

PINPOINTING USER INTERFACE DEFICIENCIES

USING PATTERN RECOGNITION

TECHNIQUES

THESIS

Presented to the Graduate Council of

Texas State University-San Marcos

in Partial Fulfillment

of the Requirements

for the Degree

Master of SCIENCE

by

Dasari Kali Venkata Divya, B.E.

San Marcos, TX

May 2013

PINPOINTING USER INTERFACE DEFICIENCIES

USING PATTERN RECOGNITION

TECHNIQUES

 Committee Members Approved:

 Dan Tamir, Chair

 Komogortsev Oleg

 Gao Byron

Approved:

J. Michael Willoughby

Dean of the Graduate College

COPYRIGHT

by

Dasari Kali Venkata Divya

2013

iv

ACKNOWLEDGEMENTS

I would like to thank my family for allowing me the time to pursue this research.

In addition, I would also like to thank Dr. Oleg Komogortsev and Dr. Byron Gao for

serving on my committee. Finally, I would like to thank Dr. Dan E. Tamir for all his

invaluable guidance and assistance during this process.

This manuscript was submitted on December 21, 2012.

v

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS .. IV

LIST OF TABLES .. VIII

LIST OF FIGURES .. IX

ABSTRACT ... XII

CHAPTER

1. INTRODUCTION .. 1

2. BACKGROUND .. 5

2.1 Software Usability .. 5

2.2 Classical Methods for Measuring Usability .. 5

2.3 The Effort Based Usability Model .. 7

2.3.1 Measuring Effort .. 8

2.3.2 Steps in conducting an effort based usability evaluation 10

2.4 Learnability based Usability Model .. 11

2.5 Pinpointing Usability Issues ... 12

2.5.1 Inter Pinpoint Analysis .. 13

2.5.2 Intra Pinpoint Analysis .. 14

2.6 Pattern Recognition ... 15

2.6.1 Classification.. 15

2.6.1.1 Segmentation... 16

vi

2.6.1.2 Feature Extraction and Feature Selection 16

2.6.1.2.1 Exhaustive Search 16

2.6.1.2.2 Heuristic/Suboptimal Search 17

2.6.1.3 Principal Component Analysis (PCA) 17

2.6.1.4 The Threshold Method .. 18

2.6.1.5 Clustering .. 19

2.7 MATLAB Functions ... 22

3. LITERATURE SURVEY ... 23

4. EXPERIMENT SETUP .. 25

4.1 Test Environment .. 25

4.2 Software Environment for Analysis .. 26

4.3 Test Procedure .. 26

4.4 Manual Classification ... 30

4.5 Verification of Results .. 31

4.6 Experiments .. 34

4.6.1 Experiment 1: Identifying excessive effort segments using

the threshold method ... 34

4.6.2 Experiment 2: Identifying excessive effort segments using

heuristic feature selection and K-means clustering. 35

4.6.3 Experiment 3: Identifying excessive effort segments using

principal component analysis .. 37

4.6.4 Experiment 4: Identifying excessive effort segments using

K-means clustering on principal components 38

5. EXPERIMENT RESULTS ... 40

5.1 Identifying excessive effort segments using the threshold

method... 41

vii

5.2 Identifying excessive effort segments using heuristic feature

selection and K-means clustering. .. 51

5.3 Identifying excessive effort segments using principal

component analysis ... 62

5.4 Identifying excessive effort segments using K-means clustering

on principal components. .. 64

6. RESULT ANALYSIS ... 74

6.1 Evaluation ... 74

7. CONCLUSION AND FUTURE RESEARCH ... 86

7.1 Conclusions ... 86

7.2 Recommendations for Future Research .. 86

BIBLOGRAPHY .. 88

viii

LIST OF TABLES

Table Page

1 - Experiment 1 Summary ... 76

2 - Average values of experiment 1 results ... 77

3 - Experiment 2 Summary ... 79

4 - Average values of experiment 2 results ... 80

5 - Experiment 3 summary .. 82

6 - Average values of experiment 3 .. 82

7 - Experiment 4 summary .. 83

8 - Average values of experiment 4 .. 84

ix

LIST OF FIGURES

Figure Page

1 - Learnability based Usability Model .. 12

2 - Inter pinpoint Analysis .. 14

3 - Demonstration of K-means Algorithm .. 21

4 - Experiment Procedure ... 27

5 - Data Reduction Process ... 29

6 - Sample Result file with manual and automatic classification results 32

7 - Sequence of steps for identifying excessive effort segments

using the threshold method ... 35

8 - Sequence of steps for identifying excessive effort segments

using the K-means clustering .. 36

9 - Sequence of steps for identifying excessive effort segments

using the threshold method on the first principal component. 37

10 - Sequence of steps for identifying excessive effort segments

by applying the K-means clustering on the first principal component. 38

11 - Graph of percentage of segments of each type .. 41

12 - Total time of segments classified as excessive by the

software program and manually .. 42

13 - Graph of percentage of segments of each type .. 43

14 - Total time of segments classified as excessive by the software

program and manually .. 44

15 - Graph of percentage of segments of each type .. 45

16 - Total time of segments classified as excessive by the

software program and manually .. 46

x

17 - Graph of percentage of segments of each type .. 47

18 - Total time of segments classified as excessive by the software program and

manually .. 48

19 - Graph of percentage of segments of each type .. 49

20 - Total time of segments classified as excessive by the software program and

manually .. 50

21 - Graph of percentage of segments of each type .. 51

22 - Total time of segments classified as excessive by the software program and

manually .. 52

23 - Graph of percentage of segments of each type .. 54

24 - Total time of segments classified as excessive by the software program and

manually .. 55

25 - Graph of percentage of segments of each type .. 56

26 - Total time of segments classified as excessive by the software program and

manually .. 57

27 - Graph of percentage of segments of each type .. 58

28 - Total time of segments classified as excessive by the software program and

manually .. 59

29 - Graph of percentage of segments of each type .. 60

30 - Total time of segments classified as excessive by the software program and

manually .. 61

31 - Percentage of segments of each type when applying the threshold method on

first principal component .. 62

32 - Total time of segments classified as excessive by the software program and

manually .. 63

33 - Graph of percentage of segments of each type .. 64

34 - Total time of segments classified as excessive by the software program and

manually .. 65

xi

35 - Graph of percentage of segments of each type .. 66

36 - Total time of segments classified as excessive by the software program and

manually .. 67

37 - Graph of percentage of segments of each type .. 68

38 - Total time of segments classified as excessive by the software program and

manually .. 69

39 - Graph of percentage of segments of each type .. 70

40 - Total time of segments classified as excessive by the software program and

manually .. 71

41 - Graph of percentage of segments of each type .. 72

42 - Total time of segments classified as excessive by the software program and

manually .. 73

xii

ABSTRACT

PINPOINTING USER INTERFACE DEFICIENCIES

USING PATTERN RECOGNITION

TECHNIQUES

by

Dasari Kali Venkata Divya

Texas State University-San Marcos

May 2013

SUPERVISING PROFESSOR: Dan Tamir

The Effort Based Model of usability aids in evaluating user interface (UI),

development of usable software, and pinpointing software usability defects. In this

context, the term pinpoint analysis refers to identifying and locating software usability

issues and correlating these issues with the UI software code. In this thesis, the

underlying theories of the effort based model along with pattern recognition techniques

are used to produce a framework for identifying usability deficiencies in software.

xiii

Often, when users are in a state of confusion and not sure how to proceed using

the software, they tend to gaze around the screen trying to find the best way to complete a

task. This behavior is referred to as excessive effort. In this work, pattern recognition

techniques are applied to data gathered throughout user interaction with software in an

attempt to identify excessive effort segments. This is done by logging all user activities as

video and data files by an eye tracker. The data files are divided into segments using

event based segmentation, where a segment is the time between two consecutive

keyboard/mouse clicks. Subsequently, data reduction programs are run on the segments

for generating feature vectors. Pattern recognition techniques like feature selection,

thresholding, clustering, and principal component analysis (PCA) are applied to the

features in order to automatically classify each segment into excessive and non-excessive

effort segments. This allows developers to harness their effort and focus on the excessive

effort segments that need attention.

To verify the results of the pattern recognition procedures, the video file is

manually classified into excessive and non-excessive segments and the results of

automatic and manual classification are compared. Experiment results show more than

40% reduction in time for usability testing. Of all the methods used, experiments using

the threshold method using the number of fixations and a threshold method applied to the

first principal component produce good results which are significantly better than results

obtained through other experiments.

1

CHAPTER 1

INTRODUCTION

One of the primary goals of software is to simplify various tasks and enable users

to accomplish tasks with ease and efficiency. Due to the importance of software,

numerous fields have recently witnessed an increase in development and deployment.

Nevertheless, feedback from software applications end-users consistently shows that

software is at times confusing, counter-productive, and unsatisfactory. Clearly, if the user

experiences problems or difficulty, it is highly unlikely that he/she uses that software

again. Hence, it is very important for software engineers to put emphasis on testing in

order to eliminate user complaints and provide the user with good experience.

Software engineers use a wide variety of tools such as prototyping, inspection,

usability testing, iterative processes, etc. [1-5], to ensure that the software they produce is

usable. Still, these tools may not address the usability problem efficiently, resulting in a

low ranking on usability for several systems [6]. The classical methods used in

identifying usability techniques have not proven to be very proficient in accurately

pointing the specific segment of code that could be leading to the usability problems.

Without proper data to understand which part of code is faulty, developers have had a

hard time identifying and fixing code that lead to usability issues.

The usability testing process involves observing users engaged with a software

application and obtaining a set of characteristics of the user experience. This

2

methodology requires an expert to construct, conduct, and assess the tests; devoted

laboratory facilities to obtain good results; and several users that participate in the tests.

Despite all these efforts, usability testing only indicates that a problem exists but does not

identify the cause for the problem [7]. This makes usability testing expensive, time

consuming and frustrating for both developers and managers and hence, it is often

ignored.

Most of the tools used for evaluating usability of a software application use ‘time

to complete a task’, referred to as time on task (ToT), as a measure for evaluating

usability [2, 8-9]. This approach of giving high weight to time on task may not produce

accurate results when factors like system, network performance or interface design,

which are difficult to avoid, play a role. An alternate approach is to measure usability in

terms of user-effort, which eliminates some of the system issues mentioned earlier, is

allowing software engineers to put more focus on the interface design [7].

The Effort based model of usability aids in evaluating user interface, development

of usable software, and pinpointing software usability defects [10]. The model is an

efficient and relatively inexpensive means for evaluation of software usability. It is

developed using the principle that usability is an inverse function of effort. A metric of

software usability that is deduced by using the effort based model is used for comparison

of different implementations of the same application. The results of several experiments

conducted on the effort based model show strong relationship between effort and

usability; and also reveal that understandability, operability, and learnability of software

systems is measured using the effort based metric [10]. A detailed explanation is

provided in section 2.3.

3

Problem Definition

The underlying theory of the Effort Based Model is used to produce a framework

to identify usability deficiencies in the software. Identifying and locating software

usability issues and correlating these issues with UI software code is referred to as

Pinpoint Analysis. For example, users who are in a state of confusion, and users that are

not sure how to use the software, tend to look around the screen to figure out the best way

to accomplish a task. This behavior is referred to as an excessive effort. Identifying and

pinpointing excessive effort behavior helps UI designers rectify numerous usability

related issues. This research attempts to evaluate the utility of pinpointing user interface

deficiencies using pattern recognition techniques for identifying excessive effort in

segments of software interaction session records. Segmentation of user’s software

interaction session can be done using the time slice between two consecutive

mouse/keyboard clicks. Automatic identification of segments showing excessive effort

behavior helps the UI designers to reduce the time required for analysis and rearranging

the interface at the pinpointed time snapshot. Some pattern recognition methods used in

this work are feature selection, principal component analysis, K-means clustering, and

threshold based classification [12].

