

AN EFFICIENT CONNECTED COMPONENTS ALGORITHM

FOR MASSIVELY-PARALLEL DEVICES

by

Jayadharini Jaiganesh

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

May 2017

Committee Members:

 Martin Burtscher, Chair

 Apan Qasem

 Vangelis Metsis

COPYRIGHT

by

Jayadharini Jaiganesh

2017

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Jayadharini Jaiganesh, authorize duplication of this

work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

To my mentor, thank you for your guidance and motivation. To my loving husband for

his unwavering support.

v

ACKNOWLEDGEMENTS

This project is supported by the National Science Foundation (NSF grant

#1406304) and equipment donations from Nvidia.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... x

ABSTRACT .. xi

CHAPTER

1. INTRODUCTION .. 1

1.1 Connected Components .. 1

1.2 General Serial Connected Components Algorithm 2

1.3 General Parallel Connected Components Algorithm 4

1.4 Contributions... 4

1.5 Outline .. 5

2. BACKGROUND STUDY .. 7

 2.1 Parallel Implementations of CC .. 7

3. RELATED WORK ... 15

 4. ECL ALGORITHM AND IMPLEMENTATIONS ... 17

4.1 ECL Base Algorithm .. 17

4.2 ECL - GPU Implementation .. 20

4.3 ECL - Parallel CPU Implementation .. 23

4.4 ECL - Serial CPU Implementation .. 23

4.5 ECLaf - Atomic Free CC Implementation .. 23

 5. EVALUATION METHODOLOGY .. 26

5.1 GPU and CPU Machines .. 26

5.2 Input Graphs Format and Specifications .. 27

vii

5.3 Compiler Information ... 30

 6. RESULTS .. 31

6.1 Configurations... 31

6.2 Comparison with Parallel GPU Benchmarks 31

6.3 Comparison with Parallel CPU Benchmarks 34

6.4 Comparison with Serial CPU Benchmarks ... 36

6.5 Performance Comparison across different Configurations 38

6.6 Performance Comparison - Atomic-Free Implementations 41

 7. SUMMARY .. 45

7.1 Summary ... 45

7.2 Future Work .. 46

APPENDIX SECTION ... 47

LITERATURE CITED ... 54

 viii

LIST OF FIGURES

Figure Page

1.1. Connected Components in a Graph .. 2

2.1. Graph before Hooking ... 7

2.2. Graph after Hooking .. 8

2.3. Graph after Pointer Jumping ... 8

4.1. Double-sided worklist ... 21

5.1. Graph ... 29

5.2. Compressed Adjacency List Representation .. 30

6.1. Parallel GPU Benchmarks Slowdowns relative to ECL on the Titan X 32

6.2. Parallel GPU Benchmarks Slowdowns relative to ECL on the K40 33

6.3. Parallel CPU Benchmarks Slowdowns relative to ECL on the Zurich 34

6.4. Parallel CPU Benchmarks Slowdowns relative to ECL on the Denver 35

6.5. Serial CPU Benchmarks Slowdowns relative to ECL on the Zurich 36

6.6. Serial CPU Benchmarks Slowdowns relative to ECL on the Denver 37

6.7. Geometric-Mean Slowdowns of CC Implementations on different systems............. 38

6.8. Throughput (Edges/s) of various CC Implementations on different systems 39

6.9. Throughput (Nodes/s) of various CC Implementations on different systems 40

6.10. Parallel GPU Benchmarks Slowdowns relative to ECLaf on the Titan X 41

6.11. Parallel GPU Benchmarks Slowdowns relative to ECLaf on the K40 42

6.12. Parallel CPU Benchmarks Slowdowns relative to ECLaf on the Zurich 43

 ix

6.13. Parallel CPU Benchmarks Slowdowns relative to ECLaf on the Denver 44

 x

LIST OF ABBREVIATIONS

Abbreviation Description

BFS Breadth First Search

BFSCC Breadth First Search for Connected

Components

CC Connected Components

DFS Depth First Search

GPU Graphic Processing Unit

LSG Lonestar GPU

LS Lonestar CPU

 xi

ABSTRACT

Massively-parallel devices such as GPUs are best suited for accelerating regular

algorithms. Since the memory access patterns and control flow of irregular algorithms are

data dependent, such programs are more difficult to parallelize in general and a direct

parallelization may not yield good performance, on GPUs in particular. However, by

carefully studying the underlying problem, it may be possible to derive new algorithms

that are more suitable for massively-parallel accelerators. This thesis involves studying

and analyzing such an irregular algorithm, called Connected Components, and proposes

an efficient algorithm, called ECL, which is faster than the existing CC algorithms on

most tested inputs. Though atomic operations are fast, they can represent a bottleneck as

these operations run serially and might hinder performance in the future parallel devices.

This thesis also proposes a synchronous and atomic-free algorithm, called ECLaf, whose

performance is comparable to the fastest existing CC algorithms.

1

CHAPTER 1

INTRODUCTION

Finding the Connected Components (CC) is a key preprocessing step in many

graph algorithms. It is used in real-world applications such as navigation, image

segmentation, and in the medical field. Thus, a faster connected components algorithm

and implementation has the potential to improve many important graph processing codes.

1.1 Connected Components

For an undirected graph G = (V, E), where V is the set of vertices and E is the set

of edges, a connected component C is a subset of V such that all the vertices belonging to

C are reachable from any vertex in C, and there are no edges between vertices belonging

to different components. The connected components problem is to find the number of

such components present in a given graph, assign a unique ID to each component, and

label each vertex in the graph with its component ID. Figure 1.1 shows a graph with

multiple connected components.

There are several variants of connected components. A strongly Connected

Component of a directed graph is a maximal set of vertices such that every pair of

vertices in the set is reachable from each other. Bi-Connected Components are

components in which removing any vertex still results in a connected component. A

directed graph is Weakly Connected [7] if replacing all its directed edges with undirected

edges produces a connected (undirected) graph.

2

Figure 1.1 Connected Components in a Graph

1.2 General Serial Connected Components Algorithm

There are two main serial approaches for Connected Components - Depth First

Search [15] and the Union-Find algorithm [5] using disjoint data structure.

1.2.1 Union-Find Algorithm

This algorithm initially iterates over all the vertices and places each of them in a

separate disjoint set and uses the vertex ID as the representative (label) of the set. Then, it

loops over each edge (u, v) combining the sets of vertex u and vertex v. Thus, the

algorithm returns a collection of sets where each set represents a connected component in

the graph. Algorithm 1 depicts the union-find algorithm.

Algorithm 1. Union-Find algorithm

1. procedure: Union-Find CC (V, E)

2. for each vertex v in V

3. Add vertex to a disjoint set Sv

4. Assign vertex v as the representative of the set Sv

3

5. end for

6. for each edge (u, v) in E

7. if Representative(Su) != Representative(Sv)

8. Merge sets Su and Sv

9. Choose Representative of Su or Sv as new representative

10. end for

1.2.2 Depth-First Search

Hopcroft and Tarjan [15] proposed the approach of using depth-first search to

compute connected components which is shown in Algorithm 2. It involves iterating over

all the vertices and performing depth-first search recursively to find the connected

components. It maintains a Boolean array “visited”, which denotes whether a vertex has

been visited or not. The algorithm loops over each vertex and performs DFS only on

those vertices that have not yet been visited. During the depth-first search, it visits the

neighbors of that vertex and sets their visited array element to true. In this way, all the

vertices that are connected will be visited in a single recursive search. As this algorithm

visits each vertex once, it takes O(|V|) time, i.e., O(n), where n = |V| denotes the number

of vertices in the graph.

