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ABSTRACT 

Massively-parallel devices such as GPUs are best suited for accelerating regular 

algorithms. Since the memory access patterns and control flow of irregular algorithms are 

data dependent, such programs are more difficult to parallelize in general and a direct 

parallelization may not yield good performance, on GPUs in particular. However, by 

carefully studying the underlying problem, it may be possible to derive new algorithms 

that are more suitable for massively-parallel accelerators. This thesis involves studying 

and analyzing such an irregular algorithm, called Connected Components, and proposes 

an efficient algorithm, called ECL, which is faster than the existing CC algorithms on 

most tested inputs. Though atomic operations are fast, they can represent a bottleneck as 

these operations run serially and might hinder performance in the future parallel devices. 

This thesis also proposes a synchronous and atomic-free algorithm, called ECLaf, whose 

performance is comparable to the fastest existing CC algorithms.
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CHAPTER 1 

INTRODUCTION 

Finding the Connected Components (CC) is a key preprocessing step in many 

graph algorithms. It is used in real-world applications such as navigation, image 

segmentation, and in the medical field. Thus, a faster connected components algorithm 

and implementation has the potential to improve many important graph processing codes. 

1.1 Connected Components 

For an undirected graph G = (V, E), where V is the set of vertices and E is the set 

of edges, a connected component C is a subset of V such that all the vertices belonging to 

C are reachable from any vertex in C, and there are no edges between vertices belonging 

to different components. The connected components problem is to find the number of 

such components present in a given graph, assign a unique ID to each component, and 

label each vertex in the graph with its component ID. Figure 1.1 shows a graph with 

multiple connected components. 

There are several variants of connected components. A strongly Connected 

Component of a directed graph is a maximal set of vertices such that every pair of 

vertices in the set is reachable from each other. Bi-Connected Components are 

components in which removing any vertex still results in a connected component. A 

directed graph is Weakly Connected [7] if replacing all its directed edges with undirected 

edges produces a connected (undirected) graph. 
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Figure 1.1 Connected Components in a Graph 

1.2  General Serial Connected Components Algorithm 

There are two main serial approaches for Connected Components - Depth First 

Search [15] and the Union-Find algorithm [5] using disjoint data structure. 

1.2.1 Union-Find Algorithm 

This algorithm initially iterates over all the vertices and places each of them in a 

separate disjoint set and uses the vertex ID as the representative (label) of the set. Then, it 

loops over each edge (u, v) combining the sets of vertex u and vertex v. Thus, the 

algorithm returns a collection of sets where each set represents a connected component in 

the graph. Algorithm 1 depicts the union-find algorithm. 

Algorithm 1. Union-Find algorithm 

1. procedure: Union-Find CC (V, E) 

2. for each vertex v in V 

3.     Add vertex to a disjoint set Sv 

4.     Assign vertex v as the representative of the set Sv 
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5. end for 

6. for each edge (u, v) in E 

7.     if Representative(Su) != Representative(Sv) 

8.         Merge sets Su and Sv 

9.         Choose Representative of Su or Sv as new representative 

10. end for 

1.2.2 Depth-First Search 

Hopcroft and Tarjan [15] proposed the approach of using depth-first search to 

compute connected components which is shown in Algorithm 2. It involves iterating over 

all the vertices and performing depth-first search recursively to find the connected 

components. It maintains a Boolean array “visited”, which denotes whether a vertex has 

been visited or not. The algorithm loops over each vertex and performs DFS only on 

those vertices that have not yet been visited. During the depth-first search, it visits the 

neighbors of that vertex and sets their visited array element to true. In this way, all the 

vertices that are connected will be visited in a single recursive search. As this algorithm 

visits each vertex once, it takes O(|V|) time, i.e., O(n), where n = |V| denotes the number 

of vertices in the graph. 

Algorithm 2. DFS for CC 

1. procedure: DFS-CC (V, E) 

2. for each vertex v in V 

3.     if visited[v] is false 

4.         visited[v]  true 



 
 

 
 

4 

5.         increment number of connected components 

6.         Dfs(v) 

7.     end if 

8. end for 

1.3 General Parallel Connected Components Algorithm 

The general approach used to determine connected components is as follows. 

Each vertex has a label to hold the component ID to which it belongs. Initially, this label 

is set to the vertex ID, that is, each vertex is considered a separate component. Then each 

vertex and their neighbors are iteratively processed, in parallel, to find the connected 

components. In each step, the labels are updated until all the vertices in a connected 

component have the same label. Often, the ID of the minimum vertex in each component 

is chosen as the component ID to guarantee uniqueness. This general approach is 

common to several algorithms, which is discussed below. 

1.4 Contributions 

This thesis proposes ECL, an efficient Connected Components algorithm. I 

implemented this algorithm in parallel for GPUs and CPUs using CUDA and OpenMP, 

respectively, as well as serial C code. In my algorithm, each vertex asynchronously 

processes its neighbors to find the ID of the minimum vertex in that component. All 

vertices follow a path through their neighbors, neighbors’ neighbors, and so on, until the 

vertex with the lowest ID is found, which is then used to label all vertices on the path. My 

implementation is lock-free and uses a novel termination criterion to stop the 

computation at a vertex as soon as possible. Moreover, to improve the load balance, a 
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worklist is maintained for high-degree vertices to delay their processing. 

Atomic operations play a significant role in parallel codes as they help prevent 

data race conditions. Though atomic operations are faster, it is a bottleneck to parallel 

code as they serialize the threads and affects the scalability. This thesis also proposes an 

atomic-free implementation of CC algorithm, ECLaf, in CUDA and OpenMP which is as 

fast as the fastest existing approaches. 

I tested all the implementations on 18 real-world and synthetic graphs of varying 

sizes, including road maps, RMAT and Kronecker graphs, Internet topology graphs, 

citation graphs, web-link graphs, etc. I compared both of my CUDA implementations 

with the best pre-existing algorithms on two different GPUs - K40 and Titan X. On 

average, ECL is about 1.7x faster than the existing fastest GPU algorithm. 

I implemented the parallel and serial CPU codes using OpenMP and C, 

respectively, and compared them with corresponding programs from the literature. The 

parallel CPU implementation of ECL is about 1.6x faster than the existing fastest Parallel 

CPU algorithm. I implemented the atomic free algorithm ECLaf in OpenMP as well and it 

is 1.2x faster than the fastest parallel CPU algorithm from the literature. The serial 

implementation of ECL is 5x faster than the fastest preexisting serial CC algorithm. 

1.5 Outline 

The rest of this thesis is organized as follows: Chapter 2 discusses various 

implementations of connected components. Chapter 3 includes related work on connected 

components. Chapter 4 describes my CC implementation under various configurations as 
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well as an atomic-free CUDA implementation of CC. Chapter 5 explains the various 

environments on which CC is tested, the inputs, and the evaluation methods. Chapter 6 

presents a comparison of my CC implementation with other benchmarks and analyzes the 

performance. Chapter 7 concludes with a summary and future work. 
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CHAPTER 2 

BACKGROUND STUDY 

2.1 Parallel Implementations of CC 

A straightforward approach to implement CC is to mark each vertex with a unique 

label and propagating vertex labels through neighboring vertices until all the vertices in 

the same component are labelled with a unique ID. This is called Label propagation. 

