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ABSTRACT 

       The traditional N-1 power grid system is inadequate as it cannot withstand extreme 

weather events like hurricane, flooding, earthquake etc. Extreme event analysis reports by 

NERC, BPU, and ERCOT state that failure of outdoor grid components like distribution 

lines, transformers and generators lead to majority of the power outages where millions 

of customers get affected. This research addresses the problem of power grid resilience 

post an extreme weather event and how the grid recovery can be planned and 

executed. We propose a repair and recovery model for transmission lines for the case of 

Hurricane Harvey and analyze how the repair rate and the failure rate affect various 

performance metrics. We analyze how electric vehicles (EV) can be used as a potential 

alternative to build resilience of a power system in contingency. A mathematical model is 

developed for the EV battery swap process and the minimum spare battery requirement is 

analyzed for various scenarios. We present a Vehicle-to-Grid (V2G) based resilience 

model for critical loads like manufacturing facility during an extreme event. The main 

goal of this model is to determine the sizing and siting of the wind- and solar-based 

microgrid to ensure power resilience through island operations. Through this model, we 

analyze how the number of EVs, battery capacities, industrial production loss and the 

V2G service cost affect the levelized cost of energy (LCOE) in extreme weather 

condition. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Electrical power systems are critical infrastructure of our society because they support 

economic, business and social activities in everyday life. They must be reliable during 

normal conditions and also be resilient to high-impact low-probability (HILP) events. 

Despite low probability, severe weather events like hurricane, earthquake, and snowstorm 

often have dramatic consequences on power systems, affecting the operation and 

reliability of outdoor components like transmission towers and overhead lines. In 2017, 

the USA was affected by 16 separate billion dollar disaster events which include three 

tropical cyclones, eight severe storms, two inland floods, one crop freeze, one drought 

and one wildfire (Smith et al. 2018). 

 
Figure 1. 16-billion-dollar weather and climate disasters in the USA in 2017(Smith et al. 

2018)  
 
Among all these extreme weather events, those that left ineradicable impact are 

hurricanes Irma, Maria, Harvey and the California firestorm. 
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The following figure shows the geography of billion-dollar disaster events by type from 

1989 to 2017 in the USA. 

 

Figure 2. Billion-dollar weather and climate disaster frequency mapping (Smith et al. 
2018) 

 
1.2. Resilience of a power system 

Extreme weather events have dramatic impacts on the resilience of a power system. 

Resilience is derived from the Latin word “resilio” which literally refers to the ability of 

an object to rebound or return to its original shape or position after being stressed. 

Resilience with respect to power infrastructure is defined as “the ability of a power 

system to recover quickly following a disaster or, more generally, to the ability of 

anticipating extraordinary and high-impact, low-probability events, rapidly recovering 

from these disruptive events, and absorbing lessons for adapting its operation and 

structure for preventing or mitigating the impact of similar events in the future” (Panteli 

et al. 2015). Figure 3 shows the conceptual resilience curve of a power system. 
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Figure 3. Resilience curve of a power system (Panteli et al. 2015) 

Figure 3 shows how the resilience of a power system as a function of time gets affected 

with respect to an extreme event. Robustness and resistance are considered as the key 

resilient features for a system before an extreme event occurs at te. After the event has 

occurred, the resilience of the system drops from Ro to Rpe and the system enters the post 

event degraded state. Note that both Ro to Rpe represent the system performance index, 

such as power delivered, or energy supplied. Resourcefulness, redundancy and adaptive 

self-organization play a key role in the system survival in this state. After this stage, the 

system enters the restorative state. In this state, the system should be able to heal itself 

and return to its normal state as quickly as possible. Now the system enters the post 

restoration state with a resilience level Rpr which might or might not be the same as the 

pre-event resilience level Ro. However, if the system’s components are damaged 

extensively due to an extreme weather event like hurricane, the system might not 

demonstrate sufficient resilience in performance. Rather it may take longer for the system 

to return to its original state as it can be seen in Figure 3. 
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1.3 Resilience Enhancement in Power Systems 

Power systems should be able to withstand unanticipated catastrophic events, climate 

change and man-made incidents. When Maria, a Category 4 hurricane, stormed into 

Puerto Rico, it damaged almost 80% of the island’s grid and 40% of the 334 substations 

suffered major damages (Gallucci, 2018).  The following figures show how the critical 

infrastructures of a power system such as the transmission towers, and distribution poles 

and lines have been damaged due to hurricanes. 

 

Figure 4. Aftermath of Hurricane Maria (Fortune,2017) 

 

Figure 5. Aftermath of Hurricane Harvey (Catholic Sun, 2017) 
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Figure 6. Damage of distribution towers due to Hurricane Maria (Electric Light and 
Power, 2018) 

 
In this research we are going to address the problem of resilience in four different aspects 

as shown in Figure 7 below. 

 

Figure 7. Resilience improvement strategies 

To begin with we discuss how extreme weather events damage the bulk power system 

and affects the power grid resilience.  We develop mathematical models for some of the 

extreme weather events, namely hurricane, floods and earthquake. Secondly, we develop 

a repair and recovery model for transmission lines for the case of Hurricane Harvey and 

perform sensitivity analysis to see how the repair rate and the failure rate affect various 
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performance metrics. Thirdly, we discuss how Electric Vehicles (EVs) could be a 

potential source of power storage and how they can be used to attain grid resilience post 

the disaster event. Finally, we present an EV based V2G model for an industrial facility 

and analyze how different factors such as production loss and EV fleet size affect the 

total system cost. 

In order to improve the resilience of an electric power system, proactive measures and 

resilient techniques can be adopted and implemented in various stages, including the grid 

design, the operation and the recovery phase. Each of these are discussed in detail in the 

following sections. 

1.4 Resilience Enhancement in the Design Phase of Power Grid 

Some of the most common hardening measures are listed in Table 1 below, including 

modern control measures and protections against flooding and windstorms. 

Table 1. Power grid hardening measures (Wang et al., 2016) 

 
Hardening 

 
Activities 

Flood Protection 

• Elevating structures such as substations, control rooms, 
and pump stations 

• Relocating/constructing new lines and facilities 
• Adding redundant lines to the existing system 
• Using redundant generating units as backup power 
 

Wind Protection 

• Upgrading damaged structures with stronger materials 
• Strengthening or upgrading poles  
• Burying power lines underground 
• Vegetation management 
 

Modernization 
• Deploying sensors and control technology 
• Installing assets such as database or software tools 
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One of the most common measures for improving the power system resilience is called 

hardening. It refers to any structural enhancement or topology upgrade in order to make a 

power system less vulnerable to extreme events. However, hardening might not always 

provide an optimum solution, partly because it usually involves a significant amount of 

financial investment on critical power system infrastructure, and partly because it is 

resource intensive and time consuming for implementation. Some of the measures that 

are taken to improve the grid resilience in the design stage include the following. 

• Hardening measures as discussed in Table 1 

• Replacing radial distribution lines with ring configuration 

• Redundancy allocation of electrical components, such as generators and overhead 

transmission lines. 

• Placement of backup generating units 

• Renewable energy (i.e. WT and PV) integration 

• Distributed generation allocation 

• Usage of energy storage units including electric vehicle (EV) 

• Pro-active resource allocation 

Seiver et al. (2007) demonstrate in their study how unified power flow controllers 

(UPFCs) can be used to reduce cascading outages in a power system transmission line. A 

cascading failure is a process in a system of interconnected parts in which the failure of 

one or certain parts can trigger the failure of other parts sequentially. Cascading failure is 

common in power grids when one of the elements fails (completely or partially) and 

shifts its load to nearby elements in the system. UPFCs can also be used to find out 
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critical weakness in a power grid and help fix them. Babaei et al. (2017) propose a 3-level 

defender-attacker-defender (DAD) framework for line hardening and show how 

distributed generation (DGs) allocation helps to enhance the distribution power resilience 

under extreme natural events. Arab et al. (2015) propose an efficient framework for pro-

active resource allocation for a power system whose components lie in the path of an 

upcoming hurricane in order to minimize the costs associated with load interruption, 

restoration operation and electricity generation. Ma et al. (2018) propose an optimal 

hardening strategy which involves different strengthening techniques such as upgrading 

poles and vegetation management in order to minimize the investment cost.  

1.5 Resilience Enhancement in the Operation Phase of Power Grid 

Works have been done to demonstrate several effective ways to increase resilience of a 

power system during its operation phase. These measures can be broadly categorized into 

the following. 

•  Maintenance and asset management such as condition monitoring, performance-

based service contracting, and sensor-driven replacement. 

• Vegetation management. 

• Periodically replacement of aging units or circuits. 

• Islanding schemes to minimize power interruption  

• Using Unified Power Flow Controllers (UPFCs) 

• Islanded microgrids, and interconnected microgrids 

• Virtual power plant operations 
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 Kuntz et al. (2002) propose a maintenance scheduling algorithm based on vegetation 

failure rate model in order to find the optimal time and location for performing 

maintenance on overhead distribution feeders. Jahromi et al. (2009) propose a 

methodology for cost effective maintenance of overhead power distribution lines by 

utilizing the decoupled risk factors model. Panteli et al. (2016) propose a methodology to 

boost the power grid resilience based on fragility curves model for windstorms on 

transmission lines. Their work aims at splitting the grid into self-adequate defensive 

islands such that components with higher failure probability are isolated, otherwise it 

might lead to cascading failure effects. Dehghanian et al. (2017) show how topology 

control (network reconfiguration) can be used to improve grid resilience and perform the 

forecasting of contingency events.  

1.6 Resilience Enhancement in the Recovery Phase of Power Grid 

After an extreme event has occurred, it is necessary for the power system to recover and 

return to its normal state of operation as quickly as possible. Some of the measures that 

are taken to improve the grid resilience in recovery phase include the following: 

• Fast deployment of repair logistics for prompt recovery  

• Usage of mobile and backup power resources like diesel engine, mobile 

generators, mobile transformers, and backup energy storage systems 

• Distributed generation like wind- and solar-based microgrid operation  

• Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H) operations 

• Reconfiguration of network topology to minimize load outages and to ensure 

uninterrupted power supply to critical consumers, such as banks, hospital and 

traffic lights. 
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Following an extreme weather event, the repair crew should be promptly deployed to 

assess the damages to a power grid and take initiatives to replace or repair the failed 

components and circuits. Quite often trees that have fallen and flooded zones served as a 

major hindrance for repair crews to reach the damaged areas after hurricane Harvey 

(ERCOT, 2017). 

Chester et al. (2015) propose the idea of increasing the resilience of a power 

system after a disaster attack through onsite wind and solar generation to ensure grid 

survivability. They also developed a queueing framework to accelerate the recovery 

process of damaged lines using the machine-repairman model. Mathew et al. (2016) 

demonstrate in their paper how a microgrid based restoration approach helps in 

improving the resilience of a power system using automated distributed restoration 

algorithm and modified spanning tree approach for changing the network topology. Liu et 

al. (2017) demonstrate how power grids with integrated microgrids help improve power 

resilience using Markov chain and Monte Carlo simulation technique. Clements et al. 

(2017) propose a methodology using fragility curves to estimate the impact of wind 

storms on network resilience and how different staff resource levels can change the 

impact. Panteli et al. (2017) define the concept of resilience trapezoid which is an 

extension of the traditional resilience triangle in their paper and discuss different 

structural and operational resilience enhancement strategies under single and multiple 

windstorms. Landegren et al. (2016) propose an approach to assess how decision 

variables related to the technical network and the repair system that comprise of repair 

resources and prioritization rules for repair impact a system resilience. The repair system 

here uses queuing model and holds a backup power.  



 

 11 

The number of plug-in hybrid electric vehicles (PHEVs) and electric vehicles 

(EVs) is on the rise due to various reasons such as depleting fossil fuels, air pollution and 

to have a higher energy efficiency. A PHEV is a hybrid electric vehicle that has a mix of 

battery storage system and gasoline engine. When the vehicle is charged through an 

external electric power source, no consumption of gasoline is required. An EV contains a 

battery pack instead of an internal combustion engine and is propelled by an electric 

motor. The PHEVs and the EVs are commonly referred to as Plug-in Electric Vehicles 

(PEVs). Recent technological advancements have made it feasible to use these electric 

vehicles as energy resources where they inject power into the grid by discharging the 

battery for a short duration of time (Mohagheghi et al., 2012).  This service is referred to 

as Vehicle-to-Grid (V2G) operation and can aid the grid in various ways including but 

not limited to serving as a backup power resource, frequency regulation, peak load 

shaving and smoothing generation from renewable energy resources. In Figure 7 electric 

vehicle fleets can be used to power critical infrastructures like hospitals, schools, and 

offices during an outage. 