Algorithm 2. DFS for CC

1. procedure: DFS-CC (V, E)

2. for each vertex v in V

3. if visited[v] is false

4. visited[v]  true

4

5. increment number of connected components

6. Dfs(v)

7. end if

8. end for

1.3 General Parallel Connected Components Algorithm

The general approach used to determine connected components is as follows.

Each vertex has a label to hold the component ID to which it belongs. Initially, this label

is set to the vertex ID, that is, each vertex is considered a separate component. Then each

vertex and their neighbors are iteratively processed, in parallel, to find the connected

components. In each step, the labels are updated until all the vertices in a connected

component have the same label. Often, the ID of the minimum vertex in each component

is chosen as the component ID to guarantee uniqueness. This general approach is

common to several algorithms, which is discussed below.

1.4 Contributions

This thesis proposes ECL, an efficient Connected Components algorithm. I

implemented this algorithm in parallel for GPUs and CPUs using CUDA and OpenMP,

respectively, as well as serial C code. In my algorithm, each vertex asynchronously

processes its neighbors to find the ID of the minimum vertex in that component. All

vertices follow a path through their neighbors, neighbors’ neighbors, and so on, until the

vertex with the lowest ID is found, which is then used to label all vertices on the path. My

implementation is lock-free and uses a novel termination criterion to stop the

computation at a vertex as soon as possible. Moreover, to improve the load balance, a

5

worklist is maintained for high-degree vertices to delay their processing.

Atomic operations play a significant role in parallel codes as they help prevent

data race conditions. Though atomic operations are faster, it is a bottleneck to parallel

code as they serialize the threads and affects the scalability. This thesis also proposes an

atomic-free implementation of CC algorithm, ECLaf, in CUDA and OpenMP which is as

fast as the fastest existing approaches.

I tested all the implementations on 18 real-world and synthetic graphs of varying

sizes, including road maps, RMAT and Kronecker graphs, Internet topology graphs,

citation graphs, web-link graphs, etc. I compared both of my CUDA implementations

with the best pre-existing algorithms on two different GPUs - K40 and Titan X. On

average, ECL is about 1.7x faster than the existing fastest GPU algorithm.

I implemented the parallel and serial CPU codes using OpenMP and C,

respectively, and compared them with corresponding programs from the literature. The

parallel CPU implementation of ECL is about 1.6x faster than the existing fastest Parallel

CPU algorithm. I implemented the atomic free algorithm ECLaf in OpenMP as well and it

is 1.2x faster than the fastest parallel CPU algorithm from the literature. The serial

implementation of ECL is 5x faster than the fastest preexisting serial CC algorithm.

1.5 Outline

The rest of this thesis is organized as follows: Chapter 2 discusses various

implementations of connected components. Chapter 3 includes related work on connected

components. Chapter 4 describes my CC implementation under various configurations as

6

well as an atomic-free CUDA implementation of CC. Chapter 5 explains the various

environments on which CC is tested, the inputs, and the evaluation methods. Chapter 6

presents a comparison of my CC implementation with other benchmarks and analyzes the

performance. Chapter 7 concludes with a summary and future work.

7

CHAPTER 2

BACKGROUND STUDY

2.1 Parallel Implementations of CC

A straightforward approach to implement CC is to mark each vertex with a unique

label and propagating vertex labels through neighboring vertices until all the vertices in

the same component are labelled with a unique ID. This is called Label propagation.

Shiloach and Vishkin’s approach computes connected components by two major steps -

Hooking and Pointer Jumping.

The Hooking operation works on edges. The vertices on either side of an edge

belong to a same component. For a given an edge (u, v), the Hooking operation checks if

the vertices are labelled with the same component ID. If not, the higher of the two vertex

IDs is “overwritten” with the lower ID. This is achieved by making the higher

representative point to the lower ID. Figure 2.1 shows an input graph where vertices 8

and 14 have different component ID. After hooking, vertices 8 and 14 are assigned the

same component ID as shown in Figure 2.2.

Figure 2.1 Graph before Hooking

8

Figure 2.2 Graph after Hooking

Given a vertex u, Pointer Jumping reduces the depth of the tree (that u belongs to)

by one by replacing its ID with its parent’s ID. Figure 2.2 shows a tree before Pointer

Jumping. After the algorithm terminates, the tree in Figure 2.2 has been reduced to a

single-level tree shown in Figure 2.3. It represents that all the vertices belong to the same

component with vertex 4 as their label.

Initially, the algorithm considers each vertex as a separate tree (or component

labelled by its own ID). During each iteration, it performs Hooking and Pointer Jumping

until all the multi-level trees are reduced to one-level trees (stars). Researchers have

published different parallel algorithms for CC based on this approach, which use different

names for these steps. This algorithm does not use any additional memory space for its

computation.

Figure 2.3 Graph after Pointer Jumping

9

Soman et al. [2] proposed a variant of Shiloach-Vishkin’s [1] approach by

introducing Multiple Pointer Jumping. The algorithm defines an array “Label” to hold the

component ID and initializes it with the vertex ID. Then, it iterates over the hook kernel

until all the vertices in the same component are connected. It iteratively performs Pointer

Jumping to convert the multi-level tree to a single-level tree (star), thus setting all the

vertices in the same component to the same ID. Algorithm 3 shows this approach.

Algorithms 4 and 5 show the Hook and Multiple Pointer Jumping kernels.

 Algorithm 3. Overall Steps – Soman’s Algorithm

1. procedure: Soman’s CC (V, E)

2. for each vertex v in V

3. Initialize Label[v]  v

4. repeat

5. for each edge (u, v)

6. Hook (u, v)

7. until Hook performs no change in Label []

8. repeat

9. multiple-pointer jump ()

10. until Jump performs no change in Label []

Algorithm 4. Hook Kernel in Soman’s Algorithm

1. procedure: Soman’s Hook (u, v)

2. if (edge is unmarked && Label[u] != Label[v])

3. min  min (Label[u], Label[v])

10

4. max  max (Label[u], Label[v])

5. if iteration is even

6. Label[min] = max

7. else

8. Label[max] = min

9. end if

10. else

11. Mark edge (u, v) // edge hiding

12. end if

Algorithm 5. Multiple Pointer Jumping Kernel in Soman’s Algorithm

1. procedure: Multiple Pointer Jumping (u, Label [])

2. repeat

3. Label[u]  Label [Label [u]]

4. u  Label[u]

5. until u is not a root

Sutton et al. [7] proposed a work-efficient connected components algorithm based

on Soman’s work. The algorithm, presented in Algorithm 6, splits the graph into 2|E|/|V|

edge-list segments where |V| denotes the number of vertices and |E| denotes the number

of edges in the graph and iteratively performs Hook and pointer jumping operations on

each of the segments. It performs atomic Hook and a single multi pointer jumping for

each vertex.

11

Algorithm 6. Sutton et al’s CC Algorithm

1. procedure: Sutton’s CC (V, E)

2. for each vertex v in V

 3. Initialize Label[v]  v

 4. for each segment in the edge-list

 5. repeat

 6. for all edges (u, v) in the segment

 7. AtomicHook (u, v)

 8. end for

 9. until Hook performs no change in Label []

 10. for all v in V

 11. multi-pointer jump ()

 12. end for

 13. end for

Gunrock’s [3] connected components algorithm is again a variant of Soman’s

approach. It involves iterating over Hooking and pointer jumping until all the vertices in

the same component have the same component ID. However, instead of processing all the

vertices and edges in each iteration, this approach tries to reduce the workload by using a

filter operator. After Hooking, the filter operator removes an edge if both the end vertices

have the same component ID. Similarly, after pointer jumping, it removes a vertex whose

own vertex ID is equal to the component ID. In this way, it reduces the workload after

each iteration.

