabulary allows certain content or knowledge to be

organized so that it may be conveniently recalled at a later time. Here comes the Simple

Knowledge Organization System (SKOS), which provides a standard way to represent

the KOS or controlled vocabulary as machine-readable data. It is a data-sharing standard

that integrates several domains of knowledge, technology, and practice.

 The Simple Knowledge Organization System (SKOS) provides better organizing

of the vast amounts of unstructured (i.e., human-readable) information on the Web,

providing new routes to discovering and sharing that information (SKOS Simple

Knowledge Organization System Primer, n.d.). It was built on several pre-existing

32

Semantic Web formal logic and structure standards. One of them was Resource

Description Framework (RDF) which will be discussed as the later semantic technology.

RDF provides a common data abstraction and syntax for the web, and since SKOS is

based on RDF, its data is expressed as RDF triples. Within the Semantic Web framework,

SKOS is a data model for different KOS: thesauri, classification schemes, subject

heading systems, and taxonomies. Furthermore, SKOS is a data sharing standard and so

allows low-cost transferring of the existing KOS to RDF. Now we know a constructive

definition of the SKOS data model, but one might wonder at this stage what how does the

SKOS model look like, and Figure 6 will pour some light on that. Machines or

components that are leaking oil are considered to participate in Undesirable Behavior

since it is not expected from them. However, the difficulty is that the workorders consist

of many types of leaking problems such as leaking oil, leaking fluid, hyd leak, lube leak

and so on. Hence, in the SKOS model, Leaking is the broader concept for all types of

leaking (in this example figure: Leaking Oil), and Undesirable Behavior is the broader

concept of Leaking. The good thing is that SKOS provides scopes for creating an

alternate label, so leaking fluid, hyd leak, lube leak etc., could be listed as an alternate

label to Leaking Oil. Furthermore, users can also use related label just in case they want

to analyze related individuals. In this example, an Oil Spill is related to leaking oil, so a

related label has been shown. This explained example is for only one individual in the

SKOS model, and we have defined other necessary individuals to construct the SKOS

thesaurus model.

33

Figure 6. SKOS Model Example for Leaking.

Our ultimate goal is to build a knowledge graph based on the SKOS model that

can combine and connect heterogeneous data on a semantic level. Such as, we know the

broader/narrower concept of leaking, and the alternate/related labels of leaking, but what

if we want to know the entire history from where the leaking is coming, why the leaking

is happening, and what the leaking caused to other parts? These questions would be

answered by another model, which would be described eventually by OWL ontology

models. Since SKOS models lack the expressivity of heavyweight, axiomatic ontologies

like OWL models are considered lightweight ontologies. However, SKOS models can be

created reasonably quickly without the need to spend a lot of money creating complex,

logic-based ontologies for many applications that only need fundamental semantics in

terms of the structural and lexical links between different things.

Resource Description Framework (RDF)

 RDF, or Resource Description Framework, is a W3C standard model for data

interchange that is used for representing highly interconnected data (RDF - Semantic

Web Standards, n.d.). RDF is the foundation of the Semantic Web, and all data in the

Semantic Web is represented in RDF, including schema describing RDF data. While

34

there are many conventional tools for dealing with data and, more specifically, for

dealing with the relationships between data, RDF is the easiest, most powerful, and most

expressive standard. There have been various syntaxes to write it down. The original was

called RDF/XML; XML was used because it was standardized and flexible and also

because one of the original RDF use cases was to add arbitrary metadata to web pages—

the idea was that an additional block of XML would fit well into an HTML

file’s head element. As it turned out, using XML to represent arbitrary collections of

relationships could get verbose and messy. Now, most people use Turtle, which is much

simpler and a W3C standard. RDF has features that facilitate data merging even if the

underlying schemas differ, and it specifically supports the evolution of schemas over time

without requiring all the data consumers to be changed.

RDF Triples Structure

 RDF describes the data in a three-part structure statement, namely triples,

consisting of resources referred to as the subject, predicate, and object (“Learn RDF,”

n.d.). The subject is the entity identifier, the predicate is the attribute name, and the object

is the attribute value (What Is RDF?, 2021). The subject, predicate, and object are

actually represented using URIs (Uniform Resource Identifiers). Now, if we consider the

2nd workorder in Table 3 from our Test data, “THE UNIT NOT STARTING. FOUND A

DEAD BATTERY,” we can create two RDF triples statements from here. They are: Unit

has state not working and not working is caused by a dead battery. The URIs for the

subject, predicate, and object are:

 unit-> http://infoneer.txstate.edu/ontology/MWOO/WO2-Unit

 dead battery-> http://infoneer.txstate.edu/ontology/MWOO/WO2-DeadBattery

https://www.w3.org/TR/rdf-syntax-grammar/
http://infoneer.txstate.edu/ontology/MWOO/WO2-Unit
http://infoneer.txstate.edu/ontology/MWOO/WO2-DeadBattery

35

 not working-> http://infoneer.txstate.edu/ontology/MWOO/WO2-NotStarting

 caused by-> http://infoneer.txstate.edu/ontology/MWOO/causedBy

 has state-> http://infoneer.txstate.edu/ontology/MWOO/causedBy

Table 3. Test Data Example with RDF Triple Structure

Problem Statement

WO2

THE UNIT NOT STARTING. FOUND A DEAD BATTERY

Triple Statement

Structure

Subject

(Entity identifier)

Predicate

(Attribute name)

Object

(Attribute value)

Triple 1 unit has state not working

Triple 2 not working caused by dead battery

If we look at the URIs of unit, dead battery, and not working, they all belong to

the second work order or WO2, which allows an absolutely clear understanding of what

we are talking about. Besides, URIs are consistent across databases and enable us to

create linkages between subject and predicate. This way, the same resource can be the

object of some triples and the subject of others, which lets us connect triples into

networks of data called the RDF Graph, which will be talked about in the next

paragraph. If we carefully look at Table 3 above, we can see how the object in Triple 1

became a subject in triple 2.

RDF Graph

The RDF graph is a bunch of nodes connected to each other by edges where both

the nodes and edges have labels. Figure 7 visualizes the RDF graph of the above

mentioned example. In the top side of Figure 7, the resources are labeled, such as Unit is

a machine, not working is a defunct state and dead battery is a defective artifact.

These labels are the normal concept in the SKOS data model mapped as ontology classes

in the OWL ontology. To add more relations to the graph, we simply need to add more

http://infoneer.txstate.edu/ontology/MWOO/WO2-NotStarting
http://infoneer.txstate.edu/ontology/MWOO/causedBy
http://infoneer.txstate.edu/ontology/MWOO/causedBy

36

triples rather than making any structural change to the database. Now if the problem

statement was “ THE UNIT NOT WORKING AND LEAKING FLUID. FOUND A

DEAD BATTERY AND HYD TANK WAS LEAKING,” we can add additional two triples

on the knowledge graph, and they are the following: Unit participates in leaking fluid

(Triple 3) and Hyd tank participates in leaking (Triple 4). The below side of the Figure 7

is a representation of how the RDF network looks like with additional triples. This is how

the RDF model triples the power of any given data piece by giving it the means to enter

endless relationships with other data pieces and become the building block of greater,

more flexible, and richly interconnected data structures.

Figure 7. Test Data Example with RDF Graph.

RDFS, or RDF Schema, is W3C standard specialized language for describing

RDF vocabularies and data models. It is lightweight and very easy to get started with. In

fact, many of the most popular RDF vocabularies are written in basic RDFS. The goal of

RDFS is to allow data created in different semantic technology to be connected via RDFS

37

(“Learn OWL and RDFS,” n.d.). The use of RDF does not require any schemas.

However, the commercial and open-source tools that can understand the RDFS

vocabulary make it easier for applications to build user interfaces around RDF-based

applications, integrate data from disparate datasets, and more. Whereas RDF is a graph

database, RDFS is fundamentally about describing classes of objects. The rdfs:label

property provides a human-readable name for the resource being described. This is

especially helpful for reports and applications that use this data.

 Now we will look at couple of examples from our Test Maintenance Company

dataset where RDF is the object class, and RDFS is fundamentally about describing

object classes. It is visible in Figure 8 that the schema or the structure of our example is

in triple format, which we are utilizing for conducting the SPARQL query in the

validation stage (What Is RDFS?, 2021). A SPARQL query can be executed on any

database that contains RDF triples. The OWL ontology provides the semantics of the

RDF dataset. Using triples made up of subject, predicate, and object, SPARQL interprets

the data as a directed, labeled graph. Consequently, a SPARQL query is made up of a

number of triple patterns where the subject, predicate, and object are all variables. The

variables' answers are then retrieved by comparing the query's patterns to the dataset's

triples. Going back to our examples, rdf:type predicate means is an instance of the

following class. So, the first two lines in the 1st query at the upper side of Figure 8 are

being used to declare comp (subject) as a type of Component class (object) and def

(subject) as a type of Defect class. On the other hand, in the 2nd query at the lower side of

Figure 8, rdfs:label is used to refer to a specific instance not starting. Not Starting is a

type of State class, where State consists of several instances such as not moving, not

38

functioning, not working and, so on. The 1st query retrieves the components that are the

bearer of defects, and the 2nd query retrieves states caused by other class instances.

Figure 8. Use of RDF-type and RDF-label in SPARQL.

 OWL Ontology

 As described earlier under SKOS, the Test Maintenance Company thesaurus is a

dictionary of controlled maintenance vocabularies which are classified under several

concepts’ schemas. However, to create the knowledge graph, we need more than just

concepts; we need to link the concepts. Here comes the Ontology part, which describes

the concepts and the relationship between them in a domain. Ontology ensures a common

understanding of information and represents complex knowledge about the concepts

(OWL Web Ontology Language Overview, n.d.). Different ontology languages provide

different facilities. OWL, a standard ontology language from the World Wide Web

(W3C) Consortium, is the most recent advancement in this field. OWL is a computational

logic-based language such that knowledge expressed in OWL can be exploited by

39

applications instead of just presenting information to humans (“Owl 101,” n.d.). OWL

provides more vocabulary together with a formal semantical structure, enabling greater

machine readability of Web content than that supported by XML, RDF, and RDF Schema

(RDF-S). Formal ontologies offer a context or meaning that both humans and machines

precisely understand.

