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Abstract. This investigation presented a transient numericalstudy oncooling performance of 

cold plate based water cooling system for battery module with large lithium-ion pouch cells. 

The study was conducted at heat generation rates of large pouch cells with 0.07 W/cm
3
, 0.05 

W/cm
3
 and 0.03 W/cm

3
. The operating temperature of cooling water were considered as 15 ºC, 

25 ºC and 35 ºC. The operating mass flow rates of water were considered as 0.05 kg/s, 0.10  

kg/s and 0.15 kg/s.  k-ε turbulence model in ANSYS CFX was used to simulate the flow in the 

water channel.The average battery temperature, maximum battery temperature and temperature 

difference between maximum and min imum were considered as critical parameters for 

analysing the cooling performance of battery thermal management system (BTMS) with large 

sized lithium-ion pouch cells. The study reported that for 0.03 W/cm
3
, the present cooling 

model was sufficient and for battery modules with higher heat generation rates need optimized 

strategy to provide efficient cooling.   

1. Introduction 
The accelerated use of fossil fuel has resulted in the environmental degradation issue with largeCO2 
emissions. The automobile and aviation industry are investigating methods to move towards the 
sustainable energy. The electric vehicle (EV) market is looking competitive with the advancements in 
battery-operated electric vehicles (BEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric 
vehicles (PHEVs) and fuel cell vehicles (FCVs). Lithium-ion battery is preferred as energy source in 
modern EVs due to its high specific energy [1,2], high power density [1,2], high nominal voltage and 
low self-discharge rate [3] and long-life cycles [4]. To elevate the performance of battery, the 
operating temperatures should be maintained between 20 ºC to 40 ºC [5]. Battery operating 
temperature exceeding above the specified temperature could cause decreased performance and, in 
some cases, thermal runaway leading to thermal explosion. A well designed and efficient thermal 
management system could provide optimum operating environment. Therefore, battery thermal 
management system is required to provide better performance and secure the safety [6]. The operating 
temperature of the battery is critical factor as it affects the thermal and electrochemical behaviour of a 
battery leading to performance degradation and reduction in cycle life [7]. Considerable amount of 
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research is being conducted on BTMS with different cooling methods such as air cooling [8], water 
cooling [9], phase change composite based cooling [10], heat pipe cooling [11], mineral oil cooling 
[12,13] andintegrated system for cooling as well as heating [14, 15]. Although the air cooling method 
is simple in construction and operation, low thermal conductivity of air and requirement of high air 
velocity, makes it less desirable. The water cooling method is more efficient due to higher specific 
heat and thermal conductivity as compared to air. However, the water cooling brings more complexity 
due to safety issue with more cost. Phase change material (PCM) based cooling system provides 
passive type of cooling system and latent heat of fusion of PCM could be used to remove the heat 
generated. Kim et al. modelled discharge behaviour of Lithium-ion battery with varying environmental 
temperature and the material properties provided will be used in the present simulation [16]. 
     The literature study shows that air-cooling has limitations and enhanced water cooling system 
could be solution to the thermal management issue in modern lithium-ion pouch cells. In the present 
investigation, the transient analysis is conducted to understand the temperature distribution of lithium-
ion pouch cells in battery module. The average temperature, maximum temperature and temperature 
difference were considered as critical parameters for analysing effectiveness of water channel based 
battery module cooling system.  
 

2. Numerical method 
Commercial computational fluid dynamics (CFD) software ANSYS CFX 18.0 was used to study the 
heat transfer characteristics of the BTMS. The details of the geometry, meshing and boundary 
conditions are provided in this section. 

2.1. Geometry 
The dimensions of commercially available 20Ah lithium-ion pouch cell was chosen. A schematic of 
the BTMS under consideration with a single battery module was shown in figure 1. The system 
consisted of 10 lithium-ion pouch cells, 11 cold plates situated on the either sides of the battery, 
cooling channel with five long fins and water as a coolant. The dimensions of the model were listed in 
table 1.  
 

Table 1.Geometric size parameters of the battery thermal management system (BTMS). 
  

Parameter Specification 

Overall Size of the system (mm) 300 × 111 × 110 

Size of single prismatic lithium-ion battery (mm) 300 × 100 × 10 

Size of the cold plate (mm) 300 × 110 × 1 

Size of cooling channel (mm) 300 × 111 × 10 

Number of fins in cooling channel 5 
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Figure 1. In Geometry (a) Battery thermal management system with single battery module (b) 
Cooling channel design (c) BTMS (front view). 