12

Ligra [4] is a graph processing framework for shared-memory parallel/multicore

machines. Ligra provides two implementations for CC - Components and BFSCC. For an

undirected graph G = (V, E), the Components algorithm, outlined in Algorithm 7,

maintains two arrays “ID” and “prevID” of size |V| initialized such that ID[i] = i and

prevID[i] = i. It iterates over the vertices, updates its ID with the minimum ID of its

neighbors until all the vertices in the same component have the same ID (minimum ID).

It reduces the workload in each iteration by only processing those vertices whose ID has

changed in the previous iteration. The algorithm tracks a vertex’s ID by comparing

prevID with ID.

Algorithm 7. Components - Ligra Algorithm

1. procedure: Ligra Component’s CC (V, E)

2. frontier = {0, …, |V|-1}

3. for each vertex v in V

4. ID[v]  v

5. prevID[v]  v

6. end for

7. repeat

8. for each vertex v in V

9. prevID[v]  ID[v]

10. end for

11. for each vertex v in V

12. ID[v]  min ID of its neighbors

13. if (ID[v] == prevID[v])

13

14. remove v from Frontier

15. end if

16. end for

17. until Frontier is empty

Ligra’s BFSCC algorithm uses Breadth-First Search in parallel to compute CC. It

maintains an array “Parent” of size |V| to hold the component ID of that vertex and

initializes it with -1 to denote that a vertex has not yet been processed. The algorithm

iterates over all the vertices and in each iteration, it maintains a worklist that contains the

vertices to be processed. It carries out Breadth-first search on the vertices in the worklist

and all the vertices reachable through the search are again pushed back onto the worklist.

This process continues until there are no more vertices reachable and all the vertices are

processed. It labels all the vertices processed in the same iteration with the same ID. In

this way, the algorithm computes connected components. Ligra uses two simple routines

-VertexMap and EdgeMap, for mapping over vertices and edges, respectively.

Algorithm 8. BFSCC - Ligra Algorithm

1. procedure: Ligra BFSCC’s CC (V, E)

2. Worklist = {}

3. for each vertex v in V

4. Parent[v]  -1

5. for each vertex v in V

6. if (Parent[v] != -1)

7. push v to Worklist

14

8. repeat

9. v = pop.Worklist

10. BFS(v)

11. push all vertices reachable from v to Worklist

12. until Worklist is empty

13. end if

14. end for

Ligra+ [5] is a variant of Ligra that is based on a compressed graph

representation. It uses an encoder program to compress the input graphs with a difference

encoding scheme. This difference encoding scheme targets the adjacency list of a vertex

and encodes the difference between the edges of each vertex using variable length codes.

The encoder compresses each integer into k-bit blocks and each block has a continue bit

to indicate if the next block is also used to compress the integer x. An integer x is simply

written in binary representation in a block. If a block cannot fit all the bits, then the

encoder continues it in the following blocks by setting the continue bit. Decoding works

the same way by converting the binary representation to the original form and including

blocks with the continue bit set.

CRONO [12] is a benchmark suite for graph algorithm in shared-memory

multicore machines. CRONO’s CC algorithm is implemented using pthreads and it

maintains an array to store each vertex’s label (Component ID). Then, it loops over all

the vertices iteratively updating their label based on the connectivity.

15

CHAPTER 3

RELATED WORK

Hopcroft and Tarjan’s [15] approach was one of the first algorithms devised to

compute connected components in serial. It is simple and stated as “well known” at that

point of time. It is linear in time as it visits each vertex once. Later algorithms were

devised based on this work. Various graph processing libraries such as Boost [9], Lemon

[14], igraph [13], etc. include serial code to compute CC.

Shiloach-Vishkin’s [1] proposed a different approach involving Hooking and

pointer jumping to compute CC in parallel. Their algorithm is suitable for GPUs. Soman

et al. [2] adapted this algorithm by modifying their pointer jumping to multiple pointer

jumping. Though the number of iterations taken by their approach is the same as in

Shiloach-Vishkin’s algorithm, multiple pointer jumping drastically reduces the number of

reads and writes to the memory, thus improving the performance.

Sutton et al. [7] proposed a variant of Soman’s algorithm by introducing Atomic

Hook and single Multi pointer jump. By using atomics, it locks one of the vertices in the

edge until the hook operation succeeds, which eliminates the CPU-side convergence

loop. Instead of multiple calls to the pointer jumping kernel, it works with a single call to

the multi pointer jump kernel, thus reducing the GPU-CPU communication overhead.

Further, this algorithm splits the input graph into edge-list segments, which minimizes the

number of atomic operation in the next Hook.

16

Ligra’s connected components algorithm is simple and its BFSCC algorithm is

based on its own BFS algorithm. The authors claim that it is efficient and scalable.

Ligra+ is an optimized version of Ligra. As it works on compressed graphs, it requires a

smaller memory footprint, making it possible to fit larger graphs into the available

memory. It is faster than Ligra when using the fast compression scheme.

CRONO [12] does not scale well to large inputs. It allocates four arrays of size |V|

and two two-dimensional arrays of size (|V| * Degreemax), where Degreemax indicates the

graph’s maximum vertex degree. As a result, it runs out of memory for larger graphs. In

fact, the graphs that they used are relatively small. Their largest graph is about 15 times

smaller than my largest input graph.

17

CHAPTER 4

ECL ALGORITHM AND IMPLEMENTATIONS

This section discusses my ECL algorithm, various optimizations to improve its

performance and its implementation on various platforms (GPU, Parallel and Serial

CPU).

4.1 ECL Base Algorithm

 The ECL CC Algorithm is simple and straightforward. It uses three main

functions (kernels in CUDA) - “init”, “compute” and “flatten”. Algorithm 9 shows the

overall layout. Each vertex has a label to hold the component ID to which it belongs. The

algorithm chooses the ID of the minimum vertex in each component as the component ID

to guarantee uniqueness of the labels. Most of the existing CC algorithms initialize the

label of each vertex with the vertex ID. The ECL code optimizes the init function by

initializing the label of each vertex with the first smaller neighbor ID it encounters. This

improves performance as it moves the computation towards the minimum vertex ID in

each component faster.

 The compute function visits each vertex and processes each edge of that vertex so

that both ends of the edge has the same ID. It uses a representative function on each

vertex and its neighbors. The representative function follows the path from a vertex’s ID,

to that vertex’s ID and so on until its finds the end of the chain, i.e., a vertex whose ID

points to itself, which is then assigned to the starting vertex. This is a variant of pointer

jumping as it updates the label of each of the vertices with a better label (smaller value).

18

It has a special “if” condition to make sure that each edge is considered only once, i.e., in

one direction but not the other.

 After the compute function, all the vertices are labelled either directly or

indirectly with the ID of the lowest vertex in each of the components. The flatten

function, a form of pointer jumping, visits all vertices and updates the label so that it

represents the component ID directly.

 Since CC is an irregular graph application, iteratively processing all vertices by

assigning them to separate threads would result in load imbalance as the vertex degrees

vary to a great extent. The CUDA implementation of CC uses a double-sided worklist to

efficiently distribute work to each thread.

 Algorithm 9. ECL CC Overall Algorithm

1. procedure: ECL CC (V, E)

2. Init (V, nstat)

3. Compute (V, E, nstat)

4. Flatten (V, nstat)

 Algorithm 10. ECL CC Algorithm - Init Function

1. procedure: Init (V, nstat)

2. nstat = {0, …, |V|-1}

3. for each vertex v in V

4. nstat[v]  First neighbor smaller than v.

