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PARTIAL REGULARITY FOR FLOWS OF H-SURFACES

Changyou Wang

Abstract

This article studies regularity of weak solutions to the heat equation for H–
surfaces. Under the assumption that the function H is Lipschitz and depends only
on the first two components, the solution has regularity on its domain, except for a set
of measure zero. Moreover, if the solution satisfies certain energy inequality, this set is
finite.

§1. Introduction

Let Ω ⊂ R2 be a bounded Lipschitz domain with boundary ∂Ω, and H be a
Lipschitz function on R3. A map u ∈ C2(Ω,R3) satisfying

−∆u = 2H(u)ux1
∧ ux2

, (1.1)

is called a H-surface (parametrized by Ω). It is well known that if u = (u1, u2, u3)
is a conformal representation of a surface S, i.e,

|ux1
|2 − |ux2

|2 = ux1
· ux2

= 0 ,

then the mean curvature of S at the point u is H(u); see [S3]. The existence of
surfaces with constant mean curvature (i.e. H is constant) under various boundary
conditions has been studied by Hildebrandt [Hs], Wente [W], Struwe [S1] [S2] [S3],
and Brezis–Coron [Br]. The regularity of weak solutions to (1.1) has been established
for constant H in [W], and for H depending only on two variables, or

sup
p∈R3

|H(p)|+ sup
p∈R3

(1 + |p|)|DH(p)| <∞ (1.2)

in Heinz [He], Tomi [T], and Bethuel-Ghidaglia [BG]. Bethuel [B] proved that weak
solutions to (1.1) are C2,α for any bounded Lipschitz function H.

The heat flow of an H-surface is

∂tu−∆u = 2H(u)ux1
∧ ux2

, in Ω×R+ . (1.3)

Since (1.3) describes an evolution process of (1.1), there are results on the existence
and regularity of solutions that apply under special conditions on the H-functions;
see for example [R] [S2]. It is then a natural question to look at the regularity
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problem of (1.3) for more generalH-functions. However (1.3) is a nonlinear parabolic
system with borderline nonlinearity, which makes the regularity problem difficult to
attack. In this note we consider the partial regularity for weak solutions of (1.3).

We say that u : Ω× R+ → R3 is a weak solution of (1.3) if ∂tu and Du are in
L2

loc(R+, L
2(Ω)) and u satisfies (1.3) in the sense of distributions.

For H constant, Struwe [S2] has studied (1.3) under free boundary conditions

u(x, t) ∈ S, ∂νu(x, t) ⊥ Tu(x,t)S, (1.4)

a.e. for (x, t) ∈ ∂Ω × R+, where S is a smooth surface in R3. He proved that
(1.3)-(1.4) has a unique solution u in

∩T<T̄{u ∈ C
0([0, T ],H1(Ω,R3)) : |D2u|, |∂tu| ∈ L

2(Ω× [0, T ])} ,

which is regular on B2 × (0, T̄ ), where T̄ > 0 is determined by

lim
T→T̄

sup
(x,t)∈B2×(0,T )

∫
BR(x)∩B2

|Du|2 ≥ ε̄, (1.5)

for all R > 0, and ε̄ depends only on S and H.

Rey [R] has established the existence of global regular solutions to (1.1) under
the Dirichlet boundary conditions

u(x, 0) = φ(x), x ∈ ∂Ω; u(x, t) = φ(x), (x, t) ∈ ∂Ω× (0,∞), (1.6)

provided that φ ∈ H1 ∩ L∞(Ω,R3) and

‖φ‖L∞(Ω)‖H‖L∞(R3) < 1. (1.7)

Note that the nonlinear term occurring in (1.3) is of the same order as that appearing
in the equation of harmonic maps from surfaces; see for example [S3]. In general,
(1.3) alone does not provide control of ‖Du(·, t)‖L2(Ω) with respect to t. But, under
the assumption (1.7), Rey [R] was able to control

∫
Ω
|Du|2(·, t). Based on this, Rey

[R] first obtained the short time existence of a unique regular solution to (1.3) and
(1.6), whose life span, T̄ , is given by (1.5). To show T̄ =∞, Rey [R] observed (1.1)
does not admit nontrivial entire solution under the assumption (1.7).