 

Figure 8. Use of EVs to power critical load during emergency (Maharajan et al. 2015) 



 

 12 

Mohagheghi et al. (2012) demonstrate in their study how induction power transfer 

(IPT) can be used for V2G applications and discuss about the supervisory control of the 

IPT system. Maharajan et al. (2015) investigate how EVs along with distributed 

renewable energy resources can be used to improve the resilience of a microgrid and 

further introduce a software defined networking (SDN) platform for Virtual Power Plant 

(VPP) applications. Gholami et al. (2016) propose an optimization model for scheduling 

of microgrids to reduce load curtailments utilizing local reserves, storage units and EVs. 

Shin et al. (2017) propose an optimization model for vehicle-to-home (V2H) operation 

and an extended system of vehicles-to-homes (Vs2Hs) under the failure of an external 

grid. 

A microgrid is a power system with a cluster of distributed energy resources 

(DERs) and loads within a small area. Microgrids with DERs like solar and wind serve as 

promising alternatives to the traditional power generation and distribution systems. One 

of the main reasons is that after an extreme weather event, a large geographic area is 

affected and the recovery of the main power grid that spans over the entire affected area 

may take from days to months and sometimes even a year. When hurricane Sandy struck 

in October 2012, about 7.5 million consumers lost electric power across 15 states in the 

United States. Even after the power restorations operations began, nearly 3.7 million 

consumers were without power after a few days (Che et al., 2014). A few of the other 

reasons include aging critical infrastructures, communities located remotely and the need 

for sustainability. There are efforts going on globally to develop renewable energy 

resources like solar, wind, thermal, hydropower, ocean power, and bioenergy. Among 
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these technologies, solar and wind are typical resources due to their easy access and 

technological maturity. 

Lainfiesta et al. (2018) present a data-driven approach for integrating solar 

generation and energy storage systems into an existing microgrid on the Texas A&M 

University Kingsville campus. Cox et al. (2014) present an architectural method to 

improve a microgrid resilience and analyze how transactive energy (TE) operations help 

in increasing grid resilience and recovery. TE can be defined as “a system of economic 

and control mechanisms that allows the dynamic balance of supply and demand across 

the entire electrical infrastructure using value as a key operational parameter. Buque et al. 

(2016) analyze how microgrids with distributed energy resources like the solar energy 

will help improve the grid resilience in the Mozambican network as the grid is not able to 

perform well during adverse weather and peak demand. Li et al. (2017) study how 

networked microgrid can help improve grid resilience and discuss the advantages of 

using advanced information and communication technologies (ICTs) for distribution 

systems. Blaabjerg et al. (2017) discuss about DG comprised of wind and PV units, their 

protection issues and islanding operations and how it improves the grid resilience. Yao et 

al. (2017) propose an optimal methodology for reconfiguration of radial distribution 

system topology in the face of major blackouts and test it on a modified 33-bus test 

system. The following table summarizes the various references for resilience 

improvement in three different phases. 
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Table 2. Literature review for grid resilience improvement in various phases 

Phases of Power Grid Literature references 

Design Phase 

• Seiver et al. (2007) 
• Arab et al. (2015) 
• Babaei et al. (2017) 
• Ma et al. (2018) 

Operation Phase 

• Kuntz et al. (2002) 
• Jahromi et al. (2009) 
• Panteli et al. (2016) 
• Dehghanian et al. (2017) 

Recovery Phase 

• Mohagheghi et al. (2012) 
• Cox et al. (2014) 
• Chester et al. (2015) 
• Maharajan et al. (2015) 
• Landegren et al. (2016) 
• Gholami et al. (2016) 
• Mathew et al. (2016) 
• Buque et al. (2016) 
• Shin et al. (2017) 
• Li et al. (2017) 
• Blaabjerg et al. (2017) 
• Yao et al. (2017) 
• Liu et al. (2017) 
• Clements et al. (2017) 
• Panteli et al. (2017) 
• Lainfiesta et al. (2018) 

 



 

 15 

2. MODELING EXTREME EVENTS 

2.1. Modeling a Hurricane 
 
2.1.1. Introduction 
 
Critical infrastructure like electrical power systems should be able to withstand wide 

scale disturbances and be resilient to high impact low probability (HILP) events. Among 

the extreme events that cause wide scale power disruptions hurricanes account for  a 

major portion. A hurricane or a tropical storm mostly affects coastal regions and the 

impact might last from a few days up to several months depending on its impact. The 

area impacted by the event spans for several hundreds of kilometers (Wang et al., 2016). 

In the year 2017 hurricanes such as Harvey, Maria and Irma caused extensive damage to 

the critical infrastructures of the US.  

There are many ways in which a hurricane can be modeled such as empirical modelling, 

sampling approach, and statistical modeling using probability distribution functions. The 

National Hurricane Center (NHC) uses different forecast models that vary in structure 

and complexity. Dynamic models also known as numerical models require high speed 

super computers to run and are most complex and expensive (NOAA,2019). A few 

examples include Florida State Super Ensemble (FSSE), Global Ensemble Forecast 

System (AEMI). 

Statistical models are not as complex as dynamic models but are based on historical data 

such as storm location and date. Statistical hurricane intensity prediction scheme (SHIP), 

Logistic growth equation model (LGEM) are a few examples of statistical models. 

Statistical-dynamical models blend both the above said models.  
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For an uncertain event probabilistic modeling is the widely used analysis technique (Xu, 

2008). Therefore, most of the hurricane parameters are modeled using probability 

distribution functions. A few of the critical characteristics include the following. 

• Annual occurrence 

• Approach angle 

• Translation velocity 

• Central pressure difference 

• Radius to maximum wind speed 

• Wind speed decay rate 

• Central pressure filling rate 

2.1.2. Annual occurrence 
 
The annual occurrence is modeled using Poisson distribution. The number of times the 

hurricane occurs in a given year can be modeled using the following equation. 

           (2.1) 

 
Where 
          h is the number of landfalls per year, for h=0, 1, 2… 
 
          l is the average number of hurricanes that land in a given year. 
 
We simulate the time between successive hurricane occurrences using exponential inter-

arrival time distribution. The equation used to generate a random number with 

exponential distribution using inverse transform technique is given below and this value 

represents the hurricane inter-arrival time (thur). 

               (2.2) 

 

f h( ) = e
−λλ h

h!

thur =
− log(1− rand())

λ
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where rand() generates a uniform random value between 0 and 1. Figure 9 shows the 

probability mass function of a Poisson distribution. The horizontal axis is h and the 

vertical axis is f(h) for various values of l. 

 

 
 

Figure 9. Probability mass function of a Poisson distribution 
 
 
2.1.3. Approach angle 
 
The approach angle (q) is modeled using binormal distribution which is a weighted sum 

of two normal distributions (Xu, 2008). The approach angle indicates the heading 

direction of a hurricane when it lands on the shore. 

                                      (2.3) 

 
where  

, are the means of the two normal distributions. 

           , are the standard deviation of the two normal distributions. 

            a is a weighting factor whose value is 0.5.  
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The equations for calculating the approach angle are given below. Unit for the approach 

angle is in degrees. 

q1= + z                                  (2.4) 

   
                                               q2= + z                                                              (2.5) 

                                               q=q1 + q2                                                                              (2.6) 

                                                                                  (2.7) 

where z is the random value of standard normal distribution.  

 
2.1.4. Translation velocity 
 
The translation velocity indicates the velocity with which the hurricane moves forward 

after its landfall on the shore. It is modeled using lognormal distribution whose 

probability density function is given by the following equation. 

                                                             (2.8)                       

Where 
          c is the translation velocity in meters per second (m/s). 
            
          mln(c) is the logarithmic mean. 
 
         s ln (c) is the logarithmic standard deviation. 
 
There is a positive correlation between storm approach angle (q) and the translational 

velocity c and hence the logarithmic mean is calculated using Equation (2.9) below.  

The logarithmic standard deviation is treated as a constant (Xu, 2008). 

mln(c) =2.3-0.00275q                                                              (2.9) 

s ln (c)= 0.3                                                                            (2.10)      
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The equation to generate a number using lognormal distribution in MATLAB is given 

below where logrnd( ) is a MATLAB function. The random number thus generated here 

is the translation velocity of the hurricane. 

c= logrnd (mln(c),s ln (c))                                                         (2.11) 

Figure 10. shows the probability mass function of a lognormal distribution. The graphs 

are plotted for various values of s. 

 

Figure 10. Probability mass function of a lognormal distribution 
 
2.1.5. Central pressure difference 
 
The central pressure difference indicates the gap in pressure at the eye of the hurricane 

and the atmospheric pressure. It is modeled using Weibull distribution whose PDF is 

given by the following equation (Xu, 2008). 

                                                                      (2.12) 

Where   

Dp is the central pressure difference in millibars. 
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             k is the shape parameter and is a constant whose value is 1.15   

             c is the scale parameter and is dependent on the approach angle q .  

The formula to generate a value from Weibull distribution is given by the following 

equation (Vickery et al., 1995). In this case, this value is the central pressure of the 

hurricane at landing. 

                                   Dpo =clog (1-rand ())1/k.                                                   (2.13) 
 
 where  c =35-(0.1q ) and k=1.15, a constant. 

The central pressure difference is obtained by subtracting the pressure difference from the 

atmospheric pressure which is 101.3 Kilopascal (kPa).  

  

Figure 11. Probability mass function of a Weibull distribution 
 

Figure 11 shows the probability mass function of a Weibull distribution. The graphs are 

plotted for various values of k and c as indicated in the graph. 
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2.1.6. Radius to maximum wind speed 
 
The radius to maximum wind speed determines the band where the intensity of the 

hurricane is the strongest. It is usually measured in kilometer (or km) and is given by the 

following empirical equation (Xu, 2008). 

ln (Rmax)= 2.556 – 0.000050255Dp2+0.042243032Y (2.14) 

Where 

  Dp is central pressure difference in millibars  

           Rmax is radius of the area in kilometers that has the impact of the hurricane 

           Y  is the storm latitude in degrees. 

    
2.1.7. Wind speed decay rate 
 
Once the hurricane lands on the shore, its intensity decays due to land friction and terrain 

geography. The rate of decay of wind speed is given by the following empirical equation. 

                                         V(t) =Vb+(RV0-Vb)e-at                                                     (2.15) 
 
Where 
           Vb is the velocity constant whose value is 13.75 m/. 
 
           R is the factor of sea land wind speed reduction whose value is 0.9 
 
          V0 is the maximum sustained one-minute surface wind speed at the time of landfall           

in meters per second.  

          a is the decay constant whose value is 0.095 per hour. 

The wind sped decay rate is simulated for a time period of 72 hours in this research 

representing a 3-day duration of a storm.  

2.1.8. Central pressure filling rate 
 
The central pressure filling rate is given by the following empirical equation. 
 



 

 22 

      Dp(t)=  Dpo e-at                                                          (2.16) 
 
where    a=0.006+(0.00046Dpo) +0.025                                            (2.17) 
 
The central pressure is simulated for a time period of 72 hours which is the typical 
 
 duration of a hurricane event. 
 
2.1.9. Hurricane intensity measurement  
 
In order to measure the hurricane’s intensity, a measurement scale known as the Saffir-

Simpson scale is used. This scale has a range of 1 to 5 with 1 being the least intensive and 

5 being the most intensive hurricane. Table 3 shows the Saffir Simpson scale and how it 

categorizes hurricanes into different scale based on the minimum central pressure. In 

general, a lower central pressure implies a stronger or more intensive hurricane.  

Table 3. Saffir Simpson Scale (Xu, 2008) 
 

Hurricane Category Minimum central pressure(mb) 

5 <920 

4 920-944 

3 945-964 

2 965-979 

1 ³980 

 
 
2.1.10. Sample Hurricane simulation. 
 
The values for the various parameters of the hurricane characteristics is listed in Table 4. 