 Algorithm 11. ECL CC Algorithm - Compute Function

1. procedure: Compute (V, E, nstat)

19

2. for each v in V

3. vstat  representative (v, nstat)

4. for each edge (u, v) in E

5. if (v > u)

6. ostat  representative (u, nstat)

7. if (vstat < ostat)

8. nstat[ostat]  vstat

9. else

10. nstat [vstat]  ostat

11. end if

12. end if

13. end for

14. end for

Algorithm 12. ECL CC Algorithm - Flatten Function

1. procedure: Flatten (V, nstat)

2. for each vertex v in V

3. vstat  nstat[v]

4. while (vstat > nstat[vstat])

5. vstat  nstat[vstat]

6. end while

7. end for

20

 Algorithm 13. ECL CC Algorithm - Representative Function

1. procedure: Representative (v, nstat)

2. curr  nstat[v]

3. if (curr != v)

4. prev  v

5. next  nstat[curr]

6. while (curr > next)

7. nstat[prev]  next

8. prev  curr

9. curr  next

10. end while

11. end if

 In addition to the two arrays (neighborlist & neighborindex) used for representing

the graph, the algorithm maintains an array ‘nstat’ of size |V|, which stores the

component ID of each of the vertices. The CUDA implementations maintain another

array “worklist” of size |V| to store the vertices.

4.2 ECL - GPU Implementation

I implemented the ECL CC Algorithm in CUDA for GPUs devices. It contains

GPU-specific optimizations to improve the performance. It consists of three main kernels

- init, compute1, and flatten. It also has two more compute kernels (compute2 &

compute3) to process the vertices in the worklist.

21

As described above, the init kernel initializes the vertex labels with the first

neighbor, if any, whose ID is smaller than the vertex ID. The algorithm divides the

processing of vertices among the three compute kernels. It maintains a double-sided

worklist and the compute1 kernel fills the worklist with vertices on both the sides based

on their edge degree. The compute1 kernel populates the double-sided worklist as shown

in Figure 4.1. Two threshold values (16 and 352) are identified by trial and error method.

The compute1 kernel pushes vertices with degree greater than 16 and less than or equal to

352 to the front of the worklist and vertices with degree greater than 352 to the rear of the

worklist, which are later read by the other compute kernels. The compute1 kernel

processes the vertices with degree less than 16, i.e., all the threads in the compute1 kernel

process low-degree vertices and no thread has to wait long for other threads to finish their

computation, thus resulting in better load balancing. Each thread processes the assigned

vertex and loops over each neighbor, updating the vertex labels, until there is no change

in the vertex’s label or its neighbor’s labels.

Figure 4.1 Double-sided worklist

The compute2 kernel reads vertices from the front of the worklist and utilizes

warp-level parallelism in the GPU, i.e., each warp processes a single vertex. A warp in a

GPU represents a set of 32-contiguous threads. All the threads within a warp execute the

same instruction in the same clock cycle and they can exchange data with each other

using shuffle machine instructions without explicit synchronization. In the compute2

V1 V4 V5 V7 V2

 16 < d(v)  352 d(v) > 352

22

kernel, each warp reads from the front of the worklist and all the threads within a warp

share the work and process that vertex’s neighbors using a cyclic assignment.

The compute3 kernel reads vertices from the rear of the worklist and utilizes

block-level parallelism in the GPU. A block is a group of threads. Each block can hold up

to 1024 threads. The programmer decides the actual number of threads per block. I use

256 threads per block. All the threads in a block have access to shared memory, which

enables fast data exchange. It requires explicit synchronization, which can be achieved by

the CUDA instruction __syncthreads(). The compute3 kernel uses block-level parallelism

as it processes vertices with large numbers of neighbors. It assigns each thread block to

process a single vertex and all the threads within a block share the work of processing the

neighbors and make sure that the two ends of each vertex have the same component ID.

After the compute kernels are done, all the vertex labels directly or indirectly

point to the ID of the lowest vertex in each connected component. The flatten kernel

updates all the vertex labels so that they directly refer to the component ID.

ECL uses atomic operations to update the vertex labels in the compute kernels as

more than one thread might be updating a vertex’s label. Moreover, it uses atomic

operations to insert vertices in the worklist and to read them from the worklists.

In terms of space complexity, ECL uses two arrays “neighborlist” and

“neighborindex” of size |V| and |E|, respectively, to represent the input graph. It uses a

double-sided worklist of size |V| for load balancing. Overall, ECL’s space complexity is

O(|V|+|E|).

23

4.3 ECL - Parallel CPU Implementation

 I implemented the ECL CC algorithm in OpenMP for multicore CPUs. It has the

same three functions as mentioned in Algorithm 9. The init and compute functions use a

“guided” schedule to allocate vertices to threads. The algorithm assigns each thread with

a vertex. Each thread processes the vertex and loops over each neighbor, until there is no

change in their labels. To avoid data races, this algorithm uses a GCC-specific atomic-

compare-and-swap operation (__sync_val_compare_and_swap) to update the vertex

labels.

4.4 ECL - Serial CPU Implementation

 I implemented the ECL CC algorithm in C for serial CPU devices. It is

straightforward and does not involve any worklists or atomic operations as there are no

load balancing issues or data races in the serial code.

4.5 ECLaf – Atomic-Free CC Implementation

 The ECL algorithm uses atomic operations to prevent data races as there are

situations when multiple threads try to access the same memory location. These

operations prevent data races by ensuring that no other thread can access a given memory

location until the operation is done. However, it is a significant bottleneck as the atomic

operations are performed serially and any thread that tries to access that memory location

must wait until the atomic operation is done. In fact, future systems may be so widely

parallel that implementing fast atomics will be difficult.

I propose an atomic free CC algorithm, ECLaf for parallel codes, which loops over

24

the compute kernel(s) to avoid atomic operations. Eliminating atomic operations would

result in data race conditions which in turn would result in incorrect computation. To

avoid such data races, this algorithm repeatedly calls the compute kernels. A variable

‘reiterate’ decides whether to loop over the compute kernel or not. Algorithm 14 and 15

show the pseudocode of the general ECLaf algorithm and its compute function,

respectively. Similar to the previous GPU implementation, ECLaf’s GPU implementation

groups vertices based on their edge degree and uses three compute kernels for load

balancing. Each compute kernel has its own ‘reiterate’ variable and it is set whenever a

vertex’s label or its neighbor’s label is updated. The algorithm reiterates compute kernels

until all the vertex labels and all of its neighbor’s labels remain unchanged.

 Algorithm 14. General ECLaf - Overall Algorithm

1. procedure: ECLaf CC (V, E)

2. Init (V, nstat)

3. reiterate  1

4. do

5. if reiterate

6. Compute (V, E, nstat, &reiterate)

7. end if

8. while (!reiterate)

9. Flatten (V, nstat)

 Algorithm 15. ECLaf CC Algorithm - Compute Function

1. procedure: Compute (V, E, nstat, *reiterate)

2. for each vertex v in V

25

3. vstat  representative (v, nstat)

2. for each edge (u, v) in E

3. if (v > u)

4. ostat  representative (u, nstat)

5. *reiterate  1

6. if (vstat < ostat)

7. nstat[ostat]  vstat

8. else

9. nstat [vstat]  ostat

10. end if

11. end if

12. end for

13. end for

I implemented ECLaf in OpenMP for parallel CPU devices. As discussed above,

by repeatedly calling the compute function, it eliminates the CPU-specific atomic

operation (__sync_val_compare_and_swap). It uses a “guided” schedule to dynamically

allocate work to each thread and the chunk size reduces as the program runs to minimize

load imbalance. Since CPU does not face significant load balancing issues, this

implementation uses only one compute function. Its own variable ‘reiterate’ decides

whether to loop over compute function or not.