Shiloach and Vishkin’s approach computes connected components by two major steps - 

Hooking and Pointer Jumping. 

The Hooking operation works on edges. The vertices on either side of an edge 

belong to a same component. For a given an edge (u, v), the Hooking operation checks if 

the vertices are labelled with the same component ID. If not, the higher of the two vertex 

IDs is “overwritten” with the lower ID. This is achieved by making the higher 

representative point to the lower ID. Figure 2.1 shows an input graph where vertices 8 

and 14 have different component ID. After hooking, vertices 8 and 14 are assigned the 

same component ID as shown in Figure 2.2. 

 

Figure 2.1 Graph before Hooking 
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Figure 2.2 Graph after Hooking 

Given a vertex u, Pointer Jumping reduces the depth of the tree (that u belongs to) 

by one by replacing its ID with its parent’s ID. Figure 2.2 shows a tree before Pointer 

Jumping. After the algorithm terminates, the tree in Figure 2.2 has been reduced to a 

single-level tree shown in Figure 2.3. It represents that all the vertices belong to the same 

component with vertex 4 as their label. 

Initially, the algorithm considers each vertex as a separate tree (or component 

labelled by its own ID). During each iteration, it performs Hooking and Pointer Jumping 

until all the multi-level trees are reduced to one-level trees (stars). Researchers have 

published different parallel algorithms for CC based on this approach, which use different 

names for these steps. This algorithm does not use any additional memory space for its 

computation. 

 

Figure 2.3 Graph after Pointer Jumping 
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Soman et al. [2] proposed a variant of Shiloach-Vishkin’s [1] approach by 

introducing Multiple Pointer Jumping. The algorithm defines an array “Label” to hold the 

component ID and initializes it with the vertex ID. Then, it iterates over the hook kernel 

until all the vertices in the same component are connected. It iteratively performs Pointer 

Jumping to convert the multi-level tree to a single-level tree (star), thus setting all the 

vertices in the same component to the same ID. Algorithm 3 shows this approach. 

Algorithms 4 and 5 show the Hook and Multiple Pointer Jumping kernels. 

 

   Algorithm 3. Overall Steps – Soman’s Algorithm 

1.  procedure: Soman’s CC (V, E) 

2. for each vertex v in V 

3.      Initialize Label[v]  v 

4.  repeat 

5.      for each edge (u, v) 

6.          Hook (u, v) 

7.  until Hook performs no change in Label [] 

8.  repeat 

9.      multiple-pointer jump () 

10.  until Jump performs no change in Label [] 

Algorithm 4. Hook Kernel in Soman’s Algorithm 

1.  procedure: Soman’s Hook (u, v) 

2. if (edge is unmarked && Label[u] != Label[v]) 

3.      min  min (Label[u], Label[v]) 
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4.      max  max (Label[u], Label[v]) 

5.      if iteration is even 

6.          Label[min] = max 

7.      else 

8.          Label[max] = min 

9.      end if 

10.  else 

11.    Mark edge (u, v) // edge hiding 

12. end if 

Algorithm 5. Multiple Pointer Jumping Kernel in Soman’s Algorithm 

1.  procedure: Multiple Pointer Jumping (u, Label []) 

2. repeat 

3.     Label[u]  Label [Label [u]] 

4.     u  Label[u] 

5. until u is not a root 

Sutton et al. [7] proposed a work-efficient connected components algorithm based 

on Soman’s work. The algorithm, presented in Algorithm 6, splits the graph into 2|E|/|V| 

edge-list segments where |V| denotes the number of vertices and |E| denotes the number 

of edges in the graph and iteratively performs Hook and pointer jumping operations on 

each of the segments. It performs atomic Hook and a single multi pointer jumping for 

each vertex. 
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Algorithm 6. Sutton et al’s CC Algorithm 

1. procedure: Sutton’s CC (V, E) 

2.   for each vertex v in V 

 3.       Initialize Label[v]  v 

 4.   for each segment in the edge-list 

 5.       repeat 

 6.           for all edges (u, v) in the segment 

 7.               AtomicHook (u, v) 

 8.           end for 

 9.       until Hook performs no change in Label [] 

 10.       for all v in V 

 11.           multi-pointer jump () 

 12.     end for 

 13. end for 

Gunrock’s [3] connected components algorithm is again a variant of Soman’s 

approach. It involves iterating over Hooking and pointer jumping until all the vertices in 

the same component have the same component ID. However, instead of processing all the 

vertices and edges in each iteration, this approach tries to reduce the workload by using a 

filter operator. After Hooking, the filter operator removes an edge if both the end vertices 

have the same component ID. Similarly, after pointer jumping, it removes a vertex whose 

own vertex ID is equal to the component ID. In this way, it reduces the workload after 

each iteration. 
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Ligra [4] is a graph processing framework for shared-memory parallel/multicore 

machines. Ligra provides two implementations for CC - Components and BFSCC. For an 

undirected graph G = (V, E), the Components algorithm, outlined in Algorithm 7, 

maintains two arrays “ID” and “prevID” of size |V| initialized such that ID[i] = i and 

prevID[i] = i. It iterates over the vertices, updates its ID with the minimum ID of its 

neighbors until all the vertices in the same component have the same ID (minimum ID). 

It reduces the workload in each iteration by only processing those vertices whose ID has 

changed in the previous iteration. The algorithm tracks a vertex’s ID by comparing 

prevID with ID. 

Algorithm 7. Components - Ligra Algorithm 

1. procedure: Ligra Component’s CC (V, E) 

2. frontier = {0, …, |V|-1} 

3. for each vertex v in V 

4.     ID[v]  v 

5.     prevID[v]  v 

6. end for 

7. repeat 

8.     for each vertex v in V 

9.         prevID[v]  ID[v] 

10.     end for 

11.     for each vertex v in V 

12.         ID[v]  min ID of its neighbors 

13.         if (ID[v] == prevID[v]) 
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14.             remove v from Frontier 

15.         end if 

16.     end for 

17. until Frontier is empty 

Ligra’s BFSCC algorithm uses Breadth-First Search in parallel to compute CC. It 

maintains an array “Parent” of size |V| to hold the component ID of that vertex and 

initializes it with -1 to denote that a vertex has not yet been processed. The algorithm 

iterates over all the vertices and in each iteration, it maintains a worklist that contains the 

vertices to be processed. It carries out Breadth-first search on the vertices in the worklist 

and all the vertices reachable through the search are again pushed back onto the worklist. 

This process continues until there are no more vertices reachable and all the vertices are 

processed. It labels all the vertices processed in the same iteration with the same ID. In 

this way, the algorithm computes connected components. Ligra uses two simple routines 

-VertexMap and EdgeMap, for mapping over vertices and edges, respectively. 