The background of selection of these values are discussed in detail in the work of Xu et 

al. (2008). 
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Table 4. Hurricane parameters and values (Xu et al.,2008) 
 

Parameter Value 

Annual Occurrence Rate 

l 0.29677 

Approach angle 

 35 

  295 

 25 

  40 

a 0.5 

Central Pressure Difference 

K 1.15 

Radius to Maximum Wind Speed 

Y 25.9° 

Maximum wind speed decay rate 

Vb 13.75 

R 0.9 

a 0.095 

Vo 1.287 

 
A sample simulation is executed for a hurricane in MATLAB and the obtained values for 

its various characteristics is given in Table 5.   

As it can be seen from the results, this hurricane falls in Category 1 because the observed 

central pressure is greater than 980 millibars as per the Saffir-Simpson scale (1 

millibar=0.1 KPa). The hurricane has a probability of occurring once in every 5.6 years. 

The velocity with which the hurricane propagates through the land (translation velocity) 

mx1

mx2

σ x1

σ x2
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after its landfall is 7.97 m/s. The approach angle is 175.34° (with respect to north) which 

indicates the angle at which the hurricane will land on the shore. The radius to maximum 

wind speed is 37.8 km which means that the hurricane’s impact can be felt for a radius of 

37.8 km surrounding the hurricane eye. 

Table 5. Sample hurricane simulation results (mb=millibar) 
 

Parameter Unit Value 

Annual occurrence rate events/year 0.176 

Approach angle degree 175.34 

Translation velocity m/s 7.9761 

Central pressure difference mb 17.4753 

Central pressure mb 995.524 

Radius to maximum wind speed km 37.8952 

 

2.2 Modeling a Flood 

 When a hurricane is about to make a landing, it often causes flooding in the areas near 

the shore. This is known as storm surge which creates great damage to underground 

cables, vaults, manholes, etc. Also, the salt residue that is left behind on electrical 

components like the insulators and bushings after the storm recedes lead to component 

failure if they are energized. 

Table 6 shows the storm surge in meters that would be expected for a given hurricane 

category. It can be seen from the table below that a Category 5 hurricane has the largest 

storm surge because it creates the strongest impact when making a landfall (Xu et al., 

2008). 
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Table 6. Storm Surge for different hurricane Category (Xu et al., 2008) 

Hurricane Category Storm Surge (meter) 

5 5.5 

4 4-5.5 

3 2.7-3.7 

2 1.8-2.4 

1 1.2-1.5 

 

In order to calculate the equipment damage, a mathematical model for the storm surge 

based on the hurricane category and the storm surge category is proposed by Xu (2008) 

as follows. 

lu =[a+b(H-S)] I(H-S)                                              (2.18) 

where     

   I(H-S) =1 for H-S³ 0 and 

               I(H-S) =0 for H-S£ 0. 

lu is the equipment failure rate. H indicates the hurricane Category from 1 to 5; S is the 

storm surge Category from 1 to 5; and a and b are tuning parameters. I(H-S) is an 

indicator function to denote whether a particular area is affected by a hurricane or not. 

For example, for a hurricane of Category 3 and a storm surge of Category 2, the 

equipment failure rate is 6% given a=0.01 and b=0.05. Table 7 shows the equipment 

failure rate for various hurricane and storm surge categories. Figure 12 shows a three-
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dimensional graphical representation of the underground equipment failure rate 

calculated in Table 7. 

           Table 7. Underground equipment failure rate wrt. hurricane and storm surge 

lu 
Storm Surge Zone Category 

 1 2 3 4 5 

Hurricane 

Category 

1 1% 0% 0% 0% 0% 

2 6% 1% 0% 0% 0% 

3 11% 6% 1% 0% 0% 

4 16% 11% 6% 1% 0% 

5 21% 16% 11% 6% 0% 

 

 

Figure 12. Graphical representation of underground failure rate for data in Table 7 
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Figure 13. Flood risk map of the United States (FEMA, 2018) 

 
Figure 13 shows the US flood risk map as given by the Federal Emergency Management 

Agency (FEMA, 2018). It can be seen that most of the coastal areas have high risk of 

flooding, especially some parts of the north east and Florida. 

2.3. Modelling an Earthquake 
 
2.3.1. Introduction 
 
According to USGS (2018), earthquake is “a term used to describe both sudden slip on a 

fault, and the resulting ground shaking and radiated seismic energy caused by the slip, or 

by volcanic or magmatic activity, or other sudden stress changes in the earth.” When an 

earthquake of a great intensity occurs, it causes significant loss to human life and 

property. 
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An earthquake has three important characteristics as given below. There are mathematical 

models developed for each of these three characteristics and they are discussed in detail 

in the following sections. 

 
1. Occurrence 

2. Magnitude 

3. Intensity /Peak Ground Acceleration 

2.3.2. Occurrence of an earthquake 

The occurrence of an earthquake in time is governed using Poisson distribution (Vickery 

et al., 1995). A Poisson distribution is defined by the following equation. 

                                                                                                    (2.19) 

Where z is the number of earthquakes per year, l is the average number of earthquakes 

that occur in a given year. 

We simulate the time between successive earthquake occurrences using exponential inter-

arrival time distribution. The equation used to generate a random number with 

exponential distribution using inverse transform technique is given below and this value 

represents the earthquake inter-arrival time(teqk). 

                                                                                       (2.20) 

 
For example, for a value of l= 0.5 quakes per year, the simulation results for the annual 

occurrence is obtained as 0.3430 years which means an earthquake is expected every 0.34 

years. 

 

f ( z )= e
−λλ z

z !

teqk =
− log(1− rand())

λ
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2.3.3. Magnitude of an earthquake 

 The magnitude of an earthquake is usually measured on a Richter scale with the help of 

instrument called seismograph. The magnitude scale usually ranges from 2 to 10 and is 

logarithmic. The Richter scale magnitude can be calculated using the following equation 

(USGS, 2018). 

M = log A + 2.56logD - 1.67                                   (2.21) 

Where 

 A=the measured ground motion (in micrometers) 

D=the distance from the event (in km).  

With this the energy released in Joules can be calculated using the following equation 

(USGS, 2018).   

log10 E = 4.8+1.5M                                                 (2.22) 

where 

E = energy released in the earthquake in Joules. 

           M= earthquake magnitude in Richter scale. 

Table 8. Energy Released for Various Earthquake Magnitudes 

Earthquake Magnitude 
on the Richter Scale 

Energy Released (Joules) Ratio  

1 2.0 ´ 106 N/A 
2 6.3 ´ 107 31.5 
3 2.0 ´ 109 31.7 
4 6.3 ´ 1010 31.5 
5 2.0 ´ 1012 31.7 
6 6.3 ´ 1013 31.5 
7 2.0 ´ 1015 31.7 
8 6.3 ´ 1016 31.5 
9 2.0 ´ 1018 31.7 
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The British Geological Survey has provided the energy released for various magnitudes 

are shown in Table 8 below. Note that ratio is defined as the energy released from the 

current scale versus the energy from its previous adjacent scale. For instance, the energy 

released in Scale 8 is 31.5 times of the energy released in Scale 7. 

2.3.4. Intensity of an earthquake 

In order to calculate the extent of damage, there is another scale that is used and known 

as the Modified Mercalli Intensity scale. This scale ranges from 1 to 12 in the order of 

increasing levels of intensity. It is based on the observed effects of shaking and does not 

have a mathematical basis. The description of each level of intensity and the 

corresponding level of damage is explained in detail in Table 9 (USGS, 2018). 

Table 9. Modified Mercalli Intensity Scale (USGS, 2018) 

Intensity Shaking Description/Damage 

I Not felt Not felt except by a very few under especially favorable 
conditions. 

II Weak Felt only by a few persons at rest, especially on upper floors 
of buildings. 

III Weak Felt quite noticeably by people indoors, especially on upper 
floors of buildings. Standing cars may rock slightly. 
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Table 9. Continued 
 

Intensity Shaking Description/Damage 

IV Light 

Felt indoors by many, outdoors by few. Dishes, windows, 
doors might vibrate, walls make cracking sound. Sensation 
like heavy truck striking building. Standing cars rocked 
noticeably. 

V Moderate 
Felt by everyone; many awakened. Some dishes and 
windows might break. Unstable objects overturned. 
Pendulum clocks may stop. 

VI Strong Felt by everyone. Some heavy furniture moved; a few 
instances of fallen plaster. Slight damage. 

VII Very 
strong 

Negligible damage in buildings of good design and 
construction; considerable damage in poorly built or badly 
designed structures; some chimneys broken. 

VIII Severe 

Slight damage in specially designed structures; 
considerable damage in ordinary substantial buildings with 
partial collapse. Great damage in poorly built structures. 
Chimneys, factory stacks, columns, monuments, walls 
might collapse. 

IX Violent 

Considerable damage in specially designed structures; 
well-designed frame structures thrown out of plumb. Great 
damage in substantial buildings, with partial collapse. 
Buildings shifted off from foundations. 
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Table 9. Continued 
 

Intensity Shaking Description/Damage 

X Extreme Some well-built wooden structures destroyed; most masonry 
and frame structures destroyed with foundations. Rails bent. 

 

The intensity of an earthquake is usually expressed in terms of peak ground acceleration 

(PGA). According to Wikipedia PGA is defined as “The maximum ground 

acceleration that occurred during earthquake shaking at a location. PGA is equal to the 

amplitude of the largest absolute acceleration recorded on an accelerogram at a site 

during a particular earthquake.” 

An equation for estimating the PGA is given below (Espinosa et al., 2017). 

ln PGA = 6.36 + 1.76M - 2.73 ln (R + 1.58e0.608M) +0.00916h                    (2.23) 

where   

M=the magnitude of the earthquake on the Richter scale 

 R=the distance to the epicenter in km 

 h=the focal depth in km 

             PGA= peak g round acceleration in gals (cm/s2). 

For example, an earthquake of magnitude M=8, focal depth (h) as 24km will have a peak 

ground acceleration of 4.5´106 cm/s2 at a distance (R) of 1 km from the epicenter. 

2.3.5 Hazard Maps 

With the PGA values, hazard maps are usually constructed for an area that provides 

several details like 
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• The earthquake history of a particular area to arrive at the probability of an 

earthquake 

• To find the PGA produced by the earthquake in that area 

• The geological information, and frequency of shaking, etc. 

Figure 14 shows a USGS seismic hazard map for the United States. It shows the 

frequency of damaging earthquake shaking on the Modified Mercalli Intensity Scale. 

 

Figure 14. Seismic Hazard Map of the United States (USGS, 2019) 
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3. REPAIR AND RECOVERY MODEL OF POWER LINES 

3.1 Operation of Power Grid System 

In the modern digital era, even a small power disruption causes loss of information and 

reduction in industrial productivity. The cost related to power outages have been increasing 

steadily. The annual cost of interruption of electricity in the US is around $150 billion a 

year (Galvin Power, 2019). The following table shows the losses incurred in various 

business sectors for a one-hour power interruption. 

Table 10. Average cost of one-hour power disruption in the US (GalvinPower, 2019) 

Industry Sector Average cost of one-hour interruption 

Cellular communication $ 41,000 

Telephone ticket sales $ 72,000 

Airline reservation system $ 90,000 

Semiconductor manufacturing $ 2,000,000 

Credit card operations $ 2,580,000 

Brokerage operations $ 6,480,000 

 

In spite of several protection measures, owing to the complexity and size of the power 

system network outages happen due to several reasons like human error, technological 

glitches, criminal and terrorist activities, extreme weather events or other natural disasters. 

Hurricanes represent a significant portion of all the extreme weather events that took place 

in 2017 and 2018. They not only affect the economic activities of day to day life, but also 

pose a great threat to the power system operations. Even though an extreme weather event 
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can be predicted, and necessary precaution be taken, it can only reduce the damage incurred 

to some extent. 

 

Figure 15. North American Bulk Power System (NERC,2018) 

Figure 15 above shows the North American bulk power system. It can be seen that there 

are seven regional entities that power various areas of the US. Among these, the states of 

Florida and Texas have stand-alone grids. This makes it all the more necessary for these 

two power grids to be more resilient as Texas and Florida face flooding and hurricane 

very frequently. 

Figure 16 shows the hierarchical structure of a typical power grid with its 

components. It mainly consists of three types of units: the generating unit, the transmission 

unit, and the distribution unit. The generating unit is where the electric power is produced. 