 Foundational concepts in ontologies that are domain independent and can be used

across domains can be reused, thanks to ontologies. We will be using Protégé to develop

our Owl Ontology, as OWL makes it possible for concepts to be defined as well as

described. Protege is an open-source tool that allows developers to create and manage

terminologies and ontologies. Protégé also permits the use of a reasoner that can identify

which concepts fall under which definitions and determine whether all of the statements

and definitions in the ontology are mutually consistent. Therefore, the reasoner can aid in

maintaining the hierarchy appropriately.

40

III. METHODOLOGY FRAMEWORK

In this chapter, we will describe how our methodology has been phased in and

tied up together with semantic technologies. We will briefly describe how each tool has

been developed, starting from the raw data collection to validation, which satisfies each

task introduced in Chapter 1 and eventually resulted in our proposed methodology.

Figure 9 outlines the steps needed to complete each task as well as the highlights of each

step are bulleted along with their formal model. Task 1 included building the thesaurus

from the raw data of Test Maintenance Company. The maintenance work order (MWO)

in excel format was the output of raw data collection and input of the thesaurus using the

SKOS tool. The 2nd task was to create the OWL ontology and map the concepts of

thesaurus in the ontology. Protégé tool was used to develop the OWL ontology, and it

contains the annotations for the subjects, predicates, and objects, which were obligatory

to develop the knowledge graphs in the next task. The OWL formatted output from

Protégé, as well as the SKOS formatted output from the SKOS tool, has been used to

generate the knowledge graphs in Task 3. The ultimate goal of generating these RDF

knowledge graphs (serialized in in turtle format) is to facilitate root cause analysis of

breakdowns and prospective failures. Finally, we used the RDF knowledge graphs (turtle

files) to conduct queries and developed logic to express additional meanings that could be

inferred from the dataset.

41

Figure 9. Methodology Framework from Start-to-End.

Task 1: Thesaurus Development

SKOS model has been used to develop the thesaurus-the first step in our

knowledge graph development. A tool called INFONEER SKOS Tool or SKOS Tool,

for short, has been developed for the generation and expansion of SKOS models (Ameri

et al., 2020). SKOS tool provides a floor for easy classification of data by providing

means for tokenizing and annotating documents using SKOS concepts, in our case, the

maintenance data. The SKOS Tool runs as a Django web application. Python is used by

the free and open-source web framework Django to implement the model-template-view

paradigm. Numerous additional libraries, including BeautifulSoup4, are included in a

virtual environment along with Django to support the tool's operations. Python was used

to create the application's back end, whereas HTML and JavaScript were used to create

the front end. At Texas State University, the most recent stable release of the web

42

application is installed on a development virtual machine running Red Hat Enterprise

Linux, making it accessible to a select group of users via Secure Shell (SSH). Below are

elaborately described the elements of our maintenance SKOS tool.

SKOS Elements

Concepts. The knowledge organization system is viewed as a Concept Scheme,

including a set of Concepts in the SKOS data model or SKOS tool. URIs identify these

SKOS concept schemes and SKOS concepts, allowing anybody to refer to them

unambiguously out of any context and making them part of the World Wide Web. URIs

are similar to URLs (Uniform Resource Locators), and often look like them, but they’re

not locators or addresses; they’re just identifiers. The concepts are the primary building

block of the SKOS data model, and the SKOS tool is required for initializing concept

organization in our maintenance thesaurus.

 This SKOS tool consists of certain classifications by grouping into concepts to

enable easy identification of the vocabulary. Concept grouping will allow the

maintenance terms of the retrieved Test Maintenance Company data problem statement

to fall under the right bucket of classification. Semantic relation properties of the SKOS

tool allow SKOS concepts to be related to one another and support hierarchical and

associative relationships among SKOS concepts. For our maintenance data, we have

different concept schemes, top concept and normal concept having hierarchical

relations among them, which we have seen in Figure 2 previously. A good example of the

top concept is Artifact along with a narrower classification into the normal concept.

Also, in multiple concept schemes, our current maintenance SKOS concepts can be

mapped to other SKOS concepts if necessary.

43

Labels. The labels are the descriptor of the concepts, and the concepts could be

labeled with lexical strings. The labels are of three types: preferred (skos:prefLabel),

alternate (skos:altLabel), and hidden label. When generating or developing human-

readable representations of a knowledge organization system, the preferred and

alternative labels are useful due to their ability to give authorized and unauthorized name

to a concept. The hidden labels are valuable when a user interacts with a knowledge

organization system via a text-based search function. We are only using preferred and

alternative labels while generating our maintenance SKOS data model. Each concept in

SKOS has exactly one preferred label (skos:prefLabel) and can have multiple alternative

labels (skos:altLabel). Hence, the community users can add more labels to the shared

open source data which results into thesauri enrichment and validation. Description can

also be provided for each SKOS concept in plain English to comprehend the meaning. A

good example from our maintenance SKOS model in Figure 10 is: hyd leak is an

alternate label for the preferred label hydraulic leak under Undesirable Behavior in the

Condition Concept Scheme. Depending on the need, one can add the scope note,

narrower concept, related label, and hidden label for the concepts.

44

Figure 10. Partial View of User Interface in the Test Maintenance Thesaurus.

Semantic relationships. Semantic relations in the SKOS data model are the links

between SKOS concepts. We generated this hierarchical semantic relationship referred to

as the broader concept (skos:broader) and narrower concept (skos:narrower) to link the

top concepts with the normal concepts. This is particularly useful while using the java

tool in the knowledge graph development phase, which can be seen in Figure 11 below.

The java tool not only shows the relation between the thesaurus concepts but also the

appropriate OWL ontology class for each concept. Functional Unit is the broader

concept for motor, and inversely, the motor is a narrower concept for Functional Unit.

45

Figure 11. Partial View of Java Tool Showing the Semantic Relationship in Thesaurus.

Mapping properties. The definition of Mapping Properties is similar to the

semantic relationship element. We use mapping to express the semantic relationships

between concepts in a different concept scheme. Such as for broader and narrower

concepts, the SKOS mapping properties are skos:broad match and skos:narrowMatch. To

express the inherent meaning for other semantic relationships, these are the following

mapping properties: skos:closeMatch, skos:exactMatch, and skos:relatedMatch.

Concept collection. Concepts could have the same label when a group of

concepts shares something in common. Such as, in our maintenance, thesaurus, air gun,

pump, ECM unit have a common label or top concept Functional Unit.

SKOS Tool Functions

The INFONEER SKOS Tool consists of different gadgets such as Thesaurus

Manager, Term Selector, Entity Extractor, Concept Model Builder, Concept Model

Manager, and Capability Scorer, which can be seen in Figure 12. Figure 12 is a general

representation of what the INFONEER SKOS tool looks like. A brief description of the

Thesaurus Manager, Term Selector, and Entity Extractor has been provided, as these

three tabs have been used mostly during the thesaurus development process.

46

Figure 12. The Opening View of the INFONEER SKOS Tool.

 By developing a taxonomy of concepts, adding the appropriate preferred and

alternative labels, defining each concept's natural language description, and connecting

them to one another, we have built our thesaurus from scratch using the Thesaurus

Manager tab. We have extended the thesaurus over time by adding more relevant

concepts and vocabulary. However, the tab Term Selector and Entity Extractor were

vastly useful when we needed to deal with a larger dataset and wanted to avoid any

repetitive words in the thesaurus. In the Term Selector tab, we simply inserted raw text

and added a new concept under a parent concept. The input text can be inserted directly;

the raw data CSV file can be uploaded or grabbed from a given URL. We have inserted

some lines of our maintenance raw text in the text box in Figure 13. The terms which are

not highlighted mean they are yet not added to the thesaurus under any concept; green

highlighted words are the existing ones in the thesaurus, and red highlighted means they

are listed as an alternate label of a preferred label.

47

Figure 13. Term Selector View with Example Raw Text in SKOS Tool.

 Entity extractor, on the other hand, is being used for tokenizing a text or

document. Similar to the term selector, it highlights the words and shows how many

times a word has been repeated in the inserted text laid out in Figure 14. The unstructured

text had been vectorized as a result, and the concept vector that results had been

downloaded as a CSV file. Advanced text analytics procedures like document

categorization and clustering can be performed using each document's concept vector.

After we have finished building the thesaurus, the output in rdf/json format has been

exported to use in the next.

48

Figure 14. Entity Extractor View with Example Raw Text in SKOS Tool.

Nestor Tool Experimentation

SKOS is both a tool and platform which can be used for data classification under

concepts and where the classified data results in an ultimate controlled maintenance

vocabulary or thesaurus. As previously mentioned, we moved forward with a hybrid

approach to extend the base thesaurus model, meaning we utilized NLP on top of the

SKOS tool for a 2nd level classification. Nestor is a free NLP-based TLP toolkit that helps

domain experts annotate their Maintenance Work Order (MWO) data through a process

called tagging (Sexton & Brundage, 2019). Nestor's goal is to assist analysts in making

their unstructured, frequently technical, jargon-filled, misspelled, and abbreviated natural

language data computable to enhance analysis (Nestor, 2020/2021). Let us take a quick

look at the tool in Figure 15 before going into more detail.

49

Figure 15. Partial View of Nestor Tool used for Data Tagging.

 The raw CSV file can be loaded at first, and the tool automatically identifies

words that might be necessary for the classification. The tool can perform both single and

multi-word analyses. In the single-word analysis, the tool is internally built with three

primaries (Item, Problem, and Solution) and two auxiliary (Ambiguous and

Irrelevant) classifications. However, in the multi-word analysis, instead of having an

item and problem, the tool has Problem Item and Solution Item. The other

classifications are as same as single-word analysis. An example of these classifications is

given below in Table 4. Once the words had been determined, we went through each

word and manually tagged them under these classifications. Each time we loaded 20

datasets to have a quicker tagging of the words. One of the drawbacks of this tool is that

it almost identifies every word and so, it was very time consuming to only load the data

first let alone the tagging process. Furthermore, this tool has an option of increasing the

sensitivity and so, it would find all the similar word and those can be tagged together.

Such as: leaks, leak, leaking all are classified as problem but if the sensitivity is

increased, the tool would find words like leaving, locationfound and those relevant rows

50

will turn green so that the user understands that those cells have been tagged. The

software application will automatically annotate the dataset after the user has finished,

and it will then give a CSV file with annotations that may be used as an input for the

SKOS thesaurus. Besides, this classification result can be used for failure prediction to

reduce breakdowns. The input is for the 2nd level tagging, and by uploading the CSV file

under the entity extractor, we identified the items, problems, and problem items that we

might have missed during the tokenization process.