Algorithm 8. BFSCC - Ligra Algorithm 

 

1. procedure: Ligra BFSCC’s CC (V, E) 

2. Worklist = {} 

3. for each vertex v in V 

4.     Parent[v]  -1 

5. for each vertex v in V 

6.     if (Parent[v] != -1) 

7.         push v to Worklist 
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8.         repeat 

9.             v = pop.Worklist 

10.             BFS(v) 

11.             push all vertices reachable from v to Worklist 

12.         until Worklist is empty 

13.     end if 

14.  end for 

Ligra+ [5] is a variant of Ligra that is based on a compressed graph 

representation. It uses an encoder program to compress the input graphs with a difference 

encoding scheme. This difference encoding scheme targets the adjacency list of a vertex 

and encodes the difference between the edges of each vertex using variable length codes. 

The encoder compresses each integer into k-bit blocks and each block has a continue bit 

to indicate if the next block is also used to compress the integer x. An integer x is simply 

written in binary representation in a block. If a block cannot fit all the bits, then the 

encoder continues it in the following blocks by setting the continue bit. Decoding works 

the same way by converting the binary representation to the original form and including 

blocks with the continue bit set. 

CRONO [12] is a benchmark suite for graph algorithm in shared-memory 

multicore machines. CRONO’s CC algorithm is implemented using pthreads and it 

maintains an array to store each vertex’s label (Component ID). Then, it loops over all 

the vertices iteratively updating their label based on the connectivity. 
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CHAPTER 3 

RELATED WORK 

Hopcroft and Tarjan’s [15] approach was one of the first algorithms devised to 

compute connected components in serial. It is simple and stated as “well known” at that 

point of time. It is linear in time as it visits each vertex once. Later algorithms were 

devised based on this work. Various graph processing libraries such as Boost [9], Lemon 

[14], igraph [13], etc. include serial code to compute CC. 

Shiloach-Vishkin’s [1] proposed a different approach involving Hooking and 

pointer jumping to compute CC in parallel. Their algorithm is suitable for GPUs. Soman 

et al. [2] adapted this algorithm by modifying their pointer jumping to multiple pointer 

jumping. Though the number of iterations taken by their approach is the same as in 

Shiloach-Vishkin’s algorithm, multiple pointer jumping drastically reduces the number of 

reads and writes to the memory, thus improving the performance. 

Sutton et al. [7] proposed a variant of Soman’s algorithm by introducing Atomic 

Hook and single Multi pointer jump. By using atomics, it locks one of the vertices in the 

edge until the hook operation succeeds, which eliminates the CPU-side convergence 

loop. Instead of multiple calls to the pointer jumping kernel, it works with a single call to 

the multi pointer jump kernel, thus reducing the GPU-CPU communication overhead. 

Further, this algorithm splits the input graph into edge-list segments, which minimizes the 

number of atomic operation in the next Hook. 
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Ligra’s connected components algorithm is simple and its BFSCC algorithm is 

based on its own BFS algorithm. The authors claim that it is efficient and scalable. 

Ligra+ is an optimized version of Ligra. As it works on compressed graphs, it requires a 

smaller memory footprint, making it possible to fit larger graphs into the available 

memory. It is faster than Ligra when using the fast compression scheme. 

CRONO [12] does not scale well to large inputs. It allocates four arrays of size |V| 

and two two-dimensional arrays of size (|V| * Degreemax), where Degreemax indicates the 

graph’s maximum vertex degree. As a result, it runs out of memory for larger graphs. In 

fact, the graphs that they used are relatively small. Their largest graph is about 15 times 

smaller than my largest input graph.
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CHAPTER 4 

ECL ALGORITHM AND IMPLEMENTATIONS 

This section discusses my ECL algorithm, various optimizations to improve its 

performance and its implementation on various platforms (GPU, Parallel and Serial 

CPU). 

4.1 ECL Base Algorithm 

 The ECL CC Algorithm is simple and straightforward. It uses three main 

functions (kernels in CUDA) - “init”, “compute” and “flatten”. Algorithm 9 shows the 

overall layout. Each vertex has a label to hold the component ID to which it belongs. The 

algorithm chooses the ID of the minimum vertex in each component as the component ID 

to guarantee uniqueness of the labels. Most of the existing CC algorithms initialize the 

label of each vertex with the vertex ID. The ECL code optimizes the init function by 

initializing the label of each vertex with the first smaller neighbor ID it encounters. This 

improves performance as it moves the computation towards the minimum vertex ID in 

each component faster. 

 The compute function visits each vertex and processes each edge of that vertex so 

that both ends of the edge has the same ID. It uses a representative function on each 

vertex and its neighbors. The representative function follows the path from a vertex’s ID, 

to that vertex’s ID and so on until its finds the end of the chain, i.e., a vertex whose ID 

points to itself, which is then assigned to the starting vertex. This is a variant of pointer 

jumping as it updates the label of each of the vertices with a better label (smaller value). 
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It has a special “if” condition to make sure that each edge is considered only once, i.e., in 

one direction but not the other. 

 After the compute function, all the vertices are labelled either directly or 

indirectly with the ID of the lowest vertex in each of the components. The flatten 

function, a form of pointer jumping, visits all vertices and updates the label so that it 

represents the component ID directly. 

 Since CC is an irregular graph application, iteratively processing all vertices by 

assigning them to separate threads would result in load imbalance as the vertex degrees 

vary to a great extent. The CUDA implementation of CC uses a double-sided worklist to 

efficiently distribute work to each thread. 

            Algorithm 9. ECL CC Overall Algorithm 

1. procedure: ECL CC (V, E) 

2. Init (V, nstat) 

3. Compute (V, E, nstat) 

4. Flatten (V, nstat) 

            Algorithm 10. ECL CC Algorithm - Init Function 

1. procedure: Init (V, nstat) 

2. nstat = {0, …, |V|-1} 

3. for each vertex v in V 

4.     nstat[v]  First neighbor smaller than v. 

 

            Algorithm 11. ECL CC Algorithm - Compute Function 

1. procedure: Compute (V, E, nstat) 
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2. for each v in V 

3.     vstat  representative (v, nstat) 

4.     for each edge (u, v) in E 

5.         if (v > u) 

6.             ostat  representative (u, nstat) 

7.             if (vstat < ostat) 

8.                 nstat[ostat]  vstat 

9.             else 

10.                 nstat [vstat]  ostat 

11.             end if 

12.         end if 

13.     end for 

14. end for 

Algorithm 12. ECL CC Algorithm - Flatten Function 

1. procedure: Flatten (V, nstat) 

2. for each vertex v in V 

3.     vstat  nstat[v] 

4.     while (vstat > nstat[vstat]) 

5.         vstat  nstat[vstat] 

6.     end while 

7. end for 
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            Algorithm 13. ECL CC Algorithm - Representative Function 

1. procedure: Representative (v, nstat) 

2. curr  nstat[v] 

3. if (curr != v) 

4.     prev  v 

5.     next  nstat[curr] 

6.     while (curr > next) 

7.         nstat[prev]  next 

8.         prev  curr 

9.         curr  next 

10.     end while 

11. end if 

 

 In addition to the two arrays (neighborlist & neighborindex) used for representing 

the graph, the algorithm maintains an array ‘nstat’ of size |V|, which stores the 

component ID of each of the vertices. The CUDA implementations maintain another 

array “worklist” of size |V| to store the vertices. 