For harmonic maps, Freire [F] proved the partial regularity of weak flows of
harmonic maps from surfaces to general Riemannian manifolds, whose energy does
not increase with respect to t, by showing it must coincide with Struwe’s solutions.
However, there are serious difference between heat flows of a harmonic map and
(1.3). For example, it is not clear whether smooth solutions to (1.3) satisfy the
usual energy inequality∫

Ω

|Du|2(·, t) ≤

∫
Ω

|Du|2(·, s), 0 ≤ s ≤ t <∞ . (1.8)

However, returning to the partial regularity issue of (1.3), we still prove the following
result.
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Theorem 1. Assume that H(p) = H(p1, p2) : R3 → R, depending only on the first
two variables, is bounded and Lipschitz continuous. Let u ∈ H1(Ω × R+,R3) be a
weak solution of (1.3). Then there exists a closed subset Σ = ∪t>0Σt ⊂ Ω × R+,
with Σt ⊂ Ω× {t} finite for almost all t > 0, such that u ∈ C2,α(Ω × R+ \ Σ,R3).
In particular, Σ has zero Lebesgue measure.

We believe that the singular set Σ in the above theorem should have Hausdorff
dimension with respect to the parabolic metric in R3 at most 2.

Under the additional assumption (1.8), we confirm, in Remark 6 below, that
the singular set Σ in the theorem is finite. It is then very interesting to ask when
the singular set Σ in Theorem 1 is finite without (1.8). It is also interesting to ask
whether the above theorem is true for any bounded Lipschitz functionH. Uniqueness
results for (1.3) under Dirichlet conditions are shown by Chen [Ch], in a preprint
recently received by the author.

§2. Proof of main theorem

The goal of this section is to prove the theorem stated above. The proof relies
on the techniques of Hardy space, Helein’s arguments [Hf], and local versions of
uniqueness results.

It follows from the assumption of Theorem 1 that H(u) = H(u1, u2). First we
observe that, for v ∈ H1(R2,R3),

H(v1, v2)(v1
x1
v2
x2
− v1

x2
v2
x1

) = gx1
v2
x2
− gx2

v2
x1
∈ H1(R2), (2.0)

where g =
∫ v1

0
H(s, v2) ds, and H1(R2) denotes the Hardy space. See [Co] or [BG]

for details. Moreover, one has the following norm estimate, see also Proposition 5.3
of [BG].

Lemma 1. Assume that H(p) = H(p1, p2) ∈ L∞(R3). For v ∈ H1(R2,R3), we
have

‖H(v1, v2)(v1
x1
v2
x2
− v1

x2
v2
x1

)‖H1(R2) ≤ C‖H‖L∞‖Dv‖
2
L2(R2). (2.1)

Proof. It is given at page 461 of [BG]. For completeness, we sketch it here. First
recall that f ∈ H1(R2) if

f∗(x) := sup
r>0
|r−2

∫
R2

f(y)ρ(
x− y

r
) dy| ∈ L1(R2),

here ρ ∈ C∞0 (R2), supp ρ ⊂ B(0, 1), ρ ≥ 0 and
∫
ρ = 1. Denote f = H(v1, v2)(v1

x1
v2
x2
−

v1
x2
v2
x1

). Concerning f∗, we take x ∈ R2, r > 0 and set

g(y) =

∫ v1(y)

λ

H(s, v2(y)) ds, λ = (πr2)−1

∫
B(x,r)

v1(z) dz.

Then f = gx1
v2
x2
− gx2

v2
x1

and

r−2

∫
R2

f(y)ρ(
x− y

r
) dy = r−3

∫
B(x,r)

(R1v
2
x2
−R2v

2
x1

)g dy ,



4 Changyou Wang EJDE–1997/20

where Ri = ∂ρ
∂xi

(x−y
r

) for i = 1, 2. Since |g(y)| ≤ ‖H‖L∞ |v1(y)− λ|, we have

|r−2

∫
R2

f(y)ρ(
x− y

r
) dy| ≤ C‖H‖L∞r

−3

∫
B(x,r)

|v1(y)− λ||Dv2| dy.