It could be thermal power plant, nuclear plant, hydroelectric, solar, wind or any other form 

of power sources. The power produced is escalated to a high voltage level using step-up 
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transformers so that it can be transferred over long distances with less energy loss. The 

receiving end consists of step-down transformers which bring the high voltage down to a 

low level that is suitable for use by commercial, industrial and residential customers. In the 

end, the distribution lines stemming from the step-down transformer deliver the power to 

the end user. Apart from the main generating station, the modern grid also consists of 

several active distribution resources connected to the grid like the roof-top solar panels, 

onsite wind turbines and electric vehicles fleet. The end customers not only take power 

from the main grid but also return surplus power to the grid and are generally termed as 

“prosumers” under the transactive energy marketing mechanism. The power flow in a 

modern grid is in two ways as can be seen in Figure 16.  

 

Figure 16. Typical power grid system (Modern Power grid, 2019) 

3.2 Power System Components 

Extreme event analysis report by several public organizations such as Electric Reliability 

Council of Texas (ERCOT), Board of Public Utilities (BPU), North American Electric 
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Reliability Council (NERC) state that most of the power outages following a disaster event 

occurs mainly due to the failure of outdoor grid components like transmission and 

distribution lines, step-up and step-down transformers, and generators. Even though 

burying power lines underground might be considered as a potential alternative, it is not a 

cost-effective approach in reality. The cost to convert an overhead line to underground 

might be around $80,000 per mile in rural areas and $2 million per mile in an urban area 

(BPU, 2012). Post a disaster, the recovery should be done in a swift manner to restore 

power outages. Recovery involves sending the repair crew to the affected areas and 

replacing or repairing the damaged components of the power grid.  

There are several challenges during the recovery process. For example, once the 

event has taken place, customers should have an idea of estimated time to restoration so 

that commercial and industrial customers can plan ahead. The recovery of a power system 

is delayed or becomes difficult due to several factors, such as coping up with extreme 

weather conditions, difficulty in communicating among the transmission system operators 

(TSO), issues in accessing to the affected area, and lack of availability of trained personnel 

and rapid mobilization. In fact, the accessibility issue is largely due to flooding or 

roadblocks by fallen trees and distribution lines. 

3.3. The Recovery Model of Transmission and Distribution Lines 

Literature review shows that the repair and restoration of power lines can be analyzed using 

Markov chain model (Jin et al., 2018). The following figure shows the transition diagram 

for restoration of transmission/distribution lines. Let K be the total number of lines that are 

susceptible to failure under extreme weather. The failure time and the repair time of a line 

are exponentially distributed with rate l and µ, respectively. Here failure rate refers to the 
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number of power lines failing per unit time and repair rate refers to the number of lines 

repaired or recovered per unit time. Let R be the total number of repair teams available to 

undertake the recovery process. 

 

Figure 17. Markov Transition diagram for recovery of power lines. 

Table 11. Table of Notation for repair and recovery model of transmission lines 

Symbol Description Units 

K Total number of power lines subject to failure Line 

l Failure rate Lines/hour 

µ Repair rate Lines/hour 

R Number of repair teams  Team 

L Expected number of failed lines Line 

Lq Average number of failed lines in waiting for repair Line 

Ls Average number of failed lines under repair Line 

W Expected recovery time of a line Hour 

Wq Average waiting time of a failed line for repair Hour 

Ws Average service time of a failed line Hour 

 

The steady-state probability of the system pk  is given by the following equation. 

                                         pk =ck po ,   for k=1, 2, 3, …, K                                              (3.3) 

The values of ck  and po  in Equation (3.3) are calculated using the following formulae. 

                                                                                                                    (3.4)                  ck = ck−1
λk−1
µk
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                                         for k=0                                                         (3.5)       

Performance indices such as expected number of damaged lines (L), expected recovery 

time(W), average waiting time before recovery (Wq), average number of failed lines 

waiting to be repaired (Lq) can be calculated using Little’s law as given below. 

                                                                                                                         (3.6) 

                                                                                                            (3.7) 

The number of lines under service (Ls) is given by the following equation. 

                                             Ls =L-Lq                                                                              (3.8) 

The expected recovery time (W) is given by the following formulae.  

                                                                                               (3.9) 

3.4. Application to Hurricane Harvey 

Hurricane Harvey is a Category 4 hurricane that made a landfall in Rockport, Texas on 

August 25, 2017. Figure 18 shows Harvey’s landfall site and its moving track on land. 

After its landfall, it moved in land for a total of five days from August 25 to 29. It can be 

seen that eventually Harvey became a tropical storm and faded away after nine days. 

Harvey caused both flooding and major physical damage to the bulk power system in 

Texas, Louisiana, Tennessee and Kentucky. There were two million customer outages 

reported after the hurricane landfall (NERC, 2019). Major damage to the transmission 

system was caused by hurricanes and tornadoes in the areas of Victoria, Port Aransas to 
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Corpus Christi. In addition, Houston, Galveston, Beaumont, Port Arthur were affected by 

flooding. Some of the transmission system damages include the following. 

• Static wire and conductor damages. 

• Broken poles and insulators. 

• Damage from trees being blown away by strong wind. 

• Flooded substations and control houses. 

During the hurricane onslaught, the assessments on damage also became difficult and were 

delayed due to several challenges faced and some of them are mentioned below (NERC, 

2019). 

• Heavy debris on roads. 

• Wind damages to substation and control house roofs and windows. 

• Flooding in relay systems, transmission tower foundations damage due to flooding. 

• Inability to use trucks due to strong winds. 

 

Figure 18. Hurricane Harvey’s track (ERCOT, 2018) 
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Figure 19. Damaged distribution line            Figure 20. Flooded Substation  

 

       

Figure 21. 345KV line structures down    Figure 22. Recovery operations post Harvey  

     

Figure 23. Broken wooden pole                Figure 24. Recovery post floods from Harvey 

The above figures show the aftermath effect of Harvey as released by NERC Event 

Analysis report. 
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Figure 25. Hurricane Harvey transmission line outage/return data (ERCOT, 2018) 

The extreme event analysis report of ERCOT for hurricane Harvey provides transmission 

lines outages and recovery data as shown in Figure 25. Using this data set, we can know 

the number of lines that failed and were restored every day which is tabulated in Tables 

12 and 13, respectively. 

Table 12. Transmission line outage data for Hurricane Harvey 

Day of Event (MM/DD/YY) Number of Line Damaged 

8/25/17 2 

8/26/17 184 

8/27/17 10 

8/28/17 9 

8/29/17 14 
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Table 13. Transmission line recovery data for Hurricane Harvey 

Day of Event (MM/DD/YY) Number of Lines Restored 

8/25/17 2 

8/26/17 47 

8/27/17 35 

8/28/17 24 

8/29/17 22 

8/30/17 16 

8/31/17 18 

09/01/17 31 

09/02/17 6 

09/03/17 10 

 

 It can be seen that on August 26, 2017 the failures reached the maximum. This is because 

the hurricane made a landfall at peak intensity on August 25 at 10:00pm and then it slowly 

moved inland. Since the exact time of failure of each transmission line is not shown in 

Figure 24, we generate the failure time of each line using uniform random distribution 

between 0 and 24 hours and used it to calculate the inter arrival time between subsequent 

failures. This was again repeated for calculating the repair rate across a day. Then this inter-

arrival time was used to calculate the failure rate and repair rate using the following 

equations. 

        l= (Total number of failed lines)/(Sum of the inter-arrival times)                                  (3.8) 

        µ= (Total number of recovered lines)/ (Sum of the inter-arrival time)                           (3.9) 

 We obtained a failure rate of 1.84 lines per hour and recovery rate of 0.82 lines per hour. 

This value was verified again by calculating the failure rate and recovery rate directly from 



 

 44 

the given data in Figure 24 without randomly generating the inter arrival time in a given 

date. 

3.5. Sensitivity Analysis and Results 

The Markov chain model was implemented in MATLAB and the performance metrics is 

computed for various values of lines K, repair teams R, failure rate l and recovery rate µ. 

The results are discussed in detail in the following section. Serving as the benchmark, we 

take l=1.84 lines per hour, µ=0.82 lines per hour, R=30, and K=200 as the baseline for 

evaluating various performance metrics. 

3.5.1. Effect of repair rate on L, W and Wq 

 
Figure 26. Repair rate versus expected no. of failed lines (L) 

 
 

 
Figure 27. Repair rate versus expected recovery time (W) 

193
190

187
183

180
177

173

160

165

170

175

180

185

190

195

0.41 0.62 0.82 1.025 1.23 1.435 1.64

N
um

be
r o

f L
in

es

Repair rate(lines/hour)

15.72

10.2

7.59
5.96

4.88 4.1 3.52

13.28

8.6
6.37

4.99 4.06 3.4 2.91

0
2
4
6
8

10
12
14
16
18

0.41 0.62 0.82 1.025 1.23 1.435 1.64

H
ou

rs

Repair rate(lines/hour)

W Wq



 

 45 

For a given value of K and failure rate (l), it can be seen that as the repair rate increases, 

the values of L, W, Wq decreases. If the repair rate is doubled from 0.82 lines per hour to 

1.64 lines per hour, L reduces by 7.7% whereas W reduces by 53%. If the repair rate is 

halved to 0.41 lines per hour, L increases by 3.5 % whereas W increases by 107 %. It can 

be seen that Wq also increases accordingly in Figure 26. Repair rate gets affected when the 

recovery procedures are hampered due to flooding, heavy debris lying on roads etc. From 

Figure 27 we can see that reduction in repair rate affects W to a great extent which means 

customer outages will be prolonged.  

3.5.2. Effect of failure rate on L and W  

It can be seen from Figure 28 that as the weather severity increases which eventually leads 

to an increased failure rate, L and W also increase. If the failure rate increases by 50%, L 

and W increase by 2.37 and 2.38%, respectively. If we double the failure rate as it might 

happen in the case of a Category 5 hurricane, L increases by 3.58% and W increases by 

3.95%. For hurricanes of lower category, where the failure rate might be 50% lesser, it 

could be seen that L decreases by 7.1% and W decreases by 7.7%.   

 
Figure 28.  L versus failure rate 
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Figure 29.   W versus failure rate 

 
 
3.5.3. Effect of number of repair teams on L, Lq, W and Wq 
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• Using aerial drones to survey and perform damage assessment where roads are 

blocked by debris. 

 
Figure 30. L, Lq versus repair rate 

 
 

 
Figure 31. W, Wq versus repair teams 
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happen then it might lead to longer restoration times in the aftermath of an event. This 

becomes particularly significant in those cases where the damage severity is far more than 

anticipated. Several hurricane event analysis reports state that hurricanes like Irma and 

Harvey caused more damage than anticipated because they are intensified into a powerful 

category before they made a landfall. In such cases increasing the repair crew would be the 

only option as the repair rate cannot be further improved. This is mainly because 

performing recovery operations will be hampered by the harsh weather conditions and 

catastrophic damages. 

 

 
Figure 32. K versus repair teams 
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4. ELECTRIC VEHICLES FOR ATTAINING GRID RESILIENCE 

Man-made and natural events cause power interruptions and prevents the electrical 

grid from providing reliable, high quality power. This causes heavy losses to producers 

and consumers as they are becoming increasingly dependent on reliable power supply to 

compete globally. This situation raises the need to identify cost effective strategies that 

can improve the power grid resilience. The increase use of electrical vehicles (EVs) could 

serve as a good alternative to improve the grid resilience. The energy available from an 

EV can be used in three different ways to enhance grid resilience, namely Grid -To-

Vehicle (G2V), Vehicle-To-Building (V2B) and Vehicle-To-Grid (V2G). The following 

sections of this chapter discuss in detail about modeling of an EV battery swap process 

and the calculation of power available from an EV. 

4.1. Battery swap station 
 
A typical electric vehicle (EV) battery swap station consists of fully charged spare 

batteries readily available. When an EV arrives at the station, the empty battery is 

removed from the vehicle. The already charged spare battery is put into the vehicle and 

the vehicle leaves the charging station. The depleted battery is left in the station for 

recharging. When it gets fully charged, the battery is moved to the inventory for future 

swapping. Depending upon the battery capacity of the EV, the charging time may vary. 