Table 4. Test Maintenance Raw Text Input and Subsequent Outputs Identified by Nestor

Raw Text Item

(s)

Problem

(s)

Solution

(s)

Problem

Item(s)

Solution

Item(s)

Ambiguous Irrelevant

HYDRAULIC

GENERATOR

IS LEAKING

OUT SHAFT

SEAL.

SHAFT SEAL

FAILURE.

REQUESTED

SERVICE.

P/N 89065GT.

REPLACED

SEAL

generator

, seal,

shaft

leaking,

failure

replaced generator

leaking,

seal

failure

replaced

seal

P/N

89065GT

requested

, service,

requested

service

Task 2: MWOO Ontology

 From the name, it could seem confusing, but we just simply named our owl

ontology framework as Maintenance Work Order OWL Ontology (MWOO). Our

Ontology consists of Individuals, Properties, and Classes, which roughly correspond to

Portege Instances, Slots, and Classes. A domain is described in terms of an OWL

ontology, which may contain annotations of classes and individuals as well as detailed

descriptions of the properties of those objects. Such as maintenance technician is an

object under the agent, whereas the semi-formal Natural Language Definition of the

51

agent is "A person who is bearer of a Maintenance Technician Role." Before going into

the more technical section, let us discuss how an OWL ontology can be developed using

Protégé and then we will discuss the components of OWL with respect to Protégé.

Building OWL Ontology

At first, we created a new ontology in Protégé and replaced the default URI with

http://infoneer.txstate.edu/ontology/MWOO. Under the entity tab, we have added the

classes and subclasses of classes in a way that the thesaurus could be mapped with the

ontology. For better clarification, Figure 16 is provided for easy interpretation of the

mapping from SKOS to Owl. Remember, we want to create a semantic relationship

among the concepts of the thesaurus, and so we have created our class hierarchy or

taxonomy complementary to the thesaurus.

Figure 16. SKOS Thesaurus Concept Mapping in Protégé Owl Ontology.

 Figure 17 resembles how the owl ontology looks like as well as the classes and

subclasses of our maintenance ontology. We named our maintenance ontology

http://infoneer.txstate.edu/ontology/MWOO

52

Maintenance Work Order Ontology (MWOO), and we are going to use this name for

further referring to the ontology. The 1st class, OWL Thing, is a built-in class, and all our

newly added classes are subsets of this OWL Thing. Two types of classes that could be

added are Subclasses and Sibling Classes. Sibling classes are the individuals which are

vertically on the same line in our ontology and are subclasses of the OWL Thing as well

as the top classes. In this stage, providing an example would be a better approach to

having a coherent idea of the individual classes. Classes like Agent, Artifact, Attribute,

and Defect are on the same vertical dotted line, and so they are the subclasses of OWL

Thing. However, these classes may or may not have subclasses under them. Such as,

Artifact has three subclasses: Component, Functional Unit, and Machine, and they are

sibling classes to each other.

Figure 17. Protégé MWOO Ontology Class View.

53

Annotations of each class and subclass might have been provided at the right-side

box depending on the need, and a general description of the individuals has been

provided under the description. We have used the Disjoint With for some of the

subclasses to ensure that the instances of that individual class only belong to that class.

Such as, the cooling function disjoints with the heating, mixing, pumping, and washing

function. It will not make sense if one instance is a subclass of multiple groups. Since

OWL Classes tend to overlap, we used the disjoint class function when it was absolutely

necessary. Now comes the most crucial part of making the Ontology, which is adding the

relationship or predicate, which will add the semantic meaning on top of the SKOS

thesaurus. Object properties and Datatype properties are the two basic categories of

properties. Starting with the Object Properties tab presented in Figure 18, we have

added different properties and sub properties that have been later used to create the triples

relationship while building the knowledge graph. Again, we have provided annotations,

including examples, notes, and elucidation for most of the object properties. Domain and

range under the description box explain the appropriate triple relation between the subject

and object. Each object property may have a corresponding inverse property. Such as a

component is a part of a machine. This could also be written as the machine has part

component. As a result, has part and part of share an inverse relationship.

54

Figure 18. Protégé MWOO Properties View.

Individuals. Individuals are the objects under the classes. Instances are another

name for individuals. Individuals can be regarded as instances of classes or the subclass

of class. In OWL, it must be explicitly specified whether two individuals are the same as

one or different from one another; otherwise, they may be defined as the same, or the

opposite may be true. Each object has multiple instances coming from the Test

Maintenance Company workorders. Let us consider an example below in Figure 19.

Functional Unit is a sub-class of the class Artifact. A portion of examples for the

instances of Artifact class which could be seen in the below figure, are ‘control box’,

‘drive motor’, ‘Drive Selector’, ‘elect motor’ based on Test Maintenance data set. One

might be confused as to why some of the instances are repeating themselves. The answer

is the repeating instances are coming from different workorders. The two instances of the

control box are from workorder 18 and 136 in the Test Maintenance data. Those

instances are uniquely identified by distinct URIs even though they have similar labels.

55

Figure 19. Example of Artifact Instances in the MWOO.

Properties. Properties link two individuals together, or if we want to compare it

with the RDF triples structure, properties are the predicates. There are two types of

properties in OWL: 1) object property and 2) data property. Object properties are the

ones that accept only instances at their range, while data properties accept literals (such

as strings, numbers, and date-time values) at their range. For example, the property ‘has

part’ is an example of object property because it links the instances of class Artifacts. In

Protégé, Object Properties is a different tab, and by clicking on each, the annotation

characteristics and description can be found. Figure 20 shows most of the object

properties we have used to link the individuals and create our triple structure. Remember

the example of the control box under Individuals, and if we click on the control box of

workorder 18, it shows the property relationship ‘has part’ and ‘has state’. If we want to

explain the properties in words, it would be: control box has a faulty part which is the

board and control box is not operating which is expressed by the has state property.

Annotation is being provided for ‘has state’ so that the meaning of the relationship is

56

clearly understood before making the triples. Besides, domains and ranges are given to

clarify between which instances the has state relationship is feasible.

Figure 20. Control Box Property Relations in the MWOO Ontology.

Classes. OWL classes are read as sets with individuals within them. The concepts

of thesaurus are mapped under the classes of OWL ontology. Due to that, the word

concept is sometimes used in place of class. Classes are a concrete representation of

concepts. Formal descriptions that explicitly define the conditions for class membership

are used to characterize them. For example, in Figure 21 the class ‘Portion of Material’ in

our ontology would contain all the individuals that are the portion of material in our

domain of interest. This ‘Portion of Material’ has its own fourteen instances, such as

hydraulic fluid, air, fluid etc., and two narrower subclasses Oil and Water.

57

Figure 21. Portion of Material Class Annotation and Description in MWOO.

OWL Ontology Definitions

Before visualizing the OWL ontology graphs, we need to know some of the

definitions which we have used more frequently to elucidate some of the examples in the

OWL Ontology Visualization coming up soon in the next passage. These definitions are

called Natural Language Definitions, and human generated. These definitions make

ontology easier to understand. In Table 5, the most used Class/Subclass definitions are

provided, and in Table 6, the frequently used data properties have been defined.

Table 5. Natural Language Definition of MWOO Ontology Classes

Class/Subclass Name Natural Language Definition

Artifact object designed by some person or organization to realize a certain

function

Component A part or subassembly, that is intended to become part of a higher-level

functional unit, or assembly, or machine, or the final product

Functional Unit An Artifact that has one or more specific functions and is composed of

multiple components and is intended to become part of a machine or

equipment.

Machine man-made artifact containing a set of physically connected components

that work together as a unit to realize some intended function.

Defect An attribute, characteristics, or feature inhered in some Artifact that does

not conform to the Design Specifications of the Artifact.

58

Artifact Function A Function that inheres in an Artifact and is the primary reason for the

existence of the artifact.

Nonconforming

Artifact

An Artifact that participates in Defective State or Degraded Function State

or Defunct State.

Defective Artifact An Artifact that is bearer of one or more defects.

Malfunctioning

Artifact

An artifact that has a missing function or a function that is partially

realized or demonstrates some undesirable behavior

Artifact with

Undesirable Behavior

An artifact that realizes some unintended and undesirable dispositions.

Portion of Material portion of matter or man-made substance that is an input to some process

and may be consumed in the process.

Process p is a process =Def p is an occurrent that has some temporal proper part

and for some time t, p has some material entity as participant

Degraded Functioning

Process

An Artifact Functioning Process that is the partial realization of an

intended function of some artifact.

Undesirable Behavior An Artifact Unintended Process that causes some undesirable

consequences.

Event An Event that initiates a Defective State or Defunct State or Degraded

State

State A Process in which one or more independent continuants endure in an

unchanging condition.

Defective State A State that holds during a Temporal Interval when an Artifact is bearer of

one or more Defects.

Defunct State A State that holds during a Temporal Interval when an Artifact no longer

maintains its designed set of Functions (or at least no longer maintains its

primary functions).

Degraded State A State of an artifact when the artifact function is realized at a degraded

level of performance or when some undesirable disposition of the artifact is

realized.

Table 6. Natural Language Definition of MWOO Object Properties

Property Name Natural Language Definition

Bearer of b bearer of c =Def c inheres in b

Caused by this relationship is the general form of causal relationship when and entity

(continuant or occurrent) is caused by/a result of/a consequence of another entity

(continuant or occurrent).

Disables x disables y when x is a state and y is a function of an artifact z and the function

cannot be realized if artifact z is in state x.

Enables x enables y when x is a state and y is a function of an artifact z and the function can

be realized if artifact z is in state x.

59

Has disabled

function

a relationship between and artifact and one of its designed functions when the

function is disabled due the state the artifact has.

Has location this relationship is between a process or object and the location of the process or

object. The location can be absolute or relative (relative to another object).

Has part a relation that holds between a whole and its part

Is cause of this relationship is the general form of causal relationship when and entity

(continuant or occurrent) is a cause of another entity (continuant or occurrent).

Part of a relation between a part and a whole

Participates in a relation between a continuant and a process, in which the continuant is somehow

involved in the process

Has state a relationship between a continuant and a state when the continuant participates in

the state

Has ambient

condition

a relationship between entity and the environmental conditions in which the entity

exists.

