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EXISTENCE OF SOLUTIONS OF AN INTEGRAL EQUATION OF
CHANDRASEKHAR TYPE IN THE THEORY OF RADIATIVE

TRANSFER

JOSEFA CABALLERO, ANGELO B. MINGARELLI, KISHIN SADARANGANI

Abstract. We give an existence theorem for some functional-integral equa-

tions which includes many key integral and functional equations that arise in
nonlinear analysis and its applications. In particular, we extend the class of

characteristic functions appearing in Chandrasekhar’s classical integral equa-

tion from astrophysics and retain existence of its solutions. Extensive use is
made of measures of noncompactness and abstract fixed point theorems such

as Darbo’s theorem.

1. Introduction

The study of Chandrasekhar’s integral equation [7]

x(t) = 1 + x(t)
∫ 1

0

t

t+ s
ϕ(s)x(s) ds

has been a subject of much investigation since its appearance around fifty years
ago. It arose originally in connection with scattering through a homogeneous semi-
infinite plane atmosphere and has since been used to model diverse forms of scat-
tering via the H-functions of Chandrasekhar. These in turn are used to write down
specific solutions of the integral equation. The problem of approximating such so-
lutions is still much in vogue today and many efficient methods of calculation of
these functions have been found, e.g., see [5] for details and [9] for an update on
the method. Insofar as the theoretical question of the existence of solutions is con-
cerned, we note that it is known that in some cases as many as two solutions may
exist to one and the same equation, [[6], Chapter 2]. We show that an abstract
framework exists in which Chandrasekhar’s integral equation above takes part as
a special case. Indeed, we show that for said equation, the mere continuity of the
characteristic function ϕ(t) along with ϕ(0) = 0 will guarantee the existence of at
least one solution of (3.3). Recall that normally one assumes that ϕ(t) is an even
polynomial, [7].
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Associated with the usual equation (3.3) is the modified integral equation (1.1)
first suggested by Chandrasekhar [7, Chapter 5, Sect. 38], namely

1
x(t)

= (1− 2ψ0)1/2 +
∫ 1

0

s

t+ s
ψ(s)x(s) ds, (1.1)

where ψ0 =
∫ 1

0
ψ(x) dx. Theoretical results, see (3.10) below, give that 0 < (1 −

2ψ0)1/2 ≤ 1. The usefulness of (1.1) lies in part that it is better suited for numerical
approximations than the original one, (3.3). It is known that (1.1) allows for two
solutions each of one distinct sign, see [5]. Multiplying (1.1) by x(t)/(1− 2ψ0) and
rearranging terms we find the modified form

y(t) =
1

1− 2ψ0
−

∫ 1

0

s

t+ s
ψ(s) y(t) y(s) ds, (1.2)

where y(t) = x(t)/(1−2ψ0), provided ψ0 6= 1/2, the non-critical case, in which case
(1.1) and (1.2) are equivalent.

On the other hand, one could also start the process with equation (1.2). In
this case, the existence of at least one real solution of (1.2) is a consequence of our
abstract theorem below, and this for basically any choice of a characteristic function
ψ(s) in the sense that no additional assumption of the characteristic function at
s = 0 is required in contrast to the original equation.

Multidimensional (matrix) generalizations of Chandrasekhar’s H-equation can
be found in [13] and the references therein. In this paper we study the existence
of solutions of certain functional integral equations (so, possibly containing de-
lays) which contain as particular cases many important integral and functional
equations, for example: the nonlinear Volterra integral equation, and the integral
equation of Chandrasekhar which gives rise to solutions expressible in terms of
Chandrasekhar’s H-functions (see [7] for more details). The main tool used in our
research is the fixed-point theorem for the product of two operators which satisfy
the Darbo condition with respect to a measure of noncompactness in the Banach
algebra of continuous functions on the interval [0, a]. Applications to the theory of
radiative transfer are provided at the end of Section 3, while specific applications
to other integral equations such as those mentioned above are given in Section 4.