For instance, for the first-generation Nissan Leaf, it usually takes 2-3 hours for fully 

recharge the 24kWh battery using Level 2 charger, yet it only needs 30 minutes if Level 3 

charger is used. 
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4.2 Modeling an Electric Vehicle battery swap process 

The service of a battery swap station can be modeled using queueing theory. Let s be the 

number of spare batteries available at a station, and l be the rate of arrival of the EV into 

the swap station. Further let µ be the charging rate of the charge points for recharging the 

depleted battery in the station. The following transition diagram describes the various 

states for this swap process. 

 

Figure 33. Birth - death process of an Erlang B queuing system. 

The queueing model in Figure 33 is also known as Erlang B queue. Here state ‘0’ 

signifies that there is no empty battery in the station, meaning there are s fully charged 

battery packs available in the stock. On the other hand, state ‘s’ signifies that there are no 

spare batteries available, meaning all battery packs in the station is under recharging. 

When an incoming vehicle finds out that there are no spare batteries available, it has to 

leave the swap station and find alternative approach to recharge the battery. For instance, 

the EV has to choose to charge the onboard battery directly using supercharger. For 

Erlang B model, the system has a finite capacity ‘s’ and there are no waiting positions for 

battery swapping. This behavior of an Erlang B system is expressed as M/G/s/s in the 

Kendall’s notation. Here M represents Markovian arrival process and G represents the 

general service time, and ‘s’ represents the number of servers in the system. In our case, 

it is the number of spare batteries in a station. The queue discipline is first-come-first-
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served (FCFS) basis. Since there are ‘s’ servers in the system, the maximum service rate 

is sµ where µ is the recharge rate of an individual battery. The steady state probability of 

state ‘0’ is given by the following equation (Privault, 2013) 

                                        for j=1, 2,……s.                                               (4.1) 

where 

                               for j=1,2,….s.                                                       (4.2) 

The term r is defined as the traffic intensity and is given by 

                                                                                                            (4.3) 

The steady state probability for the different states is given by 

                                                   ,   for j=1, 2, …, s.                                       (4.4)                                                                                                                             

The steady state probability corresponding to state ‘s’ is denoted as ps and is given by the 

following equation. 

                                                    ,                                                          (4.5) 

where ps denotes the probability that the system is full (in our case there are no more 

spare batteries available for the incoming EV). Therefore, ps also represents the 

probability of being blocked. Since there are no waiting positions available in the system, 

the number of waiting EV, Lq =0, and the customer waiting time, Wq =0. Therefore, the 

number of EV under service is Ls =L, and the total service time is Ws =W.   
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4.3. Optimizing the number of spare batteries for various EV models  

There are several EV models available in the market like Nissan Leaf, Tesla and Volt, 

etc. The use of EVs is also on the rise for the past decade as they help reduce the 

consumption of fossil fuels and mitigate the environmental impact. The charging stations 

technology is regulated by SAEJ1172 which is a North American Standard by the Society 

of Automotive engineers (SAE, 2018). It consists of three levels of charging depending 

on the voltage, current and power. Table14 shows the respective electrical rating of these 

levels. 

Table 14. Charging Topologies (SAE, 2018) 

Level Description 
Voltage and 

Current 

Power 

(KW) 

Approx. time to 

charge 

1 Residential 110V,15A 1.4 18 hours 

2 Residential/Public 220V,15-30A 3.3 4-8 hours 

3 Commercial 480V,167A 50-70 20-50 minutes 

 

It can be seen that Level 1 is mainly used for residential purposes whereas Levels 2 and 3 

are used for public and commercial services. Apart from these there are Tesla 

superchargers available which are used to charge Tesla car batteries. The supercharger 

has a power of 120 KW and has an approximate charge time of 75 minutes for Tesla 

Model S with a battery size of 100 kWh (Tesla, 2019). 
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Table 15. Tesla Supercharger Technology 

Level Description Power (KW) Approx. time to charge 

4 Supercharger Technology I  120 75 minutes 

5       Supercharger Technology II 350 Data not available yet 

 

For our study, we consider various battery-powered electric cars with a broad range of 

battery capacity. Table 16 lists the chosen EV for which the battery capacity varies from 

24kWh to 100kWh representing today’s typical EV models in the market. Though certain 

cars like Tesla come with a range of different battery capacities for the same model, we 

choose those capacities that would help in analyzing a broad range of applications. 

                              Table 16. Battery capacity of various EVs in the market 

Electric Vehicle Battery Capacity 

(kWh) 

Nissan Leaf First Generation 24 

Nissan Leaf Second Generation 40 

Tesla 3 50 

Tesla X 75 

Tesla S 100 

  

Our next step is to find the charging rate for each of these cars for various levels of 

charging and the supercharger. The charging time in each case can be estimated using the 

formula  
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                                                                                                                              (4.6) 

where 

          t is the charging time of the battery. 

           c is the battery capacity of the car in kWh. 

           p is the charging level power in kW. 

The charging rate is given by following equation, 

                                                                                                                         (4.7) 

where r is the charging rate corresponding to different levels of charging technologies. 

The charging rate for each case is listed in Table 17. This represents the service rate (µ) 

of Erlang B queue. Since Level 1 is used only for residential purposes, we calculate the 

charging time based on Levels 2 and 3, and the superchargers (Level 4 in Table 15). 

Table 17. Charging rate of EVs wrt. various charging levels. 

Electrical Vehicle 
Level 2 

(car/hour) 

Level 3 

(car/hour) 

Tesla 

Supercharger 

(car/hour) 

Nissan Leaf First Gen. 0.1375 2.083 5 

Nissan Leaf Second Gen. 0.0825 1.25 3 

Tesla S 0.033 0.5 1.2 

Tesla X 0.055 0.66 2 

Tesla 3 0.066 1 2.4 

 

t = c
p

r = 1
t
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We assume various EV arrival rate like l  =1, 3, and 5 cars/hour and optimize the number 

of spare batteries required for different blocking probability, namely ps=1%, 5%, and 

10%. 

4.4. Results and Discussion 

We analyze how the number of required spare battery varies for different EV arrival rate 

at different charging levels. The detailed results are presented in Figures 34-36. 

 

Figure 34. The Minimum s under Level 2 charging with 1% blocking probability  
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Figure 35. The minimum s for Level 3 charging for 1% blocking probability  

 

Figure 36. The minimum s for supercharger for 1% blocking probability  
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Table 18 shows for a given EV arrival rate, how the spare battery requirement varies with 

different blocking probability. Here Nissan Leaf I denotes the first generation model and 

Nissan Leaf II denotes the second generation model. 

Table 18. Probability of blocking for various levels of charging 

EV Models 

Probability of Blocking (ps) for l =5 cars/hour 

Level 2 Level 3 Tesla Supercharger 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

Nissan Leaf I 48 42 38 7 5 3 4 3 3 

Nissan Leaf II 75 66 60 9 7 6 6 5 4 

Tesla S 161 153 143 17 14 12 9 8 6 

Tesla X 107 95 88 14 12 10 7 6 5 

Tesla 3 91 81 74 11 9 8 6 5 4 

 

The above table is represented in graph in Figures 37-39 below where PB stands for 

probability of blocking. 

 

Figure 37. Spare battery requirement for Level 2 charging 
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Figure 38. Spare battery requirement for Level 3 charging 

 

Figure 39. Spare battery requirement for supercharger 
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energy use. In case of a BEV, energy can be provided only from the battery of the vehicle 

whereas in a HEV energy can be provided from the gasoline as well as the battery. 

For an HEV the energy available from the gasoline is represented as Eg and is given by 

the following expression (Rahimi et al., 2017). 

                                        Eg = htank ´ captank ´34                                                         (4.8) 

where  

htank =the thermal efficiency of the HEV. 

           captank =the capacity of the gasoline tank in gallons and 

Note that 34 kWh is the energy produced by burning one gallon of gasoline. The energy 

from the battery is represented as Eb and is given by 

                                      Eb = (Maximum discharge) ´ capbattery                                    (4.9) 

where Maximum discharge is the maximum allowable discharge limit for the battery and 

capbattery  is the battery capacity of the EV. 

Finally, the energy stored in the battery and the energy from the gasoline should be 

converted into alternating current (AC) energy so that it can be used by the 

manufacturing facility. If the inverter efficiency is denoted as hinverter, the total available 

AC energy (EAC) is given by expression 4.10. 

                                           EAC = hinverter ´ (Eb + Eg)                                                 (4.10) 

 For a BEV, the term Eg in the above expression is zero because there is no gasoline use. 

Table 19 shows tank capacity, battery capacity and the energy available to the AC loads 

in a full tank scenario. In the following table, Prius and Camry Hybrid have a thermal 

efficiency of 40% whereas Chevy Volt has a thermal efficiency of 37%. 
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Table 19. Energy Available to AC Loads for various car models (Rahimi et al., 2017) 
 

Vehicle 

Model 

Tank Battery Available 

DC Energy 

(kWh) 

Available 

AC Energy 

(kWh) 

Capacity 

(gallon) 

Equivalent 

in kWh 

Capacity 

(kWh) 

Maximum 

Discharge 

Toyota Prius 11.3 384.4 4.4 90% 157.7 142.0 

Camry Hybrid 17 578.3 1.6 90% 232.8 209.5 

Chevy Volt 8.9 302.8 18.4 90% 128.6 115.7 

Nissan Leaf NA NA 24 83% 20.0 18.4 

Tesla Model S NA NA 85 83% 70.8 63.8 
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5. ENHANCING RESILIENCE OF INDUSTRIAL FACILITY THROUGH 

VEHICLE TO GRID OPERATIONS 

5.1. Using EV for Vehicle-to-Grid Operations in extreme weather 

After the onslaught of an extreme weather event like hurricane, the distribution system 

often suffers significant damages and the end customers get impacted because of blackouts 

or power shortage. Several instances can be quoted from the past such as hurricanes Ike, 

Irene that happened in the US in 2008 and 2011, respectively, causing severe damage to 

the power grid infrastructure (Mensah et al. 2015). Another example is when Hurricane 

Irma hit Florida in 2017, around 5.8 million homes and business units were affected 

without power supply (FleetCarma,2018). It is highly desirable that the power grid should 

withstand extreme weather events and continue to serve critical loads, such as hospitals, 

traffic lights, and banking systems. Powering essential facilities and infrastructure under 

extreme weather is essential to satisfying the basic human needs. Hence it is important to 

enhance the resilience of the grid such that it is able to withstand, survive or quickly recover 

from the disaster events. 

Due to the climate change, it is expected that the future would likely see an increase 

in frequency and intensity of extreme weather events, including hurricanes and tornados 

(FleetCarma, 2018). To cope with this situation, EVs prove to be an alternative to helping 

build resilience in the power grid during natural disasters. EVs can store reasonable 

amounts of electric energy in batteries that can be discharged for urgent use. They provide 

a good source of reserving power storage and can be used to power households (vehicle-
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to-home) and business entities (vehicle-to-building) in contingency thereby maintaining 

grid stability and reducing electricity cost in peak hours. 

The popularity of EVs has been increasing around the world in the past decade. 

There are 360,800 plug-in electric vehicles (PEV) sold in the US in 2018 out of which 66% 

were battery electric vehicles (BEV) and 34% were plug in hybrid vehicles (PHEV) 

(EVvolumes, 2018). Figure 40 shows the PEV sale in 2018 by car model and manufacturer. 

 

Figure 40. PEV sale in the US in 2018(EVvolumes,2018). 