 

2.2. Meshing and material 
The mesh generation was carried out using ANSYS meshing. Total of 1,032,382 nodes and 1,276,271 
elements were generated after meshing. The mesh was refined based on the proximity and curvature  
sizing. The fine layer was provided to capture the fluid flow and heat transfer near the solid-liquid 
interface. Moreover, the grid independence study was conducted to verify the accuracy of the results 
of the simulated model. Outlet water temperature, outlet pressure and average battery temperature 
were considered for grid independency. The grid independency was found within 1.0% with the 
1,276,271 elements and the same model was selected to carry out simulations. Figure 2 shows the 
meshing of the numerical model  
 

 
(a) 

 
(b) 

 

 

 
 

Figure 2. Meshing (a) full view (b) front view 

 
The thermal and physical properties of the materials used in the analysis are taken from Kim et al. 
[16] and are provided in the table 2. The general properties were employed for aluminium channel 
and water. 
 

Table 2.Thermal and physical properties of the lithium-ion battery[16]. 
  

Parameter Specification 
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Density (kg/m
3
) 2092.0 

Specific heat at constant pressure (J/kg-K) 678.0 

Thermal conductivity (W/m-K) 18.2 
 

 

2.3. Boundary conditions 
This section provides details for boundary conditions and assumptions. The lithium-ion battery 
generates considerable amount of heat during charging and discharging due to electrochemical 
reaction occurring at electrodes as well as ohmic loss. This heat needs to be dissipated for smooth 
operation of the battery. In the present study, the constant heat generation rates of 0.07 W/cm

3
, 0.05 

W/cm
3
 and 0.03W/cm

3
 were considered as volumetric heat generation rate by the large lithium-ion 

batteries. The water mass flow rates were varied from 0.05 kg/s to 0.15 kg/s. The inlet temperature of 
water was varied from 15 ºC to 35 ºC, considering the nominal coolant temperatures. All external 
walls assumed to be adiabatic for simplicity of the study. 

3. Results and discussion 
The results presented the transient analysis of BTMS with single battery module with variations of 
different parameters. The results were recorded for every 10 seconds from the initial time till the 
thermal steady state was observed. The dual cold plate method was adopted for efficient cooling of 
lithium-ion battery cells.In dual cold plate method, thin aluminium plates are attached to both sides of 
the battery to efficiently remove the dissipated heat. The heat generation rate, water mass flow rate and 
water inlet temperature were considered as variableinput parameters. The average, maximum and 
difference between maximum and minimum battery temperature were considered as critical 
performance parameters. For better efficiency and long-life cycle two important parameters needs to 
be considered: (1) uniformity of the temperature in the single battery as well as in the battery module 
and battery pack; (2) maximum temperature in the single battery as well as in the battery module and 
battery pack.Many electric vehicle manufacturers recommend maintaining the temperature difference 
between maximum and minimum in the single battery within 2~3 ºC and in the whole battery pack 
within 5~6 ºC. This recommendation is provided for safety as well as efficient performance. 
Therefore, in this study maximum temperature and temperature difference are considered as critical 
parameters. 
Figure 3 shows the variation of average temperature of all lithium-ion pouch cells in module with 
respect to variation of heat generation rate, water mass flow rate and water inlet temperature. The heat 
generation rate due chemical reaction and internal resistance for lithium-ion pouch cell of 0.03 W/cm

3
, 

0.05 W/cm
3
 and 0.07 W/cm

3
were considered.The water mass flow rates of 0.05 kg/s, 0.10 kg/s and 

0.15 kg/s were considered. The inlet water temperature was varied as 15 ºC, 25 ºC and 35 ºC. Figure 
3a, figure 3b and figure 3c shows the variation of average temperature of all lithium-ion pouch cells in 
the module with water inlet temperature of 15 ºC, 25 ºC and 35 ºC, respectively.As expected, 
maximum average temperature was observed for heat generation rate of 0.07 W/cm

3
 and water mass 

flow rate of 0.05 kg/s. Minimum average temperature was observed for heat generation rate of 0.03 
W/cm

3
 and water mass flow rate of 0.15 kg/s.The average temperature of lithium-ion pouch cells 

decreased continuously for inlet water temperature 15 ºC as elapsed time increased and reached steady 
state after around 800 seconds.The average temperature of lithium-ion pouch cells increased 
continuously for inlet water temperature of 25 ºC and 35 ºC as elapsed time increased and reached 
steady state after around 800 seconds.The maintenance of average temperature of lithium-ion pouch 
cells in the operating temperature range is necessary for long life cycle and better performance of the 
battery.  
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Figure 3. Average temperature of Li-ion batteries with various heat 
generation rates, water inlet mass flow rates and water inlet 
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temperatures. 
 