Hypothesis

The hypothesis of this thesis is that it is feasible to devise a framework that can

identify excessive effort segments by applying pattern recognition techniques such as K-

means clustering algorithm, thresholding, principal component analysis, and feature

selection.

4

Methodology s

Several experiments are conducted to validate this hypothesis. Developers

constantly strive to develop and improve software so as to reduce the effort and make the

software experience for a user intuitive. However, there are several places in execution

where the developed software has usability issues. With this assumption, this work aims

to efficiently identify the specific pieces of code that lead to usability issues. Pattern

recognition techniques and effort based model of usability are used to achieve this.

Contribution

In this work I have developed a new methodology using pattern recognition

techniques for assessing the usability of software. This methodology helps optimize the

time spent on usability testing while also more accurately identifying specific segments

of code that could be leading to the usability issues.

5

CHAPTER 2

BACKGROUND

2.1 Software Usability

According to the International Organization for Standardization/International

Electrotechnical Commission (ISO/IEC) 9126 standard, software usability is: “The

capability of a software product to be understood, learned, used, and be attractive to the

user when used under specified conditions.” There are several characteristics that play an

important part in defining software usability: understandability, learnability, operability,

and attractiveness [9, 12].

Understandability helps determine how easy it is to comprehend and use the

software. It is the ability of a user to understand the capabilities of the software and its

suitability to accomplish specific goals. Learnability indicates the ease with which a user

learns to use specific software. Operability is the capability of a user to use the software

to accomplish a specific goal. The end-goal of any software is to perform a task

efficiently. As such, operability plays an important role in usability. Attractiveness relates

to the requirement that the end-user experience is pleasant and rewarding.

2.2 Classical Methods for Measuring Usability

This section lists various classical methods that are currently used to evaluate

usability. The classical methods are broadly classified into methods that make use of data

6

gathered from users and methods that rely on usability experts. There are usability

evaluation methods that apply to all stages of design and development, from product

definition to final design modifications. Usability methods are further classified into

cognitive modeling methods, inspection methods, inquiry methods, prototyping methods,

and testing methods.

Cognitive modeling involves creating a computational model to estimate how

long it takes the users to perform a given task. It involves one or more evaluators

inspecting a user interface by going through a set of tasks by which understandability and

ease of learning are evaluated. The user interface is often presented in the form of a paper

mock-up or a working prototype; but, it might be a fully developed interface. Cognitive

models are based on psychological principles and experimental studies to determine

times for cognitive processing and motor movements. They are used to improve user

interfaces or predict problem areas during the design process.

The inspection method involves cognition with emphasis on a hands-on approach.

Under the inspection methods, the experimenters are used to observe users while they use

the software. The testing and evaluation of programs is done by an expert reviewer. This

provides quantitative data; as tasks can be timed and recorded. In addition to quantitative

data, qualitative user experience data are also collected. Although the data collected are

subjective, they provide valuable user critique information.

Experts obtain information about users' likes, dislikes, needs, and understanding

of the system by talking to them, observing them using the system, or letting them answer

questions verbally or in written form. Since this information is collected by inquiring and

getting direct feedback from users, this model is called the inquiry method. While the

7

above methods focus on usability testing at an advanced stage in the development, the

prototyping method tries to improve usability by refining and providing feedback as the

software is being developed. Rapid prototyping is a method used in early stages of

development to validate and refine the usability of a system. It is used to quickly and

efficiently evaluate user-interface designs without the need for an expensive working

model. This helps removing the developer’s resistance to design changes since it is

implemented before any actual programming begins.

Testing methods provide usability evaluation through testing of users for the most

quantitative data. User interaction sessions are recorded on video that provides task

completion time and allows for observation of user attitudes.

2.3 The Effort Based Usability Model

Several studies indicate that many system users associate the “physical” effort

required for accomplishing tasks with the usability of the software [10, 13]. The effort

based model for software usability stems from the notion that usability is an inverse

function of effort. For example, an eye tracking device is used to measure the effort

expanded by the user in navigating through the user interface of software. Physical and

mental effort are obtained and inferred from logging user activity. For this model, E

denotes the total effort required to complete a task with computer software and is defined

as:

8

Where:

 denotes the amount of mental effort to complete the task measured by eye

related metrics.

 denotes the amount of mental effort measured by other metrics.

 denotes the amount of physical effort needed to complete the task.

 denotes the amount of manual effort required to complete the task.

Manual effort includes, but is not limited to, the movement of fingers, hands, arms, etc.

 denotes the amount of physical effort measured by eye movement related

metrics.

 denotes the amount of physical effort measured by other metrics.

2.3.1 Measuring Effort

As stated above, the effort required to complete tasks is associated with software

usability [6]. Physical effort includes manual effort and physical eye effort. In the case of

9

interactive computer tasks, it is possible to calculate effort as a linear combination or a

weighted sum of metrics such as the number of mouse clicks, number of keyboard clicks,

total eye path traversed, total mouse path traversed.

Mental effort is essentially the amount of brain activity required to complete a

task. To some extent, brain activity related to a task is approximated by processing eye

movement data recorded by an eye tracker [1, 4, 10, 14-16]. Eye trackers acquire eye

position data and enable classifying the data into several eye movement types useful for

eye related effort assessment. The main types of eye movements are: 1) fixation – eye

movement that keeps an eye gaze stable with regard to a stationary target providing

visual pictures with high acuity, 2) saccade –rapid eye movement from one fixation point

to another, and 3) pursuit – stabilizes the retina with regard to a moving object of interest

[10]. Usually, the Human Visual System (HVS) does not exhibit pursuits when

dynamically moving targets are not a part of the interface [10].

Many researchers consider the following metrics as a measure of the physical

and/or cognitive load [15]. Hence, these metrics facilitate the estimation of mental effort.

 Average fixation duration: Average fixation duration, generally measured in

milliseconds, indicates cognitive load that is interpreted as a difficulty in extracting

information or as an indication that an interface object is engaging [14, 15].

 Average saccade amplitude: Saccade amplitude, measured in degrees, indicates

meaningful cognitive load cues. Large average saccade amplitude indicates high

mental effort.

 Number of saccades: High number of saccades indicates increased effort to

accomplish a task [14].

10

 Number of fixations: High number of fixations indicates increased effort to

accomplish a task [14].

 Average eye path traversed: Average eye path traversed is the average of the

distance traversed by the eyes between two consecutive fixation points during a task.

The length of the path traversed by the eye is proportional to the effort expended by

the HVS to achieve the goal.

2.3.2 Steps in conducting an effort based usability evaluation

The effort based usability evaluation is broadly divided into three phases:

Measurement, Analysis, and Assessment [2, 13].

In the measurement process, a group of users executes a set of identical

independent tasks, which emerge from a single scenario. These tasks differ in key

parameters which prevent the users from memorizing a sequence of interaction activities.

Throughout the interaction process, certain user activities like eye movement, time on

task, keyboard, and mouse activities are logged.

The analysis phase involves accumulating data for several metrics such as the

number of saccades, average saccade amplitude, number of fixations, average fixation

duration, average eye path traversed, etc., that relate to user effort. One other metric is the

time on task. The average task completion time is compared to a learning curve which

reflects users’ mastery of software.

The final step is the assessment. Using the above steps, the learnability of

software systems is assessed and the point of users’ mastery of software is identified. The

same model is applied to obtain operability and understandability of various systems or

11

different groups of users using the same system. The effort based metric measurement

provides interface designers and developers with a methodology to evaluate their designs

[10].

2.4 Learnability based Usability Model

Typically, as users become familiar with an application, the time to complete

tasks which emerge from the same scenario become shorter and shorter. Often, a graph

of Effort-On-Task (EoT) averages or Time-On-Task (ToT) for the users, gives an

exponential decay curve (Eavg) that represents average effort on task expended by the

group of users. Figure 1 depicts a typical graph, The Eexp line is the effort that the

interface designer expects from an expert to expend in order to complete the task. The

point where the user’s effort reaches the acceptable level is the learning point Lp. The

learning time (LT) is calculated by adding the average task duration to the left of the

learning point. Data to the right of the learning point gives the amount of effort required

by a trained user to complete tasks. This model is further used to compare two systems

and to identify outlier tasks which are studied to find the shortfalls [10].

12

Figure 1 - Learnability based Usability Model

2.5 Pinpointing Usability Issues

Usability testing is considered one of the more expensive, tedious, and least

rewarding tests to implement. This perception is likely to change if usability testing is

made less expensive and more rewarding. This requires accurate means through which an

engineer identifies and pinpoints issues in the software or the interface. This process is

called pinpoint analysis. Pinpoint analysis is one of two types; inter-pinpoint analysis

deals with identifying issues with tasks performed by the users in a specific system,

whereas intra-pinpoint analysis refers to identifying issues within tasks in a specific

system. For example, outlier tasks might be identified through inter-pinpoint analysis and

used for intra pinpoint analysis. This analysis also helps graphical user interface (GUI)

designers to make decisions about element placement on displays and determine the level

of effort that is related to different widgets [17].

13

2.5.1 Inter Pinpoint Analysis

Inter pinpoint analysis involves detecting tasks that present anomalies and

identifying the reasons for these anomalies at a high level. The mouse is used as an

example to understand inter-pinpoint analysis. In a particular task, the right mouse button

helps users complete a task effectively; however, some of the users are unaware of it. It is

possible that anomalies like this can be identified in inter pinpoint analysis [17].

Inter pinpoint analysis helps identifying alternative methods to perform a task

effectively with less effort; however, it does not provide users with a hint of the

alternative method. Other issues like the necessity of help facilities in software are

identified by the high level analysis of tasks that present anomalies. Figure 2 is a plot of

the average time on task of five subjects for seven identical but independent tasks. The X

axis shows a data point for each of the seven tasks, while the Y axis shows information

related to time on each task. The curve fitted to the individual bars representing the

average time on task is a power law curve that actually corresponds to the learnability

model. In this case, task three that does not fit well in the curve shows an anomalistic

behavior and calls for further analysis and study [17].

14

Figure 2 - Inter pinpoint Analysis

2.5.2 Intra Pinpoint Analysis

A more detailed method for analyzing tasks and identifying specific issues with

the software is intra pinpoint analysis. Intra pinpoint analysis can be done manually by

watching all the video recordings of the users’ interactions with software, obtained from

an eye tracking device. This review helps identifying interaction issues and areas where

the user has difficulty while performing tasks. For example, the analysis might reveal that

most of the users go into a state of confusion in a specific part of a task and are looking

around the screen to identify the best way to proceed with the task. This might prompt the

designers to rearrange the interface at the relevant time snapshot. Clearly, this option is

tedious and potentially expensive. An alternative is to use a semi-automatic method

applying pattern recognition technique. This method eliminates the need for a person to

y = 7.4958x-0.321

R² = 0.962

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 2 4 6 8

M
in

u
te

s

Task

Average Time on Task

Average Power (Average)

15

watch the entire video in order to identify interaction issues thereby cutting down the cost

and time. It enables automatic identification, for further evaluation, of areas where the

user has difficulty. A brief description of the pattern recognition techniques that were

used in this thesis is discussed in the next section.

2.6 Pattern Recognition

One of the applications of pattern recognition is the assignment of labels to a

given input value, or instance, according to a specific algorithm. An example of pattern

recognition is classification, which attempts to assign each input value to one of a given

set of classes. Pattern recognition is generally categorized according to the type of

learning procedure used to generate the output value. Supervised learning assumes that a

set of training data (the training set), consisting of a set of instances that have been

properly labeled by hand with the correct output, has been provided. Next, a learning

procedure generates a model that attempts to meet two sometimes conflicting objectives:

Perform as well as possible on the training data, and generalize as well as possible to new

data. On the other hand, unsupervised learning assumes the availability of training data

that has not been hand-labeled and attempts to find inherent patterns that are used to

determine the correct classification value for new data instances [18].