Then we proceed exactly as in [Co] and [BG] to show that∫
R2

f∗(x) dx ≤ C‖H‖L∞‖Dv
1‖L2‖Dv2‖L2 .

Which concludes the present proof. �

Let Pr(x, t) = {(y, s) ∈ R2×R+| |y−x| ≤ r, t−r2 ≤ s ≤ t} for (x, t) ∈ R2×R+

and r > 0. The following Lemma is the key to the proof of our theorem.

Lemma 2. Assume H(p) = H(p1, p2) ∈ L∞(R3). There exists ε0 > 0 such that
if u ∈ H1(P1(0, 1),R3) is a weak solution to (1.3) and sup(0,1]

∫
B1
|Du|2 ≤ ε20, then

Du ∈ L2((0, 1], L4(B3/4)). In particular, D2u ∈ L2((0, 1], L4/3(B1/2)).

Proof. Let ū ∈ L2((0, 1],H1(R2,R3)) be such that ū = u on B1 and
∫
R2 |Dū|

2 ≤
C
∫
B1
|Du|2 for t ∈ (0, 1). Define v,w ∈ L2((0, 1],H1(B1)) by

∆v = ∂tu
3, in B1, (2.3)

v = u3 − (u3)1(t), on ∂B1 ,

where (u3)1(t) = 1
|B1|

∫
B1
u3(x, t) dx, and

−∆w = H(ū1, ū2)(ū1
x1
ū2
x2
− ū1

x2
ū2
x1

), in B1, (2.4)

w = 0, on ∂B1.

Then we have
u3 − (u3)1(t) = v + w, in P1(0, 1). (2.5)

For v, one can apply interior W 2,2 estimates to get, for t ∈ (0, 1),∫
B3/4

|D2v|2 ≤ C

∫
B1

|v|2 + |∂tu|
2

≤ C

∫
B1

|u3 − (u3)1(t)|
2 + |w|2 + |∂tu|

2

≤ C

∫
B1

|Du|2 + |Dw|2 + |∂tu|
2. (2.6)

Here we have used the Poincaré inequality and (2.5).

For w, we can apply Lemma 1 and the results of [Co] to conclude that w ∈
W 2,1(B1) and hence Dw ∈ L2,1(B1). Here L2,1 denotes the Lorentz space which is
defined as follows: For 1 ≤ q ≤ ∞,

L2,q(B1) = {f : B1 → R measurable , ‖f‖L2,q(B1) <∞},
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where ‖f‖L2,q(B1) is defined by

‖f‖L2,q(B1) =

{
(
∫∞

0
[t1/2f∗(t)]q 1

t
dt)1/q, if 1 ≤ q <∞ ;

supt>0 t
1/2f∗(t), if q =∞.

Here f∗(t) := inf{s > 0 : |{x ∈ B1 : |f(x)| > s}| ≤ t} is the the rearrangement of f .
Moreover, for t ∈ (0, 1), multiplying (2.4) by w and integrating over B1, we have∫

B1

|Dw|2 =

∫
R2

H(ū1, ū2)(ū1
x1
ū2
x2
− ū1

x2
ū2
x1

)w

≤ C‖H(ū1, ū2)(ū1
x1
ū2
x2
− ū1

x2
ū2
x1

)‖H1(R2)‖w‖BMO(R2)

≤ C‖H‖L∞‖Du‖
2
L2(B1)‖Dw‖L2(B1).

Here we extend w to R2 by letting it to be zero outside B1, and ‖w‖BMO(R2) denotes

the BMO norm of w, which is given by

‖w‖BMO(R2) = sup
x∈R2,r>0

r−2

∫
B(x,r)

|w − wx,r|, wx,r =
1

|B(x, r)|

∫
B(x,r)

w .