26

CHAPTER 5

EVALUATION METHODOLOGY

5.1 GPU and CPU Machines

In this thesis, I have implemented my CC algorithm in parallel both for GPUs and

CPUs in CUDA and OpenMP, respectively, and as a serial C code. I tested the parallel

CUDA implementations and related benchmarks on two GPUs, a Titan X and a K40.

The first is a GeForce GTX Titan X, which is based on the Maxwell architecture.

The second is a Tesla K40c, which is based on the Kepler architecture. The Titan X has

3072 processing elements distributed over 24 multiprocessors that can hold the contexts

of 49,152 threads. Each multiprocessor has 96 kB of shared memory and 48 kB of

L1/texture cache. The 24 multiprocessors share a 2 MB L2 cache as well as 12 GB of

global memory with a theoretical peak bandwidth of 336 GB/s. I use the default clock

frequencies of 1.1 GHz for the processing elements and 3.5 GHz for the GDDR5

memory.

The K40 has 2880 processing elements distributed over 15 multiprocessors that

can hold the contexts of 30,720 threads. Each multiprocessor has 48 kB of texture

memory as well as 64 kB of cache that is split between the shared memory and the L1

data cache. The 15 multiprocessors share a 1.5 MB L2 cache as well as 12 GB of global

memory with a peak bandwidth of 288 GB/s. I disabled ECC protection of the main

memory and used the default clock frequencies of 745 MHz for the processing elements

and 3 GHz for the GDDR5 memory. Both GPUs are plugged into 16x PCIe 3.0 slots in

27

the same system, which has dual 10-core Xeon E5-2687W v3 CPUs running at 3.1 GHz.

The host memory size is 128 GB and the operating system is Fedora release 23.

I test the parallel CPU implementations on two machines. Machine 1 uses an

Intel(R) Xeon(R) CPU E5-2687W based x86_64 architecture, clocked at 3.10 GHz. It has

2 sockets and 10 cores per socket. As it supports hyper threading, it can run 40 threads

simultaneously. It has a 32 kB L1 data cache and a 256 kB L2 cache. Machine 2 uses an

Intel(R) Xeon(R) CPU X5690 based x86_64 architecture, clocked at 3.47 GHz. It has 2

sockets, 6 cores per socket and does not support hyper threading, meaning it can run 12

threads simultaneously. It also has a 32 kB L1 data cache and a 256 kB L2 cache.

5.2 Input Graphs Format and Specifications

I use 18 graphs as inputs, which include road maps (europe_osm , USA-road-

d.NY and USA-road-d.USA), a grid (2d- 2e20.sym), a random graph (r4-2e23.sym),

RMAT graphs (rmat16.sym and rmat22.sym), a synthetic Kronecker graph from the

Graph500 (kron_g500-logn21), a product co-purchasing graph (amazon0601), Internet

topology graphs (as-skitter and internet), publication citation graphs (citationCiteseer and

coPapersDBLP), a patent citation graph (cit-Patents), a Delaunay triangulation

(delaunay_n24), an online journal maintenance community graph (soc-livejournal) and

web-links graphs (in-2004 and uk-2002). The Center for Discrete Mathematics and

Theoretical Computer Science at the University of Rome [16], the Galois frame- work

[17], the Stanford Network Analysis Platform [18], and the University of Florida Sparse

Matrix Collection [19] provided these graphs. The graph sizes vary from 65K vertices

and 387K edges for the smallest graph to 18M vertices and 523M edges for the largest

28

graph. Table 1 shows the graph sizes and other pertinent information.

Table 5.1 Input Graph Information

S. No Graph Name
No. of

Edges

No. of

Vertices

Vertex degree
No. of CC

min max avg

1 2d-2e20 1,048,576 4,190,208 2 4 3 1

2 amazon0601 403,394 4,886,816 1 2752 12 7

3 as-skitter 1,696,415 2,219,059 1 35455 1 756

4 citationCiteseer 268,495 2,313,294 1 1318 8 1

5 cit-Patents 3,774,768 33,037,894 1 793 8 3,627

6 coPapersDBLP 540,486 30,491,458 1 3299 56 1

7 delaunay_n24 16,777,216 100,663,202 3 26 5 1

8 europe_osm 50,912,018 108,109,320 1 13 2 1

9 in-2004 1,382,908 27,182,946 0 21869 19 134

10 internet 124,651 387,240 1 151 3 1

11 kron_g500-logn21 2,097,152 182,081,864 0 213904 86 553,159

12 r4-2e23 8,388,608 67,108,846 2 26 7 1

13 rmat16 65,536 967,866 0 569 14 3,900

14 rmat22 4,194,304 65,660,814 0 3687 15 428,640

15 soc-livejournal 4,847,571 85,702,474 0 20333 17 1,876

16 uk-2002 18,520,486 523,574,516 0 194955 28 38,359

17 USA-NY 264,346 730,100 1 8 2 1

18 USA-USA 23,947,347 57,708,624 1 9 2 1

29

I use the Compressed Adjacency List format to represent all the graphs, which is

quite space efficient yet still allows to identify the neighbors of a vertex quickly. It is

based on two arrays: “neighborlist” of size |E| is simply the concatenation of all the

adjacency lists, and “neighborindex” of size |V| + 1 stores the starting point of each

adjacency list. It needs one extra element to indicate the end of the last adjacency list.

“neighborindex” helps to find the number of edges of each vertex. “neighborlist” indexed

by “neighborindex” can be used to iterate over the edges. For example, Figure 5.1 shows

a graph with 4 vertices and 7 edges. Figure 5.2 shows the corresponding Compressed

Adjacency List format.

Figure 5.1 Graph

Adjacency Lists

A: B, C

B: C, D

C: B

D: A, B

30

Combined Adjacency list, L = B, C, C, D, B, A, B

Figure 5.2 Compressed Adjacency List Representation

5.3 Compiler Information

I use nvcc 8.0 for compiling my CUDA CC implementation and for the other

CUDA-based benchmarks. I compile all the CPU codes using g++ 5.3.1. In all cases, I

use the -O3 optimization flag.

31

CHAPTER 6

RESULTS

6.1 Configurations

I evaluate my CC CUDA implementations (including the atomic free version) on

two different GPUs. I run all the GPU benchmarks on both GPUs using the same

compiler flags. I compare performance in terms of slowdown with respect to my CC

implementation. I follow a similar procedure for performance comparison in the parallel

and serial CPU codes.

6.2 Comparison with Parallel GPU Benchmarks

This subsection compares my CC implementation (ECL) with other GPU

benchmarks on the Titan X and K40 GPUs. I run all codes on all 18 input graphs and

normalize their runtimes. I fix the ECL values as 1.0 and calculate slowdowns for the

other benchmarks with respect to ECL. Figure 6.1 shows the slowdowns of all GPU

benchmarks on Titan X. Figure 6.2 shows the slowdowns on K40. Bars in the chart that

are higher than 1.0 are slower than ECL and there is a reference line in the charts for

easier comparison. Average (geometric mean) slowdowns are present for all benchmarks

in the charts.

32

Figure 6.1 Parallel GPU Benchmarks Slowdowns relative to ECL on the Titan X

Figure 6.1 shows the slowdowns in GPU benchmarks with respect to ECL on

Titan X. ECL is the fastest on 16 input graphs and Groute is 1.3x faster than ECL on the

remaining two input graphs. On average, ECL is 1.8x faster than Groute, 4x faster than

Soman’s, 6.4x faster than LSG and 8.4x faster than Gunrock.