2.6.1 Classification

Algorithms for pattern recognition depend on several parameters, such as the type

of output labels, and on the training / learning method which are supervised or

unsupervised. Additionally, the algorithms differ in the way that inference is performed.

For example, inference might be based on probability, on non-parametric clustering,

16

fuzzy logic, etc. [19, 20]. The following are various relevant pattern recognition

techniques.

2.6.1.1 Segmentation

Pattern recognition techniques require the definition of patterns. In this thesis

segments of user activities records serve as the basic patterns. In this research, a segment

is defined as the time between two consecutive keyboard/mouse clicks.

2.6.1.2 Feature Extraction and Feature Selection

Generally, the objects that are subject to classification, i.e. the patterns (segments

in the case of this research), are represented through a set of measurements (say

measurements) or characteristics referred to as features. Hence, the objects are considered

as vectors in an -dimensional space referred to as the feature space. Feature selection

also known as variable selection, variable subset selection, feature reduction, and

attribute selection, is a technique for selecting a subset of relevant features for building

robust learning and inference models [19]. Feature selection algorithms attempt to reduce

the dimensionality of the feature space and reduce the complexity of the recognition

process by pruning out redundant, correlated, and irrelevant features. There are several

feature selection algorithms, some of which are discussed below.

2.6.1.2.1 Exhaustive Search

Exhaustive search is a brute-force feature selection method where all possible

subsets of the features are exhaustively evaluated and the best subset is selected. The

number of combinations of r objects from a set of n features is) !) 1 -n (!r (/ !(n . This

results in a very large set of combinations of features to examine. Hence, generally the

17

exhaustive search’s computational cost is prohibitively high. Thus, this method is

impractical if the number of features in the set is large [11]. Because of the problems

associated with exhaustive search, people resort to adopting greedier, heuristic, selection

algorithms to further enhance the efficiency. In this thesis there are five features of

interest. Nevertheless, evaluating all the possible subsets of the five features is time

consuming. Hence, due to the complexity of the evaluation process, exhaustive search is

not a viable option. For these reasons, the heuristic approach is adapted.

2.6.1.2.2 Heuristic/Suboptimal Search

Heuristic search refers to selecting a feature subset by making an educated guess

and finding out if the selection yields good results. Otherwise, the heuristic procedure

examines other subsets. It is a good alternative where an exhaustive search is impractical

[20].

2.6.1.3 Principal Component Analysis (PCA)

PCA is an unsupervised regression procedure that analyses sample data, such as

the set of training patterns, in order to identify a coordinate transformation that de-

correlates the data and “orders” the information (or variance) associated with the data in

the axes of the new space in a monotonically decreasing fashion. In general, as a result of

the transformation, most of the information associated with the data is concentrated in the

first few components of the new space. This enables ignoring components (axes) that do

not carry significant information, thereby reducing the dimensionality of the space used

for pattern representation and recognition. Each principal component is a linear

combination of the original variables. The principal components as a whole form an

orthogonal basis for the data space [11].

18

The distinction between the principal component analysis and feature selection is

that, following the PCA, the resulting features are different than the original features;

they do not correspond directly to the set of measurements, and are not easily

interpretable, while the features left after feature selection are simply a subset of the

original features.

Following the feature selection and/or PCA, classification is applied via different

methods including thresholding, discriminate analysis, decision functions, and clustering

[11, 19, 20].

In this research, heuristic based feature selection techniques as well as principal

component analysis are used to reduce the dimensionality of the data set consisting of a

large number of interrelated variables like the saccade count and the average saccade

amplitude, fixation count and average fixation duration, etc., while retaining as much as

possible of the variation present in the data set. In the case of PCA, this is achieved by

transforming the data set into principal components, which are ordered so that the first

few retain the most of the variation present in all of the original variables. The principal

components are then subjected to clustering algorithms to find segments of excessive

effort.

2.6.1.4 The Threshold Method

Another pattern recognition method is the threshold method that aims to classify

input data based on a threshold value. In this thesis, the threshold value is calculated by

counting the number of fixations, saccades, key strokes, mouse clicks in each segment

and using the means of these values as thresholds. All values greater than the threshold

are put into one group while input values below the threshold are classified into a second

19

group. One problem with the threshold method is that it is limited to one dimensional

data. Hence it is only applied to individual features, or a combination of features, such as

linear combinations or specific components of the PCA. Clustering techniques, however,

are used to efficiently classify multidimensional data.

2.6.1.5 Clustering

Clustering is a multi-disciplinary, widely-used, unsupervised algorithm method to

classify data. It involves the assignment of a set of patterns into subsets (called clusters)

so that patterns in the same cluster are similar in some sense. To define a cluster, it is

necessary to first define a measure of similarity which establishes a rule for assigning

patterns to the domain of a particular cluster center. Generally, and in this thesis,

Euclidian distance is used as the distance measure. In Cartesian coordinates, if

npppp ,,, 21 

and nqqqq ,,, 21  are two points in n dimensional space, the

Euclidean distance between p and q is:





n

i

ii pqqpD
1

2)(),(

The Euclidean distance is used as a measure of similarity, the smaller the distance

the greater the similarity. There are several clustering algorithms such as the hierarchical,

partitional, density based, and subspace clustering algorithms. In this research, however,

partitional algorithms are of interest. Partitional clustering involves partitioning of

observations (patterns) into clusters where each observation belongs to the nearest

cluster. The K-means algorithm, used in this research, is a partitional algorithm that

attempts to minimize the mean square distance between patterns and cluster centers. The

20

center is the centroid of all the cluster patterns. The algorithm consists of the following

steps [11]:

Step 1: Choose K initial cluster centers)1(,),1(),1(),1(321 kzzzz 
.
 These are arbitrary

and selected as the first K samples. The cluster centers at thk iteration is denoted by

)(kzi
, where, Ki ,,2,1  .

Step 2: At the thk iterative step distribute the samples  x among the K cluster domains,

using the following equation

 ifkSx j)(

)()(kzxkzx ij 

for all Ki ,,2,1  , ji  , where)(kS j
 denotes the set of samples whose cluster

center is)(kz j

Step 3: From the results of step 2 compute the new cluster centers, such that the sum of

the squared distances from all points in)(kS j
 to the new cluster center is minimized.

The new cluster center is given by

KjxNkz
kSx

ijk

j

,,2,1,/1)1(
)(

 


where,
jN is the number of samples in)(kS j

.

Step 4: Repeat step 2 and step 3 until there is no significant change in the cluster centers,

i.e.

if)()1(kzkz jj  for Kj ,,2,1  , which means the algorithm has converged and the

procedure is terminated. Figure 3 demonstrates how the algorithm works.

21

Figure 3 - Demonstration of K-means Algorithm

The advantage of the clustering technique is its ability to classify excessive effort

segments by considering a number of features such as saccade count, saccade amplitude,

fixation duration, average eye path traversed. In addition, the K-means clustering is used

to identify thresholds. MATLAB, a high level language and interactive environment for

numerical computation, visualization, and programming [24], has a built in function for

1) k initial means are

randomly selected from the

data set.

2) k clusters are created

by associating every

observation with the

nearest centroid.

4) Steps 2 and 3 are

repeated until convergence

has been reached.

3) The new centroids of

each clusters become the

new means

22

K-means that does exactly as described in the algorithm. This eliminates the need to

implement the algorithm.

2.7 MATLAB Functions

MATLAB has several built-in functions that are readily available for use. In this

thesis, the MATLAB functions “kmeans” and “princomp” have been used for clustering

and principal component analysis.

23

CHAPTER 3

LITERATURE SURVEY

Usability is a highly researched topic with much literature available. However,

extensive searching did not reveal any research papers related to pinpointing usability

issues. There are some papers on effort based usability evaluation that are discussed

below.

The paper “An Effort and Time Based Measure of Usability” [13], concludes that

effort and usability are related but did not address pinpointing issues. I propose to extend

this work and evaluate the capability of pattern recognition techniques to pinpoint

software usability issues.

In the paper “An Effort Based Model of Software Usability” [10], the authors use

effort metrics to evaluate usability. Their method allows comparison of two or more

implementations of the same application, but does not identify where exactly the problem

lies. The approach proposed in this thesis seeks to improve on this by pinpointing

usability issues.

In the paper “Classification of Usability Problems Scheme,” [21] the authors

describe the design and test of a defect classification scheme that extracts information

from usability problems, but is limited since it does not define the causes underlying

usability problems. The approach in this thesis improves on this by identifying the causes

for usability problems.

24

In the paper “Detecting Low Usability Web Pages using Quantitative Data of

Users Behavior” [22], the authors investigate the relations between quantitative data,

viewing behavior of users, and web usability evaluation by subjects. They conclude that

the moving speed of the gazing points is effective in detecting low usability Web pages.

The research defined in this paper, however, does not point out detailed problems in a

Web page. My approach tries to clearly address this issue.

In the paper “Webtracer: A New Integrated Environment for Web Usability

Testing” [23], the authors used a WebTracker to evaluate usability. WebTracer is an

integrated environment for web usability testing that collects the operation log of users on

the Web pages. The data collected is used to determine the usability of the Web pages.

However, the reasons for low usability are not identified using this approach.

25

CHAPTER 4

EXPERIMENT SETUP

4.1 Test Environment

Platform

The experiments in this thesis were performed on a hardware platform using an

Intel® Core™ 2 Quad CPU @2.66-Ghz with 64-bit Microsoft Windows 7 Operating

system.

Display Devices

A standard monitor is used for display with the subject seated in front of it.

Manual Input devices

The subject performs the tasks on the computer using the standard keyboard and

mouse as input devices. An event driven logging program is used to obtain details of mouse

and keystroke activities from the operating system event queue. The program saves each event

along with a time stamp into a file. The logged events are: mickeys (mouse pixels),

keystrokes, mouse button clicks, mouse wheel rolling, and mouse wheel clicks.

Eye Tracker

The eye tracker used for the experiments is Tobii X120 Eye Tracker, version

2.2.5. The Tobii is a standalone eye tracking unit designed for eye tracking studies. It

measures unfiltered and spontaneous human reactions, responses along with gaze and

other real-time data. The data collected by the eye tracker is logged to a file, which is

26

referred to as a data file in this thesis. The eye tracker also records video version of the

user interaction session and is referred to as a video file which is very helpful in verifying

experiment results.

4.2 Software Environment for Analysis

A software program developed in MATLAB version 7.10.0.99, 32-bit (Windows)

is used to perform data analysis of the experiments performed in this thesis.

4.3 Test Procedure

Experiments conducted to evaluate the capability of pattern recognition

techniques to identify software usability issues are done using the steps discussed below.

Figure 4 gives the sequence of actions performed to carry out the experiments.

27

Figure 4 - Experiment Procedure

The sequence of actions in figure 4 is grouped into the following three phases:

Phase 1 - Data Gathering

 The measurement process described in section 2.3.1 is employed to design the

tasks and conduct the experiments. To recapitulate, a group of five users executes a set of

seven identical independent tasks, which emerge from a single scenario. Throughout the

28

interaction process, certain user activities like eye movement, time on task, keyboard, and

mouse activities are logged using an eye tracking device. According to the learnability

based usability model, the point at which the user’s effort reaches the acceptable level is

called the learning point. Based on this model it is assumed that the user’s effort reaches

the acceptable level by the time they perform task 5. Hence, in this thesis, task 5 of each

subject is used for conducting experiments.

Phase 2 – Data Reduction

Phase 2 includes activities such as segmentation, data reduction, and feature

extraction. The data logged throughout the user interaction session, i.e., the data file is

used for event based segmentation where the events are consecutive keyboard/mouse

clicks. Metrics such as (a) segment duration (for event based segmentation), (b) the

average fixation duration, (c) the average saccade amplitude, (d) the number of fixations,

(e) the number of saccades , (f) the standard deviation of the fixation duration, (g) the

standard deviation of the saccade amplitude, and (h) the eye path distance traversed is

inferred for each segment. These metrics are used to generate the feature set, which is

obtained by applying data reduction programs to the data file. A brief diagrammatic

representation of the data reduction process is given in figure 5.