Owl Ontology Visuals

We have built the entire MWOO ontology depending on the thesaurus. In this

stage, we understand the very basic that ontology gives meaning to the thesaurus by

enabling relationships among instances. Now we will share a few examples of the

relationship among those instances, and the way ontology puts a semantic layer on top of

the thesaurus, which results in a network of relationships. We will start with simpler

examples followed by a bit more detailed ones to allow for better understanding. Figure

22 represents three simpler examples of our MWOO ontology. The yellow color is for the

concept classes, and the purple is for the instances under those classes. The upper left

side of the figure shows that the class participates in undesirable behavior. Unit and

Pump are the instances of class Machine that participates in Hydraulic Leak and

Erratic Action, which are instances of class Undesirable Behavior. In our thesaurus, we

only had these classes and the instances listed, whereas ontology uses properties like

participates in to build the semantic relationships between instances. The right side of

the figure shows an example raw text: Basket Not leveling. It means the level function of

60

basket has been disabled. It also infers two other relationships: that the basket has defunct

state, meaning basket is no longer maintaining its primary function, and the disabled

function leveling is causing the basket to be at defunct state.

Figure 22. Simple Examples of Ontological Relations in MWOO.

The lower left side of Figure 22 explains that Unit 1, Hydraulic Leak 1, Left

Drive Motor Fitting 1, and Blown O-ring 1 are instances of Machine, Undesirable

Behavior, and Component, respectively. Unit 1 participates in hydraulic leak, which is

caused by a blown O-ring. As a result, the unit has an undesirable behavior state, and

blown O-ring has a defunct state. Besides, the undesirable behavior leak has a location

which is the drive motor fitting. Nevertheless, it is very difficult and time consuming to

infer so many relational meanings only from the raw text and conduct the correct root

cause analysis. Now, if we look at Table 6 again, an interesting finding can be seen, and

that is the class State is a type of Process by definition. But why is that? Figure 23 will

add some clarity to the State-Process definition and answer the question asked. The top

section of the diagram states that the failure process is a Change and is initiated by an

61

External Event. When a process fails, it will result in a Failure Event and will make the

Artifact go into a State. Simply put, a failure event and state are both processes, the

process initiates a failure event, and the state is created.

Figure 23. Class State vs Class Process in MWOO.

State and process are comprised of other sub-states and sub-processes. The

bottom section refers that Artifact is a bearer of Defect and could participate in several

processes. These processes start the failure events, which in turn result in different states.

Hence, we can conclude that the Artifact participates in several state, including Nominal

State, Defective State, Lost Function State and so on. Table 7 will be helpful in

understanding the basic difference between state and process in our maintenance

ontology. Two examples from the Test Maintenance have been typed in to reveal the

distinction. In the first example, unit has a state which is not starting. A defective artifact

62

initiates the state; there is no change process to trigger the initiation of state. However, in

the 2nd example, leaking is a change in process, and the hydraulic pump participates in

leaking and has obtained the state not starting. That leaking is caused by a broken seal

which is a defective artifact.

Table 7. Examples of State and Process in MWOO Ontology

Num Problem Statements Artifact State Process Defective

Artifact

1. Unit not starting. Found

dead battery.

unit, battery not

starting

dead battery

2. Hydraulic pump is leaking,

not starting. Found broken

seal.

hydraulic

pump, seal

not

starting

leaking broken seal

Our last example in Figure 24 is just a bit complex one with more semantic

relationships among the individuals, and we will outline each relationship. In fact, this

example works as our guideline for creating triples relationship between two instances in

other examples. The machine is a subclass of Artifact; the functional unit and component

are part of machines. So, we have used part data properties among them to express the

internal relation. Five relation linkages evolve around Artifact, and we have bulleted

them below to be coherent with the content of the figure.

• Artifact is a bearer of Defect

• Artifact participates in Process

• Artifact is located in an Operational Area that has an Ambient Condition

• Artifact has Function which could be a disabled function

• Artifact has State which is both caused by the Process or Defect and other

Artifact or Defective Artifact. The Defect and Defective Artifact have a

location and lastly, the State either enables or disables the Function.

63

The upper mentioned classes and object relationships have been mostly used to

construct the knowledge graphs for our Test Maintenance Dataset. As a result, it was

essential to picture the relationships beforehand we moved forward to our Task 3. The

outcomes of these ontological relationships grow into a vast number of graphs, namely

Knowledge Graph, which we will elaborate in the next paragraph.

Figure 24. Complex Example of Ontological Relations in MWOO Ontology.

Task 3: Knowledge Graph Generation

We have already manifested how the ontology looks with the semantic

relationships among the instances of the Test Maintenance Company raw texts. We have

generated the relational figures using Microsoft Office tools while describing the

ontology in Task 2. Now we will introduce the tool which we have used for the actual

visualization of the ontology. Our developed ontology is a storehouse of all the mapped

concepts from the SKOS thesaurus and object properties. We displayed a glimpse of our

Maintenance Annotation Tool in Figure 11 while discussing the semantic relationship

element of the SKOS tool. This java based tool is called Maintenance Workorder

Annotation Tool (MWOAT). This java based tool uses the SKOS thesaurus and OWL

64

ontology as the input to generate the knowledge graphs. Figure 25 is our annotation tool

view, and different tab sections can be seen to initiate the graph generation. The left side

of the figure is the 1st part of the tool, and the right side is the 2nd page.

Figure 25. Maintenance Workorder Annotation Tool (MWOAT) Tool Full View.

The ontology we generated as a previous task is integrated into the tool and we

load the maintenance thesaurus each time, so if needed we can also analyze other datasets

with our developed ontology. In the paste text section, we copy and paste each workorder

from the Test Maintenance dataset and analyze it to detect the concept. By detecting, we

meant the tool detects the concept words in the work orders along with their broader and

top concept that exists in the thesaurus and have been mapped to ontology. The tool also

finds the related concepts in the same way, to provide us with extended options to show

on the graph. The tool is able to find both single and multi-words from the thesaurus. As

a result, the users will decide if they want to keep the single word, multi-word, or both

concepts as well as how they want to model it. Such as for Broken O-ring, the tool will

detect the O-ring as a Component, Broken as State, and Broken O-ring as Defective

Artifact. Now one can only select components and state and build the triple relationship

65

between them, option two is to select Component and Defective Artifact, and the final

option is select all of them to generate as many as relationship possible to convey clear

meanings.

 Furthermore, we work with large data sets; sometimes, it is possible that we might

have missed tagging some individuals. But one of the tool's best features is that we can

tag the un-tagged words as concepts under the Broader Concept of thesaurus and map

them in the Ontology Class by using the User-defined concepts for the sake of building

the knowledge graph on the next page. The newly added concepts in the tool do not

automatically update in thesaurus or ontology, and the user has to go back and put them

in both places. However, it makes users’ jobs a bit easy as they do not have to update the

changes every time they find something new. They can just move forward with

generating the knowledge graphs and simply make a list of the untagged concept to tag

them altogether later. Once they go through the detected concepts and make essential

changes, they would hit Next and go to the 2nd page to build the triples relationship

among the subject, predicate, and concept.

 In the mid column under Pasted Text, the work order text will automatically

appear from the 1st page as well as the object properties from the Owl ontology.

Remember the previously mentioned definition of Owl Properties “Properties link two

individuals together, or if we want to compare it with the RDF triples structure, properties

are the predicates.” The linkable individuals are the subject and object here, and the

detected concepts will be clickable in both the 1st column and the 3rd column. The user

will connect different subjects and objects using appropriate data properties to create

multiple numbers of the RDF triples and add them in the below space of the tool. Once

66

all the triples are generated, they will put the workorder ID in the designated box and

export the output in text form, which is our knowledge graph. Now, if the user wants to

visualize the knowledge graph, a web service called RDF Grapher

(https://www.ldf.fi/service/rdf-grapher) allows the user to paste the text form of the

output and generate an image of the graph. The image provides an easy interpretation of

the graph, and it serves as a cause diagram by showing the co-relation among

individuals.

Example 1

In this section, a few examples from our Test dataset will be examined to see how

the tool looks like when it detects the concepts and eventually generates the knowledge

graphs. The first example of raw text is “Equipment will not move. Boom Basket won’t

rotate to the left. Needs Rotator.” We paste the text in the paste box, and when we hit

analyze, it detects the concepts that are already in the thesaurus. The detected concept

consists of an instance's broader and top concept in the thesaurus and the ontology class

in OWL. This lets the user see how a concept is mapped and if the detected concept is

integral for the knowledge graph generation. As aforementioned, the tool will detect both

single and multi phrases, and we can just unselect the recurrent concepts. For this

example, the tool did not detect any repeating or related concepts, so we selected all the

concepts identified by the tool. The leftmost and middle portion of Figure 26 shows the

detected concept, such as Basket is a Component; Equipment is an Asset in the thesaurus,

and an instance of the class Machine in the ontology. Not Moving is Nonconforming

Condition in the thesaurus and the Defunct State class instance in the ontology. Now, one

can question why concept classes of Equipment and Not Moving are not similar like

https://www.ldf.fi/service/rdf-grapher

67

basket. The easiest answer would be SKOS tool is company centric, and we want them as

informative as it works as it can be treated as lightweight ontology. At the same time,

using both the SKOS concept scheme and Owl ontology results in developing generic

entities that can be applied to a wide range of maintenance applications and extended to

meet specific use cases beyond our project. So, we can conclude that Machine and

Defunct State are generic concepts in ontology and differ from the thesaurus class. This is

the main reason why we map the SKOS concept in OWL ontology.

Figure 26. Example 1 Analysis in MWOAT Tool.

 Now moving forward with our example, the right side of Figure 26 explains the

semantic relationship between the subjects and predicates. We chose from the drop-down

list to generate the meaningful semantic triple relationships we wanted to visualize in our

knowledge graph and added them one by one. Such as, Not Moving is a State, and so we

created equipment has state Not Moving. Also, the annotations, if the predicate or the

object property is correct or not coming out from the subject or domain, are provided

within the Owl Ontology. A domain is a class to which the subject of an RDF statement

using a given property belongs, and a range is the class of its object (value). The domain

value restricts the class of the subject while formulating a triple structure, and the range

value restricts the range of the property value. Afterward, we exported the result as

68

WO31 and pasted the exported raw text into the RDF graph to see what we generated.

Figure 27 is the knowledge graph visualization for Example 1. Starting from the left,

boom is a type of Machine which is labeled as Boom in Ontology. Equipment is a type of

machine, too, labeled as Machine which has state Not Moving. Basket is a component,

labeled as basket and since basket is not rotating, it results in Not Rotating state. Not

moving and not Rotating both go under the sub-class of state, Defunct State. Rotator is a

type of Component, which is labeled as rotator in Ontology. Lastly, boom, rotator,

basket, equipment; all of them are instances in Owl ontology, and so they are all Owl

individuals and linked with owl:NameIndividual.