Here we have also used the duality between H1(R2) and BMO(R2) (see for example
[S]) and the Poincaré inequality. Therefore, we have

‖Dw‖L2(B1) ≤ C‖H‖L∞‖Du‖
2
L2(B1), (2.7)

and
‖Dw‖L2,1(B3/4) ≤ C‖H‖L∞‖Du‖

2
L2(B1). (2.8)

Now we adapt the method, developed by Hélein [Hf] and [BG] in the context of
harmonic maps from surfaces, to estimate u as follows. Denote ∂

∂z
= 1

2 ( ∂
∂x1

+ i ∂
∂x2

)

and ∂
∂z̄

= 1
2 ( ∂
∂x1
− i ∂

∂x2
). Hence we have ∂

∂x
= ∂

∂z
+ ∂

∂z̄
and ∂

∂y
= 1

i
( ∂
∂z
− ∂

∂z̄
).

For k = 1, 2, if we denote Mk = ∂uk

∂z
. Then it follows from (2.5) that (1.3) can be

written as

4
∂

∂z̄

(
M1

M2

)
=2H(u1, u2)

(
wx1

u2
x2
− wx2

u2
x1

wx1
u1
x2
− wx2

u1
x1

)
+ 2H(u1, u2)

(
vx1

u2
x2
− vx2

u2
x1

vx1
u1
x2
− vx2

u1
x1

)
+

(
∂tu

1

∂tu
2

)
=I + II + III.

By direct computation, we see that

I = 4iH(u1, u2)

(
∂w
∂z

∂u2

∂z̄
− ∂w

∂z̄
∂u2

∂z
∂w
∂z

∂u1

∂z̄
− ∂w

∂z̄
∂u1

∂z

)
= Re [8iH(u1, u2)

(
0 −∂w

∂z̄
∂w
∂z̄

0

)(
M1

M2

)
].

Hence we obtain

∂

∂z̄

(
M1

M2

)
= Re[α

(
M1

M2

)
] + F +G, in P1(0, 1). (2.9)
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Here “Re” denotes the real part of complex numbers, α = 2iH(u1, u2)

(
0 −∂w

∂z̄
∂w
∂z̄

0

)
,

F = 2H(u1, u2)

(
vx1

u2
x2
− vx2

u2
x1

vx1
u1
x2
− vx2

u1
x1

)
, and G =

(
∂tu

1

∂tu
2

)
.

For t ∈ (0, 1), define T by

Tf = P ∗ (αRe f), (2.10)

where P (z) = 1/(πz) is the fundamental solution of ∂̄ in R2. From (2.8), we have

‖α‖L2,1(R2) ≤ C‖H‖L∞
∫
B1

|Du|2 . (2.11)

Since P ∈ L2,∞(R2), T : L∞(R2)→ L∞(R2) is bounded and

‖T‖ ≤ C‖P‖L2,∞‖α‖L2,1(R2) ≤ C

∫
B1

|Du|2 . (2.12)

Therefore, if we choose ε0 so small (e.g., ε0 ≤ (2C)−1/2) then I + T : L∞ → L∞ is
invertible. Hence for k = 1, 2 there exist νk ∈ L∞(R2) such that

(I + T )νk = ek, (2.13)

‖νk − ek‖L∞(R2) ≤ C|ek|(1− Cε
2
0)
−1ε0. (2.14)

Here e1 =

(
1
0

)
and e2 =

(
0
1

)
. Taking ∂

∂z̄
of (2.13), we get

∂νk
∂z̄

= αRe νk. (2.15)

This combines with (2.9) to yield, for k = 1, 2,

Re[
∂

∂z̄
(νk

T

(
M1

M2

)
)] =Re((

∂νk
∂z̄

)T
(
M1

M2

)
+ νk

T ∂

∂z̄

(
M1

M2

)
)

=Re[(αReνk)
T

(
M1

M2

)
] + (Reνk)

T (Re(α

(
M1

M2

)
) + F +G)

=(Reνk)
T (F +G). (2.16)

Here the superscript “T” means the transpose, and we have used that αT + α = 0.
One can further rewrite (2.16) as