29

Figure 5 - Data Reduction Process

 The raw data set, i.e., the data file is processed using a data reduction program

developed in MATLAB. The data file is processed so that each time increment is

classified as a saccade or fixation. Then saccades are processed to eliminate micro

saccades and other non-interesting saccades. Fixations are processed to group and merge

small fixations onto bigger fixations. Event data is analyzed and event segments are

generated. Next, saccades and fixations are parsed into the events and their boundaries

are adjusted. Feature data is calculated for all features within each segment and this data

is useful to identify excessive effort segments.

Phase 3 – Identification of Excessive Effort Segments

Pattern recognition techniques are applied to the feature set obtained from the

reduction process to identify segments that exhibit excessive effort. Identification of these

excessive effort segments is automated by a program written in MATLAB. This program

is referred as the Software Program in this thesis and the classification is referred as

automatic classification. The software program takes the feature data of each segment

obtained from the above data reduction process and classifies them as excessive or non-

30

excessive effort segments. The techniques used and applied on the feature set are briefly

explained below.

In the threshold technique, a threshold value is calculated for each feature in the

feature set. For a given feature, all the segments that have a feature value that is less than

the threshold value are classified as non-excessive segments and vice-versa.

In the case of K-means technique, the segments are grouped into clusters. Based

on the value of cluster centers, the cluster is classified as excessive or non-excessive. All

segments that fall in the excessive cluster are segments exhibiting excessive effort

behavior and vice versa. In the case of PCA, the first, the second, and the third principal

components are obtained for the feature data. The threshold classification is applied on

the first principal component and K-means clustering is applied on the first, second, and

third components to classify the segments into excessive or non-excessive.

By the end of phase 3, the excessive effort segments are identified by the software

program. To verify the results, the video file is carefully watched segment by segment

and classified into excessive or non-excessive segments manually. The manual

classification process of the video file is described in detail in the following section.

4.4 Manual Classification

The manual classification process involves event based segmentation on the entire

video file. Each segment is carefully watched and classified into the following categories:

 Idle behavior segments; idle behavior is due to system response. Subject waiting

for a progress bar to complete or for a page to load are examples of idle behavior.

Segments with such behavior are classified as idle behavior segments.

31

 Excessive effort segments; segments without any useful user actions are classified

as excessive effort segments. A subject looking at different components on an interface

instead of the actual target component which help in accomplishing the task is an

example for excessive effort behavior. Such behavior can be eliminated without

sacrificing task completion quality.

 Non-Excessive effort segments; segments with useful action that result in task

completion are classified as non-excessive segments.

 Off screen behavior segments: Intervals of time where the subject’s view is not

within the screen dimensions for more than one second, with no meaningful user action

are classified as off screen behavior segments.

 Attention segments; segments with frequent off screen behavior, frequent

mouse/keyboard clicks are classified as attention segments.

Once the video file is classified into one of the above five segment categories, the

manual classification results are ready for comparison with the automatic classification

results.

4.5 Verification of Results

Figure 6 is a sample result file with segment start and end times, manual

classification results, and automatic classification results all consolidated into a single

file. In this file, the results are obtained by applying the threshold method on one of the

features, number of fixations, from the feature set. In figure 6, A, NE, and E denote

attention, non-excessive and excessive segments respectively.

32

Figure 6 - Sample Result file with manual and automatic classification

results

The result file in figure 6 is used to compare manual and software program results

for each segment. The abbreviations used in the comparison of manual and automatic

classification results are:

 Excessive vs. Excessive (E vs. E); denotes that the manual classification of a

particular segment is showing excessive effort and the classification of the same segment

by the software program is exhibiting excessive effort.

33

 Excessive vs. Non-Excessive (E vs. NE); denotes that the manual classification of

a particular segment is showing excessive effort and the classification of the same

segment by the software program is showing non-excessive effort.

 Non-Excessive vs. Excessive (NE vs. E); denotes that the manual classification of

a particular segment is showing non-excessive effort and the classification of the same

segment by the software program is showing excessive effort.

 Non-Excessive vs. Non-Excessive (NE vs. NE); denotes that the manual

classification of a particular segment is showing non-excessive effort and the

classification of the same segment by the software program is also showing non-

excessive effort.

 Attention (A); denotes segments that could not be clearly distinguished as

excessive effort or non-excessive effort during manual classification.

The number of Excessive vs. Excessive, Excessive vs. Non-Excessive, Non-

Excessive vs. Excessive and Non-Excessive vs. Non-Excessive segments are calculated

for each result file and graphs are plotted to calculate errors and compare the results

between different features. During the verification of results, the attention segments are

not considered as they are not clearly distinguished as excessive effort or non-excessive

effort during manual classification. Non-Excessive vs. Excessive segments are regarded

as false positive or type-I error segments. It is assumed that all the segments classified as

excessive effort segments are due for manual evaluation. Hence, in the case of type-I

error, the software program is highlighting extra segments for further review, but is not

missing any segments that need attention. On a similar note, segments that show

excessive effort per manual classification but identified as non-excessive effort segments

34

by the software program are regarded as false negative or type-II error segments. These

need extra attention as the software program missed identifying segments that require

manual inspection. The total time of segments classified as excessive by the software

program is also referred as inspection time. It is the sum of the time interval of each

excessive effort segment. In this thesis, type-II errors and inspection time are considered

as the most important factors for analyzing experiment results.

4.6 Experiments

In this thesis, the automatic part of the process is used to analyze five data files by

applying the different pattern recognition techniques discussed. The following is a listing

of the experiments performed:

1. Identifying excessive effort segments using the threshold technique

2. Identifying excessive effort segment using K-means clustering

3. Identifying excessive effort segments using the threshold technique applied to the

first principal components

4. Identifying excessive effort segments using K-means clustering on first, second,

and third principal components.

Each experiment procedure is discussed in detail in the following sections.

4.6.1 Experiment 1: Identifying excessive effort segments using the threshold

method

In this experiment, event based segmentation is applied to the video and data file

generated by the eye tracker. Next, a feature set is generated for the data file. All the

35

segments are classified into excessive or non-excessive effort segments by the software

program which applies the threshold method on the following features: 1) number of

fixations, 2) average fixation duration, 3) number of saccades, 4) average saccade

amplitude, and 5) eye path traversed. Figure 7 is a diagrammatic representation of the

sequence of steps followed in identifying excessive effort segments using the threshold

method.

5.

Figure 7 - Sequence of steps for identifying excessive effort segments using

the threshold method

After the steps described in figure 7 are used for identifying the excessive effort

segments, the video file is manually classified into excessive or non-Excessive segments

based on the specifications mentioned in section 4.4. The effort segments identified

through the software program and manual process are verified using five data files and

their corresponding video files.

4.6.2 Experiment 2: Identifying excessive effort segments using heuristic feature

selection and K-means clustering.

 In this experiment, event based segmentation is applied to the video and data file

generated by the eye tracker. Next, a feature set is generated for the data file. Because,

Event based

Segmentation

Feature

Set

Apply threshold

on each feature

Excessive

effort

segments

36

evaluating all the possible subsets of the feature set is prohibitively time consuming I

have adopted the heuristic feature selection method. The following subsets are selected:

1) Number of fixations

2) Number of saccades

3) Eye path traversed

4) Number of fixations, number of saccades, eye path traversed

5) Number of fixations, number of saccades, eye path traversed, average fixation

duration and average saccade amplitude. Figure 8 is a diagrammatic representation of

the sequence of steps followed in identifying excessive effort segments using

exhaustive feature selection and K-means clustering.

Figure 8 - Sequence of steps for identifying excessive effort segments using

the K-means clustering

After the steps in figure 8 are used for identifying the excessive effort segments, the

video file is manually classified into excessive or non-excessive segments based on the

specifications mentioned in section 4.4. The effort segments identified through the

software program and manual process are verified using five data files and their

corresponding video files.

Event based

segmentation

Heuristic

Feature

Selection

Clustering on

selected features

Excessive

effort

segments

37

4.6.3 Experiment 3: Identifying excessive effort segments using principal component

analysis

 In this experiment, event based segmentation is applied to the video and data file

generated by the eye tracker. Next, a feature set is generated for the data file. Following

which, the feature set is transformed into principal components by a program that uses

PCA function available in MATLAB. In this experiment, the first principal component

is considered, as it carries the most significant information related to the feature set, and

subjected to the threshold method for identifying segments exhibiting excessive effort

and non-excessive effort. Figure 5.3 is a diagrammatic representation of the sequence of

steps followed for identifying excessive effort segments using the threshold method on

first principal component.

Figure 9 - Sequence of steps for identifying excessive effort segments using

the threshold method on the first principal component.

 After the steps discussed in figure 9 are used for identifying excessive effort

segments, the video file is manually classified into excessive or non-excessive segments

based on the specifications mentioned in section 4.4. The effort segments identified

through the software program and manual process are verified using five data files and

their corresponding video files.

38

4.6.4 Experiment 4: Identifying excessive effort segments using K-means clustering

on principal components

 In this experiment, event based segmentation is applied to the video and data file

generated by the eye tracker. Next, a feature set is generated for the data file. Following,

the feature set is transformed into principal components by a program that uses PCA

function available in MATLAB. In this experiment, K-means clustering is applied on

different combinations of principal components for identifying segments exhibiting

excessive effort and non-excessive effort. The following constitute the feature set for

this experiment:

1) 1st principal component

2) 1st principal component, 2nd principal component

3) 1st principal component, 2nd principal component, 3
rd

 principal component

 Figure 10 is a diagrammatic representation of the sequence of steps followed for

identifying excessive effort segments using the K-means clustering on principal

components.

Figure 10 - Sequence of steps for identifying excessive effort segments by applying

the K-means clustering on the first principal component.

39

Following the steps discussed in figure 10, the video file is manually classified into

excessive or non-Excessive segments based on the specifications mentioned in section

4.4. The results are verified using five data files and their corresponding video files.

40

CHAPTER 5

EXPERIMENT RESULTS

 In this chapter, the results obtained from the experiments are discussed. The

results of each data file in the experiments are shown on two or three pages. All graphs

are explained with a general description along with a notice regarding the local

observations. The notations used for the feature values in the graphs are presented below

for clarity:

 # Fix – denotes number of fixations

 Avg Fix Dur – denotes average fixation duration

 # Sacc – denotes number of saccades

 Sacc Amp – denotes average saccade amplitude

 Eye Path denotes eye path traversed

41

5.1 Identifying excessive effort segments using the threshold method

Data file 1 Results:

 The video file corresponding to data file 1 is 6.09 minutes in length. Figure 11

shows the results of an experiment using the threshold method on data file 1.

Figure 11 - Graph of percentage of segments of each type

 When the graph in figure 11 is extrapolated and as seen from the orange bars, the

feature value, number of fixations demonstrate a small percentage of E vs. NE segments.

This shows that the number of fixations has the least number of type-II errors. Number of

saccades and eye path traversed follow number of fixations in terms of type-II errors.

Figure 12 shows the total time of segments classified as excessive by the software

program and the manual process after the threshold method is applied on each of the

following features: 1) number of fixations, 2) average fixation duration, 3) number of

saccades, 4) average saccade amplitude, and 5) eye path traversed.

0

10

20

30

40

50

60

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye

Path

%
 o

f
se

g
m

en
ts

Features

Percent of Segments of each Type

E Vs NE

NE Vs E

E Vs E

42

Figure 12 - Total time of segments classified as excessive by the

software program and manually

 The violet bars in figure 12 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the green bars, shows 1.71

minutes of excessive effort. The average fixation duration and average saccade amplitude

show a relatively low value for time of segments classified as excessive by the software

program when compared with the total video time. This is depicted by the pink bars in

the above graph. From figure 11 it is observed that the percentage of type-II errors is

15.05% for average fixation duration and 12.9% for average saccade amplitude.