2. Notation and auxiliary facts

We recall basic results which we will need further on. Assume that E is a real
Banach space with norm ‖·‖ and zero element, 0. Denote by B(x, r) the closed ball
centered at x with radius r and by Br the ball B(0, r). For X a nonempty subset of
E we denote by X, ConvX the closure and the convex closure of X, respectively.
We denote the standard algebraic operations on sets by the symbols λX and X+Y
. Finally, let us denote by ME the family of nonempty bounded subsets of E and
by NE its subfamily consisting of all relatively compact sets.

Definition 2.1 ([3]). A function µ : ME → [0,∞) is said to be a regular measure
of noncompactness in the space E if it satisfies the following conditions:

(1) kerµ = 0 ⇐⇒ X ∈ NE .
(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(3) µ(X) = µ(ConvX) = µ(X).
(4) µ(λX) = |λ|µ(X), for λ ∈ R.
(5) µ(X + Y ) ≤ µ(X) + µ(Y ).
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(6) µ(X ∪ Y ) = max{µ(X), µ(Y )}.
(7) If {Xn}n is a sequence of nonempty, bounded, closed subsets of E such

that Xn+1 ⊂ Xn for n = 1, 2, . . . and limn→∞ µ(Xn) = 0 then the set
X∞ =

⋂∞
n=1Xn is nonempty.

Further facts concerning measures of noncompactness and their properties may
be found in [3]. Now, let us assume that Ω is a nonempty subset of a Banach
space E and T : Ω → E is a continuous operator mapping bounded subsets of Ω to
bounded ones. Moreover, let µ be a regular measure of noncompactness in E.

Definition 2.2 ([3]). We say that T satisfies the Darbo condition with a constant
Q with respect to a measure of noncompactness µ provided

µ(TX) ≤ Q · µ(X)

for each X ∈ ME such that X ⊂ Ω.

If Q < 1, then T is called a contraction with respect to the measure µ (always
assumed to be a measure of noncompactness in the sequel).

For our purposes we will need the following fixed point theorem [3].

Lemma 2.3. Let N be a nonempty, bounded, closed, convex subset of the Banach
space E and let T : N → N be a contraction with respect to a measure µ. Then T
has a fixed point in the set N .

In what follows we will work in the classical Banach space C[0, a] consisting of all
real functions defined and continuous on the interval [0, a].This space is equipped
with the standard (uniform) norm

‖x‖ = max{|x(t)| : t ∈ [0, a]}.
Obviously, the space C[0, a] also has the structure of a Banach algebra. Now we
present the definition of a special measure of noncompactness in C[0, a] which will
be used in the sequel, a measure that was introduced and studied in [3]. To do this
let us fix a nonempty bounded subset X of C[0, a]. For ε > 0 and x ∈ X denote by
w(x, ε) the modulus of continuity of x defined by

w(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, a], |t− s| ≤ ε}
Further, let us put

w(X, ε) = sup{w(x, ε) : x ∈ X}
w0(X) = lim

ε→0
w(X, ε),

It can be shown (see [4]) that the function µ(X) = w0(X) is a regular measure of
noncompactness in the space C[0, a]. Moreover, the following theorem ([4]) holds,
a result which is essential in the proof of our main result.

Lemma 2.4. Assume that Ω is a nonempty, bounded, convex, closed subset of
C[0, a] and the operators F and G transform continuously the set Ω into C[0, a] in
such a way that F (Ω) and G(Ω) are bounded. Moreover, assume that the operator
T = F ·G transforms Ω into itself. If the operators F and G each satisfy the Darbo
condition on the set Ω (with respect to the measure of noncompactness w0) with
constant Q1 and Q2, respectively, then the operator T satisfies the Darbo condition
on Ω with the constant

‖F (Ω)‖Q2 + ‖G(Ω)‖Q1.
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In particular, if ‖F (Ω)‖Q2 + ‖G(Ω)‖Q1 < 1 then T is a contraction with respect to
w0 and so has at least one fixed point in Ω.

3. Main Result

In this section, we will study the solvability of the functional-integral equation

x(t) = f
(
t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))
)
· g

(
t,

∫ a

0

x(t)u(t, s, x(s)) ds, x(β(t))
)
,

(3.1)
for x ∈ C[0, a]. The methods used will be shown to be sufficiently general to allow
applications to complex functional integral equations that include Chandrasekhar’s
H-functions as solutions (see [7, Chapter 5]).