2∑
k,l,s=1

∂

∂xk
(arskl

∂us

∂xl
) = (Re νr)T (F +G), (2.17)

for r = 1, 2, where arskl are linear combinations of the νk’s such that

sup
P1(0,1)

|arskl − δ
rs
kl | ≤ C sup

(0,1)

2∑
r=1

‖Tνr‖L∞(B1) ≤ Cε0 . (2.18)
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Hence, for small ε0, (arskl ) is uniformly elliptic. Let U = (u1, u2)T , A = (arskl ), and
Id = (δrskl ). Then (2.17) becomes

−∆U = F̄ + Ḡ+ div ((A− Id)DU) , (2.19)

where F̄ =

(
(Reν1)

TF
(Reν2)

TF

)
and Ḡ =

(
(Reν1)

TG
(Reν2)

TG

)
.

It follows that Ḡ ∈ L2((0, 1], L2(B1)) and∫
P1(0,1)

|Ḡ|2 ≤ C

∫
P1(0,1)

|∂tu|
2 . (2.20)

Also note that |F̄ | ≤ C|Dv||Du|. Moreover, for t ∈ (0, 1), by (2.6), (2.7) and the
Sobolev inequality, we have

‖Dv‖L4(B3/4) ≤ C‖Dv‖
1/2
L2(B1)(‖Dv‖

1/2
L2(B1) + ‖D2v‖1/2

L2(B3/4))

≤ C(1 + ‖∂tu‖
1/2
L2(B1)) . (2.21)

Hence Dv ∈ L4((0, 1], L4(B3/4)). Since Du ∈ L∞((0, 1], L2(B1)), we can apply

Hölder inequality to conclude that F̄ ∈ L4((0, 1], L4/3(B3/4)). In fact,

‖F̄‖L4((0,1],L4/3(B3/4)) ≤ C‖Dv‖L4((0,1],L4(B3/4))‖Du‖L∞((0,1],L2(B1)). (2.22)

For t ∈ (0, 1), we now estimate the L4 norm of DU in B1/2 as follows. Let η ∈
C∞0 (B3/4) be such that η = 1 on B1/2 and |Dη| ≤ 4. From (2.19), we have

−∆(ηU) = ηF̄ + ηḠ+Dη ·A ·DU + div(ADη ·U) + div ((A− Id)D(ηU)) . (2.23)

By Theorem 6.1 [Si], for t ∈ (0, 1),

‖D(ηU)‖L4(B1) ≤ C sup
φ∈A

∫
B1

D(ηU) ·Dφ ,

where A = {φ ∈ W 1,4/3
0 (B1)|‖φ‖W 1,4/3(B1) ≤ 1}. On the other hand, multiplying

(2.23) by φ ∈ A, we have∫
B1

D(ηU) ·Dφ (2.24)

=

∫
B1

ηF̄φ+ ηḠφ+Dη ·A ·DU · φ−

∫
B1

A ·D(ηU) ·Dφ

−

∫
B1

(A− Id)D(ηU) ·Dφ

≤‖ηF̄‖L4/3(B1)‖φ‖L4(B1) + ‖ηḠ‖L2(B1)‖φ‖L2(B1) + C‖A‖L∞‖DU‖L2(B1)‖φ‖L2(B1)

+ C‖A‖L∞‖U‖L4(B1)‖Dφ‖L4/3(B1) + ‖A− Id‖L∞‖D(ηU)‖L4(B1)‖φ‖L4/3(B1)

≤C(‖F̄‖L4/3(B3/4) + ‖Ḡ‖L2(B1) + ‖Du‖L2(B1) + ‖u‖L4(B1)) + Cε0‖D(ηU)‖L4(B1) .
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Here we have used the fact that for any φ ∈ A ‖φ‖L2 and ‖φ‖L4 are bounded, and
(2.18). Hence for small ε0, if we take the supremum of the left hand side of (2.24)we
have

‖DU‖L4(B1/2) ≤ C(‖F̄‖L4/3(B3/4) + ‖Ḡ‖L2(B1) + ‖Du‖L2(B1)) .