However, the feature value with a reasonable type-II errors and lower percentage of time

of segments classified as excessive is average saccade amplitude.

0

1

2

3

4

5

6

7

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye Path

T
im

e
(m

in
u

te
s)

Features

Total Time of Segments Classified as Excessive by the

Automatic program and Manually

Manual

Classification as

Excessive

Tool Classification

as Excessive

Total Time

43

Data file 2 Results:

 The video file corresponding to the data file 2 is 3.27 minutes in length. Figure 13

shows the results of an experiment using the threshold method on the data file 2.

Figure 13 - Graph of percentage of segments of each type

 When the graph in figure 13 is extrapolated and as seen from the orange bars, the

feature value, number of fixations demonstrates a small percentage of E vs. NE segments.

This shows that the number of fixations has the least number of type-II errors. Number of

saccades and average saccade amplitude follow number of fixations in terms of type-II

errors.

 Figure 14 shows the total time of segments classified as excessive by the software

program and the manual process for the features: 1) number of fixations, 2) average

fixation duration, 3) number of saccades, 4) average saccade amplitude, and 5) eye path

traversed.

0

10

20

30

40

50

60

70

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye

Path

%
 o

f
se

g
m

en
ts

Features

Percent of Segments of each Type

E Vs NE

NE Vs E

E Vs E

NE Vs NE

44

Figure 14 - Total time of segments classified as excessive by the

software program and manually

 The violet bars in figure 14 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the green bars, shows 0.36

minutes of excessive effort. The average fixation duration and eye path traversed show a

relatively low value for time of segments classified as excessive by the software program

when compared with the total video time. This is depicted by the pink bars in the above

graph. From figure 13 it is observed that the percentage of type-II errors is 5.319 % for

both average fixation duration and eye path traversed. The feature value with an

acceptable type-II errors and minimal percentage of time of segments classified as

excessive is eye path traversed.

0

0.5

1

1.5

2

2.5

3

3.5

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye Path

T
im

e
(m

in
u

te
s)

Features

Total Time of Segments Classified as Excessive by

the Automatic program and Manually

Manual

Classification as

Excessive

Tool

Classification as

Excessive

Total Time

45

Data file 3 Results:

 The video file corresponding to data file 3 is 3.8 minutes in length. Figure 15

shows the results of an experiment using the threshold method on data file 3.

Figure 15 - Graph of percentage of segments of each type

 When the graph in figure 15 is extrapolated and as seen from the orange bars, the

feature value, number of saccades demonstrates a small percentage of E vs. NE segments

as seen from the orange bars. This shows that the number of saccades has the least

number of type-II errors. Eye path traversed and number of fixations follow number of

saccades in terms of type-II errors.

 Figure 16 shows the total time of segments classified as excessive by the software

program and the manual process for the features: 1) number of fixations, 2) average

fixation duration, 3) number of saccades, 4) average saccade amplitude, and 5) eye path

travelled.

0

10

20

30

40

50

60

70

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye

Path

%
 o

f
se

g
m

en
ts

Features

Percent of Segments of each Type

E Vs NE

NE Vs E

E Vs E

NE Vs NE

46

Figure 16 - Total time of segments classified as excessive by the

software program and manually

 The violet bars in figure 16 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the green bars, shows 0.92

minutes of excessive effort. All the features considered in this experiment have a

relatively close value for time of segments classified as excessive by the software

program when compared with the total video time. This is depicted by the pink bars in

the above graph. From figure 15 it is observed that the eye path traversed and average

saccade amplitude have the least percentage of type-II errors. However, the feature value

with lower type-II errors and lower percentage of time of segments classified as

excessive is eye path traversed.

0

0.5

1

1.5

2

2.5

3

3.5

4

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye Path

T
im

e
(m

in
u

te
s)

Features

Total Time of Segments Classified as Excessive by

the Automatic program and Manually

Manual

Classification as

Excessive

Tool

Classification as

Excessive

Total Time

47

Data file 4 Results:

 The video file corresponding to data file 4 is 3.5 minutes in length. Figure 17

shows the results of an experiment using the threshold method on data file 4.

Figure 17 - Graph of percentage of segments of each type

When the graph in figure 17 is reviewed and as seen from the missing orange bars, the

two features, number of fixations and number of saccades, have no E vs. NE segments.

This shows that the two features have no type-II errors.

 Figure 18 shows the total time of segments classified as excessive by the software

program and the manual process for the features: 1) number of fixations, 2) average

fixation duration, 3) number of saccades, 4) average saccade amplitude, and 5) eye path

traversed.

0

10

20

30

40

50

60

70

Fix Avg

Fix Dur

#Sacc Sacc

Amp

Eye

Path

%
 o

f
se

g
m

en
ts

Features

Percent of Segments of each Type

E Vs NE

NE Vs E

E Vs E

NE Vs NE

48

Figure 18 - Total time of segments classified as excessive by

the software program and manually

 The violet bars in figure 18 represent the total time of video recorded by the eye

tracker which is 3.5 minutes. Manual classification of the video file, depicted by the

green bars, shows 0.91 minutes of excessive effort. The average fixation duration shows a

relatively low value for time of segments classified as excessive by the software program

when compared with the total video time. This is depicted by the pink bars in the above

graph. From figure 17 it is observed that the percentage of type-II errors for average

fixation duration is 12 %. Therefore, the feature value with an acceptable error of type-II

and lower percentage of time of segments classified as excessive is average fixation

duration.

0

0.5

1

1.5

2

2.5

3

3.5

4

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye

Path

T
im

e
(m

in
u

te
s)

Features

Total Time of Segments Classified as Excessive

by the Automatic program and Manually

Manual

Classification

as Excessive
Tool

Classification

as Excessive
Total Time

49

Data file 5 Results:

 The video file corresponding to data file 5 is 5.65 minutes in length. Figure 19

shows results of an experiment using the threshold method on data file 5.

Figure 19 - Graph of percentage of segments of each type

 When the graph in figure 19 is extrapolated and as seen from the orange bars, the

feature value, number of fixations shows a small percentage of E vs. NE segments. This

shows that the number of fixations has fewer type-II errors. Average saccade amplitude

and eye path traversed follow number of fixations in terms of type-II errors.

Figure 20 shows the total time of segments classified as excessive by the software

program and the manual process for the features: 1) number of fixations, 2) average

fixation duration, 3) number of saccades, 4) average saccade amplitude, and 5) eye path

traversed.

0

10

20

30

40

50

60

Fix Avg

Fix Dur

#Sacc Sacc

Amp

Eye

Path

%
 o

f
se

g
m

en
ts

Features

Percent of Segments of each Type

E Vs NE

NE Vs E

E Vs E

NE Vs NE

50

Figure 20 - Total time of segments classified as excessive by

the software program and manually

 The violets bars in figure 20 represent the total time of video recorded by the eye

tracker and are 5.65 minutes. Manual classification of the video file, depicted by the

green bars, shows 2.07 minutes of excessive effort. The average fixation duration shows a

relatively low value for time of segments classified as excessive by the software program

when compared with the total video time. From figure 19 it is observed that the

percentage of type-II errors for average fixation duration is 16.36 %, which is not within

an acceptable limit. All features other than average fixation duration have relatively close

values for time of segments classified as excessive by the software program. Therefore,

the feature value with an acceptable error of type-II and lower percentage of time of

segments classified as excessive is number of fixations.

0

1

2

3

4

5

6

Fix Avg Fix

Dur

#Sacc Sacc

Amp

Eye

Path

T
im

e
(m

in
u

te
s)

Features

Total Time of Segments Classified as Excessive

by the Automatic program and Manually

Manual

Classification

as Excessive

Tool

Classification

as Excessive

Total Time

51

5.2 Identifying excessive effort segments using heuristic feature selection and K-

means clustering.

Data file 1 Results:

 The video file corresponding to data file 1 is 6.09 minutes in length. Figure 21

shows the results of an experiment using the K-means clustering on data file 1.

Figure 21 - Graph of percentage of segments of each type

 When the graph in figure 21 is extrapolated and as seen from the green bars, the

feature subset 5 demonstrates a small percentage of E vs. NE segments. This shows that

the feature subset 5 has the least number of type-II errors. All the other features in this

experiement have very high percentage of E vs. NE segments and are not suitable for

consideration.

0

10

20

30

40

50

60

70

80

%
 o

f
se

g
m

en
ts

Combination of Features for Clustering

Comparision of segment classification using

Clustering for different combination of features

E vs E

NE vs NE

E vs NE

NE v E

52

 Figure 22 shows the total time of segments classified as excessive by the software

program and the manual process after the K-means clustering is applied on the above

defined feature subsets.

Figure 22 - Total time of segments classified as excessive by the

software program and manually

 The green bars in figure 22 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the maroon bars, shows 1.71

minutes of excessive effort. The feature subsets 1, 2, and 4 show a relatively low value

for time of segments classified as excessive by the software program when compared

with the total video time. This is depicted by the pink bars in the above graph. From

figure 21 it is observed that the percentage of type-II errors is 13.98% for subset 1,

13.98% for subset 2, and 13.98 % for subset4. All the feature subsets except for subset 5

have very high values for type-II errors making it hard to select a feature subset with

0

1

2

3

4

5

6

7

T
im

e
in

 m
in

u
te

s

Combination of Features for Clustering

Comparision of time classified as Excessive by the

Automatic program and the Manual process

Tool

classification

time as

Excessive

Manual

classification

Time as

Excessive

Actual time on

task

53

lower percentage of time classified as excessive by the software program, while also

ensuring that the type-II errors are within an acceptable limit.

54

Data file 2 Results:

 The video file corresponding to data file 2 is 3.27 minutes in length. Figure 23

shows the results of an experiment using the K-means clustering on data file 2.

Figure 23 - Graph of percentage of segments of each type

 When the graph in figure 23 is extrapolated and as seen from the green bars, the

feature subset 1 demonstrates a small percentage of E vs. NE segments. This shows that

the subset1 has the least number of type-II errors. Subset 2 follows subset 1 in terms of

type-II errors.

 Figure 24 shows the total time of segments classified as excessive by the software

program and the manual process for the above defined five feature subsets.

0

10

20

30

40

50

60

70

80

%
 o

f
se

g
m

en
ts

Combination of features for Clustering

Comparision of segment classification using Clustering for

different combination of features

E vs E

NE vs NE

E vs NE

NE v E

55

Figure 24 - Total time of segments classified as excessive by the software

program and manually

 The violet bars in figure 24 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the maroon bars, shows 0.36

minutes of excessive effort. The subset 3 shows a relatively low value for time of

segments classified as excessive by the software program when compared with the total

video time. This is depicted by the pink bars in the above graph. From figure 23 it is

observed that the percentage of type-II errors is 8.5% for subset 3. Therefore, the feature

value with an acceptable error of type-II and lower percentage of time of segments

classified as excessive is subset 3.

0

0.5

1

1.5

2

2.5

3

3.5

%
 o

f
se

g
m

en
ts

Combination of features for Clustering

Comparision of time classified as Excessive by the

Automatic program and the Manual process

Tool

classification

time as

Excessive

Manual

classification

Time as

Excessive

Actual time on

task

56

Data file 3 Results:

 The video file corresponding to data file 1 is 3.8 minutes in length. Figure 25

shows results of an experiment using the K-means clustering on data file 3.

Figure 25 - Graph of percentage of segments of each type

 When the graph in figure 25 is extrapolated as seen from the green bars, the two

feature subsets 1 and 5 demonstrate a small percentage of E vs. NE segments. This shows

that the above two feature subsets have the least number of type-II errors.

Figure 26 shows the total time of segments classified as excessive by the software

program and the manual process for the above defined five feature subsets.