4.2 ECL - GPU Implementation 

I implemented the ECL CC Algorithm in CUDA for GPUs devices. It contains 

GPU-specific optimizations to improve the performance. It consists of three main kernels 

- init, compute1, and flatten. It also has two more compute kernels (compute2 & 

compute3) to process the vertices in the worklist. 
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As described above, the init kernel initializes the vertex labels with the first 

neighbor, if any, whose ID is smaller than the vertex ID. The algorithm divides the 

processing of vertices among the three compute kernels. It maintains a double-sided 

worklist and the compute1 kernel fills the worklist with vertices on both the sides based 

on their edge degree. The compute1 kernel populates the double-sided worklist as shown 

in Figure 4.1. Two threshold values (16 and 352) are identified by trial and error method. 

The compute1 kernel pushes vertices with degree greater than 16 and less than or equal to 

352 to the front of the worklist and vertices with degree greater than 352 to the rear of the 

worklist, which are later read by the other compute kernels. The compute1 kernel 

processes the vertices with degree less than 16, i.e., all the threads in the compute1 kernel 

process low-degree vertices and no thread has to wait long for other threads to finish their 

computation, thus resulting in better load balancing. Each thread processes the assigned 

vertex and loops over each neighbor, updating the vertex labels, until there is no change 

in the vertex’s label or its neighbor’s labels. 

 

 

  

Figure 4.1 Double-sided worklist 

 

The compute2 kernel reads vertices from the front of the worklist and utilizes 

warp-level parallelism in the GPU, i.e., each warp processes a single vertex. A warp in a 

GPU represents a set of 32-contiguous threads. All the threads within a warp execute the 

same instruction in the same clock cycle and they can exchange data with each other 

using shuffle machine instructions without explicit synchronization. In the compute2 

V1 V4 V5 V7 V2 

  16 < d(v)  352                             d(v) > 352  
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kernel, each warp reads from the front of the worklist and all the threads within a warp 

share the work and process that vertex’s neighbors using a cyclic assignment. 

The compute3 kernel reads vertices from the rear of the worklist and utilizes 

block-level parallelism in the GPU. A block is a group of threads. Each block can hold up 

to 1024 threads. The programmer decides the actual number of threads per block. I use 

256 threads per block. All the threads in a block have access to shared memory, which 

enables fast data exchange. It requires explicit synchronization, which can be achieved by 

the CUDA instruction __syncthreads(). The compute3 kernel uses block-level parallelism 

as it processes vertices with large numbers of neighbors. It assigns each thread block to 

process a single vertex and all the threads within a block share the work of processing the 

neighbors and make sure that the two ends of each vertex have the same component ID. 

After the compute kernels are done, all the vertex labels directly or indirectly 

point to the ID of the lowest vertex in each connected component. The flatten kernel 

updates all the vertex labels so that they directly refer to the component ID. 

ECL uses atomic operations to update the vertex labels in the compute kernels as 

more than one thread might be updating a vertex’s label. Moreover, it uses atomic 

operations to insert vertices in the worklist and to read them from the worklists. 

In terms of space complexity, ECL uses two arrays “neighborlist” and 

“neighborindex” of size |V| and |E|, respectively, to represent the input graph. It uses a 

double-sided worklist of size |V| for load balancing. Overall, ECL’s space complexity is 

O(|V|+|E|). 
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4.3 ECL - Parallel CPU Implementation 

 I implemented the ECL CC algorithm in OpenMP for multicore CPUs. It has the 

same three functions as mentioned in Algorithm 9. The init and compute functions use a 

“guided” schedule to allocate vertices to threads. The algorithm assigns each thread with 

a vertex. Each thread processes the vertex and loops over each neighbor, until there is no 

change in their labels. To avoid data races, this algorithm uses a GCC-specific atomic-

compare-and-swap operation (__sync_val_compare_and_swap) to update the vertex 

labels. 

4.4 ECL - Serial CPU Implementation 

 I implemented the ECL CC algorithm in C for serial CPU devices. It is 

straightforward and does not involve any worklists or atomic operations as there are no 

load balancing issues or data races in the serial code. 

4.5 ECLaf – Atomic-Free CC Implementation 

 The ECL algorithm uses atomic operations to prevent data races as there are 

situations when multiple threads try to access the same memory location. These 

operations prevent data races by ensuring that no other thread can access a given memory 

location until the operation is done. However, it is a significant bottleneck as the atomic 

operations are performed serially and any thread that tries to access that memory location 

must wait until the atomic operation is done. In fact, future systems may be so widely 

parallel that implementing fast atomics will be difficult. 

I propose an atomic free CC algorithm, ECLaf for parallel codes, which loops over 
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the compute kernel(s) to avoid atomic operations. Eliminating atomic operations would 

result in data race conditions which in turn would result in incorrect computation. To 

avoid such data races, this algorithm repeatedly calls the compute kernels. A variable 

‘reiterate’ decides whether to loop over the compute kernel or not. Algorithm 14 and 15 

show the pseudocode of the general ECLaf algorithm and its compute function, 

respectively. Similar to the previous GPU implementation, ECLaf’s GPU implementation 

groups vertices based on their edge degree and uses three compute kernels for load 

balancing. Each compute kernel has its own ‘reiterate’ variable and it is set whenever a 

vertex’s label or its neighbor’s label is updated. The algorithm reiterates compute kernels 

until all the vertex labels and all of its neighbor’s labels remain unchanged. 

            Algorithm 14. General ECLaf - Overall Algorithm 

1. procedure: ECLaf CC (V, E) 

2. Init (V, nstat) 

3. reiterate  1 

4. do 

5.     if reiterate 

6.         Compute (V, E, nstat, &reiterate) 

7.     end if 

8. while (!reiterate) 

9. Flatten (V, nstat) 

            Algorithm 15. ECLaf CC Algorithm - Compute Function 

1. procedure: Compute (V, E, nstat, *reiterate) 

2.  for each vertex v in V 
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3. vstat  representative (v, nstat) 

2.     for each edge (u, v) in E 

3.         if (v > u) 

4.             ostat  representative (u, nstat) 

5.            *reiterate  1 

6.             if (vstat < ostat) 

7.                 nstat[ostat]  vstat 

8.             else 

9.                 nstat [vstat]  ostat 

10.             end if 

11.         end if 

12.     end for 

13. end for 

I implemented ECLaf in OpenMP for parallel CPU devices. As discussed above, 

by repeatedly calling the compute function, it eliminates the CPU-specific atomic 

operation (__sync_val_compare_and_swap). It uses a “guided” schedule to dynamically 

allocate work to each thread and the chunk size reduces as the program runs to minimize 

load imbalance. Since CPU does not face significant load balancing issues, this 

implementation uses only one compute function. Its own variable ‘reiterate’ decides 

whether to loop over compute function or not.
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CHAPTER 5 

EVALUATION METHODOLOGY 

5.1 GPU and CPU Machines 

In this thesis, I have implemented my CC algorithm in parallel both for GPUs and 

CPUs in CUDA and OpenMP, respectively, and as a serial C code. I tested the parallel 

CUDA implementations and related benchmarks on two GPUs, a Titan X and a K40. 

The first is a GeForce GTX Titan X, which is based on the Maxwell architecture. 