33

Figure 6.2 Parallel GPU Benchmarks Slowdowns relative to ECL on the K40

Note: Bars exceeding a height of 30 are cut off.

Figure 6.2 shows the slowdowns in GPU benchmarks with respect to ECL on

K40. ECL is the fastest on 14 input graphs and Groute is 1.4x faster than ECL on the

remaining four input graphs. On average, ECL is 1.6x faster than Groute, 4.3x faster than

Soman’s, 5.8x faster than LSG and 9x faster than Gunrock.

34

6.3 Comparison with Parallel CPU Benchmarks

Figure 6.3 Parallel CPU Benchmarks Slowdowns relative to ECL on the Zurich

Note: Bars exceeding a height of 50 are cut off.

Figure 6.3 shows the slowdowns in Parallel CPU benchmarks with respect to ECL

on Zurich. ECL is 4.2x faster than the existing fastest benchmark, Ligra+ BFSCC, on

more than half of the input graphs and it beats the other benchmarks on overall

performance. On average, ECL is 1.4x faster than Ligra+’s BFSCC, 2.2x faster than

Ligra+’s Components, 3.4x faster than CRONO, 4.7x faster than Asynchronous LS, 9.5x

faster than Synchronous LS and 13.6x faster than Blocked Asynchronous LS. CRONO

does not support 5 input graphs (as-skitter, in-2004, kron_g500-logn21, soc-livejournal &

uk-2002) as it runs out of memory.

35

Figure 6.4 Parallel CPU Benchmarks Slowdowns relative to ECL on the Denver

Note: Bars exceeding a height of 50 are cut off.

Figure 6.4 shows the slowdowns in Parallel CPU benchmarks with respect to ECL

on Denver. ECL is faster than the existing fastest benchmark, Ligra+ BFSCC, on more

than half of the input graphs by 3.2x and it beats the other benchmarks on overall

performance. On average, ECL is 1.7x faster than Ligra+’s BFSCC, 7.1x faster than

Ligra+’s Components, 6.8x faster than CRONO, 22.8x faster than Asynchronous LS,

35.2x faster than Synchronous LS and 47.1x faster than Blocked Asynchronous LS.

36

6.4 Comparison with Serial CPU Benchmarks

Figure 6.5 Serial CPU Benchmarks Slowdowns relative to ECL on the Zurich

Figure 6.5 shows the slowdowns in Serial benchmarks with respect to ECL on

Zurich. ECL is 3.1x faster than LS Serial, on 16 input graphs. On overall comparison,

ECL is 2.6x faster than LS Serial, 5.2x faster than Boost, 6.7x faster than igraph and 9.1x

faster than Lemon.

37

Figure 6.6 Serial CPU Benchmarks Slowdowns relative to ECL on the Denver

Figure 6.6 shows the slowdowns in Serial benchmarks with respect to ECL on

Denver. ECL is the fastest on all the input graphs. Overall, ECL is 5.3x faster than Boost,

7.9x faster than igraph, 8.1x faster than LS Serial and 11x faster than Lemon.

38

6.5 Performance Comparison across different Configurations

Figure 6.7 Geometric-Mean Slowdowns of CC Implementations on different systems

Figure 6.7 compares the average slowdowns for all the benchmarks across

different configurations - GPU, Parallel and Serial CPU. I calculate the slowdowns for all

the benchmarks with respect to the GPU ECL runtimes on the Titan X. The chart

considers the runtimes of the parallel and serial CPU benchmarks run on Zurich. As the

chart shows, ECL GPU is the fastest of all the tested benchmarks. As expected, the GPU

benchmarks are faster than the CPU codes. Interestingly, some of the parallel CPU codes

are slower than the serial codes. In particular, all the parallel LS codes are slower than

their respective serial implementations.

39

Figure 6.8 Throughput (Edges/s) of various CC Implementations on different

systems

Figure 6.8 shows the average throughput for all the benchmarks across different

configurations - Titan X GPU, Parallel and Serial CPU on Zurich. I calculate throughput

in terms of number of edges processed per second for all the benchmarks. As seen in the

above chart, ECL GPU code has the highest throughput of 5.295 billion edges per

second. Most of the GPU benchmarks have higher throughput than the others. It is

interesting to see that some of the serial codes have higher throughput than the parallel

CPU codes.

40

Figure 6.9 Throughput (Nodes/s) of various CC Implementations on different

systems

Figure 6.9 shows the average throughput, calculated in terms of nodes processed

per second, for all the benchmarks across different configurations - Titan X GPU, Parallel

and Serial CPU on Zurich. As seen in the above chart, ECL GPU code has the highest

throughput of 650 million nodes per second. Most of the GPU benchmarks have higher

throughput than the others CPU and serial codes.

41

6.6 Performance Comparison - Atomic-Free Implementations

 I implemented ECLaf, the atomic free CC algorithm, both in CUDA and OpenMP

and compared its performance with parallel GPU and CPU benchmarks.

Figure 6.10 Parallel GPU Benchmarks Slowdowns relative to ECLaf on the Titan X

Figure 6.10 shows the slowdowns in GPU benchmarks with respect to ECLaf on

Titan X. On Titan X, Groute is 1.1x faster than ECLaf on average and is faster on more

than half of the input graphs. On the remaining graphs, ECLaf is 1.9x faster than Groute.

On overall comparison, it is 2x faster than Soman’s, 3.2x faster than LSG and 4.3x faster

than Gunrock.

42

Figure 6.11 Parallel GPU Benchmarks Slowdowns relative to ECLaf on the K40

Figure 6.11 shows the slowdowns in GPU benchmarks with respect to ECLaf on

K40.

Though Groute is 1.2x faster than ECLaf in overall performance, ECLaf beats

Groute on half of the input graphs by an average of 1.4x. On overall comparison, ECLaf is

2.2x faster than Soman’s, 2.9x faster than LSG and 5.7x faster than Gunrock.

43

Figure 6.12 Parallel CPU Benchmarks Slowdowns relative to ECLaf on the Zurich

Note: Bars exceeding a height of 30 are cut off.

Figure 6.12 shows the slowdowns in Parallel CPU benchmarks with respect to

ECLaf on Zurich. ECLaf is faster than Ligra+ BFSCC on half of the input graphs by 4.2x.

On overall comparison, it is 1.1x faster than Ligra+ BFSCC, 1.7x faster than Ligra+

Components, 2.62x faster than CRONO, 3.5x faster than Asynchronous LS, 7.1x faster

than Synchronous LS and 10.2x faster than Blocked Asynchronous LS.

44

Figure 6.13 Parallel CPU Benchmarks Slowdowns relative to ECLaf on the Denver

Note: Bars exceeding a height of 40 are cut off.

Figure 6.13 shows the slowdowns in Parallel CPU benchmarks with respect to

ECLaf in Denver. ECLaf is faster than the existing fastest CPU Benchmark, Ligra+

BFSCC, on more than half of the input graphs by 2.7x and it beats the other benchmarks

on overall performance. On average, ECLaf is 1.4x faster than Ligra+’s BFSCC, 5.7x

faster than Ligra+’s Components, 6.1x faster than CRONO, 18.2x faster than

Asynchronous LS, 28.1x faster than Synchronous LS and 37.6x faster than Blocked

Asynchronous LS.