In what follows we will assume that the functions involved in (3.1) verify the
following conditions:

(i) f, g : [0, a]×R×R → R are continuous and there exist nonnegative constants
c1, c2, d1, d2 such that

|f(t, 0, x)| ≤ c1 + d1|x|
|g(t, 0, x)| ≤ c2 + d2|x|

(ii) The functions f(t, y, x), g(t, y, x) satisfy a Lipschitz condition with respect
to the variables y and x with constants k, k′ ≥ 0 respectively, i.e.,

|f(t, y1, x)− f(t, y2, x)| ≤ k|y1 − y2|
|g(t, y1, x)− g(t, y2, x)| ≤ k|y1 − y2|,

for all t ∈ [0, a], and y1, y2, x ∈ R, and

|f(t, y, x1)− f(t, y, x2)| ≤ k′|x1 − x2|
|g(t, y, x1)− g(t, y, x2)| ≤ k′|x1 − x2|,

for all t ∈ [0, a] and x1, x2, y ∈ R.
(iii) u, v : [0, a]× [0, a]× R → R are continuous.
(iv) α, β : [0, a] → [0, a] are continuous and satisfy,

|α(t1)− α(t2)| ≤ |t1 − t2|,
|β(t1)− β(t2)| ≤ |t1 − t2|,

for all t1, t2 ∈ [0, a].
(v) (Sublinear nonlinearity) There exist nonnegative constants α1, β1 ,α2 and

β2 such that

|v(t, s, x)| ≤ α1 + β1|x|, |u(t, s, x)| ≤ α2 + β2|x|.
for all t, s ∈ [0, a] and x ∈ R.

(vi) The inequality[
k(α̃+ β̃r) · a+ (c+ dr)

][
k(α̃+ β̃r) · r · a+ (c+ dr)

]
≤ r

has a positive solution r0, where α̃ = max{α1, α2}, β̃ = max{β1, β2}, c =
max{c1, c2} and d = max{d1, d2}.

(vii)
k′

[
k(α̃+ β̃r0) · a · (1 + r0) + 2(c+ dr0)

]
< 1.

On this basis we have the following result.
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Theorem 3.1. Under the tacit assumptions (i)-(vii) above, the functional-integral
equation

x(t) = f
(
t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))
)
· g

(
t,

∫ a

0

x(t)u(t, s, x(s)) ds, x(β(t))
)
,

(3.2)
has at least one solution x ∈ C[0, a].

Remark: Assumption (v) is essentially a sublinear nonlinearity assumption on the
kernels u, v appearing in (3.1). I n order to handle a quadratic type of nonlinearity
as can occur in, say, the integral equation of Chandrasekhar (see [7])

x(t) = 1 + x(t)
∫ 1

0

t

t+ s
ϕ(s)x(s) ds (3.3)

we need to show that our technique can be used so as to include this class of
important integral equations.

We note that usually the existence of solutions of (3.3) is derived under the
additional assumption that the so-called characteristic function ϕ appearing in (3.3)
is an even polynomial in s, (cf., [7, Chapter 5]). For such characteristic functions it
is known that the resulting solutions can be expressed in terms of Chandrasekhar’s
H-functions [7, Chapters 4 & 5].

In our case, we derive the existence of solutions of this equation (3.3) under the
much weaker assumption of continuity of ϕ along with ϕ(0) = 0. The condition
ϕ(0) = 0 is actually physically meaningful in some cases of radiative transfer (see
[[7], p.102, eq.(74)]). In this context, there does remain an interesting question,
that is, in the case of a general characteristic function, can the solutions we obtain
be expressed as an infinite linear combination of classical H-functions?

Proof. To prove this result using Lemma 2.4 as our main tool, we need to define
operators F and G on the space C[0, a] in the following way:

(Fx)(t) = f
(
t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))
)
,

(Gx)(t) = g
(
t,

∫ a

0

x(t)u(t, s, x(s)) ds, x(β(t))
)
.