 
Figure 4 shows the variation of maximum temperature of all lithium-ion pouch cells in module with 
respect to variation of heat generation rate, water mass flow rate and water inlet temperature. Figure 
4a, figure 4b and figure 4c shows the variation of maximum temperature of all lithium-ion pouch cells 
in the module with water inlet temperature of 15 ºC, 25 ºC and 35 ºC, respectively. As expected, 
highest maximum temperature was observed for heat generation rate of 0.07 W/cm

3
 and water mass 

flow rate of 0.05 kg/s. Lowestmaximum temperature was observed for heat generation rate of 0.03 
W/cm

3
 and water mass flow rate of 0.15 kg/s. The maximum temperature of lithium-ion pouch cells 

increased initially and then decreased continuously for inlet water temperature 15 ºC as elapsed time 
increased and reached steady state after around 800 seconds.The maximum temperature of lithium-ion 
pouch cells increased continuously for inlet water temperature of 25 ºC and 35 ºC as elapsed time 
increased and reached steady state after around 900 seconds. The maximum temperature of lithium-ion 
pouch cells increased sharply after 200 seconds for inlet water temperature 35 ºC. 
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Figure 4. Maximum temperature of Li-ion batteries with various heat generate rate, water inlet 
mass flow rate and water inlet temperature. 

 
Figure 5 shows the variation of temperature difference between maximum and minimumof all lithium-
ion pouch cells in module with respect to variation of heat generation rate, water mass flow rate and 
water inlet temperature. Figure 5a, figure 5b and figure 5c shows the variation of temperature 
difference between maximum and minimum of all lithium-ion pouch cells in the module with water 
inlet temperature of 15 ºC, 25 ºC and 35 ºC, respectively. As expected, highest temperature difference 
was observed for heat generation rate of 0.07 W/cm

3
 and water mass flow rate of 0.05 kg/s. Lowest 

temperature difference was observed for heat generation rate of 0.03 W/cm
3
and water mass flow rate 

of 0.15 kg/s. The temperature difference of lithium-ion pouch cells increased initially and then 
decreased continuously for inlet water temperature of 15 ºC as elapsed time increased and reached 
steady state after around 800 seconds. The temperature difference of lithium-ion pouch cells increased 
continuously for inlet water temperature of 25 ºC as elapsed time increased and reached steady state 
after around 900 seconds. The temperature difference of lithium-ion pouch cells increased initially, 
then decreased and again increased continuously for inlet water temperature of 35 ºC as elapsed time 
increased and reached steady state after around 900 seconds. The maintenance of temperature 
difference of lithium-ion pouch cells in the battery module in the operating temperature range is very 
important for long life cycle and better performance of the battery. Maintaining the battery 
temperature difference within 5 ºC for uniformity is important for safe operation of the battery 
module. As shown in figure 5, the maximum temperature difference of 5 ºC was maintained for heat 
generation rate of 0.03 W/cm

3
 case only. For higher heat generation rates of 0.05 W/cm

3
 and 0.07 

W/cm
3
, two strategies could be adopted for efficient cooling. Firstly, a cooling channel could be 

optimized for better cooling with modified design for uniform distribution of heat removal. Secondly, 
the mass flow rates of water could be increased to enhance the heat removal rate.   
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Figure 5. Temperature difference between maximum and minimum of Li-ion 
batteries with various heat generate rate, water inlet mass flow rate and water inlet 
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Figure 6 shows the variation of temperature distribution of lithium-ion pouch cells in module with heat 
generation rate of 0.03 W/cm

3
, water mass flow rate of 0.05 kg/s and water inlet temperature of 35 ºC. 

As coolant flows in the cooling channel, heat dissipated by lithium-ion pouch cells was continuously 
removed. The figure 6 indicates that, the heat was accumulated at the top surface leading to increase in 
the surface temperature of top section of the battery module. The dual channel cooling system could 
be proposed in case of battery module with large lithium-ion batteries generating high amount of heat 
which needs to be dissipated.  
 

 

Figure 6. Temperature difference of Li-ion batteries with various 
heat generate rate, water inlet mass flow rate and water inlet 
temperature. 

 

4. Conclusions 
The present numerical study reported the transient simulation analysis for cold plate based water 
cooling system for battery module with large lithium-ion pouch cells. Various parameters were varied 
and temperature distribution in the battery module was reported. The heat generation rate of 0.03 
W/cm

3
, 0.05 W/cm

3
 and 0.07 W/cm

3
 were considered based on large size lithium-ion pouch cell. The 

water was selected as coolant with mass flow rates of 0.05 kg/s, 0.10 kg/s and 0.15 kg/s. The inlet 
water temperature was varied as 15 ºC, 25 ºC and 35 ºC considering mild to extreme hot weather 
condition. The average battery temperature, maximum battery temperature and temperature difference 
between maximum and minimum were considered as critical parameters for analysing the cooling 
performance of BTMS with large sized lithium-ion pouch cells. The study points out that for 0.03 
W/cm

3
, the present model is sufficient and for battery modules with higher heat generation rates need 

optimized strategy to provide efficient cooling.   
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