In particular, DU ∈ L2((0, 1], L4(B1/2)) so that 2H(u1, u2)(u1
x1
u2
x2
− u1

x2
u2
x1

) ∈

L2((0, 1], L4/3(B1/2)). The linear theory implies D2u3 ∈ L2((0, 1], L4/3(B1/2)) and
the Sobolev embedding theorem implies Du3 ∈ L2((0, 1], L4(B1/2)). Applying linear

theory again, we know that D2ui ∈ L2((0, 1], L4/3(B1/2)) for i = 1, 2. The proof is
now complete. �

To obtain the regularity of weak solutions to (1.3) under the small energy as-
sumption, we need the following lemma. For its proof, we refer the reader to Lemma
3.10 in Struwe [S3], whose proof is identical to the one of this lemma.

Lemma 3. There exist ε0 > 0, and 0 < α0 < 1 such that if u ∈ H1(P1(0, 1),R3)
is a weak solution to (1.3) satisfying D2u ∈ L2(P1(0, 1)), sup(0,1]

∫
B1
|Du|2 ≤ ε20,

then u ∈ Cα0(P1/2(0, 1),R3). Moreover, u ∈ C2,α0(P1/2(0, 1),R3) provided that
H ∈W 1,∞(R3).

Although Lemma 2 gives us higher regularity of second order derivatives of weak
solutions u of (1.3) (e.g., D2u ∈ L2((0, 1], L4/3(B1/2) ), it is not sufficient for us to
apply Lemma 3 yet. From the linear theory, in order to apply Lemma 3 we need
Du ∈ L4(P1/2(0, 1)). To achieve this, we need the following uniqueness Lemma.

First, for 1 < p <∞, define Ip((0, 1],W 2, 43 (B1/2)) by

Ip((0, 1],W 2, 43 (B1/2)) = {v ∈ Lp((0, 1],W 2, 43 (B1/2))| ∂tv ∈ L
p((0, 1], L4/3(B1/2))}

Lemma 4. There exists ε0 > 0 such that if Du ∈ L2((0, 1], L2(B1/2)),

sup(0,1]

∫
B1
|Du|2 ≤ ε20, and g ∈ L4((0, 1], L4/3(B1/2)), then for p = 2, 4 there exists

a unique w ∈ Ip((0, 1],W 2, 43 (B1/2)) such that

∂tw −∆w = 2H(u)ux ∧ wy + g, in B1/2 × (0, 1), (2.26)

w(x, ·) = 0, on ∂B1/2,

w(·, 0) = 0, in B1/2.

Proof. The argument is based on the contraction principle and linear theory. Here
we consider only the case p = 4. By Theorem 9.3 in Grisvard [Gr], for each v ∈
L4((0, 1],W 1,4(B1/2)) there exists a unique Φ(v) in I4((0, 1],W 2, 43 (B1/2)) such that

∂tΦ−∆Φ = 2H(u)ux ∧ vy + g, in B1/2 × (0, 1), (2.27)

Φ(x, ·) = 0, on ∂B1/2,

Φ(·, 0) = 0, in B1/2.

Moreover, by Sobolev embedding inequality, we see that Φ defines a mapping from
v ∈ L4((0, 1],W 1,4(B1/2)) to itself, and by standard W 2, 43 estimates for (2.27),

‖Φ(v)‖L4((0,1],W 1,4(B1/2)) ≤ C‖Φ(v)‖
L4((0,1],W 2, 4

3 (B1/2))
(2.28)

≤ Cε0‖v‖L4((0,1],W 1,4(B1/2)) + C‖g‖L4((0,1],L4/3(B1/2)).
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Moreover, for any v1, v2 ∈ L4((0, 1],W 1,4(B1/2)), we know that w = Φ(v1) − Φ(v2)
solves (2.27) with v and g replaced by w and 0. Hence, (2.28) implies

‖Φ(v1)− Φ(v2)‖L4((0,1],W 1,4(B1/2)) ≤ Cε0‖v1 − v2‖L4((0,1],W 1,4(B1/2)). (2.29)

The conclusion follows from the contraction principle if we choose ε0 sufficiently
small. �

Based on the above Lemma, we can now improve the integrability of Du in the
time direction, under the small energy assumptions.