Figure 27. Example 1 Knowledge Graph Visualization in RDF Grapher.

Example 2

The second example shown in Figure 28 is the workorder 27 in our Test

Maintenance Dataset, and that is “Unit will not go up at all the way o-ring on manifold

leaking Found unit had a hyd leak.” Clearly, the problem statement is full of technical

jargon. Our MWOAT tool successfully identified most of the essential concepts, but it

identified both the single and multi-phrases. Hence, it is visible under the detected

69

concepts that it tagged both o-ring and ring. We unselected the ring since both of them

were the same. Besides, the tool also found alternate and related concepts, such as the

problem statement only had a leaking, which falls under Undesirable Behavior in the

thesaurus and is the upper class for leaking oil. Leaking oil is an alternate concept for

leaking, so the tool listed leaking oil under detected concepts as the tool does not still

have any individual box or space for alternate concepts. The oil spill is a subclass of

leaking and was entered as related concept of leaking, so oil spill is detected as a related

concept, but since we do not need it for this workorder graph generation, we simply

unchecked it.

Figure 28. Example 2 Analysis in MWOAT Tool.

The additional concept that we need to emphasize in the 2nd example is the User-

defined concept. We did not use will not go up under any bucket in the thesaurus, but

from the basic understanding, we know that it means similar to not moving or not

functioning. As a result, we used will not go up for the sake of this workorder knowledge

graph generation. It will not be added to the thesaurus or ontology, and the user has to

add it manually. Another alternate solution to similar situations where the concepts are

untagged is to try finding similar meaning concepts. For instance, we could have simply

used will not lift instead of will not go up and the tool would have identified it, and we

70

did not have to use User-defined concepts then. However, we just stayed with the

alternate one, kept the raw text as it was, and added a user-defined concept. The

relationship that we defined between the subject and predicate, is similar to the way we

did for Example 1. Recall from Chapter 2 that the subject and object change depending

on the inner object property relation between them. In the first triple, the Unit is the

subject that has a defunct state, whereas, in the last structure, unit is the location of the

hydraulic leak and became an object. The knowledge graph explanation of Example 2 is

also homogeneous to Example 1 knowledge graph.

Figure 29. Example 2 Knowledge Graph Visualization in RDF Grapher.

The hydraulic leak is labeled as hydraulic leak and located in the Unit. The rdf

label for the unit in Owl ontology is Unit, which is a type of machine and has the user-

defined concept or defunct state. The leaking is undesirable behavior, and the leaking O-

ring has a location on the manifold. A quick note to mention here is that woo is the prefix

name for our maintenance ontology and expands to an IRI (Internationalized Resource

Identifier). For our case, it is woo: http://infoneer.txstate.edu/ontology/MWOO/, where

http://infoneer.txstate.edu/ontology/MWOO/

71

woo is the name, and the later portion refers to our ontology IRI.

Example 3

This will be our last example explanation, so let us look at a bigger, complex

example and divide it into smaller parts for easy understanding. We will analyze

workorder 10 in Figure 30, which states “front diff is making oil, front diff blew out snap

ring internally, removed one side and found diff to be no good snap ring blew apart

causing damage to case.” After pasting the raw text, we realized that a number of

concepts were untagged in the thesaurus, but few of them have closer meaning synonyms

already present in the thesaurus. As a result, we changed some of the wordings in the text

paste box, such as: making →leaking, blew out → blew apart, to be no good →damaged.

We also added the user-defined concepts: diffuser, snap ring, and case to be visible in the

knowledge graph. The tool identified the ring under the detected concept, but we

specifically wanted to define the snap ring for a better root cause analysis of the

maintenance problem. We kept the ring just to show it on the graph, as it does not impact

the result. The oil spill was also detected like the previous example problem, and we have

unchecked it.

Figure 30. Example 2 Analysis in MWOAT Tool.

 The last page of the tool shows the triple relationships generated. The diffuser

72

participates in leaking oil, and the snap ring participates in blew apart. The statement also

states that snap ring internally blew apart is due to damaged diffuser and resulted in a

damaged snap ring also. And finally, the case becomes damaged due to the blew apart

snap ring. Figure 31 looks complex with all the interconnected links, but it is the exact

reflection of the six triple relationships we just created.

Figure 31

Example 3 Knowledge Graph Visualization in RDF Grapher

Figure 31. Example 3 Knowledge Graph Visualization in RDF Grapher.

 Starting with the component Snap Ring, which participates in Blew Apart and

bearer of Damage. Blew Apart is a defect caused by Diffuser; Diffuser participates in

Leaking Oil and Damaged as well. The case is also a bearer of damage, and lastly, the

ring does not have any relationship with other individuals as we have used the snap ring

instead. The knowledge graph can be treated as a powerful tool because it identifies the

root cause of a maintenance problem from simple to complex raw text. In addition, it is

very difficult to have a concise idea of the failure only from the raw text as they are full

of errors and technical vocabulary.

73

Task 4: Validation

This is the last section of this chapter. In this section, we will illustrate the

SPARQL query and how we have utilized it for our fourth task fulfillment. We will also

show how the Reasoner plug-in on the Protégé tool automatically allows adding

instances under different classes. Previously, a brief of SPARQL query has been provided

in Chapter 2, where we explained that it is a semantic RDF query language to retrieve

required information stored in RDF triple format. Queries could be done on raw data;

however, in most cases, raw data needs additional processing in order to be used as

information. Raw data lacks the built-in capacity for consistency and querying over the

raw data needs reconstructing the schema, which ends up resulting in larger duplicate

data. As the quantity and complexity of relationships rise, relationship queries in

traditional raw text databases will come to a standstill.

In contrast, the RDF knowledge graph allows new relationships over time without

endangering current functionality resulting in more useful query results. Of course, raw

data is necessary to trace back the data source, but a knowledge graph is a single place

where all data and the interlocking relationships behind that data can be found. This

enables one to find information faster, uncover hidden insights into text data, and

understand how everything is connected on a broader scale. We require the connected,

reusable, and flexible data foundation to reflect the complexity of reality in order to

address difficult challenges that require the integration of several unstructured raw text

data. Multiple interpretations of the same data can be made possible by connected,

meaning-rich data, making it easier to find answers to complex queries and more quickly

extract insights. These answers will be helpful to our validation purposes, meaning

74

depending on the SPARQL query results, we can always go back to our ontology and rule

out the detected classes as well as the instances under them to verify the true positive

mentioned in chapter 1. We will also elaborate on the process with our query examples in

this chapter.

We have used java based Stardog (https://www.stardog.com/) application

platform, which supports SPARQL query for querying RDF knowledge graphs. The most

cutting-edge graph data virtualization and high-performance graph database are available

from Stardog. Stardog uses the RDF triples knowledge graph and OWL ontology as

input. After creating RDF triples for each raw text data in the Test Maintenance Dataset,

we have created a master file, which is an accumulation of all the two hundred and fifty

RDF triples. We have simply loaded our RDF triples master file on Stardog, written it

down, and run the queries to find out the expected information we needed. In Addition,

ontology IRI is used at the start of the query writing so that the tool can refer to it. The

platform also sends error messages to the user if any structural issue is found in the

queries. We have used several queries to validate our model, and a number of queries will

be elaborately described below in the next paragraph. As soon as we open the Stardog

Studio application, a blank workspace with several tabs appears. Such as in Figure 32, we

can see the tool's built-in database is detected as stardog-tutorial-beatles. Users can load

their work specific datasets, write the queries in the workspace console and run them to

retrieve the results. Once run, another console appears below the first console, which

shows the result.

https://www.stardog.com/

75

Figure 32. Partial View of Stardog Studio Query Application.

In addition, built-in dataset as well as their tutorials, are available in this

application which is specifically useful for the new user to guide them in building

queries. Some examples of query operations are SELECT, ASK, DISTINCT, COUNT,

LIMIT, ORDER BY, and GROUP BY, and we will break down some of their usage in

our maintenance database queries. We will start with the simplest query and move

forward with a bit more complex one to provide a better understanding of the query

framework. Before jumping into the main query examples, let us get familiarized with the

basic query structure which we have used in all our examples. The main query form in

SPARQL is a SELECT query which is used to extract results from the knowledge graph

tripes and can be modified to match the desired pattern. A SELECT query has two main

components: a list of selected variables and a WHERE clause for specifying the graph

patterns to match. The SELECT structure looks like this,

SELECT <variables>

Where{

<graph-patterns>

} , where the variables are the output, and the graph patterns are descriptions to match

76

Triple patterns are the fundamental building component for SPARQL searches. A

triple pattern is identical to an RDF graph triple, with the exception that any one of the

three positions can include a variable after the SELECT command. We search the

knowledge graphs for matching triples using triple patterns, and variables function as

wildcards that can match any node. For example, the simplest query to retrieve the

subject(?S), predicate (?P), and object (?O) from our knowledge graphs are shown in

Figure 33. Here, the SELECT query returns the triples from the maintenance knowledge

graphs. The output variables ?S ?P, and ?O tell the SELECT query what to return. The

output variables belong to the declared type or label between the WHERE clause, and

simply put, the WHERE is used to extract only the records that fulfill a specified

condition. In this case, we want to retrieve all the triples structure in our knowledge

graph, so we write the variables ?S ?P, and ?O, showing we want triple structures where a

subject, predicate, and object exist, with any value in any position. This simplest query

retrieves 1000 results in 170 milliseconds in the lower console. We can also visualize

each of the results in a graphical mode which we will see with our query examples.

Figure 33. Simplest Query Structure using SELECT Command.

77

Query Examples

Query Example 1

What are the causes of undesirable behavior?

We want to know what the causes of undesirable behavior from this query are. In

other words, how many caused by object property relationships we have with the

instances under Undesirable Behavior class in our knowledge graph. In Figure 34,

starting from the 1st line of the query is the declaration of our ontology prefix. Whenever

pound (#) sign is put at the beginning of the sentence, it becomes a comment, and we

have used it to write down our query in the workspace. We have used ub for undesirable

behavior and ca for caused by as dynamic parameters. A dynamic parameter is a

parameter to a SPARQL statement for which the value is not specified when the

statement is created. Instead, the statement has a question mark (?) as a placeholder for

each dynamic parameter. The rest of the information on the dynamic parameters would

be given inside the WHERE clause.

Figure 34. Query Example 1.