The second is a Tesla K40c, which is based on the Kepler architecture. The Titan X has 

3072 processing elements distributed over 24 multiprocessors that can hold the contexts 

of 49,152 threads. Each multiprocessor has 96 kB of shared memory and 48 kB of 

L1/texture cache. The 24 multiprocessors share a 2 MB L2 cache as well as 12 GB of 

global memory with a theoretical peak bandwidth of 336 GB/s. I use the default clock 

frequencies of 1.1 GHz for the processing elements and 3.5 GHz for the GDDR5 

memory. 

The K40 has 2880 processing elements distributed over 15 multiprocessors that 

can hold the contexts of 30,720 threads. Each multiprocessor has 48 kB of texture 

memory as well as 64 kB of cache that is split between the shared memory and the L1 

data cache. The 15 multiprocessors share a 1.5 MB L2 cache as well as 12 GB of global 

memory with a peak bandwidth of 288 GB/s. I disabled ECC protection of the main 

memory and used the default clock frequencies of 745 MHz for the processing elements 

and 3 GHz for the GDDR5 memory. Both GPUs are plugged into 16x PCIe 3.0 slots in 
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the same system, which has dual 10-core Xeon E5-2687W v3 CPUs running at 3.1 GHz. 

The host memory size is 128 GB and the operating system is Fedora release 23. 

I test the parallel CPU implementations on two machines. Machine 1 uses an 

Intel(R) Xeon(R) CPU E5-2687W based x86_64 architecture, clocked at 3.10 GHz. It has 

2 sockets and 10 cores per socket. As it supports hyper threading, it can run 40 threads 

simultaneously. It has a 32 kB L1 data cache and a 256 kB L2 cache. Machine 2 uses an 

Intel(R) Xeon(R) CPU X5690 based x86_64 architecture, clocked at 3.47 GHz. It has 2 

sockets, 6 cores per socket and does not support hyper threading, meaning it can run 12 

threads simultaneously. It also has a 32 kB L1 data cache and a 256 kB L2 cache. 

5.2 Input Graphs Format and Specifications 

I use 18 graphs as inputs, which include road maps (europe_osm , USA-road-

d.NY and USA-road-d.USA), a grid (2d- 2e20.sym), a random graph (r4-2e23.sym), 

RMAT graphs (rmat16.sym and rmat22.sym), a synthetic Kronecker graph from the 

Graph500 (kron_g500-logn21), a product co-purchasing graph (amazon0601), Internet 

topology graphs (as-skitter and internet), publication citation graphs (citationCiteseer and 

coPapersDBLP), a patent citation graph (cit-Patents), a Delaunay triangulation 

(delaunay_n24), an online journal maintenance community graph (soc-livejournal) and 

web-links graphs (in-2004 and uk-2002). The Center for Discrete Mathematics and 

Theoretical Computer Science at the University of Rome [16], the Galois frame- work 

[17], the Stanford Network Analysis Platform [18], and the University of Florida Sparse 

Matrix Collection [19] provided these graphs. The graph sizes vary from 65K vertices 

and 387K edges for the smallest graph to 18M vertices and 523M edges for the largest 
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graph. Table 1 shows the graph sizes and other pertinent information. 

Table 5.1 Input Graph Information 

S. No Graph Name 
No. of 

Edges 

No. of 

Vertices 

Vertex degree 
No. of CC 

min max avg 

1 2d-2e20 1,048,576 4,190,208 2 4 3 1 

2 amazon0601 403,394 4,886,816 1 2752 12 7 

3 as-skitter 1,696,415 2,219,059 1 35455 1 756 

4 citationCiteseer 268,495 2,313,294 1 1318 8 1 

5 cit-Patents 3,774,768 33,037,894 1 793 8 3,627 

6 coPapersDBLP 540,486 30,491,458 1 3299 56 1 

7 delaunay_n24 16,777,216 100,663,202 3 26 5 1 

8 europe_osm 50,912,018 108,109,320 1 13 2 1 

9 in-2004 1,382,908 27,182,946 0 21869 19 134 

10 internet 124,651 387,240 1 151 3 1 

11 kron_g500-logn21 2,097,152 182,081,864 0 213904 86 553,159 

12 r4-2e23 8,388,608 67,108,846 2 26 7 1 

13 rmat16 65,536 967,866 0 569 14 3,900 

14 rmat22 4,194,304 65,660,814 0 3687 15 428,640 

15 soc-livejournal 4,847,571 85,702,474 0 20333 17 1,876 

16 uk-2002 18,520,486 523,574,516 0 194955 28 38,359 

17 USA-NY 264,346 730,100 1 8 2 1 

18 USA-USA 23,947,347 57,708,624 1 9 2 1 
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I use the Compressed Adjacency List format to represent all the graphs, which is 

quite space efficient yet still allows to identify the neighbors of a vertex quickly. It is 

based on two arrays: “neighborlist” of size |E| is simply the concatenation of all the 

adjacency lists, and “neighborindex” of size |V| + 1 stores the starting point of each 

adjacency list. It needs one extra element to indicate the end of the last adjacency list. 

“neighborindex” helps to find the number of edges of each vertex. “neighborlist” indexed 

by “neighborindex” can be used to iterate over the edges. For example, Figure 5.1 shows 

a graph with 4 vertices and 7 edges. Figure 5.2 shows the corresponding Compressed 

Adjacency List format. 

 

Figure 5.1 Graph 

Adjacency Lists 

A: B, C 

B: C, D 

C: B 

D: A, B 
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Combined Adjacency list, L = B, C, C, D, B, A, B 

 

Figure 5.2 Compressed Adjacency List Representation 

5.3 Compiler Information 

I use nvcc 8.0 for compiling my CUDA CC implementation and for the other 

CUDA-based benchmarks. I compile all the CPU codes using g++ 5.3.1. In all cases, I 

use the -O3 optimization flag. 
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CHAPTER 6 

RESULTS 

6.1 Configurations 

I evaluate my CC CUDA implementations (including the atomic free version) on 

two different GPUs. I run all the GPU benchmarks on both GPUs using the same 

compiler flags. I compare performance in terms of slowdown with respect to my CC 

implementation. I follow a similar procedure for performance comparison in the parallel 

and serial CPU codes. 

6.2 Comparison with Parallel GPU Benchmarks 

This subsection compares my CC implementation (ECL) with other GPU 

benchmarks on the Titan X and K40 GPUs. I run all codes on all 18 input graphs and 

normalize their runtimes. I fix the ECL values as 1.0 and calculate slowdowns for the 

other benchmarks with respect to ECL. Figure 6.1 shows the slowdowns of all GPU 

benchmarks on Titan X. Figure 6.2 shows the slowdowns on K40. Bars in the chart that 

are higher than 1.0 are slower than ECL and there is a reference line in the charts for 

easier comparison. Average (geometric mean) slowdowns are present for all benchmarks 

in the charts. 
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Figure 6.1 Parallel GPU Benchmarks Slowdowns relative to ECL on the Titan X 

Figure 6.1 shows the slowdowns in GPU benchmarks with respect to ECL on 

Titan X. ECL is the fastest on 16 input graphs and Groute is 1.3x faster than ECL on the 

remaining two input graphs. On average, ECL is 1.8x faster than Groute, 4x faster than 

Soman’s, 6.4x faster than LSG and 8.4x faster than Gunrock. 
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Figure 6.2 Parallel GPU Benchmarks Slowdowns relative to ECL on the K40 

Note: Bars exceeding a height of 30 are cut off. 