0

10

20

30

40

50

60

70

80

%
 o

f
se

g
m

en
ts

Combination of features for Clustering

Comparision of segment classification using Clustering

for different combination of features

E vs E

NE vs NE

E vs NE

NE v E

57

Figure 26 - Total time of segments classified as excessive by the software

program and manually

 The green bars in figure 26 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the maroon bars, shows 0.92

minutes of excessive effort. The feature subsets 3 and 4 show a relatively low value for

time of segments classified as excessive by the software program when compared with

the total video time. This is depicted by the pink bars in the above graph. From figure 25

it is observed that the percentage of type-II errors is 7.69% for subset 3 and 4.76% for

feature subset 4. However, the feature value with lower type-II errors and lower

percentage of time of segments classified as excessive is feature subset 3.

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
in

 m
in

u
te

s

Combination of features for Clustering

Comparision of time classified as Excessive by the

Automatic program and the Manual process

Tool

classification

time as

Excessive

Manual

classification

Time as

Excessive

Actual time on

task

58

Data file 4 Results:

 The video file corresponding to data file 4 is 3.5 minutes in length. Figure 27

shows results of an experiment using the K-means clustering on the data file.

Figure 27 - Graph of percentage of segments of each type

 When the graph in figure 27 is extrapolated as seen from the green bars, the two

feature subset 1 has the least percentage of E vs. NE segments. This shows that the

feature subset 1 has fewer type-II errors. Feature subset 5 follows subset 1 in terms of

type-II errors.

 Figure 28 shows the total time of segments classified as excessive by the software

program and the manual process for the above defined five feature subsets.

0

10

20

30

40

50

60

%
 o

f
se

g
m

en
ts

Combination of Features for Clustering

Comparision of segment classification using Clustering

for different combination of features

E vs E

NE vs NE

E vs NE

NE v E

59

Figure 28 - Total time of segments classified as excessive by the

software program and manually

 The green bars in figure 28 represent the total time of video recorded by the eye

tracker and are 3.5 minutes. Manual classification of the video file, depicted by the

maroon bars, shows 0.91 minutes of excessive effort. The feature subsets 2 and 3 show a

relatively low value for time of segments classified as excessive by the software program

when compared with the total video time. This is depicted by the pink bars in the above

graph. From figure 27 it is observed that the percentage of type-II errors is 6.66% for

subset 2 and 9.33% for feature subset 3. However, the feature value with an acceptable

error of type-II and lower percentage of time of segments classified as excessive is

feature subset 2.

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
in

 m
in

u
te

s

Combination of Features for Clustering

Comparision of time classified as Excessive by the

Automatic program and the Manual process

Tool

classification

time as

Excessive

Manual

classification

Time as

Excessive

Actual time on

task

60

Data file 5 Results:

 The video file corresponding to data file 5 is 5.65 minutes in length. Figure 29

shows results of an experiment using the K-means clustering on data file 5.

Figure 29 - Graph of percentage of segments of each type

 When the graph in figure 29 is extrapolated as seen from the green bars, the

feature subset 1 shows a small percentage of E vs. NE segments. This shows that the

above feature set has fewer type-II errors. Feature subset 4 and 5 follow feature subset 1

in terms of type-II errors.

 Figure 30 shows the total time of segments classified as excessive by the software

program and the manual process for the above defined feature subsets.

0

10

20

30

40

50

60

70

80

90

%
 o

f
se

g
m

en
ts

Combination of features for Clustering

Comparision of segment classification using Clustering

for different combination of features

E vs E

NE vs NE

E vs NE

NE v E

61

Figure 30 - Total time of segments classified as excessive by the software

program and manually

 The violets bars in figure 30 represent the total time of video recorded by the eye

tracker and are 5.65 minutes. Manual classification of the video file, depicted by the

maroon bars, shows 2.07 minutes of excessive effort. The feature subsets 2 and 3 show a

relatively low value for time of segments classified as excessive by the software program

when compared with the total video time. This is depicted by the pink bars in the above

graph. From figure 29 it is observed that the percentage of type-II errors for subset2 and

subset 3 is not within an acceptable limit. So, the feature value with an acceptable value

of type-II errors and relatively low value for percentage of time of segments classified as

excessive is feature subset 4 or subset 5.

0

1

2

3

4

5

6

T
im

e
in

 m
in

u
te

s

Combination of fetaures for Clustering

Comparision of time classified as Excessive by the

Automatic program and the Manual process

Tool

classification

time as

Excessive

Manual

classification

Time as

Excessive

Actual time on

task

62

5.3 Identifying excessive effort segments using principal component analysis

 The results of all the data files are consolidated into a single graph. Figure 31

shows the percentage of segments of each type when applying the threshold method on

the first principal component for all five data files.

Figure 31 - Percentage of segments of each type when applying the threshold

method on first principal component

 From the graph in figure 31 it is clear that using the threshold method on the first

principal components produces a small percentage of E vs. NE segments. This means

lower type-II errors as seen from the blue bars in the above graph. Figure 32 shows the

total time of segments classified as excessive by the software program and the manual

0

10

20

30

40

50

60

70

data file 1 data file 2 data file 3 data file 4 data file 5

%
 o

f
se

g
m

en
ts

Data files

Percent of Segments of each Type

E Vs NE

NE Vs E

E Vs E

NE Vs NE

63

process for the feature value, first principal component. The results of all five data files

are plotted in a single graph.

Figure 32 - Total time of segments classified as excessive by the software

program and manually

 The green bars in Figure 32 represent the total time of video recorded by the eye

tracker for all five data files. Manual classification of the video files is depicted by the

pink bar. The violet bars represent the total time of video classified as excessive by the

software program. The percentage of time of segments classified as excessive is

relatively high when applying thresholding on first principal component.

0

1

2

3

4

5

6

7

data file

1

data file

2

data file

3

data file

4

data file

5

ti
m

e
in

 m
in

u
te

s

data files

Comparision b/w manual classification and the automatic

classification

manual

classification

Tool Classification

as Excessive

Total Time

64

5.4 Identifying excessive effort segments using K-means clustering on principal

components.

Data file 1 Analysis:

 The video file corresponding to data file 1 is 6.09 minutes in length. Figure 33

shows the percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments for the

features mentioned in the experiment description.

Figure 33 - Graph of percentage of segments of each type

 From the graph in figure 33 it is clear that all the three features have the same

percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments. This means that all

the feature values have the same percentage of type-I and type-II errors.

 Figure 34 shows the total time of segments classified as excessive by the software

program and the manual process for the three features.

0

10

20

30

40

50

60

1st Principal

component

1,2 principal

components

1,2,3 principal

components

%
 s

eg
m

en
ts

Features

Percentage segments of each time

E vs E

NE vs NE

E vs NE

NE vs E

65

Figure 34 - Total time of segments classified as excessive by the

software program and manually

 The green bars in figure 34 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the blue bars, shows 1.71

minutes of excessive effort. The automatic classification of the video file for the three

features shows 2.5 minutes of excessive effort time which is depicted by the maroon bars

in figure 34. However, the type-II errors are very high and not within an acceptable limit.

0

1

2

3

4

5

6

7

1st Principal

component

1,2 principal

components

1,2,3 principal

components

T
im

e
in

 m
in

u
te

s

Features

Total time of segments classified as excessive by the

Automatic program and the Manual process

manual

classification

Tool

Classification

as Excessive

Total Time

66

Data file 2 Analysis:

 The video file corresponding to data file 2 is 3.27 minutes in length. Figure 35

shows the percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments for the

features mentioned in the experiment description.

Figure 35 - Graph of percentage of segments of each type

 From the graph in figure 35 it is clear that all the three features have the same

percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments. This means that all

the feature values have the same percentage of type-I and type-II errors.

 Figure 36 shows the total time of segments classified as excessive by the software

program and the manual process for the three features.

0

10

20

30

40

50

60

70

1st Principal

component

1,2 principal

components

1,2,3 principal

components

%
 s

eg
m

en
ts

Features

Percentage segments of each time

E vs E

NE vs NE

E vs NE

NE vs E

67

Figure 36 - Total time of segments classified as excessive by the

software program and manually

 The green bars in figure 36, represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the blue bars, shows 0.36

minutes of excessive effort. The automatic classification of the video file for all the three

features shows 1.03 minutes of excessive effort time which is depicted by the maroon

bars in figure 36. All the features have an acceptable value of type-II errors at 5.37%.

0

0.5

1

1.5

2

2.5

3

3.5

1st Principal

component

1,2 principal

components

1,2,3 principal

components

T
im

e
in

 m
in

u
te

s

Features

Total time of segments classified by Tool and Manual

as Excessive

manual

classification

Tool

Classification

as Excessive

Total Time

68

Data file 3 Results:

 The video file corresponding to data file 3 is 3.8 minutes in length. Figure 37

shows the percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments for the

features mentioned in the experiment description.

Figure 37 - Graph of percentage of segments of each type

 From the graph in figure 37 it is clear that all the three features have same

percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments . This means that all

the feature values have the same percentage of type-I and type-II errors.

 Figure 38 shows the total time of segments classified as excessive by the software

program and the manual process for the three features.

0

10

20

30

40

50

60

70

1st Principal
component

1,2 principal
components

1,2,3 principal
components

%
 s

eg
m

en
ts

Features

Percentage segments of each time

E vs E

NE vs NE

E vs NE

NE vs E

69

Figure 38 - Total time of segments classified as excessive by the

software program and manually

 The green bars in figure 38 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the blue bars, shows 0.92

minutes of excessive effort. The automatic classification of the video file for all the three

features shows 1.95 minutes of excessive effort time which is depicted by the maroon

bars in figure 38. All the features have an acceptable value of type-II errors at 8.57%.

0

0.5

1

1.5

2

2.5

3

3.5

4

1st Principal

component

1,2 principal

components

1,2,3 principal

components

T
im

e
in

 m
in

u
te

s

Features

Total time of segments classified by Tool and Manual as

Excessive

manual

classification

Tool

Classification

as Excessive

Total Time

70

Data file 4 Results:

 The video file corresponding to data file 4 is 3.5 minutes in length. Figure 39

shows the percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments for the

features mentioned in the experiment description.

Figure 39 - Graph of percentage of segments of each type

 From the graph in figure 39 it is clear that all the three features have the same

percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments. This means that all

the feature values have the same percentage of type-I and type-II errors.

 Figure 40 shows the total time of segments classified as excessive by the software

program and the manual process for the three features.

0

10

20

30

40

50

60

70

1st Principal

component

1,2 principal

components

1,2,3 principal

components

%
 s

eg
m

en
ts

Features

Percentage segments of each time

E vs E

NE vs NE

E vs NE

NE vs E

71

Figure 40 - Total time of segments classified as excessive by the

software program and manually

 The green bars in Figure 40 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the blue bars, shows 0.91

minutes of excessive effort. The automatic classification of the video file for all the three

features shows 1.61 minutes of excessive effort time which is depicted by the maroon

bars in figure 40. Even though the total time of segments classified as excessive is less,

the percentage of type-II errors is very high and not within the acceptable limit for all the

features.

0

0.5

1

1.5

2

2.5

3

3.5

4

1st Principal

component

1,2 principal

components

1,2,3 principal

components

T
im

e
in

 m
in

u
te

s

Features

Total time of segments classified by Tool and

Manual as Excessive

manual

classification

Tool

Classification

as Excessive

Total Time

72

Data file 5 Results:

 The video file corresponding to data file 3 is 5.65 minutes in length. Figure 41

shows the percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments for the

features mentioned in the experiment description.

Figure 41 - Graph of percentage of segments of each type

 From the graph in figure 41 it is clear that all the three features have same

percentage of E vs. E, E vs. NE, NE vs. NE and NE vs. E segments.

 Figure 42 shows the total time of segments classified as excessive by the software

program and the manual process for the three features.