Corollary 5. Assume H(p) = H(p1, p2) ∈ W 1,∞ ∩ L∞(R3). There exists ε0 > 0
such that if u ∈ H1(P1(0, 1),R3) is a weak solution to (1.3) and sup(0,1]

∫
B1
|Du|2 ≤

ε20, then u ∈ C2,α(P 1
4
(0, 1),R3) for some α ∈ (0, 1).

Proof. Applying Lemma 2, we know that Du ∈ L2((0, 1],W 1,4(B1/2)). Let w ∈
H1(P1/2(0, 1),R3) be a solution to

∂tw −∆w = 0, in P1/2(0, 1), (2.30)

w = u, on ∂P1/2(0, 1) ,

where ∂P1/2(0, 1) denotes the parabolic boundary of P1/2(0, 1).

Claim 1. u − w ∈ L4((0, 1], L4(B1/2)). To prove this claim, we first observe, by
Sobolev embedding theorem, that∫

B1/2

|u− w|4 ≤ C

∫
B1/2

|u− w|2
∫
B1/2

|Du−Dw|2. (2.31)

This implies that u−w ∈ L2((0, 1], L4(B1/2)). Now multiplying (1.3) and (2.30) by
u− w, subtracting each other, and integrating over B1/2 × (0, 1), we have

sup
t∈(0,1]

∫
B1/2

|u− w|2 +

∫ 1

0

∫
B1/2

|Du−Dw|2

≤ C

∫ 1

0

‖Du‖L2(B1/2)‖Du‖L4(B1/2)‖u− w‖L4(B1/2)

≤ C‖Du‖L∞((0,1],L2(B1/2))‖Du‖L2((0,1],L4(B1/2))‖u− w‖L2((0,1],L4(B1/2)) <∞.

This implies that u− w ∈ L∞((0, 1], L2(B1/2)). Hence (2.31) yields the claim.

Claim 2. Du ∈ L4(P1/4(0, 1)). To prove this claim, we first note, by the linear
theory, that Dw ∈ L∞(P 1

4
(0, 1)). Hence it suffices to prove D(u−w) ∈ L4(P 1

4
(0, 1)).

To do so, let η ∈ C∞(P1/2(0, 1)) be such that η = 1 on P1/4(0, 1), η = 0 outside
P1/2(0, 1), and |∂tη|+ |Dη| ≤ 4. Then

∂t(η(u− w))−∆(η(u− w)) = 2H(u)ux ∧ (η(u− w))y + g, (2.32)

where

g = (∂tη)(u−w)−2(Dη)D(u−w)−∆η(u−w)+2H(u)ux∧ηy(u−w)+2ηH(u)ux∧wy .
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Hence g ∈ L4((0, 1], L4/3(B1)) and ‖g‖L4((0,1],L4/3(B1)) ≤ C, where C depends on
‖Du‖L∞((0,1],L2(B1)) and ‖Du‖L2((0,1],L4(B1/2)). Applying Lemma 4, we conclude

that D(η(u− w)) ∈ L4(B1/2 × (1
4 , 1)), which proves Claim 2.

Combining Claim 2 with Lemma 3, we complete the present proof. �

Completion of the proof of Theorem 1.
Define the parabolic metric: δ((x, t), (y, s)) = max{|x − y|,

√
|t− s|}. For (x, t) ∈

Ω×R+ and R ∈ (0, δ((x, t), ∂(Ω ×R+))). Define

MR(x, t) = lim sup
s↑t

∫
BR(x)

|Du|2(x, s) dx,

for the weak solution u of (1.3). It is easy to see that MR(x, t) is non-decreasing with
respect to R so that M(x, t) = limR↓0MR(x, t) exists and is upper semi-continuous
for any (x, t) ∈ Ω×R+. Let ε1 be the smallest of the constant obtained in lemmas
2, 3, 4, and Corollary 5. For t > 0, define Σt ⊂ Ω× {t} by

Σt = {x ∈ Ω : M(x, t) ≥ ε21} ,

and let Σ = ∪t>0Σt. Then it is easy to see that Σ is a closed subset of Ω×R+.