5.2. Enhancing Power Resilience of Industrial Facility through V2G Operations 

5.2.1. Model setting 

Most industrial facilities operate in 24/7 mode that consumes significant amounts of 

power across a year. An industrial facility is often connected to the main grid, or 

connected with a microgrid, or both. A microgrid system consists of wind turbine (WT), 

solar photovoltaics (PV), energy storage system (ESS), electric vehicle (EV) fleet, and 

factory load. Figure 41 shows the model setting of the industrial facility with the 

microgrid considered for our study. 
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Figure 41. Microgrid set up of an industrial facility 

During the normal operating condition, the energy from the microgrid is primarily used 

to meet the factory load. Any excess energy available can be used to charge the battery 

or sold to the grid under feed-in-tariff program. If the microgrid is not able to meet the 

factory load, power is purchased from the main grid in a utility rate.  During an extreme 

event like a hurricane, a fleet of EVs are added in the microgrid to serve the factory 

demand due to the damage of the main grid. The research question in this chapter is to 

determine the siting and sizing of the microgrid system to ensure the power resilience 

at low cost. The decision variables are WT capacity (MW), PV capacity (MW), ESS 

capacity (MWh) and the EV fleet capacity (MWh). The objective function is to 

minimize the annualized energy cost under normal condition and extreme events. The 

latter pertains to the energy shortage cost of the industrial facility attacked by hurricane 

or other extreme weather events. 
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5.3. Model to calculate the cost under normal condition 

Table 20. Notation for calculating cost under normal condition (N/A=not applicable) 

Term Description Unit 

ag capacity cost for generation technology g $/MW 

bg operation and maintenance cost for generation technology g $/MWh 

cg carbon credits for generation technology g $/MWh 

ab capacity cost for battery storage system $/MWh 

fg capital recovery factor of renewable generation technology g N/A 

fb capital recovery factor of battery storage system N/A 

p utility electricity rate  $/MWh 

q feed-in-tariff rate $/MWh 

Lt energy demand of the facility in period t  MW 

Pgc capacity of generation type g MW 

Bc capacity of battery storage system MWh 

ttg generation duration of generation type g hours 

ltg(z) power capacity factor at period t for generation type g N/A 

Bt available energy of ESS at time t MWh 

 

During normal condition, the total available energy in the microgrid at time t is given by 

following equation. 

      for t=1, 2, …., T                                         (5.1) 

 
where 

            G is the number of generation types. Here, g=1 for WT and g=2 for PV 

ttg is the generation duration, it could be 1 hour or several hours, depending on 

 WT and PV.  However, there is no PV generation in the night. 

 z is random climate condition at time t, for wind or weather condition. 
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 ltg(z) is the power capacity factor at period t for generation type g, and  

             0<ltg(z)<1.                     

 Pgc is the capacity of generation type g. 

Bt is the available energy of ESS at t, in that case Bt is positive. If Bt is negative, it 

means this amount of energy is charged into ESS. 

Let C1 be the cost under the normal operating condition, then 

    (5.2) 

The first term represents the annualized installation cost of WT, PV and battery ESS. The 

second term represents the annual maintenance cost and carbon credits. The third term 

represents the payment of utility bill for taking power from the main grid and the revenue 

by selling surplus power to the grid. 

5.4. Results and Observations 

Table 21. Parameter values for normal operating condition 

Term WT PV Unit 

bg 8 10 $/MWh 

cg 0 35 $/MWh 

ab 1.5 X 106 1.5 X 106 $/MWh 

fg 0.08024  

fb 0.1295  

p 75 $/MWh 

q 35 $/MWh 

Lt 10 MW 

ttg 8760 hours 
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For the analysis, we have assumed a factory load of 10 MW. The simulation is performed 

for a time period of one year (8760 hours). The capacity factor of WT, PV and their 

capacity cost vary to cover a wide operation range, and the results are analyzed. Table 21 

provides the benchmark values for various parameters. 

5.4.1. Effect of battery capacity cost on the system 

If we assume the power capacity factor of Wind Turbine (WT) and Photovoltaics (PV) to 

be 1, and their capacity cost to be $1.5 M/MWh, it can be seen from Figure 42 that, the 

total system cost reduces as the Battery Storage System (BSS) capacity cost decreases. 

Also, the system choses to increase BSS capacity to meet the factory load. This is the most 

optimistic assumption because capacity factors of WT and PV can hardly reach 1. 

 

Figure 42. BSS capacity cost versus system cost -case I. 

However, if the capacity factor of WT and PV are now reduced to 0.5, it can be seen that 

there is a need to install more WT and PV capacity to meet the factory load. In addition, 

the BSS capacity also increases considerably as it becomes more cost-effective in terms of 
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capacity cost. It is obvious that the total system cost is increased compared to the previous 

scenario. 

 

Figure 43. BSS capacity cost versus system cost -case II. 

 

5.4.2. Effect of PV capacity cost on the system 

 

Figure 44. PV capacity cost versus system cost  
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For a capacity factor of 0.5 for both WT and PV and BSS capacity cost of $0.3 M/MWh, 

Figure 44 shows how the total system cost varies with respect to PV capacity cost. It can 

be seen that as the PV capacity cost goes down, its usage goes up. Also, the 

corresponding total system cost is lower compared to a reduced BSS capacity price. This 

is also due to the fact that PV has carbon credits associated with it. 

 

Figure 45. PV and BSS capacity cost versus system cost  

The above figure shows how the system cost varies with BSS and PV capacity cost. It 

can be seen that for a fixed PV cost, even if we reduce the BSS capacity cost to less than 

half the original price, the total system cost saving is very meagre. However, if the PV 

capacity cost is reduced, there is a considerable reduction in the total system cost. 

5.5. Model to calculate the cost under Extreme Weather Event 

During an extreme weather event like a hurricane, the main grid could be completely 

down and there is no sufficient power to energize the industrial facility. In this situation, 

the industrial facility can operate in an island mode along with the microgrid consisting 

of PV, WT and BSS. As a benchmark, we have taken the time duration of the extreme 

0

100000

200000

300000

400000

500000

600000

$0.3M/MWh $0.15M/MWh $0.05M/MWh

To
ta

l S
ys

te
m

 C
os

t (
$)

BSS Capacity Cost

$1.5 M/MW $1 M/MW $0.5 M/MW



 

 69 

event to be 24 hours and the energy demand of the factory during the extreme event to be 

240 MWh with average load of 10 MW. The other parameters and their notation are 

listed in Table 22. 

Table 22. Parameters for calculating cost under extreme weather condition 

Parameter Description Unit 

te Duration of the extreme event hours 

leg(z) Power capacity factor for generation type g during 

extreme event 

N/A 

Pgc Capacity of generation type g MW 

beg Operation and maintenance cost in extreme event $/MWh  

ceg carbon credits in extreme event $/MWh 

p The manufacturing downtime cost due to energy 

shortage 

$/MWh 

Le Energy demand of the facility during the extreme 

weather condition 

MWh 

Ee Output power of microgrid including V2G during 

extreme event 

MWh 

w The cost for paying the V2G service $/MWh 

Ne Number of EV participating in the V2G program 

during extreme event 

number 

Eev Energy contributed by a single EV during extreme 

event 

MWh 

Be The available energy of ESS at the beginning of 

extreme event 

MWh 

 

The cost under extreme event, denoted as C2, is comprised of the industrial facility 

production loss due to power shortage, and the cost of using V2G services. During the 

extreme event, we assume that WT and PV generation may not fully available because of 
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the adverse weather condition, hence the output of WT and PV is scaled down. The output 

power of microgrid including V2G program during the extreme event becomes 

                                                                                  (5.3) 

where 
te=the duration of the extreme event in unit of hours. 

 z=random climate condition in extreme condition. 

 leg(z)=power capacity factor for generation type g during extreme event. 

Be=the available energy of ESS at the beginning of extreme event and Be could be 

positive or zero. Since in extreme event, the power generation is in shortage, there 

is no excessive power for recharging the ESS. 

Ne=number of EV participating in the V2G program during extreme event, and it 

could be a random variable. 

Eev=energy contributed by a single EV during extreme event, and it could be a 

random variable.                                                                        

Now the energy cost during the extreme event is given by, 
 

                                              (5.4)                                         

 
In above equation, the first term represents the net cost. This is comprised of operation and 

maintenance (O&M) cost and the carbon credits during the extreme event period. The 

O&M during extreme event is likely higher than in the normal condition because of the 

protection of WT and PV or potential damages for repair. The second term is the energy 

shortage cost, and the third term is the cost for adopting the V2G service. The total cost is 

the sum of C1  and C2 and is given by the following equation. 
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                                                                                                                        (5.5)                                                                    

5.6. Result Analysis and Discussion 

During an extreme weather event, the EV fleet provides additional power to the factory. 

We assume a microgrid comprised of a fleet of EVs along with the WT, PV and BSS in 

contingency. The following table lists the benchmark values assumed for the extreme event 

simulation. 

Table 23. Parameter values for Extreme Event Condition 

Parameter WT PV Unit 

leg(z) 0.2 0.1 

 

 

beg 100 80 $/MWh 

ceg 0 35 $/MWh 

te 24 hours 

p 5000 $/MWh 

Le 10 MW 

w 1000 $/MWh 

Ne 100 number 

Eev 40(Nissan Leaf Second Gen.) MWh 

Be 50 Percentage 

 

5.6.1. Effect of EV fleet size on the cost 

During the extreme event, the WT, PV and BSS alone may not be able to meet the factory 

demand, therefore we include EV fleet to compensate for the potential energy shortage. 

Figure 46 shows that as the EV fleet size increases, the energy supplied is close to the 

factory demand of 240 MWh and at the same time the levelized cost of electricity (LCOE) 

also decreases. LCOE is defined as the ratio of the total energy cost over the total energy 

Ctotal = C1 +C2
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used during the course of a year. There is an 87% decrease in the LCOE when the fleet size 

increases from 100 to 3000. This is because the production loss due to power shortage is 

greatly reduced. 

 

Figure 46. EV fleet size versus LCOE during extreme event 

5.6.2. Effect of production loss due to power shortage 

The production loss of the factory due to power shortage is the cost incurred due to 

decreased production capacity during the extreme event. This value is usually denoted in 

dollars per MWh and increases if the factory load is not met by available power. From 

Figure 47 it can be seen that for a given V2G service cost of $1000/MWh, the LCOE 

increases steeply with the rise in the production loss. It can be observed that there is a 78% 

increase in the LCOE when the production loss increases from $1000/MWh to 

$5000/MWh. 
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Figure 47. Production loss versus LCOE during extreme event 

5.6.3. Effect of V2G service cost  
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from Figure 48 that the LCOE increases slightly as the V2G service cost increases, but not 
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Figure 48. V2G service cost versus LCOE during extreme event 

5.7. Total Annual System Cost  

In order to calculate the total system cost, we run the simulation for one year assuming a 

hurricane occurrence rate of 0.001. We use Poisson distribution to generate the random 
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Table 24. The values of LCOE in various scenarios 

No of EVs in 

the fleet 

V2G Service cost 

($/MWh) 

Production Loss (p) 

($/MWh) 

LCOE 

($/MWh) 

100 1000 5000 57.55 

500 1000 5000 58.10 

2000 1000 5000 64.4 

100 1000 2000 56.4 

500 1000 3000 58.10 

500 1000 2000 50.58 

100 2000 5000 56.85 

1000 3000 5000 70.5 

3000 1000 5000 68.72 

1000 1000 4000 60.5 

100 1000 3000 56.4 

 

It can be seen from the above table that the number of EVs in the fleet, V2G service cost 

and the production loss have a significant effect on the LCOE of the total system. The 

rise in any of these parameters affects the LCOE directly. The minimum LCOE in the 

table is $50.58/MWh, and the maximum is $70.5/MWh. The difference is $19.92/MWh, 

or nearly 40% of the lowest LCOE.  
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6. CONCLUSION AND FUTURE WORK  

6.1 Summary of the thesis 

In this research the problem of improving power grid resilience post an extreme event is 

analyzed and studied. The work is broadly split into two parts. The first part of the thesis 

comprised of Chapters 2 and 3 focuses on analyzing Hurricane Harvey’s aftermath and 

the factors that govern the recovery process post the event. In the second part of the thesis 

comprised of Chapters 4 and 5, we discuss how to improve the resilience of an industrial 

facility with minimum operational cost post an extreme event with V2G as a potential 

resource. The contribution of each chapter along with its uses and future work is 

discussed in detail below. 

Chapter 2 aims at modeling the extreme weather events like hurricanes, flooding and 

earthquakes that lead to a majority of the power outages. The simulation of a hurricane 

developed using MATLAB helps us to understand the impact these High Impact Low 

Probability Events (HILP) have on the economy and critical infrastructures like power 

grid. It also gives us an idea of the radius of geographical area that will be affected for 

different categories of hurricanes. The storm surge model enables us to calculate the 

equipment failure rate for various hurricane categories. The earthquake model gives us 

useful information about the frequency of occurrence of an earthquake, its magnitude and 

peak ground acceleration, and released energy in difference scale. 