Figure 6.2 shows the slowdowns in GPU benchmarks with respect to ECL on 

K40. ECL is the fastest on 14 input graphs and Groute is 1.4x faster than ECL on the 

remaining four input graphs. On average, ECL is 1.6x faster than Groute, 4.3x faster than 

Soman’s, 5.8x faster than LSG and 9x faster than Gunrock. 
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6.3 Comparison with Parallel CPU Benchmarks 

 
 

Figure 6.3 Parallel CPU Benchmarks Slowdowns relative to ECL on the Zurich 

Note: Bars exceeding a height of 50 are cut off. 

Figure 6.3 shows the slowdowns in Parallel CPU benchmarks with respect to ECL 

on Zurich. ECL is 4.2x faster than the existing fastest benchmark, Ligra+ BFSCC, on 

more than half of the input graphs and it beats the other benchmarks on overall 

performance. On average, ECL is 1.4x faster than Ligra+’s BFSCC, 2.2x faster than 

Ligra+’s Components, 3.4x faster than CRONO, 4.7x faster than Asynchronous LS, 9.5x 

faster than Synchronous LS and 13.6x faster than Blocked Asynchronous LS. CRONO 

does not support 5 input graphs (as-skitter, in-2004, kron_g500-logn21, soc-livejournal & 

uk-2002) as it runs out of memory. 
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Figure 6.4 Parallel CPU Benchmarks Slowdowns relative to ECL on the Denver 

Note: Bars exceeding a height of 50 are cut off. 

Figure 6.4 shows the slowdowns in Parallel CPU benchmarks with respect to ECL 

on Denver. ECL is faster than the existing fastest benchmark, Ligra+ BFSCC, on more 

than half of the input graphs by 3.2x and it beats the other benchmarks on overall 

performance. On average, ECL is 1.7x faster than Ligra+’s BFSCC, 7.1x faster than 

Ligra+’s Components, 6.8x faster than CRONO, 22.8x faster than Asynchronous LS, 

35.2x faster than Synchronous LS and 47.1x faster than Blocked Asynchronous LS. 
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6.4 Comparison with Serial CPU Benchmarks 

 

Figure 6.5 Serial CPU Benchmarks Slowdowns relative to ECL on the Zurich 

Figure 6.5 shows the slowdowns in Serial benchmarks with respect to ECL on 

Zurich. ECL is 3.1x faster than LS Serial, on 16 input graphs. On overall comparison, 

ECL is 2.6x faster than LS Serial, 5.2x faster than Boost, 6.7x faster than igraph and 9.1x 

faster than Lemon. 
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Figure 6.6 Serial CPU Benchmarks Slowdowns relative to ECL on the Denver 

Figure 6.6 shows the slowdowns in Serial benchmarks with respect to ECL on 

Denver. ECL is the fastest on all the input graphs. Overall, ECL is 5.3x faster than Boost, 

7.9x faster than igraph, 8.1x faster than LS Serial and 11x faster than Lemon. 
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6.5 Performance Comparison across different Configurations 

 

Figure 6.7 Geometric-Mean Slowdowns of CC Implementations on different systems 

Figure 6.7 compares the average slowdowns for all the benchmarks across 

different configurations - GPU, Parallel and Serial CPU. I calculate the slowdowns for all 

the benchmarks with respect to the GPU ECL runtimes on the Titan X. The chart 

considers the runtimes of the parallel and serial CPU benchmarks run on Zurich. As the 

chart shows, ECL GPU is the fastest of all the tested benchmarks. As expected, the GPU 

benchmarks are faster than the CPU codes. Interestingly, some of the parallel CPU codes 

are slower than the serial codes. In particular, all the parallel LS codes are slower than 

their respective serial implementations. 
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Figure 6.8 Throughput (Edges/s) of various CC Implementations on different 

systems 

Figure 6.8 shows the average throughput for all the benchmarks across different 

configurations - Titan X GPU, Parallel and Serial CPU on Zurich. I calculate throughput 

in terms of number of edges processed per second for all the benchmarks. As seen in the 

above chart, ECL GPU code has the highest throughput of 5.295 billion edges per 

second. Most of the GPU benchmarks have higher throughput than the others. It is 

interesting to see that some of the serial codes have higher throughput than the parallel 

CPU codes. 
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Figure 6.9 Throughput (Nodes/s) of various CC Implementations on different 

systems 

Figure 6.9 shows the average throughput, calculated in terms of nodes processed 

per second, for all the benchmarks across different configurations - Titan X GPU, Parallel 

and Serial CPU on Zurich. As seen in the above chart, ECL GPU code has the highest 

throughput of 650 million nodes per second. Most of the GPU benchmarks have higher 

throughput than the others CPU and serial codes.



 
 

 
 

41 

6.6 Performance Comparison - Atomic-Free Implementations 

 I implemented ECLaf, the atomic free CC algorithm, both in CUDA and OpenMP 

and compared its performance with parallel GPU and CPU benchmarks. 

 

Figure 6.10 Parallel GPU Benchmarks Slowdowns relative to ECLaf on the Titan X 

Figure 6.10 shows the slowdowns in GPU benchmarks with respect to ECLaf on 

Titan X. On Titan X, Groute is 1.1x faster than ECLaf on average and is faster on more 

than half of the input graphs. On the remaining graphs, ECLaf is 1.9x faster than Groute. 

On overall comparison, it is 2x faster than Soman’s, 3.2x faster than LSG and 4.3x faster 

than Gunrock. 
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Figure 6.11 Parallel GPU Benchmarks Slowdowns relative to ECLaf on the K40 

Figure 6.11 shows the slowdowns in GPU benchmarks with respect to ECLaf on 

K40. 

Though Groute is 1.2x faster than ECLaf in overall performance, ECLaf beats 

Groute on half of the input graphs by an average of 1.4x. On overall comparison, ECLaf is 

2.2x faster than Soman’s, 2.9x faster than LSG and 5.7x faster than Gunrock. 
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Figure 6.12 Parallel CPU Benchmarks Slowdowns relative to ECLaf on the Zurich 

Note: Bars exceeding a height of 30 are cut off. 

Figure 6.12 shows the slowdowns in Parallel CPU benchmarks with respect to 

ECLaf on Zurich. ECLaf is faster than Ligra+ BFSCC on half of the input graphs by 4.2x. 

On overall comparison, it is 1.1x faster than Ligra+ BFSCC, 1.7x faster than Ligra+ 

Components, 2.62x faster than CRONO, 3.5x faster than Asynchronous LS, 7.1x faster 

than Synchronous LS and 10.2x faster than Blocked Asynchronous LS. 
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Figure 6.13 Parallel CPU Benchmarks Slowdowns relative to ECLaf on the Denver 

Note: Bars exceeding a height of 40 are cut off. 