Next, we have told the query a place where the necessary information for ub and

ca could be found. In our ontology, we have the Undesirable Behavior class, and so, we

78

have declared the ub as a rdf:type of undesirable behavior. The prefix name is

woo:UndesirableBehavior and one condition is that the exact prefix name has to be used

to get the result. We have to use a dot (.) at the end of each line inside WHERE clause;

only the last line can skip the dot. We were only interested in how the undesirable

behaviors are caused by other class instances and declared the ontology prefix caused by

as woo:causedBy and closed the bracket. After that, we closed the bracket and ran the

query, which resulted in 26 undesirable behaviors caused by instances of classes. Such as

in the 1st line of the results reflected that in our Test maintenance workorder 10, the

undesirable behavior Blew Apart is caused by Diffuser. We can also click on each

workorder row to see the result visually and validate it. Let us consider validating the 1st

result against the maintenance workorder which was, “front diff is making oil, front diff

blew out snap ring internally, removed one side and found diff to be no good snap ring

blew apart causing damage to case.” The resultant graph page in Figure 35 is very

informative as it provides the total number of classes and properties expressed via nodes

and edges.

Figure 35. Query Example 1 Result Partial Visual Representation.

79

For the 1st result workorder, we have a total of 9 nodes and 15 edges. The nodes

include the instances of class Component, Undesirable Behavior, and Defect, and these

are connected by edges which include the type and the object property. Each of the color-

coded tabs, as well as the nodes/edges, could be clicked for the ease of easier root cause

of the problem. Such as, we set our cursor on the pink tab in the 2nd row and two nodes

‘blew apart’ and ‘leaking oil’ popped up. So, why our query gave us only one undesirable

behavior? Because only blew apart maintains the caused by the relationship with

‘diffuser’ node. On the other hand, diffuser participates in ‘leaking oil’ node and so, the

query did not show this triple relation in the result. All of the possible relations in the raw

maintenance workorder have been correctly presented in the graph, and after comparing

the visual result with the raw text, it is much easier to conclude that the diffuse is the root

cause of the failures. This visualization is similar to the RDF Grapher online based tool

we have used for our knowledge graph visualization. However, Stardog provides

information in much better way and with color-coded nodes/edges. Since the graphs tend

to have a lot of semantic relations, analyzing the root cause of failure using Stardog is a

much-preferred way.

Another interesting addition in query 1 would be adding the command LIMIT,

meaning the query will show a limited result. Such as, we have used LIMIT 3 after

closing the WHERE clause, so only three outputs will be in the result section.

80

Figure 36. Query Example 1 with LIMIT Command.

Query Example 2

What are the states caused by undesirable behavior?

This query structure is similar to the first one, but the only difference is that we

specifically wanted to know about undesirable behavior causing the state rather than all

causes of the state. Hence, we have parameterized state and undesirable beside the

SELECT clause and declared their classes in the next two lines in Figure 37. The last line

of the query is the duplication of our text query but just in the triple format. The query

provided only one result, which is excess vibration is causing the state broken. We also

checked the raw workorder text, which is “exhaust bracket cracked and broken due to

excessive vibration” as well as the graph to validate our findings.

81

Figure 37. Query Example 2 and Partial Result Visual Presentation.

Query Example 3

What states are caused by Defective Artifacts?

From the ontology, we know that one of the sub-states of the state is Defunct

State and we want to know if there are both state and defunct state, which are caused by

Defective Artifacts. The other seven states do not have any instances which is caused by

defective artifacts. So, putting those altogether in the query would not affect the result.

Figure 38 presents the new 3rd query, where a new command, UNION, has been used to

merge the sub-state with the state. The ?st has been declared as both state and defunct

state to accommodate the merging. The query resulted in 9 outputs, and after checking

ontology, we confirmed that all nine of them are coming from Defunct State class. We

chose to visualize maintenance workorder 187, which was “SC C: machine won't drive or

82

go into gear. C: blown 1amp fuse on slot 15 for switch power.” Clearly, the raw text is

full of technical jargon, but from the picture illustration, it is clear that a blown fuse is

causing the not driving defunct state.

Figure 38. Query Example 3 and Partial Result Visual Presentation.

Query Example 4

What are the reasons for not moving state?

Till now, we only needed to define rdf:type to express the belonging under a

specific ontology class. However, if we are interested in a specific instance, we will be

using rdfs:label to refer to that variable shown in Figure 39. In query 4, we were

interested to know about the not moving state, and we had two results from the query.

83

We compared the workorder 48 “machine won't move failed foot switch” and validated

the visualization.

Figure 39. Query Example 4 and Partial Result Visual Presentation.

Query example 5

Is boom a bearer of crack?

This query is different from the previous ones, and the SELECT or WHERE

Clause is not used here. When we simply want to know the answer in true and false

format, we will use ASK query to do that. Such as, if we want to know whether there is

any component in the dataset that is bearer of a defect, the query would be,

ASK {

?a rdf:type woo:Component.

84

?b rdf:type woo:Defect.

?a woo:bearerOf ?b.

}

We are simply defining the component and defect parameter within their class and

linking those with the object property bearer of to verify the result. Depending on this

structure we built, ask Stardog if the boom bearer of crack and used the rdfs:label since

we want to know about a specific component. The query returned the answer true, but

without any work order numbers. Hence, to validate if the result was correct or not, we

went back to the Ontology and checked all instances of boom under Machine class.

Figure 40 reflects that workorder 25 “jib on unit is loose. Boom to jib pivot bushings

found to be cracked and breaking” is the one with the detected relation, so our query was

giving us the right answer. There is no visualization option available for this query since

we are asking a question rather than wanting to know any triple relations.

Figure 40. Query Example 5 and Validation from Ontology.

85

Query Example 6

How many events have property caused by and if those caused by have any state?

This query is a bit more complex than the previous ones. We want to know

multiple information, so if we simply divide the query into two sections, 1st part is to

know the causes of class event but only when the cause occurred due to any state. So, we

are targeting to determine two object properties has state and caused by with our query.

We started with parameterized event, cause, and state, eventually by ?e, ?ca, and ?st.

Then we the event and state parameters to their respective classes. Finally, we added two

additional lines where we want to know the events which are caused by states. The query

is shown in Figure 41, and it has provided only one answer, which is failed is caused by a

solenoid that is contaminated. It comes from workorder 17, which is “machine will not

move. found brake solenoid failed.” The two object properties are the edged among

solenoid, metal contamination, and failed. One might get confused with the view of the

graph, which is much easier to understand compared to the other ones we have shown

above. The visibility could be controlled for easy understanding of the semantic

relationship, and here, we have only chosen the resultant nodes and edges to be visible.

86

Figure 41. Query Example 6 and Partial Result Visual Presentation.

Query example 7

How many components participates in undesirable behavior and their location is known?

This query structure is similar to query example 6. However, we want to show a

side-by-side comparison of changing a simple query structure. Such as, in this query, we

want to know the components which participate in undesirable behavior, but their

location must be known. We will also show what happens if we just eliminate the

condition of known locations; rather, we want components participate in all kinds of

undesirable behavior. The alternate query structure is similar to the 2nd query example

we presented earlier. Figure 42 illustrates only four undesirable behaviors have known

locations out of 46. This also tells us our query structure is correct. We also checked the

resulting workorder numbers to see if the query had missed any other location by any

chance, but the query was able to detect all the locations successfully.

87

Figure 42. Query Example 7 Comparison.

Query Example 8

A. How many portions of materials are there?

B. How many undesirable behaviors per component?

Although our focus here will be on 8B but before that we will introduce COUNT

query with the simpler example 8A. The COUNT function counts the number of

instances of a variable, and it is used beside the SELECT function. We have also used

DISTINCT function no eliminate any repeated instances in the result. Figure 43

picturizes the of portion of material identified by COUNT. The function says that the

query wants to count portion of material referred as ?pom, and the result will be shown

with the name ?countpom. Then, we simply added the class type where the ?pom

88

belongs, and we can see there are 14 portion of material present in our knowledge graph

database.

Figure 43. Query Example 8A.

Now, this brings us to our next query, which is counting the number for each

component class instances. In Figure 44, the count function states that we want to know

distinct undesirable behavior ?ub for the component class ?comp. As a result, we wrote

down the class types for the two parameters. But we still need to tell the query what

property relationship we have between the component and undesirable behavior to enable

the COUNT function to be worked. Participates in is the object property a component

could have with undesirable behavior, and that is why we define the relational prefix in

the 8th line. The query ends with GROUP BY, which is another new function that will

allow grouping the undesirable behavior depending on the instances. Such as in Figure

44, the number of undesirable behaviors for each instance resulted. FrontAxle

participates in one undesirable behavior, whereas RunningKeySwich has two

undesirable behaviors. The undesirable behaviors (edges highlighted in orange) for work

orders are also visualized in the simple graphical representation and provide validation of

results.

89

Figure 44. Query Example 8B.

Query Example 9

Find all components excluding seal which participate in leaking, and if that leaking

causes a state.

 The query question asked for three different pieces of information. First, it is

trying to find out only the components which participates in leaking and these

components should not include ‘seal’. In addition, it also wants to know if these leaking

are resulting in any state. This query can be solved using other different functions, but we

have chosen to move forward with the straightforward approach shown in Figure 45.

90

Figure 45. Query Example 9.

We have started with the COUNT function to know the number of leaking for

each component followed by the WHERE function. It is visible that we first wanted to

know the components that participates in leaking as well as the states the leaking has

caused from line 5-15 of the query structure. We used a semi-colon beside component

rather than a dot, which allow us to not rewrite the 1st part of the triple structure, and in

our case, it is ?comp for Component. Degraded Function State, Defunct State, and

Undesirable Behavior State are the subset of State in our OWL ontology. Hence, we have

91

used the UNION function to structure that. Subsequently, we used a new function called

MINUS to exclude the seal from the list of components and ended with GROUP BY

function to get the result categorized for each component. The query resulted in only one

result WO 38, and we have validated the result by going back to our raw text “ Brakes

not working brake cylinder leaking down.” The not working is the only state leaking is

causing, and the visualization shows that the component cylinder participates in leaking.