Chapter 3 discusses in detail about the repair and recovery models of transmission lines 

and its application to Hurricane Harvey. Based on the early work of Jin et al. (2018), the 

idea of applying Markov chain model for the repair and recovery of transmission and 

distribution lines is further expanded in terms of system scope and complexity. We utilize 
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the power outage data released by ERCOT post Harvey to arrive at the failure rate and 

repair rate. With this data, we perform sensitivity analysis and analyze how various 

parameters like repair rate, failure rate, number of transmission lines and repair teams 

have on expected number of failed lines (L), average number of failed lines waiting to be 

repaired (Lq), expected recovery time (W) and average waiting time for repair for a failed 

line (Wq). This work can be extended in the future to develop repair and recovery models 

for other outdoor electrical components such as transformers, generators, and circuit 

breakers, and perform sensitivity analysis for them. 

In Chapter 4, we discuss about the various Electric Vehicles (EVs) available in the 

market and develop a mathematical model for the EV Battery swap process using Erlang 

B queuing model. Apart from the various commercial charging topologies available in 

the market today, we have also included supercharging technology by Tesla. We 

analyzed how the required number of spare batteries for various EVs vary at different EV 

arrival rates and blocking probabilities for different charging levels. This work can be 

extended in the future by applying other queuing models that will resemble more real-life 

situations. In addition to this, we also discuss how to calculate the energy and power 

available from a BEV and HEV and have presented this data for some EVs available in 

the current market.  This data will be useful in knowing how much energy could be 

discharged from a fleet of EVs when they are used during contingencies for V2G 

applications to power critical power infrastructure. 

In Chapter 5 we discuss how the power resilience of an industrial facility can be 

enhanced using V2G operation.  We set up a model of an industrial facility with a 

microgrid consisting of WT, PV, BSS and a fleet of EVs. We calculate the system cost 
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during normal operation and analyze how it varies for different capacity factors of WT 

and PV and for varying capacity costs for WT, PV and BSS. This study helps us to 

perform optimum sizing and siting of WT, PV and BSS to ensure power resilience at 

minimum total system cost. We also calculate the system cost during contingencies when 

the main grid is cut off and the industrial facility is powered by EV fleet and the 

microgrid alone. We analyze how the EV fleet size, the V2G service cost and the 

production loss cost affect LCOE of the facility.  The results from this study are useful in 

finding out the optimum number of EVs in a fleet to ensure power resilience at minimum 

system cost. Finally, we perform a one-year hourly simulation and calculate the LCOE 

for different scenarios for a given hurricane occurrence rate. This gives us useful 

information about how the LCOE gets affected by various parameters such as EV fleet 

size, manufacturing production loss and V2G service cost. 

6.2 Future research directions 

The research can be extended in the future to the design phase and the operation phase of 

power grid for its resilience enhancement. Areas such as topology/network 

reconfiguration post an extreme weather event, distributed generation integration (DG) to 

enhance power grid resilience can be explored. Microgrid operation of DGs to help build 

resilience of the system after the failure of the conventional grid could also be studied. 

Another potential area of study is the integration of prosumers with microgrid to enhance 

resilience of industrial facility. Many industrial factories including commercial buildings 

now have their own microgrid comprising of roof-top PV, onsite WT, and EV fleet. 

During emergency situations these prosumers could provide power to critical power 
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infrastructures or realize self-supply of energy through island microgrid generation or 

V2G operations. 

Mathematical modeling and data mining techniques such as artificial neural networks and 

other machine learning algorithms could be used to model Categories 4 and 5 hurricanes 

to study and analyze various factors that govern recovery process. This data might be 

useful in preparing us to face these extreme events in the future. In addition, this can also 

be extended to other extreme weather events like snowstorms, forest fires, freeze, etc. For 

areas that are more prone to certain types of extreme weather event, cost effective 

hardening measures could be carried out during the early design and development phase 

of grid with the help of these models.  

The electrical grid serves as the backbone of the economy. A well-designed electrical grid 

should be able to minimize the number of power interruptions and quickly recover from a 

disaster event. It becomes the need of the hour to have emergency preparedness as many 

extreme weather events have uncertainties associated with them.  Fast recovery plays an 

important role in making a power system more resilient and helps prevent unwarranted 

expenses and operational losses. This calls for incorporating smart operational measures 

that can improve controllability, flexibility and observability of a power system in response 

to an extreme event. Some of the measures include decentralized control with distributed 

energy systems, microgrids, adaptive wide area protection and control schemes, advanced 

visualization and situation awareness systems and disaster response and risk management 

techniques. 
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APPENDIX SECTION 

APPENDIX A Simulation of a Hurricane 

clear 
  
%Hurricane occurence with poisson(years) 
lambda=0.29677; % unit is event per year 
  
occurence=-log (1-rand ())/lambda 
occurence_hrs=occurence*365*24 
%Approach angle with binormal(degrees) 
  
mu1=35; 
sigma1=25; 
mu2=295; 
sigma2=40; 
a1=0.5; 
z=sqrt (-2*log (rand ())) * sin (2*3.14*rand ()); 
theta1=mu1+(sigma1*z); 
theta2=mu2+(sigma2*z); 
theta=(a1*theta1) +((1-a1) *theta2); 
  
disp('approach angle in degrees')  
theta  
  
%Hurricane translational velocity with lognormal (meters per second)  
  
mu=2.3+((-0.00275) *theta); 
sigma=0.3; 
  
Translational_speed=lognrnd(mu,sigma); 
disp('Translational velocity in metres per second') 
Translational_speed 
  
% Hurricane central pressure difference at landing with weibull(millibar) 
%lambda=a=c & k=b 
c=35-(0.1*theta); % 0.1 is taken to keep c poistive. 
k=1.15; 
disp('central pressure difference at landing') 
delta_po=c*(-log (1-rand ())) ^ (1/k) 
  
% minimum central pressure at landfall(millibar) 
  
atm_pressure=1013; 
central_pressure=atm_pressure- delta_po; 
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disp('Central pressure at landing in millibar') 
central_pressure 
  
%central pressure filling rate 
a4=0.006; 
a5=0.00046; 
epsilon=0.025; 
  
  
a=a4+(a5*delta_po) + epsilon; 
for t=1:72 
    delta_p(t)=delta_po*exp(-a*t); 
     
end 
disp('Central Pressure Filling Rate for 72 hours') 
delta_p 
  
%radius to maximum wind speed 
psi=25.9; %storm latitude 
disp('radius to maximum wind speed in kilometres') 
ln_R_max=2.556-(0.000050*delta_po * delta_po) + (0.042243032*psi); 
Radius_to_max_wind_speed=exp(ln_R_max) 
  
  
%wind speed decay rate (metres per second) 
Vb=13.75; 
r=0.9; 
alpha=0.095/3600; 
Vo=1.287; 
  
  
for t=1:72 
  
v(t)= Vb+((r*Vo)-Vb) * exp(-alpha*t); 
end 
disp('Wind speed decay rate in metres per second') 
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APPENDIX B Markov Model for transmission and distribution lines 
 
% This program is the Markov Chain model for transmission and distribution 
% lines for the case of Hurricane Harvey. 
%Last Updated: August 5 ,2019. 
clear 
K=200 
R=30 
lambda=1.84 
mu=1.0250  
c=zeros (1, K+1) 
pi=zeros (1, K+1) 
c (1) =1; 
  
%CALCULATING LAMBDA AND MU 
for i=1: K 
l(i)=(K-i+1) *lambda 
     
if i<=R 
   mui(i)=i*mu 
else 
    mui(i)=R*mu 
end 
  
end 
  
%CALCULATING C 
for i=2:(K+1) 
    c(i)=c(i-1) * l(i-1)/mui(i-1) 
end 
   
%compute pi 
  
check=sum(c) %to check if the value of c becomes infinity 
pi (1) =1/sum(c) 
for k=2:(K+1) 
    pi(k)=c(k)* pi (1) 
end 
  
%computing (L)- Expected number of damaged branches 
l=zeros (1, K+1) 
l(1)=0 
for n=2:(K+1) 
    l(n)=pi(n)*(n-1) %since pi(n) needs to be multiplied by the (n-1)th state 
end 
 L=sum(l) 
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 %computing (Lq)-Avg number of lines waiting to be repaired 
 lq=zeros (1, K+1) 
 for k=1:(K+1) 
     if k<R 
         lq(k)=0 
     else 
         lq(k)=pi(k)*(k-1-R) %since pi(k) needs to be multiplied by the (n-1)th state 
     end 
 end 
 Lq=sum(lq) 
  
 %comuputing (Ls)-Avg number of lines under service 
 Ls=L-Lq 
  
 %calculating lambdabar 
 a=zeros (1, K+1) 
 a(K+1) =0 
 for i=1: K 
     r=K 
     a(i)=lambda*r 
     K=K-1 
 end  
 q=zeros (1, K+1) 
 q(K+1) =0  
  
 for t=1:200 
   
     q(t)=a(t)* pi(t) 
    
 end 
  
 tot_lambdabar=sum(q) 
  
 %computing (W)-Duration of recovering a damaged branch 
 W=L/tot_lambdabar 
 %computing (Wq)-Avg wait time in the queue 
 Wq=Lq/tot_lambdabar 
 %computing (Ws)-Avg time a line is under repair 
 Ws=W-Wq 
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APPENDIX C Erlang B Model for Electric Vehicle Battery Swap Process 
 
% This program is the Erlang B Model for an EV Battery Swap Process. 
%Last Updated: August 5,2019. 
clear 
lambda=5; 
mu=0.0825; 
s=60; 
c=zeros (1, s+1); 
pi=zeros (1, s+1); 
rho=lambda/mu 
mui(1)=mu 
  
%calculating lamda and m for all states 
for j=1:(s+1) 
    l(j)=lambda 
end 
  
%calculating mu for all states 
n=2; 
for j=2:(s+1) 
   mui(j)=n*mu 
   n=n+1 
end 
  
%calculating cj for all states 
c (1) = 1 
for j=2:(s+1) 
    c(j)=(rho^(j-1))/factorial(j-1) 
end 
  
%calculating pi for all states 
pi (1) =1/sum(c) 
for i=2:(s+1) 
    pi(i)=pi (1) *c(i) 
end 
  
%calculating pi(s) 
pis=c(s+1) * pi (1) 
blocking_prob_percentage=pis*100; 
%calculating L,Ls,W,Wq 
L=rho*(1-pis) 
W=1/mu 
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APPENDIX D Normal Operating Cost of an Industrial Facility with a microgrid  
 
% this code is developed for simulating the facility power resilience 
% during extreme weather event.  
% The codes consist of two parts: cost under normal operating 
% condition(totalcost.m) and cost under extreme event(extremecost.m). 
% last updated on June 30, 2019 
   
%initializing Test variables 
  
    clear 
     
    %simulating one hurricane for one year using Poisson Distribution 
    lambda = 0.0001; % Events per hour- in reality 0.0001 
    event_start = floor(-log(1-rand())/lambda); % Random occurence of hurricane in a year 
     
  
    minC1= 10^20; 
    minC2= 10^20; 
    cost_normal=0; 
    cost_extreme=0; 
    % Setting delta values for WT, PV and BT 
  
    d_WT=1; % incremental step size of WT 
    d_PV=1; % incrmental step size of PV 
    d_BT=1; % incremental step size of battery 
  
    LCOE_1 = 0; 
    LCOE_2 = 0; 
    %major test variables for normal operating condition 
    capcost_WT = 1.5 * 10^6; %captital cost of WT per MW 
    capcost_PV = 1.5 * 10^6; %capital cost of PV per MW 
    capcost_BT = 0.3 * 10^6; %capital cost of battery per MWh 
     
    %inialize the major test result variables 
    WT_op=0; 
    PV_op=0; 
    BT_op=0; 
  
    powercapfactor_WT = 0.5; %maximum power capacity factor of WT 
    powercapfactor_PV = 0.5; %maxium power capacity factor of PV 
         
    Bg_PV = 8; %O&M cost for PV in $/MWh 
    Bg_WT = 10; %O&M cost for WT in $/MWh     
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    Ln = 10; % Factory hourly electric demand during normal operating condition in MW 
     
%--------Main program Æ %-------- 
  
    BT=-d_BT; % BSS capacity for each iteration 
    for k=1:40 
         BT= BT+d_BT; 
  
        PV=-d_PV; % PV capacity for each iteration 
        for i=1:40 
            PV=PV+d_PV; 
  
