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A SUBSOLUTION-SUPERSOLUTION METHOD FOR
QUASILINEAR SYSTEMS

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

ABSTRACT. Assuming that a system of quasilinear equations of gradient type
admits a strict supersolution and a strict subsolution, we show that it also
admits a positive solution.

1. INTRODUCTION
Consider the quasilinear elliptic system
—Apu = Hy(z,u,v) in Q
—Agv = Hy(z,u,v) inQ (1.1)
u=v=0 on 9,

where (2 is a bounded domain in RN, N > 2, with boundary of class C?, A, and
Ay are the p— and g—Laplace operators with 1 < p,¢g < N,and H : @ xRxR — R
is a O function.

The solvability of system has been extensively studied by various methods,
fibering [3], bifurcation [4], via the mountain pass theorem [2] etc. We use the super-
and sub- solution method by assuming that admits a strict supersolution and
a strict subsolution and construct two sequences of approximate solutions whose
limit is shown to be a solution of the system. The same approach can also be
applied to nonvariational and Hamiltonian systems. It is worth mentioning that,
as far as is concerned, the classical super- and sub- solution method is not
directly applicable because the “restriction” of the function H(z,.,.) between the
super- and sub- solution is not necessarily differentiable.

We make the following assumptions:

(H1) s — Hy(z,s,t) and s — H,(x,s,t) are nondecreasing for a.e. x € 1 and
every ¢t > 0.

(H2) t — Hy(x,s,t) and t — H,(z,s,t) are nondecreasing for a.e. = € Q and
every s > 0.

(H3) Hy(x,0,t) = Hy(x,s,0) =0 for a.e. x € Q and every s,t > 0.
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(" 1)

(H4) There exists C > 0 such that |H,(x,s,t)| < C(1+]s o ) and
p*(g*—1) *

|Hy(z,8,t)] < C(1+|s| ' + [t|7 1) a.e. in Q, where p* := NN—Q) and

q* = NN—_qq are the critical Sobolev exponents.

Note that if (H1)-(H4) are satisfied then
|H(z,5,t)] < c(1+|s]P" +[t|7) a.e.in Q,

for some ¢ > 0.
Let E = Wy (Q) x Wy?(€). The energy functional ® : E — R associated to

is
/|vu|p /|Vv|q—/H(a:,u(a:),v(a:))dx.

It is clear that if (H1 H4 are satisfied, then ® is a C''-functional whose critical

points are solutions to

Definition. A pair of nonnegative functions (u,v) € C1(Q2) x C1(Q) is said to
be a strict supersolution for (L.1) if —A,u > H,(z,%,7) and —A,Tv > H,(x,4,7)
in Q. A pair of nonnegative functions (u,v) is said to be a strict subsolution if
—Apu < Hy(z,u,v) and —Agv < Hy(z,u,v) a.e. in Q.

Theorem 1.1. Assume that hypotheses (H1)—-(H/) hold and (L.1) admits a strict
supersolution (u,v) and a strict subsolution (u,v) withu < @ andv < U in Q. Then
(1.1) has a solution (ug,vy) with ug,vg > 0 in Q.

Proof. For a function F : 2 x R x R — R, we define

F(x,s,t) if u(z) <s <a(z), v(z) <t <v(z),
F(z,u(x),t) if s <u(z), v(z) <t <v(x),
F(z,s,v(x)) if u(z) < s <u(z), t <v(z),

~ F(z,u(z),v(z)) if s <wu(z), t <v(x),

F(z,s,t) =1 F(x, t) if u(z) < s, v(z

) <
ifu(z) <s, v(z) <
) <

;0(x)) :
F(z,u(x),v(x)) if s <u(x), v(x ,
F(z,u(z),v(z)) ifu(z) <s, t <uv(x),
F(z,s,v(x)) if u(z) <s <ux), v(z) < t.

We will construct two sequences u,, € VVO1 P(Q) and v, € VVO1 (), n € N, as follows:
consider the problem
—Apu = ﬁ[u(x, u,v) in
u=0 on 0.
The Euler-Lagrange functional associated with the above system is

1 RPN
= f/ |Vu|p—// Hy(z,s,v)dsdx
P Jo QJo

which is bounded from below, weakly lower semicontinuous and coercive in W, ().
Therefore, the infimum of ®(.) is achieved at some point u; € Wg?(€2) N CH(Q)
which is a solution of (L.2). We claim that u(z) < ui(z) < u(x) for every z € Q.
Indeed, assume that the set

Q:={zeQ:u(x) <ulx)}

(1.2)
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is nonempty. Since it is open, it must have positive measure and

—Apuy = Hy(z,u,7) in Q, (1.3)
while,

—Apu < Hy(z,u,7) in Q. (1.4)