Validation Using Reasoner

 Protégé tool has the plug-in called Reasoner and by running this plug-in, we can

generate the inferred relationship between two instances of the ontology classes. When

we are generating knowledge graphs to show meaningful relationships among instances,

we called these relationships Asserted type. Whereas, if our ultimate goal is to build a

semantic model, meaning both human and machine will have equal understanding

understand of the model and they will have a common ground of communicating with

each other, then the next step should be utilizing the Reasoner. It creates the inferred

relationship among instances and allow better understanding of how one instance is

connected to other. Figure 46 is an example of our ontology without using the Reasoner

function and how the asserted relationships look like. The Unit With Leak Failure is an

instance of Nonconforming Artifact and the definition of the instance is provided as a

natural language definition. This definition is for the use of human model developer for

creating meaningful triple relations while generating the knowledge graphs. However,

Protégé does not understand this definition and requires an equivalent definition so that

by hitting the Reasoner plug-in, it can generate indirect relationships.

92

Figure 46. Asserted Relations without Reasoner.

The right side of the image is an example of how the asserted type of relation

looks like without using the reasoner. We can see that robot has part hydraulic system

which also has a part called oil pump. Besides, gasket is also a part of the oil pump. But

previously shown in Chapter 3, Figure 24, we talked about how the knowledge graph

could be extended and, in the description, we mentioned that if machine has part

functional unit and functional unit has part component, then the inferred relation ship is

that the component is also a part of the machine. Same for this example, we can see that

the asserted relationships are robot has part hydraulic system, hydraulic system has part

oil pump and oil pump has part gasket. It also means that both oil pump and gasket are

part of the robot as well as gasket is also a part of hydraulic systems. The other inferred

relation is if oil pump participates in leaking, then both robot and hydraulic systems are

type of unit with leak failure. Furthermore, if gasket is a bearer of defect than robot is

type of defective artifact too. The inferred relations can be seen in Figure 47.

 If we put the equivalent definition of the natural language definition under

Equivalent To correctly and run the reasoner, the instances among which the inferred

relationship works, would pop up under the instances. As example, in figure 46, we did

not have any instances for unit with leak failure but after running the reasoner we can see

93

automatically generated instances- hydraulic systems, oil pump and robot. It validates

that we have correctly provided the equivalent definition and one can easily understand

the difference between asserted and inferred relations. The instance background will turn

yellow, and the user can also go back and forth between asserted and inferred from the

drop-down menu. Hence, we used this plug-in to analyze if our reasoning is correct and if

the inferred relations could be generated successfully.

Figure 47. Inferred Relations with Reasoner.

94

IV. CONCLUSION

In this chapter, we will discuss how our implemented methodology has satisfied

the research questions we have identified in Chapter 1.

What main concept categories and sub-categories can be used for classifying the

key terms that appear in MWO data? What should be the top-level concepts of the MD

thesaurus?

When we started working with the raw text data, the most appeared terms were

different machine and component types, the failures they cause and how those affect

other individuals, the location of parts and the failures, as well as the environmental

condition. As a result, we classified and sub-classified them to create a standardized

framework that can be used not only for our dataset but also for any maintenance dataset.

The main class concepts were the top concepts, and they are: Artifacts, Condition,

Event, Function, Maintenance Treatment, Material Substances and Property. The

thesaurus and ontology are both extendable, and we have earlier visualized the main

concept classes and sub-classes in Figure 2 and Figure 3 and provided their definition in

Table 5.

Does using tools with NLP support (such as Nestor) improve the efficiency of the

tagging process?

The answer is both yes and no. There is a lot of noise in raw data and tools such

as Nestor can be helpful by removing noise factors. In our case, Nestor was able to detect

the required taggable words filtering the noise as well as identifies both single and multi-

phrase words together. However, the tool is newly created and still needs appropriate

updates to work faster. Since we were able to use the primitive version of the tool, it was

95

very time consuming to tag our larger number of datasets. Each time we uploaded only

ten raw work orders to achieve a faster result out of five hundred total maintenance raw

data. Also, we got access to the tool in the middle of our research work, so by then, we

already had tagged most of the required terms of our dataset by utilizing the Entity

Extractor functionality of the SKOS tool. Nestor has been used mostly for our tagging

check to identify any of the important terms we missed during manual tagging.

How to categorize the Nestor-tagged problems under the right category/bucket in

the thesaurus?

As previously mentioned, Nestor is a generalized NLP tool and mainly identifies

the Items, Problems, Solution, Problem Items, and Ambiguous terms in the raw text.

Adding the solution was not the scope of this research, and the ambiguous terms were

subject to our manual exploration if they would fall under any concept bucket of the

thesaurus.

• The Items were mapped under the Asset, Component, and Functional Unit.

• Problems were mapped under Nonconforming Condition and Failure Event.

• Problem Items were also mapped under Nonconforming Condition.

How effective our final model will be in showing the semantic relationship among

various entities?

The final model was extremely effective in showing the semantic relationship

among the entities. We started with the raw text and were able to cluster the terms in the

thesaurus, which in the end, resulted in the knowledge graph. When we have a set of

standardized concept sets, it also impacts our mental ability to recognize the list of

problems in the maintenance workorders easily. It allows a better understanding of the

96

root cause of the problem when visualizing the knowledge graphs and what relationship

one instance posses with others in the same work order. Especially, the workorders

consisting of a lot of issues were often cumbersome to spot the root cause due to the

technical jargon, and these graphical representations were a big aid to meet that need. We

have presented examples from both the RDF Grapher online visualization tool and the

Stardog query platform to illustrate the internal semantic relations.

How would we express the queries to satisfy our competency questions, such as:

What is the cause of this maintenance problem, where is the location of the problem,

what are the WOs related to this problem (s), and so on.

The SPARQL structure is fixed, and any knowledge graph platform could be used

to generate the SPARQL queries. We have followed the Stardog platform query tutorials

to understand how we can generate meaningful queries which would retrieve whatever

information we want to know. We have provided nine query examples using our

knowledge graphs as required input and the queries were successfully able to show the

maintenance problems, location along with their work order numbers. Such as, our query

retrieved the Artifacts along with their Workorders that participates in the undesirable

behavior as well as the Undesirable Behavior results presented in Query Example 1 and

2. In addition, Query example 7 retrieved the known location for the Undesirable

Behavior of the Artifacts.

 One other advantage of using the SPARQL was to be able to determine the true

percentage of the retrieved result. We are dealing with a larger dataset, and the number of

instances under the concept classes in our ontology was approximately 700 from the two

hundred and fifty workorders presented in Figure 48. The SPARQL returns the count of

97

individuals under all classes, and we have put them on a histogram after sorting them

from largest to smallest. Since the individual count is pretty big, duplication of the result

is possible as well as getting a larger output. In those cases, we have effectively used the

DISTINCT and LIMIT functions to get rid of any duplication or limit the output number.

Figure 48. Instance Count per Class in Ontology.

However, we did our own sanity check by every time getting back to the ontology and

raw text data to validate the true percentage, meaning if a query is showing ten Defunct

State, is it true that all of them are Defunct State. This is called the precision and recall

performance metrics we talked about as a part of our Task 4.

 Getting back to our raw maintenance text data, we have seen in our provided

examples that the raw texts are full of technical jargon, and especially if somebody is not

from the manufacturing or maintenance field, it is a struggle for them to find out the

meaning. Having thesaurus followed by Ontology allows data all the data collection

schema to use this shared vocabulary. Knowledge graphs also have these technical terms

in a graphical form but without any jargon, stop words, unnecessary punctuation, and

ambiguous words. The concepts and relationships that are allowed in knowledge graphs

are defined by ontology. The structure of a knowledge graph facilitates the integration of

several heterogeneous data sets from various companies of varying quality. With each

98

item or instance represented only once, together with all of its relationships, in the

context of all of the other subjects and their relationships, Knowledge Graphs offer a

model of how everything is related. This enables one to understand how everything is

connected on a broad scale. They enable users to quickly conduct exploratory queries

against massive amounts of data without creating indexes or otherwise tailoring datasets

for particular queries. Figure 49 is a side-by-side comparison of raw text and a

knowledge graph.

Figure 49. Raw Text and Knowledge Graph Comparison.

Clearly, the raw text consists of a lot of smaller issues such as Broken Wire,

Wiring problem, No high speed, and unnecessary terms like Off rent. Lack of

punctuation and grammatical structure is making the text hard to understand and is the

difficult root cause of the problem. Whereas the knowledge graph on the right side is not

only expressing explicit meaning but also their exhibiting the relationships between each

individual. One can easily understand that the bigger failure is that the boom is running at

a low speed which is caused by both broken wire and the nonfunctioning limit switch.

99

Besides, the broken wire is located in boom, and the limit switch is a part of the boom.

Without converting the texts into a graph, one can hardly imagine how many hidden

meanings a raw text can convey. In our case, each raw text of the five hundred total raw

texts possesses useful information and that can lead to fruitful failure cause mapping.

Furthermore, it is not possible to conduct such a structured breakdown of the problem

only from the raw text. Raw text is the storehouse of our knowledge graph where we can

reflect back to build the graphs piece by piece. However, when we are progressing fast

toward Industry 4.0, we definitely need to have smart failure detection, and the

knowledge graph indeed accomplishes that need.

The first future work of this research work includes adding more work orders to

the master triples file and to examine how Stardog or our internally developed query tool

can perform query and retrieve accurate data. Currently we have utilized two hundred and

fifty workorders to generate the knowledge graph. Other half of the workorders could be

loaded to generate the knowledge graphs for entire workorder dataset and then conduct

the query to validate the date retrieving accuracy. The second future work would be

adding the solution of each work order. This research work has only focused on

analyzing and tagging the problem statement of related to a work order. Nevertheless,

adding the solution would be the next approach as the ultimate goal is to find a solution

to a maintenance breakdown or failure as soon as possible and use the knowledge graph

as a medium of preventive measure.

Finally, generating SWRL rules to expand the knowledge graph is one possible

direction for future work. SWRL allows automatically adding new triples to the graph by

combining two entities of indirect relationships. Such as considering a concept called

100

State in the Owl ontology. The state directly relates to the Event, another concept of the

ontology, and the instances of the Event, such as failed or ruptured, could be caused by a

defective artifact. Although the state and the defective artifact do not directly connect

with the SWRL approach, we can generate the indirect triple relationship visible in the

knowledge graph. Using SWRL will search the entire graph and add this new triple

whenever a similar pattern appears, which will result in a lot of new triples. It will ensure

a greater root cause analysis of the maintenance work orders’ problems.

101

REFERENCES

Ameri, F., & Yoder, R. (2019). A Thesaurus-Guided Method for Smart Manufacturing

Diagnostics. IFIP International Conference on Advances in Production

Management Systems, 722–729.