            WT=-d_WT; % WT capcity for each iteration 
            for j=1:50 
                WT=WT+d_WT;  
  
                %calculating the first term of the annualized capacity or installation cost  
                Fc = FixedCost(PV, WT, BT, capcost_PV, capcost_WT, capcost_BT); 
                 
                %Calculating the annual cost on hourly basis 
                Ac = CostAnnual(WT, PV, BT, powercapfactor_PV, powercapfactor_WT, 
Bg_PV , Bg_WT, Ln, event_start); 
  
                %calculating annual operating cost in normal condition 
                cost_normal = CostNormal(Fc, Ac); 
                                     
        %--------Finding the optimum WT, PV and BT values for the normal operating cost   
                if cost_normal<minC1 
                    minC1 = cost_normal; 
                    WT_op=WT; 
                    PV_op=PV; 
                    BT_op=BT; 
  
                    LCOE_1 = (minC1)/(8760*Ln); %the 8760*Ln representing the total energy 
use of the facility in a year 
                end 
            end 
        end  
    end  
  
    D =['The optimized values for normal condition are WT = ',num2str(WT_op), ' MW, 
BT = ',num2str(BT_op),' MWh, PV =',num2str(PV_op),' MW',newline ' Minimum cost= 
',num2str(minC1),' dollars', ' , LCOE= ',num2str(LCOE_1), ' $/MWh' ]; 
    disp(D) 
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%--------End of main program. Fuctions are defined below%-------- 
   
%Calculating total normal cost 
function Cn = CostNormal (T1, T2) 
     
    Cn = T1 + T2; 
  
end 
  
%term 1 of normal cost calculation 
function Fc = FixedCost(P1c , P2c , P3c, capcost_PV, capcost_WT, capcost_BT) 
     
    caprec = 0.08024/20; % capital recovery factor of WT and PV over 20 years 
    caprec_BT = 0.1295/10; %capital recovery factor of BT over 10 years 
    Fc = ( caprec * capcost_PV * P1c ) + ( caprec * capcost_WT * P2c )+(caprec_BT * 
capcost_BT * P3c); 
end 
  
  
% term 2 of normal cost calculation 
function AnnualCost = CostAnnual(WT , PV , BT , powercapfactor_PV, 
powercapfactor_WT, Bg_PV, Bg_WT, Ln, event_start) 
  
    T2total = 0; 
    T3total = 0 ; 
    Gt = 0; 
    T2 = 0; 
    Bt = 0; % Battery stored energy initially is zero. 
    p = 75; %utility rate (p=75 $/MWh) 
    q= 35; %feed in tarrif rate (q= 35 $/MWh) 
  
    carbcredits_WT = 0; %carbon credits for WT 
    carbcredits_PV = 35; %carbon credits for PV 
     
    %Generating random power factor for WT and PV for one year on hourly 
    %basis 
    t=1; 
     while t<= 8760 
%         if t == event_start %Goto extreme event cost calculation module when the 
extreme event starts 
%            extremecost; 
%            t = t + 24; % Offset time to contine after the extreme event which happens for 
24 hours 
%         else 
            t=t+1; 
%         end 
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        WT_randCF = powercapfactor_WT * rand();  % here we use "WT_randCF" for 
hourly random capacity factor of WT 
        PV_randCF = powercapfactor_PV * rand();  % here we use "PV_randCF" for hourly 
random capacity factor of PV 
        if (((WT * WT_randCF) + (PV * PV_randCF)) - Ln) < (0.25 *Ln)%condition to 
ensure min.cost > revenue 
         
        T2 = ( 1 * WT_randCF * WT * (Bg_WT - carbcredits_WT) )+( 1 * PV_randCF * 
PV *( Bg_PV - carbcredits_PV ) ); 
         
        %calculating the third term for one year on hourly basis 
         
         Gt = (WT * WT_randCF) + ( PV * PV_randCF ); % this is the total hourly power 
from WT and PV 
            % The first scenario- generation > demand 
             
            E_maingrid=0 ; % define energy to main grid or taken from the main grid in an 
hour 
              
            if Gt > Ln  
                if Bt < BT  % battery is not fully charged scenario 
                    x= BT - Bt ; 
                    if (Gt - Ln)>= x 
                        Bt = BT; % Battery cap should be max since Battery should be fully 
charged. 
                        E_maingrid= Gt - Ln - x ; % this is the suplus power fed into the main grid 
                    else 
                        Bt = (Gt - Ln) + Bt;  % charge battery upto whatever excess energy is 
available without exceeding the BT capacity 
                        E_maingrid=0 ; % no suplus power fed into the main grid because the 
battery fully takes the extra power from WT and PV 
                    end        
                end 
            end 
  
            % The second case scenario - generation < demand 
            if Gt < Ln 
                y= Ln - Gt; 
                if (Bt > 0) && (Bt > y) % if the battery has charge available then use it for the 
deficit else battery will be drained completely 
                    Bt = Bt - y; % battery discharge energy to the facility  
                    E_maingrid=0; % no need of taking the power from main grid because the 
power shortage is met by the battery 
                else 
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                    E_maingrid=Bt-y; % this is the energy taken from the main grid (notice it is 
"-" sign 
                    Bt = 0; % the battery is emptied because all its available energy is discharged 
to the facility 
                end 
            end 
  
            % calculating total availabale energy in grid at time t  
  
            if E_maingrid <= 0 
                T3 = p * abs(E_maingrid); % since power shortage, importing the power from 
the main grid, it is a cost to facility 
            else 
                T3 = q * (-E_maingrid); % since it sells surplus power, the cost is negative  
            end 
  
            T3total = T3total + T3; %summation of Third term over time t  
            T2total = T2total + T2; %summation of T2 for every hour upto 8760 hours 
            AnnualCost = T2total + T3total; % SECOND TERM + THIRD TERM 
       end    
    end 
end 
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APPENDIX E Vehicle to Grid based Operating Cost of an Industrial Facility during an 
extreme weather event   
  
%initializing Test variables 
%    clear  
   minC2= 10^20; 
   cost_extreme=0; 
     
    % Setting delta values for WT, PV and BT 
    d_WT=1.0; 
    d_PV=1.0; 
    d_BT=1.0; 
    
    LCOE_2 = 0; 
  
    %major test variables for normal operating condition 
    capcost_WT = 1.5 * 10^6; %captital cost of WT 
    capcost_PV = 1.5 * 10^6; %capital cost of PV 
    capcost_BT = 0.3 * 10^6; %capital cost of  
     
    %major test result variables 
     
    WT_op_ext=0; 
    PV_op_ext=0; 
    BT_op_ext=0; 
     
    powercapfactor_WT_ext = 0.2; %Power capacity factor of WT in extreme weather 
    powercapfactor_PV_ext= 0.1; %Power capacity factor of PV in extreme weather 
    BT_charge = 0.5; % Percentage of battery charge before the start of extreme event 
     
    Bg_PV_ext = 80; %O&M cost for PV in Extreme weather (Taken as 10 times the      
normal cost) $/MWh 
    Bg_WT_ext=100; %O&M cost for WT in Extreme weather-$/MWh 
    ProdLossCost = 5000; % Production Loss Cost -$/MWh 
  
    Time_ext = 24; %Duration of the extreme event in hours 
    Ln = 10; % Factory Power Demand during normal operating condition in MW 
    Le = Ln * Time_ext; % Factory Energy Demand during the entire contingency period 
in MWh 
  
    %V2G variables declaration and initialization 
    Ne = 100; %no. of EVs participating in V2G     
    Eev = 40/1000; % energy contributed by a single EV in MWh, Nissan Leaf = 24 kWh 
     
% incrementing PV, BT and WT generation capacity by delta 
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%--------Main program %-------- 
  
    BT=-d_BT; % BSS capacity for each iteration 
    for k=1:240 
         BT= BT+d_BT; 
  
        PV=-d_PV; % PV capacity for each iteration 
        for i=1:240 
            PV=PV+d_PV; 
  
            WT=-d_WT; % WT capcity for each iteration 
            for j=1:240 
                WT=WT+d_WT; 
  
         %------cost under extreme events------- 
  
                 % calculating first term under extreme events 
                 T1e = firstterm_extreme (WT, PV,Bg_PV_ext ,Bg_WT_ext ,Time_ext , 
powercapfactor_WT_ext , powercapfactor_PV_ext ); 
  
                 % calculating second term under extreme events 
                 [T2e, test] = secondterm_extreme (PV, WT, BT, Time_ext, Ne, Eev, Le, 
powercapfactor_WT_ext, powercapfactor_PV_ext, BT_charge, ProdLossCost); 
                 
                  
                 % calculating the third term under extreme events 
                 T3e = thirdterm_extreme (Ne, Eev); 
  
                 %calulation total cost under extreme events 
                      
                 cost_extreme = TotExtremeCost (T1e, T2e, T3e); 
        %--------Finding the optimum WT, PV and BT values for the Extreme event 
operating cost---------    
          if test == 0 %calculate minimum cost only when demand is greater or equal to 
supply 
                if cost_extreme<minC2 
                    minC2 = cost_extreme; 
                    WT_op_ext=WT; 
                    PV_op_ext=PV; 
                    BT_op_ext=BT; 
                    Total_energy_supplied = (WT_op_ext * powercapfactor_WT_ext) + 
(PV_op_ext * powercapfactor_PV_ext) + (BT_op_ext * BT_charge) + (Eev * Ne); 
                    EnergyDifference = (Le - Total_energy_supplied); 
                    TotProdLoss = (EnergyDifference * ProdLossCost); 
                    LCOE_2 = (minC2 + TotProdLoss)/Total_energy_supplied; %since it is for 
one year on hourly basis 
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                end  
           end 
                  
           end 
        end  
    end  
  
       
  E =['The optimized values for extreme condition are WT = ',num2str(WT_op_ext), ' 
MW, BT = ',num2str(BT_op_ext),' MWh, PV =',num2str(PV_op_ext),' MW',  ', EV = 
',num2str(Ne*Eev) , 'MWh',newline ' Min. cost = ',num2str(minC2),' dollars', ',  LCOE = ' 
,num2str(LCOE_2),' $/MWh',', Total Energy Supplied = ' 
,num2str(Total_energy_supplied), ' MWh']; 
  disp(E); 
  
% end of the main program  
 
% term 1 of extreme event  
function T1ext = firstterm_extreme (WT, PV, Bg_PV_ext, Bg_WT_ext,Time_ext, 
powercapfactor_WT_ext, powercapfactor_PV_ext) 
       
    T1ext = (Time_ext * powercapfactor_WT_ext * WT * (Bg_WT_ext - 0)) + (Time_ext 
* powercapfactor_PV_ext * PV *(Bg_PV_ext - 35));   
end 
  
  
% term 2 of extreme event 
function [T2ext, test] = secondterm_extreme (PV, WT, BT, Time_ext, Ne, Eev, Le, 
powercapfactor_WT_ext, powercapfactor_PV_ext, BT_charge, ProdLossCost) 
    test = 0; 
    T2ext = 0; 
    V2G_energy = 0; %Energy from EVs 
    Energy_deficit = 0;  
    Be = BT_charge * BT; % Energy available in the storage battery before extreme event 
starts    
     
    E_grid = (Time_ext * ((powercapfactor_WT_ext * WT) + (powercapfactor_PV_ext * 
PV)) + Be); % energy from WT, PV and BT alone for each iteration 
    V2G_energy = (Ne * Eev); %Energy from EVs 
    Energy_deficit = (Le - V2G_energy); % Calculate the deficit energy from V2G to meet 
the factory demand 
            if E_grid <= Energy_deficit 
                Ee = E_grid + V2G_energy; %calculating the energy available in the grid 
+V2G Energy 
                T2ext = ProdLossCost * (Le - Ee); 
                    if T2ext < 0 % condition to catch a situation where supply exceeds demand 
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                    test = 1; 
                    end 
           end 
end 
     
  
% third term of extreme event  
function T3ext = thirdterm_extreme (Ne, Eev) 
  
    w = 2000; %cost for V2G service in dollars per MWh      
    T3ext = w * Ne * Eev; %T3ext is the cost for V2G service 
  
end 
  
%Total cost of extreme event 
  
function totalcost = TotExtremeCost (t1, t2, t3) 
  
    totalcost = t1 + t2 + t3; 
     
end 
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