45

CHAPTER 7

SUMMARY

7.1 Summary

Computing the connected components is an important graph application used in

various fields. This thesis proposes two efficient algorithms for connected components -

ECL and ECLaf. ECL is an asynchronous algorithm suitable for massively parallel

devices. My CUDA implementation of ECL includes optimizations to improve load-

balance and uses a variant of pointer jumping to speed up the calculation of the connected

components. I also ported the ECL algorithm to parallel and serial CPU devices, where I

implemented it in OpenMP and C, respectively.

Atomic operations play a significant role in many algorithms specific to parallel

devices, as they prevent data races. However, these operations incur overhead as they

briefly serialize the threads that execute atomic operations. ECLaf is an atomic-free

synchronous implementation, which reiterates over kernel(s) to solve the connected

components problem. I implemented it for GPUs and parallel CPU devices. I tested both

algorithms on 18 input graphs and compared their performance with corresponding

programs from the literature. ECL shows a significant improvement in performance and,

on average, it outperforms the existing fastest GPU algorithm by 1.7x. On CPUs, it is

1.6x faster than the fastest parallel CPU algorithm from the literature. The serial

implementation is 5x faster than the fastest preexisting serial CC algorithm. Though

ECLaf is atomic-free and therefore needs to perform multiple rounds of computation, its

CUDA implementation shows comparable performance with the fastest GPU algorithm

46

and its OpenMP-implementation is 1.2x faster than the fastest parallel CPU algorithm.

7.2 Future Work

In the future, researchers could evaluate the proposed connected components

algorithms and optimize them for other architectures such as AMD CPUs and GPUs as

well as ARM CPUs. Researchers could also extend these algorithms to multi-GPU and/or

Xeon-Phi-based systems. It might also be interesting to study the energy efficiency in

addition to the runtime and adding optimizations to improve that aspect.

47

APPENDIX SECTION

 This section contains the runtimes for all the ECL codes and their corresponding

Benchmarks.