Ameri, F., Yoder, R., & Zandbiglari, K. (2020). SKOS Tool: A Tool for Creating

Knowledge Graphs to Support Semantic Text Classification. In B. Lalic, V.

Majstorovic, U. Marjanovic, G. von Cieminski, & D. Romero (Eds.), Advances in

Production Management Systems. Towards Smart and Digital Manufacturing (pp.

263–271). Springer International Publishing. https://doi.org/10.1007/978-3-030-

57997-5_31

Arif-Uz-Zaman, K., Cholette, M. E., Ma, L., & Karim, A. (2017). Extracting failure time

data from industrial maintenance records using text mining. Advanced

Engineering Informatics, 33, 388–396.

Bokinsky, H., McKenzie, A., Bayoumi, A., McCaslin, R., Patterson, A., Matthews, M.,

Schmidley, J., & Eisner, L. (2013). Application of natural language processing

techniques to marine V-22 maintenance data for populating a CBM-oriented

database. 463–472.

Brundage, M. P., Sexton, T., Hodkiewicz, M., Dima, A., & Lukens, S. (2021). Technical

language processing: Unlocking maintenance knowledge. Manufacturing Letters,

27, 42–46.

Devaney, M., Ram, A., Qiu, H., & Lee, J. (2005). Preventing failures by mining

maintenance logs with case-based reasoning.

https://doi.org/10.1007/978-3-030-57997-5_31
https://doi.org/10.1007/978-3-030-57997-5_31

102

Dima, A., Lukens, S., Hodkiewicz, M., Sexton, T., & Brundage, M. P. (2021). Adapting

natural language processing for technical text. Applied AI Letters, 2(3), e33.

https://doi.org/10.1002/ail2.33

Gao, Y., Woods, C., Liu, W., French, T., & Hodkiewicz, M. (2020). Pipeline for Machine

Reading of Unstructured Maintenance Work Order Records (p. 1408).

https://doi.org/10.3850/978-981-14-8593-0_3888-cd

Gharehchopogh, F. S., & Khalifelu, Z. A. (2011). Analysis and evaluation of unstructured

data: Text mining versus natural language processing. 2011 5th International

Conference on Application of Information and Communication Technologies

(AICT), 1–4.

Gunay, H. B., Shen, W., & Yang, C. (2019). Text-mining building maintenance work

orders for component fault frequency. Building Research & Information, 47(5),

518–533. https://doi.org/10.1080/09613218.2018.1459004

Hodkiewicz, M., & Ho, M. T.-W. (2016). Cleaning historical maintenance work order

data for reliability analysis. Journal of Quality in Maintenance Engineering, 22(2),

146–163. https://doi.org/10.1108/JQME-04-2015-0013

Hodkiewicz, M., Lukens, S., Brundage, M. P., & Sexton, T. (2021). Rethinking

Maintenance Terminology for an Industry 4.0 Future. International Journal of

Prognostics and Health Management, 12(1), Article 1.

https://doi.org/10.36001/ijphm.2021.v12i1.2932

https://doi.org/10.1002/ail2.33
https://doi.org/10.3850/978-981-14-8593-0_3888-cd
https://doi.org/10.1080/09613218.2018.1459004
https://doi.org/10.1108/JQME-04-2015-0013
https://doi.org/10.36001/ijphm.2021.v12i1.2932

103

Hossayni, H., Khan, I., Aazam, M., Taleghani-Isfahani, A., & Crespi, N. (2020).

SemKoRe: Improving Machine Maintenance in Industrial IoT with Semantic

Knowledge Graphs. Applied Sciences, 10(18), 6325.

https://doi.org/10.3390/app10186325

Learn OWL and RDFS. (n.d.). Cambridge Semantics. Retrieved October 11, 2022, from

https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/

Learn RDF. (n.d.). Cambridge Semantics. Retrieved October 11, 2022, from

https://cambridgesemantics.com/blog/semantic-university/learn-rdf/

McKenzie, A., Matthews, M., Goodman, N., & Bayoumi, A. (2010). Information

Extraction from Helicopter Maintenance Records as a Springboard for the Future

of Maintenance Text Analysis. In N. García-Pedrajas, F. Herrera, C. Fyfe, J. M.

Benítez, & M. Ali (Eds.), Trends in Applied Intelligent Systems (pp. 590–600).

Springer. https://doi.org/10.1007/978-3-642-13022-9_59

Mohan, V. (2015). Preprocessing Techniques for Text Mining—An Overview.

https://www.researchgate.net/profile/Vijayarani-

Mohan/publication/339529230_Preprocessing_Techniques_for_Text_Mining_-

_An_Overview/links/5e57a0f7299bf1bdb83e7505/Preprocessing-Techniques-for-

Text-Mining-An-Overview.pdf

Navinchandran, M., Sharp, M. E., Brundage, M. P., & Sexton, T. B. (2021). Discovering

critical KPI factors from natural language in maintenance work orders. Journal of

Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01772-5

Nestor. (2021). [Python]. National Institute of Standards and Technology.

https://github.com/usnistgov/nestor (Original work published 2020)

https://doi.org/10.3390/app10186325
https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/
https://cambridgesemantics.com/blog/semantic-university/learn-rdf/
https://doi.org/10.1007/978-3-642-13022-9_59
https://www.researchgate.net/profile/Vijayarani-Mohan/publication/339529230_Preprocessing_Techniques_for_Text_Mining_-_An_Overview/links/5e57a0f7299bf1bdb83e7505/Preprocessing-Techniques-for-Text-Mining-An-Overview.pdf
https://www.researchgate.net/profile/Vijayarani-Mohan/publication/339529230_Preprocessing_Techniques_for_Text_Mining_-_An_Overview/links/5e57a0f7299bf1bdb83e7505/Preprocessing-Techniques-for-Text-Mining-An-Overview.pdf
https://www.researchgate.net/profile/Vijayarani-Mohan/publication/339529230_Preprocessing_Techniques_for_Text_Mining_-_An_Overview/links/5e57a0f7299bf1bdb83e7505/Preprocessing-Techniques-for-Text-Mining-An-Overview.pdf
https://www.researchgate.net/profile/Vijayarani-Mohan/publication/339529230_Preprocessing_Techniques_for_Text_Mining_-_An_Overview/links/5e57a0f7299bf1bdb83e7505/Preprocessing-Techniques-for-Text-Mining-An-Overview.pdf
https://doi.org/10.1007/s10845-021-01772-5

104

OWL Web Ontology Language Overview. (n.d.). Retrieved October 11, 2022, from

http://www.ksl.stanford.edu/people/dlm/webont/OWLOverviewMay12003.htm

Owl 101. (n.d.). Cambridge Semantics. Retrieved October 11, 2022, from

https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/owl-

101/

RDF - Semantic Web Standards. (n.d.). Retrieved October 11, 2022, from

https://www.w3.org/RDF/

Ringsquandl, M., Kharlamov, E., Stepanova, D., Lamparter, S., Lepratti, R., Horrocks, I.,

& Kröger, P. (2017). On event-driven knowledge graph completion in digital

factories. 2017 IEEE International Conference on Big Data (Big Data), 1676–

1681. https://doi.org/10.1109/BigData.2017.8258105

Semantic Web—W3C. (n.d.). Retrieved October 11, 2022, from

https://www.w3.org/standards/semanticweb/

Sexton, T., Brundage, M. P., Hoffman, M., & Morris, K. C. (2017). Hybrid datafication

of maintenance logs from ai-assisted human tags. 2017 Ieee International

Conference on Big Data (Big Data), 1769–1777.

Sexton, T. B., Brundage, M. P., Hodkiewicz, M., & Smoker, T. (2018). Benchmarking

for keyword extraction methodologies in maintenance work orders.

https://www.nist.gov/publications/benchmarking-keyword-extraction-

methodologies-maintenance-work-orders

Sexton, T. B., & Brundage, M. B. (2019). Nestor: A Tool for Natural Language

Annotation of Short Texts. Journal of Research of the National Institute of

Standards and Technology, 124, 124029. https://doi.org/10.6028/jres.124.029

http://www.ksl.stanford.edu/people/dlm/webont/OWLOverviewMay12003.htm
https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/owl-101/
https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/owl-101/
https://www.w3.org/RDF/
https://doi.org/10.1109/BigData.2017.8258105
https://www.w3.org/standards/semanticweb/
https://www.nist.gov/publications/benchmarking-keyword-extraction-methodologies-maintenance-work-orders
https://www.nist.gov/publications/benchmarking-keyword-extraction-methodologies-maintenance-work-orders
https://doi.org/10.6028/jres.124.029

105

SKOS Simple Knowledge Organization System Primer. (n.d.). Retrieved October 11,

2022, from https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/

SKOS Simple Knowledge Organization System—Home page. (n.d.). Retrieved October

11, 2022, from https://www.w3.org/2004/02/skos/

Spasic, I., Ananiadou, S., McNaught, J., & Kumar, A. (2005). Text mining and

ontologies in biomedicine: Making sense of raw text. Briefings in Bioinformatics,

6(3), 239–251. https://doi.org/10.1093/bib/6.3.239

Qiao, B., Fang, K., Chen, Y., & Zhu, X. (2017). Building thesaurus-based knowledge

graph based on schema layer. Cluster Computing, 20(1), 81–91.

https://doi.org/10.1007/s10586-016-0725-z

Valdez, J., Rueschman, M., Kim, M., Redline, S., & Sahoo, S. S. (2016). An Ontology-

Enabled Natural Language Processing Pipeline for Provenance Metadata

Extraction from Biomedical Text (Short Paper). On the Move to Meaningful

Internet Systems ... : CoopIS, DOA, and ODBASE : Confederated International

Conferences, CoopIS, DOA, and ODBASE ... Proceedings. OTM Confederated

International Conferences, 10033, 699–708. https://doi.org/10.1007/978-3-319-

48472-3_43

What is RDFS? (2021, July 25). https://www.bobdc.com/blog/whatisrdfs

What is RDF? (2021, June 27). https://www.bobdc.com/blog/whatisrdf/

https://www.w3.org/TR/2009/NOTE-skos-primer-20090818/
https://www.w3.org/2004/02/skos/
https://doi.org/10.1093/bib/6.3.239
https://doi.org/10.1007/s10586-016-0725-z
https://doi.org/10.1007/978-3-319-48472-3_43
https://doi.org/10.1007/978-3-319-48472-3_43
https://www.bobdc.com/blog/whatisrdfs
https://www.bobdc.com/blog/whatisrdf/