Multiplying 1' and |j with v — u; and integrating over ﬁ, we get

/IVuOlp*QVuN(y—ul):/Hu(x,@,@)(g—m),
Q Q
and
/\VQIP*ZVQV(gful):/Hu(x,y,ﬁ)(gful),
Q Q

which combined yield
/ [|Vg|p_2 Vu — |Vu1|p_2 Vul] V(u—uy) <0,
Q

contradicting the strong monotonicity of the —A, operator. Thus Q is empty.
Similarly, ui(x) < @(z) for every x € Q.
Consider the problem

—Agv = Hy(z,ui,v) inQ

1.5
v=0 on 0. (15)

Working as in we can show that it admits a solution v; € Wy?(Q) N C1(Q)
with v(z) < vi(z) < (x). Assuming now that u, € W,?(Q) and v, € Wy %(),
n=1,...k— 1, have been defined, we let u; € Wol’p(Q) be a solution of with
vi_1 in the place of ¥ and vy, € Wol’p(Q) be a solution of lb with ug in the place
of uy. Since H,(z,s,t) and H,(z,s,t) are bounded, the sequences u, € W,y P(9)
and v, € Wy'*(Q), n € N, are also bounded, so u, — ug weakly in Wy (Q) and
vy, — vg weakly in Wol’q(Q). Exploiting the continuity of H,(z,.,.) and H,(z,.,.)
and the Sobolev embedding we easily deduce that (ug, vo) is a solution of the system

—Apu = Hy(z,u,v) inQ
—Agv = Hy,(z,u,v) inQ
u=v=0 on 0f,
while u(z) < ug(z) <a(z), v(z) < vo(z) < T(x) for every x € 2. Thus

~

ﬁu(x7u07vo) = Hu('rvu031}0)7 HU(I'7U0,UO) = HU(IaUOa/UO)'

Consequently, (ug,vp) is a critical point of ®(.,.) and therefore a solution of (|1.1)).
On account of (H1)(i), we have

—Apu < Hy(z,u,v) < Hy(x,uo,v0) = —Apug  in £,
and so, by the strong comparison principle in [5, Proposition 2.2] , we deduce that
0<u<ugin Q.

Similarly, vg > 0 in Q. O
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Remark 1.2. In the case of a single equation, the existence of a solution is estab-
lished by minimizing (locally) the energy functional. By making use of the fact that
this solution is a minimizer, an application of the mountain pass principle provides
a second solution [I], 3]. However, in our case it is not clear that the solution (ug, vo)
provided by the previous Theorem is a (local) minimizer of ®(.,.).

Let A; denote the principal eigenvalue of the p—Laplace operator and pu; the
principal eigenvalue of the g—Laplace operator in 2.

Corollary 1.3. Assume that hypotheses (H1)-(H/) hold. Then (1.1) admits a
strict supersolution (u,v) and

H, t H. t
i He@st) oy @8
s—0t Sp_l t—0+ tq—l

for a.e. x € Q and s,t > 0. Then (1.1) has a solution (ug, vo) with ug,vy > 0 in Q.

> 1 (16)

Proof. Let 1 > 0 be an eigenfunction corresponding to A\; and ¥; > 0 an eigenfunc-
tion corresponding to ui. In view of there exists € > 0 such that (e¢1,et)1)
is a strict subsolution of . Furthermore, as a consequence of the maximum
principle [6], by taking e sufficiently small we have that ep; < @ and ey; < T in Q.
Theorem implies that has a solution (ug, vg) with ug,vg > 0 in . O

We now present a simple (academic) example. Assume that H(.,.,.) is a C*
function satisfying (Hl)f(H?)) and

for some « € [1, min{p—1,q— 1}] and every s,t,& > 0. Then H satisfies (H4) since

H,( u(V 82 +t2 \/82+2
S t

V22 s ¢2
< Ci (14 s%41t%),

£/ 2+t2

= (s? +t2>fHu< ) < M(s* +1%)%

for some C; > 0, where M = sup{H,(s,t) : s> +t?> = 1}. Similarly, H,(s,t) <
Cy(1+ s* +t%) for some Cy > 0.
If @, v are the solutions of
—-Apu=1 inQ
—Agv=1 inQ
u=v=0 on 0,

then there exists ¢ > 0 such that (@, v) := ({u, (v) is a strict supersolution of (1.1).
Indeed, if

M= 21618 {H,(z,u(x),0(x)), Hy(z,u(z),0(z)) },

then for ¢ > max{ MY/ (1=p=) N1/(1=a=)} we have
—A,(Ca) = (P71 > MC™ > (*H, (2, 0,0) = Hy(z, (U, (D).

Similarly, —A4(¢v) > H,(z, {4, (V). On the other hand, (1.6) is satisfied because
a < min{p — 1,q — 1}. By Corollary (1.1) admits a positive solution.
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