Next, we prove that the operators F and G transform the space C[0, a] into itself.
To this end we are going to prove that F,G are compositions of continuous functions
defined on [0, a]; that is, the operator F can be expressed as the composition of the
following functions:

[0, a]
Id×

R
v×(x◦α)
→ [0, a]× R× R f→ R

t 7−→
(
t,

∫ t

0
v(t, s, x(s)) ds, x(α(t))

)
7−→ Fx(t)

Now, taking into account assumptions (i), (iii) and (iv) it follows that above func-
tions are continuous, and therefore F transforms the Banach algebra C[0, a] into
itself. Similarly, one can prove that the operator G transforms C[0, a] into itself.

The required operator T on C[0, a] is defined by setting

Tx = (Fx) · (Gx).
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Obviously, T transforms C[0, a] into itself. Also using assumptions (ii), (iv) and
(v) we get that for every t ∈ [0, a],

|Fx(t)| =
∣∣∣f(

t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))
)∣∣∣

≤
∣∣∣f(

t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))
)
− f(t, 0, x(α(t)))

∣∣∣ + |f(t, 0, x(α(t)))|

≤ k
∣∣∣ ∫ t

0

v(t, s, x(s)) ds
∣∣∣ + c1 + d1|x(α(t))|

≤ k(α1 + β1‖x‖) · a+ (c1 + d1‖x‖).
(3.4)

On the other hand, by (ii), (iv), and (v) again, we have

|Gx(t)| =
∣∣∣g(t,∫ a

0

x(t)u(t, s, x(s)) ds, x(β(t))
)∣∣∣

≤
∣∣∣g(t,∫ a

0

x(t)u(t, s, x(s)) ds, x(β(t))
)
− g(t, 0, x(β(t)))

∣∣∣
+ |g(t, 0, x(β(t)))|

≤ k
∣∣∣ ∫ a

0

x(t)u(t, s, x(s)) ds
∣∣∣ + c2 + d2|x(β(t))|

≤ k‖x‖(α2 + β2‖x‖) · a+ (c2 + d2‖x‖).

(3.5)

Linking (3.4) and (3.5) we obtain

|Tx(t)|
= |Fx(t)| · |Gx(t)|
≤

[
k (α1 + β1‖x‖) · a+ (c1 + d1‖x‖)

][
k ‖x‖ (α2 + β2‖x‖) · a+ (c2 + d2‖x‖)

]
.

Hence,

‖Tx‖ ≤
[
k(α̃+ β̃‖x‖) a+ (c+ d‖x‖)

] [
k ‖x‖ (α̃+ β̃‖x‖) a+ (c+ d‖x‖)

]
Taking into account assumption (vi) we deduce that the operator T maps the ball
Br0 ⊂ C[0, a] into itself.

Next, we show that the operator F is continuous on Br0 . To do this fix ε > 0
and take x, y ∈ Br0 such that ‖x− y‖ ≤ ε. Then, for t ∈ [0, a] we get

|Fx(t)− Fy(t)|

=
∣∣∣f(

t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))
)
− f

(
t,

∫ t

0

v(t, s, y(s)) ds, y(α(t))
)∣∣∣

≤
∣∣∣f(

t,

∫ t

0

v(t, s, x(s)) ds, x(α(t))
)
− f

(
t,

∫ t

0

v(t, s, y(s)) ds, x(α(t))
)∣∣∣

+
∣∣∣f(

t,

∫ t

0

v(t, s, y(s)) ds, x(α(t))
)
− f

(
t,

∫ t

0

v(t, s, y(s)) ds, y(α(t))
)∣∣∣

≤ k

∫ t

0

|v(t, s, x(s))− v(t, s, y(s))|ds+ k′|x(α(t))− y(α(t))|

≤ k · w(v, ε) · a+ k′‖x− y‖
≤ k · w(v, ε) · a+ k′ε,
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where

w(v, ε) = sup{|v(t, s, x1)− v(t, s, x2)| : t, s ∈ [0, a], x1, x2 ∈ [−r0, r0], |x1 − x2| ≤ ε}.