Claim. u ∈ C2,α(Ω × R+ \ Σ,R3) for some α ∈ (0, 1). To prove this claim, Let
(x0, t0) ∈ Ω×R+ \Σ. By definition, there exists r0 > 0 such that Mr0(x0, t0) < ε21.
For such r0, there exists 0 < δ0 ≤ r0 such that∫

Br0 (x0)

|Du|2(x, t) dx ≤ ε21, ∀t ∈ [t0 − δ
2
0 , t0].

Hence if we define the rescaled mappings uδ0 : P1(0, 0) → R3 by uδ0(x, t) =
u(x0 + δ0x, t0 + δ2

0t) then uδ0 is a weak solution to (1.3) on P1(0, 0) and satisfies
sup(0,1]

∫
B1
|Duδ0 |

2(x, t) dx ≤ ε21. Hence Corollary 5 implies

uδ0 ∈ C
2,α(P 1

4
(0, 0),R3) ,

which is the same as saying that u ∈ C2,α(Pδ0/4(x0, t0),R3). Since (x0, t0) is arbi-
trary in Ω×R+ \ Σ, the claim is proven.

Now we estimate the size Σt for a.e. t > 0. Since Du ∈ L2
loc(Ω×R+), the set

A = {t0 ∈ R+ : lim inf
t↑t0

∫
Ω

|Du|2(x, t) dx = +∞}

has Lebesgue measure, |A|, equal to zero. For any t1 ∈ R+ \A, we claim that Σt1 is
finite. In fact, let {x1, · · · , xN} be a finite subset of Σt1 . Then we can choose R0 > 0
such that {BR0

(xi)}Ni=1 are mutually disjoint and

lim sup
t↑t1

∫
BR0

(xi)

|Du|2(x, t) dx ≥ ε21, 1 ≤ i ≤ N.
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Therefore,

lim inf
t↑t1

∫
Ω\∪N

i=1
BR0

(xi)

|Du|2 ≤ lim inf
t↑t1

∫
Ω

|Du|2 −
N∑
i=1

lim sup
t↑t1

∫
BR0

(xi)

|Du|2

≤ lim inf
t↑t1

∫
Ω

|Du|2 −Nε21.

Hence N ≤ ε−2
1 lim inft↑t1

∫
Ω
|Du|2, which implies Σt1 is finite. By Fubini’s theorem,

we see that Σ has zero Lebesgue measure. �

Remark 6. Under the condition (1.8), the set Σ in Theorem 1 is finite.

Proof. Let 0 < t1 < · · · < tN be such that there exist x1, · · · , xN ∈ Ω so that
{(xi, ti)} ⊂ Σ. Then for 1 ≤ i ≤ N − 1,∫

Ω

|Du|2(·, ti+1) = lim
R↓0

∫
Ω\BR(xi+1)

|Du|2(·, ti+1)

≤ lim
R↓0

lim inf
t↑ti+1

∫
Ω\BR(xi+1)

|Du|2

≤ lim inf
t↑ti+1

∫
Ω

|Du|2 − lim
R↓0

lim sup
t↑ti+1

∫
BR(xi+1)

|Du|2

≤

∫
Ω

|Du|2(·, ti)− ε
2
1 .

Hence, ∫
Ω

|Du|2(·, tN ) ≤

∫
Ω

|Du|2(·, t1)−Nε
2
1.

This clearly implies the set {t ∈ R+ : Σ∩Ω×{t} 6= ∅} is finite. Hence Σ is finite. �

Acknowledgments. The author is grateful to Professor M. Struwe for providing a
reference to the work done by Rey [R].
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[Be] F. Bethuel, Un reśultat de régularité pour les solutions de l’équation des surfaces
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