0

5

10

15

20

25

30

35

40

45

50

1st Principal

component

1,2 principal

components

1,2,3 principal

components

%
 s

eg
m

en
ts

Features

Percentage segments of each time

E vs E

NE vs NE

E vs NE

NE vs E

73

Figure 42 - Total time of segments classified as excessive by the

software program and manually

 The green bars in figure 42 represent the total time of video recorded by the eye

tracker. Manual classification of the video file, depicted by the blue bars, shows 2.07

minutes of excessive effort. The automatic classification of the video file for all the three

features shows 2.71 minutes of excessive effort time which is depicted by the maroon

bars in figure 42. Even though the total time of segments classified as excessive is less,

the percentage of type-II errors is very high and not within the acceptable limit for all the

features.

0

1

2

3

4

5

6

1st Principal

component

1,2 principal

components

1,2,3 principal

components

T
im

e
in

 m
in

u
te

s

Features

Total time of segments classified by Tool and Manual

as Excessive

manual

classification

Tool

Classification

as Excessive

Total Time

74

CHAPTER 6

RESULT ANALYSIS

6.1 Evaluation

 In this chapter, I evaluate and discuss the results of the experiments conducted in

this work. My criteria for success are based on 1) The number of type-II errors and 2) A

minimal time to investigate usability issues with an acceptable level of type-II errors. My

assumption is that 15% of error of type-II is the upper bound for being considered as

acceptable. The results are evaluated based on the performance of each pattern

recognition method on individual features. In addition, the overall performance of each

pattern recognition method is evaluated.

 To recapitulate, segments that are classified as non-excessive effort segments by

the manual classification process but classified as excessive effort segments by the

software program are classified as type-I errors. Contrarily, type-II errors depict those

segments identified as non-excessive by the software program but are actually excessive

effort per manual classification. In the case of type-I errors, the software program is

highlighting extra segments that need further investigation. The total inspection time is

the sum of the duration of each segment classified as excessive by the software program.

The index of items listed in tables 1 through 8 is:

 # Fix - denotes number of fixations

75

 Avg Fix Dur - denotes average fixation duration

 # Sacc - denotes number of saccades

 Sacc Amp - denotes average saccade amplitude

 Eye Path - denotes eye path traversed

 FPC - denotes first principal component

Table 1, shows the results of experiment 1 conducted on the five data files. The results

are grouped based on the data file.

76

Table 1 - Experiment 1 Summary

Exp # Data file

Feature

value

% type -I

errors

% type -II

errors

% of total

errors

Total

video time

Inspection

time

Inspection

time as a

% of total

time

1 1 # Fix 20.43 9.677 30.108 6.09 3.0132833 49.479201

1 1

Avg Fix

Dur 41.935 15.05 56.989 6.09 2.1342333 35.044882

1 1 #Sacc 26.882 10.75 37.634 6.09 3.39655 55.772578

1 1 Sacc Amp 37.634 12.9 50.538 6.09 2.5303667 41.549535

1 1 Eye Path 26.882 11.83 38.71 6.09 3.1481 51.692939

1 2 # Fix 45.745 3.191 48.936 3.27 1.87315 57.282875

1 2

Avg Fix

Dur 40.426 5.319 45.745 3.27 1.05115 32.14526

1 2 #Sacc 34.043 4.255 38.298 3.27 1.7260667 52.784913

1 2 Sacc Amp 27.66 4.255 31.915 3.27 1.3571333 41.502548

1 2 Eye Path 26.596 5.319 31.915 3.27 1.3856 42.373089

1 3 # Fix 2.0962 0.041 2.1375 3.802 2.4455833 64.323602

1 3

Avg Fix

Dur 2.2465 0.702 2.948 3.802 2.3267333 61.197615

1 3 #Sacc 2.5022 0.01 2.5122 3.802 2.6001167 68.388129

1 3 Sacc Amp 1.594 0.191 1.7854 3.802 2.3243833 61.135806

1 3 Eye Path 1.1861 0.031 1.2167 3.802 2.07625 54.609416

1 4 # Fix 49.333 0 49.333 3.5 2.6636167 76.103333

1 4

Avg Fix

Dur 20 12 32 3.5 0.7377 21.077143

1 4 #Sacc 45.333 0 45.333 3.5 2.63455 75.272857

1 4 Sacc Amp 49.333 1.333 50.667 3.5 2.6396333 75.418095

1 4 Eye Path 44 2.667 46.667 3.5 2.5187167 71.963333

1 5 # Fix 24.545 3.636 28.182 5.65 3.5643333 63.085546

1 5
Avg Fix
Dur 42.727 16.36 59.091 5.65 2.1119833 37.380236

1 5 #Sacc 0 37.27 37.273 5.65 3.8475 68.097345

1 5 Sacc Amp 29.091 4.545 33.636 5.65 3.5159167 62.228614

1 5 Eye Path 30 5.455 35.455 5.65 3.8452833 68.058112

 From table 1 it is observed that in most of the data files, the number of fixations

performs well in terms of minimum type-II errors, while not introducing high inspection

time. In all the data files, the average fixation duration has the best inspection times, but

77

also the highest percentage of type-II errors. Table 2, shows the average value of all the

features used in experiment 1 over five data files.

Table 2 - Average values of experiment 1 results

Exp #

Feature

value

avg. # of

excessive

effort

segments

avg. total

no of

segments

avg. %

type- I

errors

avg. %

type- II

errors

avg. % of

total

errors

avg.

Inspection

time

avg.

Inspection

time as a

% of total

time

1 # Fix 17.2 95 28.429962 3.3092978 31.73926 2.7119933 62.054911

1 Avg Fix Dur 18.2 95 29.466961 9.8876097 39.354571 1.67236 37.369027

1 #Sacc 32 95 21.751965 10.458144 32.210108 2.8409567 64.063165

1 Sacc Amp 17.6 95 29.062445 4.6457432 33.708188 2.4734867 56.36692

1 Eye Path 17.8 95 25.732703 5.0597969 30.7925 2.59479 57.739378

The following are the observations derived from table 2.

 The results of table 2 show that the threshold method on the feature value, number

of fixations,” gives good results in terms of type-II errors but, the average

inspection time is relatively high when compared to other feature values. The

average value of type-II errors for number of fixations is 3.3%. Average saccade

amplitude and eye path traversed follow number of fixations in terms of type-II

errors.

 A threshold on average fixation duration performs well in terms of minimal

inspection time with an acceptable value of 9.8% for type-II errors.

 A feature value with minimum number of total errors is eye path traversed. This

feature value is a good choice when inspection time is not taken into account.

78

 The inspection time is not completely correlated to type-I errors. In the case of

average fixation duration, the inspection time is 1.67 minutes with 29.4% of type-

I errors. On the other hand, the average saccade amplitude with almost the same

percentage of type-I errors has higher inspection time than average fixation

duration.

 The values of the average number of excessive effort segments for all features are

in close proximity to each other. However, the percentage of type-I and type-II

errors differ invariably. This portrays that the segments classified as excessive are

different for each feature value.

 Despite the fact that the percentages of total errors for each feature value is in

close proximity to each other, the inspection times vary. This delineates that the

segments classified as excessive are different for each feature value.

Table 3, shows the results of experiment 2 conducted on five data files. The results are

grouped based on the data file.

79

Table 3 - Experiment 2 Summary

Ex

p #

Data

file Feature value

% type -I

errors

% type -II

errors

% of total

errors

Total

video

time

Inspection

time

Inspection

time as a

% of total

time

2 1 #fix 9.6774194 13.978495 23.655914 6.09 2.2734167 37.330323

2 1 #sacc 9.6774194 13.978495 23.655914 6.09 2.2734167 37.330323

2 1 eye path 19.354839 15.053763 34.408602 6.09 2.5492 41.858785

2 1 #fix, #sacc, eye path 8.6021505 13.978495 22.580645 6.09 2.0993833 34.472633

2 1

#fix, #sacc, eye path,

avg fix dur, avg sacc

amp 58.064516 1.0752688 59.139785 6.09 4.3279833 71.06705

2 2 #fix 45.744681 4.2553191 50 3.27 1.87315 57.282875

2 2 #sacc 24.468085 5.3191489 29.787234 3.27 1.49485 45.714067

2 2 eye path 14.893617 8.5106383 23.404255 3.27 0.8030167 24.557085

2 2 #fix, #sacc, eye path 22.340426 6.3829787 28.723404 3.27 1.2937167 39.563201

2 2

#fix, #sacc, eye path,

avg fix dur, avg sacc

amp 24.468085 7.4468085 31.914894 3.27 1.3016833 39.80683

2 3 #fix 41.904762 1.9047619 43.809524 3.802 2.9758833 78.271524

2 3 #sacc 22.857143 3.8095238 26.666667 3.802 2.0379333 53.601613

2 3 eye path 12.380952 7.6190476 20 3.802 1.1789333 31.008241

2 3 #fix, #sacc, eye path 20 4.7619048 24.761905 3.802 1.7791833 46.795985

2 3

#fix, #sacc, eye path,

avg fix dur, avg sacc
amp 40 1.9047619 41.904762 3.802 2.6101167 68.651149

2 4 #fix 30.666667 2.1052632 32.77193 3.5 2.32 66.285714

2 4 #sacc 29.333333 6.6666667 36 3.5 1.98 56.571429

2 4 eye path 25.333333 9.3333333 34.666667 3.5 1.84 52.571429

2 4 #fix, #sacc, eye path 36 5.3333333 41.333333 3.5 2.29 65.428571

2 4

#fix, #sacc, eye path,
avg fix dur, avg sacc

amp 36 4 40 3.5 2.31 66

2 5 #fix 8.1818182 10.909091 19.090909 5.65 2.35 41.59292

2 5 #sacc 2.7272727 14.545455 17.272727 5.65 1.82 32.212389

2 5 eye path 0.9090909 14.545455 15.454545 5.65 1.42 25.132743

2 5 #fix, #sacc, eye path 4.5454545 12.727273 17.272727 5.65 2.04 36.106195

2 5

#fix, #sacc, eye path,

avg fix dur, avg sacc

amp 4.5454545 12.727273 17.272727 5.65 2.04 36.106195

80

 From table 3 it is observed that the feature subset with the features - number of

saccades, eye path traversed, average fixation duration, average saccade amplitude, and

number of fixations performs well in terms of minimum type-II errors in data files 1 and

3. However, the number of fixations performs well in data files 2, 3, 4 and 5 in terms of

type-II errors while not putting too much focus on the inspection time. In all the data files

with an exception of data file 1, eye path traversed has the best inspection times, but also

the highest percentage of type-II errors. It is also evident that the percentages of type-I

and type-II errors vary by a wide range between each feature subset for any given data

file. Table 4, shows the average value of all the features used in experiment 2 over five

data files.

Table 4 - Average values of experiment 2 results

Exp

Feature value

avg. # of

excessive

effort

segments

avg.

total no

of

segment

s

avg. %

type -I

errors

avg. %

type -II

errors

avg. % of

total

errors

avg.

Inspection

time

avg. Inspection

time as a % of

total time

2 #fix 29.076336 95 27.235069 6.6305859 33.865655 2.35849 56.152671

2 #sacc 23.542982 95 17.812651 8.8638577 26.676508 1.92124 45.085964

2 eye path 19.749442 95 17.990685 10.129196 28.119881 1.5927875 37.498885

2

#fix, #sacc, eye

path 23.236658 95 18.297606 8.6367968 26.934403 1.9004567 44.473317

2

#fix, #sacc, eye

path, avg fix

dur,avg sacc
amp 29.163122 95 32.615611 5.4308224 38.046434 2.5179567 56.326245

The following are the observations derived from the above table:

 The results from table 4 show that the K-means clustering on the feature subset-

number of fixations, number of saccades, eye path traversed, average fixation

duration, and average saccade amplitude, gives good results in terms of type-II

81

errors with an average value of 5.4%. But, the average inspection time is

relatively high when compared to other feature values. Number of fixations

follow the above identified feature value in terms of type-II errors.

 Clustering on the eye path traversed performs well in terms of minimal inspection

time with an acceptable value of 10.1% for type-II errors.