Figure 6.13 shows the slowdowns in Parallel CPU benchmarks with respect to 

ECLaf in Denver. ECLaf is faster than the existing fastest CPU Benchmark, Ligra+ 

BFSCC, on more than half of the input graphs by 2.7x and it beats the other benchmarks 

on overall performance. On average, ECLaf is 1.4x faster than Ligra+’s BFSCC, 5.7x 

faster than Ligra+’s Components, 6.1x faster than CRONO, 18.2x faster than 

Asynchronous LS, 28.1x faster than Synchronous LS and 37.6x faster than Blocked 

Asynchronous LS.  
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CHAPTER 7 

SUMMARY 

7.1 Summary 

Computing the connected components is an important graph application used in 

various fields. This thesis proposes two efficient algorithms for connected components - 

ECL and ECLaf. ECL is an asynchronous algorithm suitable for massively parallel 

devices. My CUDA implementation of ECL includes optimizations to improve load-

balance and uses a variant of pointer jumping to speed up the calculation of the connected 

components. I also ported the ECL algorithm to parallel and serial CPU devices, where I 

implemented it in OpenMP and C, respectively. 

Atomic operations play a significant role in many algorithms specific to parallel 

devices, as they prevent data races. However, these operations incur overhead as they 

briefly serialize the threads that execute atomic operations. ECLaf is an atomic-free 

synchronous implementation, which reiterates over kernel(s) to solve the connected 

components problem. I implemented it for GPUs and parallel CPU devices. I tested both 

algorithms on 18 input graphs and compared their performance with corresponding 

programs from the literature. ECL shows a significant improvement in performance and, 

on average, it outperforms the existing fastest GPU algorithm by 1.7x. On CPUs, it is 

1.6x faster than the fastest parallel CPU algorithm from the literature. The serial 

implementation is 5x faster than the fastest preexisting serial CC algorithm. Though 

ECLaf is atomic-free and therefore needs to perform multiple rounds of computation, its 

CUDA implementation shows comparable performance with the fastest GPU algorithm 
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and its OpenMP-implementation is 1.2x faster than the fastest parallel CPU algorithm. 

7.2 Future Work 

In the future, researchers could evaluate the proposed connected components 

algorithms and optimize them for other architectures such as AMD CPUs and GPUs as 

well as ARM CPUs. Researchers could also extend these algorithms to multi-GPU and/or 

Xeon-Phi-based systems. It might also be interesting to study the energy efficiency in 

addition to the runtime and adding optimizations to improve that aspect.
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APPENDIX SECTION 

 This section contains the runtimes for all the ECL codes and their corresponding 

Benchmarks.
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Table A.1 Parallel GPU Code Runtimes on the Titan X 

 

 ECL ECLaf Groute Gunrock LSG Soman Cusp 

2d-2e20 0.0012 0.0020 0.0019 0.0122 0.0116 0.0069 0.0278 

amazon0601 0.0009 0.0017 0.0009 0.0031 0.0065 0.0015 0.0513 

as-skitter 0.0025 0.0025 0.0020 0.0081 0.0054 0.0037 4.4829 

citationCiteseer 0.0006 0.0014 0.0042 0.0044 0.0069 0.0021 0.0110 

cit-Patents 0.0146 0.0322 0.0586 0.1046 0.0709 0.0676 21.5052 

coPapersDBLP 0.0025 0.0043 0.0028 0.0201 0.0119 0.0073 0.0182 

delaunay_n24 0.0146 0.0225 0.0221 0.1706 0.0622 0.0667 0.0656 

europe_osm 0.0290 0.0516 0.0217 0.2569 0.0995 0.1168 0.2388 

in-2004 0.0026 0.0058 0.0073 0.0757 0.0154 0.0121 0.8626 

internet 0.0002 0.0006 0.0003 0.0026 0.0052 0.0016 0.0091 

kron_g500-

logn21 
0.0209 0.0376 0.0246 0.1918 0.1410 0.1345 2164.2301 

r4-2e23 0.0216 0.0216 0.0238 0.0676 0.0546 0.0538 0.0503 

rmat16 0.0003 0.0007 0.0017 0.0018 0.0041 0.0011 19.5460 

rmat22 0.0205 0.0415 0.1261 0.1299 0.1095 0.1024 1700.5245 

soc-livejournal 0.0127 0.0229 0.0140 0.0604 0.0431 0.0413 12.5244 

uk-2002 0.0458 0.1282 0.1085 1.3891 0.2438 0.2297 494.1125 

USA-NY 0.0002 0.0006 0.0003 0.0027 0.0076 0.0016 0.0133 

USA-USA 0.0141 0.0374 0.0153 0.1680 0.0604 0.0671 0.0697 
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Table A.2 Parallel GPU Code Runtimes on the K40 

 

 ECL ECLaf Groute Gunrock LSG Soman Cusp 

2d-2e20 0.0022 0.0034 0.0040 0.0237 0.0160 0.0125 0.0329 

amazon0601 0.0011 0.0025 0.0012 0.0066 0.0072 0.0028 0.0377 

as-skitter 0.0041 0.0046 0.0031 0.0176 0.0079 0.0070 5.0367 

citationCiteseer 0.0009 0.0020 0.0032 0.0083 0.0073 0.0039 0.0105 

cit-Patents 0.0194 0.0458 0.0647 0.2150 0.0904 0.0848 23.8706 

coPapersDBLP 0.0045 0.0074 0.0040 0.0484 0.0183 0.0141 0.0261 

delaunay_n24 0.0210 0.0309 0.0324 0.4026 0.1210 0.1230 0.1184 

europe_osm 0.0442 0.0783 0.0349 0.5846 0.1645 0.2134 0.3267 

in-2004 0.0046 0.0096 0.0123 0.2339 0.0222 0.0192 0.9114 

internet 0.0003 0.0009 0.0004 0.0053 0.0056 0.0022 0.0081 

kron_g500-

logn21 
0.0401 0.0749 0.0436 0.3511 0.2452 0.2216 2743.4945 

r4-2e23 0.0298 0.0298 0.0375 0.0931 0.0667 0.0672 0.0731 

rmat16 0.0004 0.0010 0.0018 0.0029 0.0044 0.0019 21.5828 

rmat22 0.0270 0.0553 0.1122 0.2141 0.1505 0.1457 1941.3319 

soc-livejournal 0.0201 0.0350 0.0186 0.1134 0.0698 0.0678 13.9202 

uk-2002 0.0835 0.2376 0.2129 5.8692 0.4801 0.4668 580.6068 

USA-NY 0.0004 0.0009 0.0004 0.0046 0.0096 0.0024 0.0146 

USA-USA 0.0238 0.0573 0.0275 0.3624 0.1111 0.1328 0.1151 
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Table A.3 Parallel CPU Code Runtimes on Zurich 

 