48

Table A.1 Parallel GPU Code Runtimes on the Titan X

 ECL ECLaf Groute Gunrock LSG Soman Cusp

2d-2e20 0.0012 0.0020 0.0019 0.0122 0.0116 0.0069 0.0278

amazon0601 0.0009 0.0017 0.0009 0.0031 0.0065 0.0015 0.0513

as-skitter 0.0025 0.0025 0.0020 0.0081 0.0054 0.0037 4.4829

citationCiteseer 0.0006 0.0014 0.0042 0.0044 0.0069 0.0021 0.0110

cit-Patents 0.0146 0.0322 0.0586 0.1046 0.0709 0.0676 21.5052

coPapersDBLP 0.0025 0.0043 0.0028 0.0201 0.0119 0.0073 0.0182

delaunay_n24 0.0146 0.0225 0.0221 0.1706 0.0622 0.0667 0.0656

europe_osm 0.0290 0.0516 0.0217 0.2569 0.0995 0.1168 0.2388

in-2004 0.0026 0.0058 0.0073 0.0757 0.0154 0.0121 0.8626

internet 0.0002 0.0006 0.0003 0.0026 0.0052 0.0016 0.0091

kron_g500-

logn21
0.0209 0.0376 0.0246 0.1918 0.1410 0.1345 2164.2301

r4-2e23 0.0216 0.0216 0.0238 0.0676 0.0546 0.0538 0.0503

rmat16 0.0003 0.0007 0.0017 0.0018 0.0041 0.0011 19.5460

rmat22 0.0205 0.0415 0.1261 0.1299 0.1095 0.1024 1700.5245

soc-livejournal 0.0127 0.0229 0.0140 0.0604 0.0431 0.0413 12.5244

uk-2002 0.0458 0.1282 0.1085 1.3891 0.2438 0.2297 494.1125

USA-NY 0.0002 0.0006 0.0003 0.0027 0.0076 0.0016 0.0133

USA-USA 0.0141 0.0374 0.0153 0.1680 0.0604 0.0671 0.0697

49

Table A.2 Parallel GPU Code Runtimes on the K40

 ECL ECLaf Groute Gunrock LSG Soman Cusp

2d-2e20 0.0022 0.0034 0.0040 0.0237 0.0160 0.0125 0.0329

amazon0601 0.0011 0.0025 0.0012 0.0066 0.0072 0.0028 0.0377

as-skitter 0.0041 0.0046 0.0031 0.0176 0.0079 0.0070 5.0367

citationCiteseer 0.0009 0.0020 0.0032 0.0083 0.0073 0.0039 0.0105

cit-Patents 0.0194 0.0458 0.0647 0.2150 0.0904 0.0848 23.8706

coPapersDBLP 0.0045 0.0074 0.0040 0.0484 0.0183 0.0141 0.0261

delaunay_n24 0.0210 0.0309 0.0324 0.4026 0.1210 0.1230 0.1184

europe_osm 0.0442 0.0783 0.0349 0.5846 0.1645 0.2134 0.3267

in-2004 0.0046 0.0096 0.0123 0.2339 0.0222 0.0192 0.9114

internet 0.0003 0.0009 0.0004 0.0053 0.0056 0.0022 0.0081

kron_g500-

logn21
0.0401 0.0749 0.0436 0.3511 0.2452 0.2216 2743.4945

r4-2e23 0.0298 0.0298 0.0375 0.0931 0.0667 0.0672 0.0731

rmat16 0.0004 0.0010 0.0018 0.0029 0.0044 0.0019 21.5828

rmat22 0.0270 0.0553 0.1122 0.2141 0.1505 0.1457 1941.3319

soc-livejournal 0.0201 0.0350 0.0186 0.1134 0.0698 0.0678 13.9202

uk-2002 0.0835 0.2376 0.2129 5.8692 0.4801 0.4668 580.6068

USA-NY 0.0004 0.0009 0.0004 0.0046 0.0096 0.0024 0.0146

USA-USA 0.0238 0.0573 0.0275 0.3624 0.1111 0.1328 0.1151

50

Table A.3 Parallel CPU Code Runtimes on Zurich

ECL Ligra+ 1 Ligra+ 2 CRONO LS_1 LS_2 LS_3

2d-2e20 0.0489 0.0888 0.2628 0.1607 0.2407 0.2967 0.2967

amazon0601 0.0477 0.0053 0.0116 0.1100 0.1874 0.1573 0.1573

as-skitter 0.0637 0.0756 0.1126 NA 1.2143 0.6879 0.6879

Citation

Citeseer
0.0550 0.0026 0.0064 0.1097 0.0963 0.0901 0.0901

cit-Patents 0.1108 0.3334 0.3191 0.4839 2.9170 1.8954 1.8954

coPapersDBLP 0.0731 0.0062 0.0471 0.1752 1.4819 0.3461 0.3461

delaunay_n24 0.1373 0.2021 3.8830 1.5323 4.3657 3.4851 3.4851

europe_osm 0.1787 7.0460 26.5400 1.5742 4.5203 7.9685 7.9685

in-2004 0.0525 0.0465 0.0410 NA 0.9930 0.3160 0.3160

internet 0.0377 0.0024 0.0030 0.0431 0.0158 0.0172 0.0172

kron_g500-

logn21
0.1173 6.1170 0.2280 NA 14.5817 3.7193 3.7193

r4-2e23 0.1198 0.0590 0.2113 0.3631 5.2150 7.9287 7.9287

rmat16 0.0387 0.0512 0.0018 0.0341 0.0383 0.0232 0.0232

rmat22 0.0830 6.3520 0.2745 0.5992 6.9970 3.9790 3.9790

soc-livejournal 0.0890 0.1231 0.5110 NA 6.6913 4.3803 4.3803

uk-2002 0.1655 0.7545 0.7275 NA 29.7646 6.8136 6.8136

USA-NY 0.0278 0.0292 0.0812 0.0741 0.0216 0.0305 0.0305

USA-USA 0.1170 0.6957 43.1600 1.4374 2.7470 3.6081 3.6081

Ligra+ 1 - Ligra+ BFSCC

Ligra+ 2 - Ligra+ Components

LS_1 - LS Blocked Asynchronous

LS_2 - LS Synchronous

LS_3 - LS Asynchronous

51

Table A.4 Parallel CPU Code Runtimes on Denver

ECL Ligra+ 1 Ligra+ 2 CRONO LS_1 LS_2 LS_3

2d-2e20 0.0273 0.0576 0.6800 0.1993 0.7829 0.8382 0.5053

amazon0601 0.0182 0.0088 0.0349 0.0780 0.4623 0.3530 0.1667

as-skitter 0.0262 0.0529 0.1410 NA 2.5565 1.6440 1.4935

Citation

Citeseer
0.0175 0.0043 0.0277 0.1015 0.2275 0.1917 0.1074

cit-Patents 0.1564 0.2160 0.8130 0.5934 6.3997 4.7877 3.4271

coPapersDBLP 0.0329 0.0117 0.0597 0.1262 3.2563 1.0859 0.7203

delaunay_n24 0.1545 0.2260 4.4100 1.1776 7.7839 6.7026 4.9345

europe_osm 0.2874 0.9260 30.8000 2.0876 10.1316 15.8009 8.1270

in-2004 0.0471 0.0442 0.0826 NA 1.9132 0.9191 0.6771

internet 0.0132 0.0026 0.0067 0.0676 0.0329 0.0360 0.0243

kron_g500-

logn21
0.2179 2.2300 0.4920 NA 29.1799 10.8242 9.6110

r4-2e23 0.1340 0.1310 0.5460 0.4207 9.9513 13.8737 6.3252

rmat16 0.0017 0.0194 0.0047 0.0451 0.0694 0.0547 0.0394

rmat22 0.2718 2.1100 0.7790 NA 15.4968 9.3222 6.5073

soc-livejournal 0.1756 0.1070 0.9720 NA 14.3023 9.3904 4.7901

uk-2002 0.4532 0.5270 1.4100 NA 55.7538 17.1402 12.0359

USA-NY 0.0101 0.0141 0.1120 0.0932 0.0541 0.0666 0.0433

USA-USA 0.2399 0.3980 70.2000 1.3166 6.3369 7.0886 4.9382

Ligra+ 1 - Ligra+ BFSCC

Ligra+ 2 - Ligra+ Components

LS_1 - LS Blocked Asynchronous

LS_2 - LS Synchronous

LS_3 - LS Asynchronous

52

Table A.5 Serial CPU Code Runtimes on Zurich

ECL LS Serial Boost Lemon igraph

2d-2e20 0.0427 0.1179 0.2813 0.2687 0.3192

amazon0601 0.0175 0.0469 0.1546 0.3517 0.1741

as-skitter 0.0562 0.6048 0.5116 1.4873 0.4849

citationCiteseer 0.0244 0.0315 0.0795 0.1722 0.1040

cit-Patents 0.2688 0.9639 1.9611 3.7353 2.3449

coPapersDBLP 0.0666 0.2025 0.3595 1.2438 0.4880

delaunay_n24 0.5100 1.4646 2.9137 2.5452 3.5161

europe_osm 0.8898 2.0601 5.8685 6.7573 10.8726

in-2004 0.0818 0.1675 0.2610 0.6426 0.3924

internet 0.0098 0.0057 0.0155 0.0087 0.0140

kron_g500-logn21 0.4472 2.9119 2.4865 17.9984 6.4585

r4-2e23 0.5136 2.3232 3.4911 8.3909 5.9166

rmat16 0.0072 0.0120 0.0241 0.0385 0.0243

rmat22 0.4585 2.0729 2.8357 7.9761 3.7217

soc-livejournal 0.4050 1.4531 2.4589 8.3611 3.6557

uk-2002 1.0040 3.7731 5.7324 15.7312 13.7288

USA-NY 0.0133 0.0082 0.0422 0.0176 0.0303

USA-USA 0.5993 1.2499 3.8238 2.4520 3.7154

53

Table A.6 Serial CPU Code Runtimes on Denver

ECL LS Serial Boost Lemon igraph

2d-2e20 0.0762 0.1141 0.2789 0.3010 0.3137

amazon0601 0.0312 0.0465 0.1285 0.3588 0.1760

as-skitter 0.0804 0.5945 0.4813 1.5809 0.4887

citationCiteseer 0.0191 0.0317 0.0857 0.1829 0.1043

cit-Patents 0.2095 0.9381 1.9496 3.8537 2.3879

coPapersDBLP 0.0659 0.2021 0.3675 1.2395 0.4811

delaunay_n24 0.5203 1.5231 2.7283 3.1990 3.4651

europe_osm 0.8984 2.0191 5.5534 8.1286 10.8305

in-2004 0.0550 0.1682 0.3324 0.6387 0.3887

internet 0.0100 0.0057 0.0149 0.0132 0.0224

kron_g500-logn21 0.4738 2.8016 2.5766 17.8190 6.7094

r4-2e23 0.4019 2.2554 3.4077 8.8993 6.0508

rmat16 0.0028 0.0121 0.0218 0.0689 0.0304

rmat22 0.2987 2.0697 2.8030 8.2363 3.9400

soc-livejournal 0.2449 1.4759 2.4893 8.2123 3.6784

uk-2002 1.0063 3.5618 5.4292 15.9495 8.5397

USA-NY 0.0118 0.0082 0.0420 0.0290 0.0305

USA-USA 0.5832 1.3121 3.6517 3.2654 3.8020

54

LITERATURE CITED

[1] Shiloach, Yossi, and Uzi Vishkin. “An O (logn) parallel connectivity

algorithm.” Journal of Algorithms 3.1 (1982): 57-67.

[2] Soman, Kishore, and Narayanan. “A fast GPU algorithm for graph connectivity.”

(2010).

[3] Wang, Yangzihao, et al. “Gunrock: A high-performance graph processing library

on the GPU.” Proceedings of the 21st ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. ACM, 2016.

[4] Shun, Julian, and Guy E. Blelloch. “Ligra: a lightweight graph processing

framework for shared memory.” ACM SIGPLAN Notices. Vol. 48. No. 8. ACM,

2013.

[5] Shun, Julian, Laxman Dhulipala, and Guy E. Blelloch. “Smaller and faster: Parallel

processing of compressed graphs with Ligra+.” Data Compression Conference

(DCC), 2015. IEEE, 2015.

[6] Cormen, Thomas H. Introduction to algorithms. MIT press, 2009.

[7] Connectivity - https://en.wikipedia.org/wiki/Connectivity_(graph_theory)

[8] Sutton, Michael, et al. “Adaptive Work-Efficient Connected Components on the

GPU.” arXiv preprint arXiv:1612.01178 (2016).

[9] Boost: http://www.boost.org/

[10] CUSP: http://cusplibrary.github.io/index.html

[11] Burtscher, Martin, Rupesh Nasre, and Keshav Pingali. “A quantitative study of

irregular programs on GPUs.” Workload Characterization (IISWC), 2012 IEEE

International Symposium on. IEEE, 2012.

55

[12] Ahmad, Masab, et al. “Crono: A benchmark suite for multithreaded graph

algorithms executing on futuristic multicores.” Workload Characterization

(IISWC), 2015 IEEE International Symposium on. IEEE, 2015.

[13] igraph: https://github.com/igraph

[14] Lemon: http://lemon.cs.elte.hu/pub/tutorial/index.html