 A feature value with minimum number of total errors is number of fixations. This

feature value is a good choice when inspection time is not taken into account.

 The average number of excessive effort segments for number of fixations and the

feature subset with the following features - number of saccades, eye path

traversed, average fixation duration, average saccade amplitude are the same.

However, the inspection times vary. This portrays that the segments classified as

excessive are different for each feature value.

 Unlike the results of the threshold method, the percentages of total errors for each

feature value vary by a wide margin when applying the K-means clustering on the

feature subsets.

 Next, the results of applying the threshold method on the first principal

component are summarized in Table 5.

82

Table 5 - Experiment 3 summary

Exp # Data file

Feature

value

% type -I

errors

% type- II

errors

% of total

errors

Total video

time

Inspection

time

Inspection

time as a

% of total

time

3 1 FPC 26.88172 9.6774194 36.55914 6.09 3.3227667 54.561029

3 2 FPC 29.787234 4.2553191 34.042553 3.27 1.5256167 46.654944

3 3 FPC 1.39155 0.0306667 1.4222167 3.802 2.28175 60.014466

3 4 FPC 46.666667 1.3333333 48 3.5 2.6298667 75.139048

3 5 FPC 32.727273 5.4545455 38.181818 5.65 3.9240333 69.451917

 Data file 2 and data file 3 present the most interesting observation from the above

table. In case of data file 2, the total errors are relatively very high but the inspection time

is small and the converse is true for data file 3. Total time of segments classified as

excessive play a significant role in determining inspection time rather than type-I and

type-II errors. The type-II errors are all relatively low and are within an acceptable limit.

Table 6, shows the average values of experiment 3.

Table 6 - Average values of experiment 3

Exp

Feature value

avg. # of

excessive

effort

segments

avg.

total no

of

segments

avg. %

type -I

errors

avg. %

type- II

errors

avg. % of

total

errors

avg.

Inspection

time

avg.

Inspection

time as a

% of total

time

3 1st principal components 16.6 95 27.490889 4.1502568 31.641146 2.7368067 61.164281

 The results of this experiment are compared with the results obtained from

Experiment 1 to analyze the performance of the threshold method on first principal

component with other features like: 1) number of fixations, 2) average fixation duration,

3) number of saccades, 4) average saccade amplitude, and 5) eye path travelled.

83

Experiment 1 result evaluation shows that the feature value, number of fixations, gives

good results in terms of type-II errors. The average percentage of type-II errors for

number of fixations is 3.3%, whereas it is 4.1% for first principal component. Initially,

average saccade amplitude and eye path traversed succeeded number of fixations in terms

of performance. However, the new results place a threshold on the first principal

component after the number of fixations with respect to type-II errors. The inspection

time for first principal component and average fixation duration are 2.7 and 1.6 minutes

respectively. A threshold on average fixation duration performs better than first principal

component in terms of lower inspection time and an acceptable 9.8% for type-II errors.

 Table 7 summarizes the results from experiment 4. Applying the K-means

clustering on different combinations of the principal components yield the same results

for type-I, type-II and inspection time. In this table, the values on each row are the results

for the three features – 1
st
 principal component, 1

st
 and 2

nd
 principal component, and 1

st
,

2
nd

 and 3
rd

 principal component.

Table 7 - Experiment 4 summary

Exp

Data

file Feature value

% type -I

errors

% type-

II errors

% of

total

errors

Total

video

time

Inspection

time

Inspection

time as a

% of total

time

4 1 1st, 2nd & 3rd principal components 24.731183 17.204301 24.731183 6.09 2.5 41.050903

4 2 1st, 2nd & 3rd principal components 26.88172 5.3763441 32.258065 3.27 1.03 31.498471

4 3 1st, 2nd & 3rd principal components 20 8.5714286 28.571429 3.802 1.95 51.288795

4 4 1st, 2nd & 3rd principal components 18.666667 14.666667 33.333333 3.5 1.61 46

4 5 1st, 2nd & 3rd principal components 31.818182 17.272727 49.090909 5.65 2.71 47.964602

84

By applying the K-means clustering on different combinations of the principal

components, it is observed that the inspection times are relatively low. However, the type

-II error percentages are high. Only data file 2 and data file 3, results show low values for

type-II errors.

Table 8 - Average values of experiment 4

Exp

Feature

value

avg. # of

excessive effort

segments

avg. total

no of

segments

avg. %

type- I

errors

avg. %

type- II

errors

avg. % of

total

errors

avg.

Inspecti

on time

avg. Inspection

time as a % of

total time

4

1st, 2nd &

3rd principal

components 28.6 95 24.41955 12.618294 37.037844 1.96 43.560554

 Table 8, shows the average values of all the features used in experiment 4 over

five data files. The average type-II error is very high when using the K-means on the

principal components. The average inspection time is only 1.96%. When taking type-II

errors also into consideration, this method is not suitable to identify excessive effort

segments.

 Of all the pattern recognition methods used, a threshold on number of fixations

yields the best results in terms of type-II errors and is followed by a threshold on first

principal component. K-means clustering on feature subset with the features: number of

fixations, number of saccades, average saccade amplitude, average fixation duration, and

eye path traversed ranks third.

 When time to investigate is taken into consideration while also confirming that

the type-II errors are within a reasonable limit, the K-means clustering on the number of

85

saccades yields the best results and precedes the threshold method on average fixation

duration in performance.

86

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1 Conclusions

 The framework presented in this research enables software developers to

efficiently identify usability issues thereby optimizing the time spent on usability testing.

Excessive effort segments, which typically relate to usability issues, are identified by

applying pattern recognition techniques such as K-means clustering algorithm,

thresholding, principal component analysis, and feature selection. The analysis of the

experiments conducted in this paper show that the time taken for usability testing can be

reduced by 40% or more.

7.2 Recommendations for Future Research

 With greater time and resources at one’s disposal, there is scope to enhance the

definition and implementation of pattern recognition techniques in identifying usability

issues in software.

 In this research, the time between two consecutive keyboard/mouse clicks by user

is considered as a segment and this has served as the basic pattern for pattern recognition

techniques. Equal time slicing of user’s software interaction session can be used instead

and the performance results can be analyzed and compared with the results from this

research.

87

 Further refinement of pattern recognition techniques can be pursued to minimize

errors and inspection time. Also, more focus can be given to the criteria for manual

classification of video segments thus allowing excessive effort segments to be identified

more accurately.

 Another direction for future research is to automate some of the manual steps in

this process. This can include software that automatically log users' software interaction

session data, manipulate data, and without human intervention lists the start and end

times of all the excessive effort segments. This can drastically reduce time taken for

usability testing.

 In this work, I have concentrated on pattern recognition techniques that do not

rely on human intelligence. Hence, results are generated using non-supervised learning

procedures. A surrogate approach can be to use supervised learning procedures to

produce the output. This involves conducting experiments using training data sets to

manually arrive at an archetype that can be applied on any data set to generate the output.

 Another direction for further research is to consider information fusion.

Information fusion combines different techniques of pattern recognition classification to

achieve more accurate results. Another approach that can be researched is to arrive at a

formula or function that can be applied to any data set by which usability deficiencies can

be identified.

88

BIBLOGRAPHY

[1] Dumas, J S, and J C Redish. "A Practical Guide to Usability Testing." Intellect Books.

Portland, OR, USA, 1999.

[2] Nielsen, J. "Usability Engineering." San Francisco, CA, USA: Academic Press, 1993.

[3] Pressman, R. Software Engineering: A Practitioner's Approach. New York, NY:

McGraw-Hill, 2005.

[4] Rubin , J, and D Chisnell. Handbook of Usability Testing: How to Plan , Design, and

Conduct Effective Tests. Indianapolis, IN, USA: Wiley Publishing, Inc., 2008.

[5] Tullis, T, and B Albert. Measuring The User Experience: collecting, analyzing, and

presenting usability metrics. Burlington, MA: Morgan Kaufmann, 2008.

[6] Mueller, C, D Tamir, O Komogortsev, and L Feldman. "Using Designer’s Effort for

User Interface Evaluation." 2009 IEEE International Conference on Systems, Man, and

Cybernetics. San Antonio, Texas, USA, October 11, 2009.

[7] Mueller, Carl, Dan Tamir, Oleg Komogortsev, and L Feldman. "An Economical

Approach to Usability Testing." Proceedings of the 33rd Annual IEEE International

Computer Software and Applications Conference. Seattle, Washington, July 2009.

89

[8] ISO 9241-11. "Ergonomic requirements for office work with visual display terminals

(VDTs) - Part 11: Guidance on usability." Geneva, Switzerland: International Standards

Organization, 1998.

[9] ISO/IEC 9126-1:2001 . "Software Engineering-Product Quality-Part 1: Quality

Model." Geneva, Switzerland: International Standards Organization, 2001.

[10] Komogortsev , O, C Mueller, D Tamir, and L Fledman. "An Effort Based Model of

Software Usability." 2009 International Conference on Software Engineering Theory and

Practice. Orlando, FL, 2009.

[11] Tou, J T, and R C Gonzalez. Pattern Recognition Principles. USA: Addison-Wesley

Publishing, Inc., 1974.

[12] ISO/IEC 9126-1:2001. "Software Engineering-Product Quality-Part 2: External

Metrics." Geneva, Switzerland: International Standards Organization, 2001.

[13] Tamir, D E, O V Komogortsev, and C J Mueller. "An Effort and Time Based

Measure of Usability." 6th Workshop on Software Quality,30th International Conference

on Software Engineering. Leipzig, Germany, May 2008.

[14] Poole , A, and L J Ball. Eye Tracking in Human-Computer Interaction and Usability

Research: Current Status and Future Prospects. Encyclopedia of Human Computer

Interaction: Idea Group, 2004.

[15] Just, M A, and P A Carpenter. "Eye Fixation and Cognitive Processes." Cognitive

Psychology 8: 441-480, 1976.

[16] Ebbinghaus, H. Memory: A Contribution to Experimental Psychology. 1885.

90

[17] Tamir, Dan, and Carl Mueller. "Pinpointing Usability Issues Using an Effort Based

Framework." to appear in the IEEE Systems, Man, Cybernetics Conference. Istanbul,

Turkey, 2010.

[18] Tamir, D E, Divya Dasari Kali Venkata, et al. "Detection of Software Usability

Deficiencies." HCI, 2011.

[19] Tamir, D E, and A Kandel. "The Pyramid Fuzzy C-means Algorithm." International

Journal of Computational Intelligence in Control, 2 (2), 2012.

[20] Duda, R O, P E Hart, and D G Stock. Pattern Classification, 2nd E. Willey

International, 2001.

[21] Ebba, Thora Hvannberg, and Chong Law Lai. "Classification of Usability Problems

(CUP) Scheme." Nordic conference on Human-computer Interaction. 2006.

[22] Noboru, Nakamichi, Sakai Makoto, and Shim Kazuyuki . "Detecting Low Usability

Web Pages using Quantitative Data of Users’ Behavior." IEEE. 2009.

[23] Makoto, Sakai, Nakamichi Noboru, Hu Jian, Shima Kazuyuki, and Nakamura

Masahide. "Webtracer: A New Integrated Environment for Web Usability Testing ." 10th

Int'l Conference on Human - Computer Interaction. Crete, Greece: HCI International,

June 2003. 289-290.

[24] Anonymous, “MATLAB Product Help,” MATLAB 7.10.0.99

VITA

Dasari Kali Venkata Divya, the daughter of Dasari Visweswara Rao and Dasari Pushpa,

was born on December 2, 1985 in Andhra Pradesh, India,. She is the wife of Lenin Sana

and they are expecting their first child in March, 2013. She received a Bachelor of

Engineering in Electrical and Electronics Engineering from Anna University, India in

May 2007. In August 2009, she entered the Graduate College of Texas State University-

San Marcos.

Permanent Email: dkvdivya@gmail.com

This thesis was typed by Dasari Kali Venkata Divya.