Using the fact that the function v is uniformly continuous on the bounded subset
[0, a] × [0, a] × [−r0, r0], we infer that w(v, ε) → 0 as ε → 0. Thus, the above
estimate shows that the operator F is continuous on Br0 . Similarly, one can infer
that the operator G is continuous on Br0 and consequently deduce T is a continuous
operator on Br0 .

Now, we prove that the operators F and G satisfy the Darbo condition with
respect to the measure w0, defined in Section 2, in the ball Br0 . Take a nonempty
subset X of Br0 and x ∈ X. Then, for a fixed ε > 0 and t1, t2 ∈ [0, a] such that
t1 ≤ t2 and t2 − t1 ≤ ε, we obtain

|Fx(t2)− Fx(t1)|

=
∣∣∣f(

t2,

∫ t2

0

v(t2, s, x(s)) ds, x(α(t2))
)
− f

(
t1,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t1))
)∣∣∣

≤
∣∣∣f(

t2,

∫ t2

0

v(t2, s, x(s)) ds, x(α(t2))
)
− f

(
t2,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t2))
)∣∣∣

+
∣∣∣f(

t2,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t2))
)
− f

(
t1,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t1))
)∣∣∣

≤ k
∣∣ ∫ t2

0

v(t2, s, x(s)) ds−
∫ t1

0

v(t1, s, x(s)) ds
∣∣

+
∣∣∣f(

t2,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t2))
)
− f

(
t1,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t2))
)∣∣∣

+
∣∣∣f(

t1,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t2))
)
− f

(
t1,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t1))
)∣∣∣

≤ k
[ ∫ t1

0

|v(t2, s, x(s))− v(t1, s, x(s)) ds|+
∫ t2

t1

|v(t2, s, x(s))|ds
]

+
∣∣∣f(

t2,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t2))
)
− f

(
t1,

∫ t1

0

v(t1, s, x(s)) ds, x(α(t2))
)∣∣∣

+ k′|x(α(t2))− x(α(t1))|
(3.6)

At this point we introduce the notation:

wv(ε, ·, ·) = sup
{
|v(t, s, x)− v(t′, s, x)| : t, t′, s ∈ [0, a], |t− t′| ≤ ε

and x ∈ [−r0, r0]
}
,

L = sup
{
|v(t, s, x)| : t, s ∈ [0, a], x ∈ [−r0, r0]

}
,

wf (ε, ·, ·) = sup
{
|f(t, x, y)− f(t′, x, y)| : t, t′ ∈ [0, a], |t− t′| ≤ ε,

x ∈ [−Lr0 a, L r0 a], y ∈ [−r0, r0]
}
.

Then, using (3.6) we obtain the estimate

|Fx(t2)− Fx(t1)| ≤ k · [wv(ε, ·, ·) · a+ L · ε] + wf (ε, ·, ·) + k′|x(α(t2))− x(α(t1))|.

Now, assumption (iv) allows us to deduce

w(Fx, ε) ≤ k · [wv(ε, ·, ·) · a+ L · ε] + wf (ε, ·, ·) + k′w(x, ε).
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Thus, taking the supremum in X, then the limit as ε→ 0, and taking into account
the uniform continuity of the functions f and v in bounded sets, we can deduce
that

w0(FX) ≤ k′w0(X). (3.7)

Similarly, one can prove that

w0(GX) ≤ k′w0(X). (3.8)

Finally, linking (3.4)-(3.5), (3.7)-(3.8) and keeping in mind Lemma 2.4, we infer that
the operator T satisfies the Darbo condition on Br0 with respect to the measure
w0 with constant

Q = k′
[
k(α̃+ β̃r0) · a · (1 + r0) + 2(c+ dr0)

]
,

(see assumption (vii)). Moreover, from assumption (vii) we deduce that the opera-
tor T is a contraction on Br0 . Therefore, applying Darbo’s theorem we get that T
has at least one fixed point in Br0 . Consequently, the functional-integral equation
(3.1) has at least one solution in Br0 . This completes the proof. �

Remark: Moreover, in going through the estimates leading to a solution of (4.1)
we note that, in actuality, for this specific choice of f and g condition (vi) can be
relaxed to

k‖ϕ‖ar2 + c ≤ r,

which, of course, shows that Chandrasekhar’s equation has a real continuous solu-
tion in this setting where k = 1 and c = 1 provided the characteristic function ϕ
and the interval [0, a] are related by the inequality