 
ECL Ligra+ 1 Ligra+ 2 CRONO LS_1 LS_2 LS_3 

2d-2e20 0.0489 0.0888 0.2628 0.1607 0.2407 0.2967 0.2967 

amazon0601 0.0477 0.0053 0.0116 0.1100 0.1874 0.1573 0.1573 

as-skitter 0.0637 0.0756 0.1126 NA 1.2143 0.6879 0.6879 

Citation 

Citeseer 
0.0550 0.0026 0.0064 0.1097 0.0963 0.0901 0.0901 

cit-Patents 0.1108 0.3334 0.3191 0.4839 2.9170 1.8954 1.8954 

coPapersDBLP 0.0731 0.0062 0.0471 0.1752 1.4819 0.3461 0.3461 

delaunay_n24 0.1373 0.2021 3.8830 1.5323 4.3657 3.4851 3.4851 

europe_osm 0.1787 7.0460 26.5400 1.5742 4.5203 7.9685 7.9685 

in-2004 0.0525 0.0465 0.0410 NA 0.9930 0.3160 0.3160 

internet 0.0377 0.0024 0.0030 0.0431 0.0158 0.0172 0.0172 

kron_g500-

logn21 
0.1173 6.1170 0.2280 NA 14.5817 3.7193 3.7193 

r4-2e23 0.1198 0.0590 0.2113 0.3631 5.2150 7.9287 7.9287 

rmat16 0.0387 0.0512 0.0018 0.0341 0.0383 0.0232 0.0232 

rmat22 0.0830 6.3520 0.2745 0.5992 6.9970 3.9790 3.9790 

soc-livejournal 0.0890 0.1231 0.5110 NA 6.6913 4.3803 4.3803 

uk-2002 0.1655 0.7545 0.7275 NA 29.7646 6.8136 6.8136 

USA-NY 0.0278 0.0292 0.0812 0.0741 0.0216 0.0305 0.0305 

USA-USA 0.1170 0.6957 43.1600 1.4374 2.7470 3.6081 3.6081 

 

 

Ligra+ 1 - Ligra+ BFSCC 

Ligra+ 2 - Ligra+ Components 

LS_1 - LS Blocked Asynchronous 

LS_2 - LS Synchronous 

LS_3 - LS Asynchronous
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Table A.4 Parallel CPU Code Runtimes on Denver 

 

 
ECL Ligra+ 1 Ligra+ 2 CRONO LS_1 LS_2 LS_3 

2d-2e20 0.0273 0.0576 0.6800 0.1993 0.7829 0.8382 0.5053 

amazon0601 0.0182 0.0088 0.0349 0.0780 0.4623 0.3530 0.1667 

as-skitter 0.0262 0.0529 0.1410 NA 2.5565 1.6440 1.4935 

Citation 

Citeseer 
0.0175 0.0043 0.0277 0.1015 0.2275 0.1917 0.1074 

cit-Patents 0.1564 0.2160 0.8130 0.5934 6.3997 4.7877 3.4271 

coPapersDBLP 0.0329 0.0117 0.0597 0.1262 3.2563 1.0859 0.7203 

delaunay_n24 0.1545 0.2260 4.4100 1.1776 7.7839 6.7026 4.9345 

europe_osm 0.2874 0.9260 30.8000 2.0876 10.1316 15.8009 8.1270 

in-2004 0.0471 0.0442 0.0826 NA 1.9132 0.9191 0.6771 

internet 0.0132 0.0026 0.0067 0.0676 0.0329 0.0360 0.0243 

kron_g500-

logn21 
0.2179 2.2300 0.4920 NA 29.1799 10.8242 9.6110 

r4-2e23 0.1340 0.1310 0.5460 0.4207 9.9513 13.8737 6.3252 

rmat16 0.0017 0.0194 0.0047 0.0451 0.0694 0.0547 0.0394 

rmat22 0.2718 2.1100 0.7790 NA 15.4968 9.3222 6.5073 

soc-livejournal 0.1756 0.1070 0.9720 NA 14.3023 9.3904 4.7901 

uk-2002 0.4532 0.5270 1.4100 NA 55.7538 17.1402 12.0359 

USA-NY 0.0101 0.0141 0.1120 0.0932 0.0541 0.0666 0.0433 

USA-USA 0.2399 0.3980 70.2000 1.3166 6.3369 7.0886 4.9382 

 

 

Ligra+ 1 - Ligra+ BFSCC 

Ligra+ 2 - Ligra+ Components  

LS_1 - LS Blocked Asynchronous 

LS_2 - LS Synchronous 

LS_3 - LS Asynchronous
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Table A.5 Serial CPU Code Runtimes on Zurich 

 

 
ECL LS Serial Boost Lemon igraph 

2d-2e20 0.0427 0.1179 0.2813 0.2687 0.3192 

amazon0601 0.0175 0.0469 0.1546 0.3517 0.1741 

as-skitter 0.0562 0.6048 0.5116 1.4873 0.4849 

citationCiteseer 0.0244 0.0315 0.0795 0.1722 0.1040 

cit-Patents 0.2688 0.9639 1.9611 3.7353 2.3449 

coPapersDBLP 0.0666 0.2025 0.3595 1.2438 0.4880 

delaunay_n24 0.5100 1.4646 2.9137 2.5452 3.5161 

europe_osm 0.8898 2.0601 5.8685 6.7573 10.8726 

in-2004 0.0818 0.1675 0.2610 0.6426 0.3924 

internet 0.0098 0.0057 0.0155 0.0087 0.0140 

kron_g500-logn21 0.4472 2.9119 2.4865 17.9984 6.4585 

r4-2e23 0.5136 2.3232 3.4911 8.3909 5.9166 

rmat16 0.0072 0.0120 0.0241 0.0385 0.0243 

rmat22 0.4585 2.0729 2.8357 7.9761 3.7217 

soc-livejournal 0.4050 1.4531 2.4589 8.3611 3.6557 

uk-2002 1.0040 3.7731 5.7324 15.7312 13.7288 

USA-NY 0.0133 0.0082 0.0422 0.0176 0.0303 

USA-USA 0.5993 1.2499 3.8238 2.4520 3.7154 
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Table A.6 Serial CPU Code Runtimes on Denver 

 

 
ECL LS Serial Boost Lemon igraph 

2d-2e20 0.0762 0.1141 0.2789 0.3010 0.3137 

amazon0601 0.0312 0.0465 0.1285 0.3588 0.1760 

as-skitter 0.0804 0.5945 0.4813 1.5809 0.4887 

citationCiteseer 0.0191 0.0317 0.0857 0.1829 0.1043 

cit-Patents 0.2095 0.9381 1.9496 3.8537 2.3879 

coPapersDBLP 0.0659 0.2021 0.3675 1.2395 0.4811 

delaunay_n24 0.5203 1.5231 2.7283 3.1990 3.4651 

europe_osm 0.8984 2.0191 5.5534 8.1286 10.8305 

in-2004 0.0550 0.1682 0.3324 0.6387 0.3887 

internet 0.0100 0.0057 0.0149 0.0132 0.0224 

kron_g500-logn21 0.4738 2.8016 2.5766 17.8190 6.7094 

r4-2e23 0.4019 2.2554 3.4077 8.8993 6.0508 

rmat16 0.0028 0.0121 0.0218 0.0689 0.0304 

rmat22 0.2987 2.0697 2.8030 8.2363 3.9400 

soc-livejournal 0.2449 1.4759 2.4893 8.2123 3.6784 

uk-2002 1.0063 3.5618 5.4292 15.9495 8.5397 

USA-NY 0.0118 0.0082 0.0420 0.0290 0.0305 

USA-USA 0.5832 1.3121 3.6517 3.2654 3.8020 
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