4‖ϕ‖a < 1. (3.9)

In [[7], Section 38, Corollary 1] Chandrasekhar proves that a necessary condition
for a solution of equation (3.3) to be real is that, in the case a = 1, we have∫ 1

0

ϕ(s) ds ≤ 1
2
. (3.10)

But we have shown above that if (3.9) holds then the solution of (3.3) that we found
must be real and continuous. Under assumption (3.9), however, it is easy to see
that, when a = 1, ∫ 1

0

ϕ(s) ds ≤ ‖ϕ‖ < 1
4
.

This result is consistent with the stated one in (3.10) for the existence of a real
solution. Indeed, when a = 1 it is easy to see that r0 = 1/

√
‖ϕ‖ is a solution of the

inequality ‖ϕ‖r2 + 1 ≤ r. Since the fixed point of our operator T (i.e., our solution
x(t)) must lie in the ball with radius r0, it follows that our solution(s) lie in this
ball, and so there holds the a priori estimate

‖x‖ ≤ 1√
‖ϕ‖

.

Such a result, in the case of a general characteristic function, does not appear in the
literature (nor in [7]), and so is new. We therefore state this as a separate result.
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Theorem 3.2. Any solution x(t) of Chandrasekhar’s integral equation (4.1) on
[0, a] necessarily satisfies

‖x‖ ≤ 1√
‖ϕ‖

(3.11)

for any choice of the characteristic function ϕ(t) subject to it only being continuous
on [0, a] and ϕ(0) = 0.

The bound on the right of (3.11) can likely be improved for specific classes of
characteristic functions. Finally, we present an additional concrete example of a
functional-integral equation where all the functions involved in the equation satisfy
our conditions.

4. Applications

In this section we present some examples of classical integral and functional
equations considered in nonlinear analysis which are particular cases of equation
(3.1) and consequently, the existence of their solutions can be established using
Theorem 3.1.

Example 4.1. First we note that equation (1) concerns the well-known functional
equation of the first order with a possible delay of the form

x(t) = f1 (t, x(α(t))) ,

see [11]. To obtain this example it is sufficient to put f(t, y, x) = f1(t, x) and
g(t, y, x) = 1.

Example 4.2. Next, setting g(t, y, x) ≡ 1 and f(t, y, x) = a(t) + y, equation (3.1)
reduces to the well-known nonlinear Volterra integral equation

x(t) = a(t) +
∫ t

0

v(t, s, x(s)) ds.

Example 4.3. On the other hand, if we choose f(t, y, x) ≡ 1, g(t, y, x) = 1 + y,
u(t, s, y) = t

t+sϕ(s)y, and β(t) = t in Theorem 3.1, equation (3.2) now takes the
form

x(t) = 1 + x(t)
∫ a

0

t

t+ s
ϕ(s)x(s) ds, (4.1)

and this is the famous quadratic integral equation of Chandrasekhar discussed above
and considered in many papers and monographs (e.g., [2, 7]).

Remark. Applying our technique to the specific equation (4.1) we see that in
order for all the assumptions (i)-(vii) to be satisfied in Theorem 3.1 we only need
to impose the additional condition that the characteristic function ϕ defined in
(3.2) is continuous and satisfies ϕ(0) = 0. This previous condition will ensure that
the kernel u(t, s, x) defined by

u(t, s, x) =

{
0, s = 0, t ≥ 0, x ∈ R

t
t+sϕ(s)x, s 6= 0, t ≥ 0, x ∈ R

is continuous on [0, a]× [0, a]× R in accordance with assumption (iii). To see this
let ϕ(0) = 0 along with u(0, 0, x) = 0. Since ϕ is continuous at s = 0, given ε > 0
we can choose δ1 > 0 so small that |ϕ(s)| <

√
ε whenever |s| < δ1. Next, let (t, s, x)

be such that
√
t2 + s2 + x2 < δ1. Then |u(t, s, x)| ≤ |ϕ(s)||x| <

√
εδ1 < ε provided
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we choose δ1 <
√
ε. Thus u(t, s, x) is continuous at (0, 0, 0), and clearly at every

other point in [0, a]× [0, a]× R.

Example 4.4. In addition, setting f(t, x, y) ≡ 1 and g(t, y, x) = b(t) + y + x, we
obtain existence results for the functional integral equation

x(t) = b(t) + k x(ct) +
∫ a

0

x(t)u(t, s, x(s)) ds, (4.2)

where k ∈ R and 0 ≤ c ≤ 1 are constants. This is an equation that includes
the modified equation of radiative transfer (1.1) since we can fix the function
b(t) = 1/(1 − 2ψ0), to be a constant function and k = 0. In this case, u(t, s, y) =
−sψ(s)y/(t+ s), and this function is automatically continuous at s = 0. Thus, it is
not necessary to assume anything about the value of ψ(x) at x = 0, in contrast with
Example 4.3 and the arguments in the Remark above concerning equation (3.3).

Example 4.5. Let us take f, g : [0, 1] × R × R → R defined by f(t, y, x) = 1
9y +

1
10 sinx and g(t, y, x) ≡ 1. It is easy to prove that these functions are continuous
and satisfy hypothesis (i) with c1 = 1

10 , d1 = 0, c2 = 1 and d2 = 0. In this case
c = max{c1, c2} = 1 and d = max{d1, d2} = 0.

Also the functions f and g verify the Lipschitz condition with respect to the
variables y and x with constants k = 1

9 and k′ = 1
10 , respectively. On the other

hand, we define the continuous functions v(t, s, x) = t · s arctanx and u(t, s, x) ≡ 0.
It is clear that

|v(t, s, x)| ≤ | arctanx| ≤ |x|
then v satisfies assumption (v) with α1 = 0 and β1 = 1. Moreover, it is obvious
that u satisfies the same hypothesis with α2 = 0 and β2 = 0. Consequently,
α̃ = max{α1, α2} = 0 and β̃ = max{β1, β2} = 1.

Next, we take α(t) = 1/(1 + t) and β(t) = t, each of which satisfies assumption
(v). Taking into account the above estimates we obtain that the inequality of
hypothesis (vi) has the form (r

9
+ 1

)(r2
9

+ 1
)
≤ r.

However, it is easy to see that there is a root r0 of this inequality with r0 ∈ (0, 3).
For this value of r0, we have that assumption (vii) is satisfied. Now taking into
account all the functions defined previously, the functional-integral equation is

x(t) =
t

9

∫ t

0

s arctanx(s) ds+
1
10

sin
( 1
1 + t

)
.

Applying the result obtained in Theorem 3.1, we deduce that this equation has at
least one solution in Br0 ⊂ C[0, a].
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[4] J. Banaś, M. Lecko, Fixed points of the product of operators in Banach algebra, Panamer.

Math. J. 12, (2002) 101-109.



EJDE-2006/57 EXISTENCE OF SOLUTIONS 11

[5] P. B. Bosma and W. A. de Rooij, Efficient methods to calculate Chandrasekhar’s H-functions

Astron. Astrophys. 126 (1983), 283-292.

[6] I. W. Busbridge, The Mathematics of Radiative Transfer
Cambridge University Press, Cambridge, 1960.

[7] S. Chandrasekhar, Radiative Transfer, Oxford University Press, (London, 1950) and Dover

Publications, (New York, 1960).
[8] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, (Berlin, 1985).

[9] J. Juang, K-Y Lin and W-W Lin, Spectral analysis of some iterations in the Chandrasekhar’s

H-function
Numer. Func. Anal. Opt., 24 (5-6) (2003), 575-586.

[10] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases,

Appl. Analysis, 34 (1989), 261-266.
[11] M. Kuczma, Functional Equations in a Single Variable, PWN, (Warsaw 1968).

[12] D. O’Regan, M. M. Meehan, Existence theory for nonlinear integral and integrodifferential
equations, Kluwer Academic Publishers, (Dordrecht, 1998).

[13] B. L. Willis, Solution of a generalized Chandrasekhar H-equation

J. Math. Phys., 27 (4) (1986), 1110-1112.

Josefa Caballero
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