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AVERAGING METHOD FOR ORDINARY DIFFERENTIAL
INCLUSIONS WITH MAXIMA

BACHIR BAR, MUSTAPHA LAKRIB

Abstract. We consider ordinary differential inclusions with maxima per-
turbed by a small parameter and give justification of the method of averaging

for this type of inclusions.

1. Introduction

It is known that equations and inclusions with maxima arise naturally when
solving practical and phenomenon problems, in particular, in the study of systems
with automatic regulation and automatic control. Some works on these equations
and inclusions are [1, 5, 10, 11, 21, 22, 28].

Differential equations and inclusions with maxima displaying nonlinear oscilla-
tions are ubiquitous in the scientific literature. The method of averaging is one of
the main tool to analyze these oscillatory equations and inclusions. This method
was used for ordinary and functional differential equations without maxima in
[16, 18, 19, 20]. This method was also applied to ordinary differential equations with
maxima in [13, 23, 24, 26] and in the monograph [1, Chap. 7]. It was extended to
fuzzy differential equations with maxima in [14] and to set valued differential equa-
tions with Hukuhara derivative and maxima in [12], where both the right-hand
sides and the solutions are set valued.

For ordinary differential inclusions (without maxima), many authors have con-
tributed to the development of the averaging method in [3, 9, 15, 17, 25, 27] and the
references therein. However, to our knowledge this method has not been extended
to ordinary differential inclusions with maxima.

In the present work, we consider ordinary differential inclusions with maxima
perturbed by a small parameter and establish an averaging result under weak reg-
ularity assumptions. More precisely, we consider the initial-value problem

ẋ ∈ εF
(
t, x(t), max

s∈S(t)
x(s)

)
, t ≥ 0

x(0) = x0

(1.1)
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where ε > 0 is a small parameter, F and S are multifunctions, with S(t) ⊂ [0, t]
for t ≥ 0, and

max
s∈S(t)

x(s) :=
(

max
s∈S(t)

x1(s), . . . , max
s∈S(t)

xn(s)
)
.

The structure of this article is as follows. In Section 2 we provide an existence
result and a Filippov-Plís type result for ordinary differential inclusions with max-
ima. In Section 3 we present our main result: Theorem 3.1. We state and prove
some preliminary results in Section 4 and then give the proof of Theorem 3.1. The
technical tools used in this article are standard, however their exposition in the
framework of problem (1.1) is new.

We complete this section with some definitions and notation. Throughout this
paper we denote by Rn the real n-dimensional space. The set of nonnegative real
numbers is denoted by R+. For X ⊆ R and Y = R+ or Rn, the set of (locally)
Lebesgue integrable functions δ : X → Y is denoted by L1

(loc)(X,Y ). In Rn we
use the notation 〈·, ·〉 and | · | for the usual inner product and Euclidean norm,
respectively. The set of all nonempty compact (nonempty compact and convex,
respectively) subsets of Rn is denoted Comp(Rn) (Conv(Rn), respectively). The
distance from α ∈ Rn to C ∈ Comp(Rn) is given by d(α,C) = inf

{
|α− c|, c ∈ C

}
and the Hausdorff distance between A,B ∈ Comp(Rn) is defined as

H(A,B) = max
(

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
)
.

Endowed with the Hausdorff distance, Comp(Rn) is a complete separable metric
space. The support function of A ∈ Comp(Rn) is σ(b, A) = sup{〈b, a〉, a ∈ A} for
b ∈ Rn. Notice that for A ∈ Conv(Rn), σ(·, A) uniquely determines A.

The definition of the one-sided Lipschitz condition for multifunctions [7], adapted
to the multifunction F in problem (1.1), reads as follows.

Definition 1.1. A multifunction F : R+×Rn×Rn → Conv(Rn) is said to be one-
sided Lipschitz (OSL) (with respect to (x, y)), if there exists λ ∈ R such that for ev-
ery t ∈ R+, x1, y1, x2, y2 ∈ Rn and all z1 ∈ F (t, x1, y1), there exists z2 ∈ F (t, x2, y2)
such that

〈z2 − z1, x2 − x1〉 ≤ λ
(
|x2 − x1|2 + |x2 − x1||y2 − y1|

)
.

This is equivalently expressed by the support function

σ(x2−x1, F (t, x1, y1))−σ(x2−x1, F (t, x2, y2)) ≤ λ
(
|x2 − x1|2 + |x2 − x1||y2 − y1|

)
for every t ∈ R+ and x1, y1, x2, y2 ∈ Rn.

Note that the constant λ in Definition 1.1 can take negative values. As in the
case of Lipschitz condition, λ is called the OSL constant. It is well known that the
OSL condition generalizes the Lipschitz condition with respect to the Hausdorff
metric. Note however that it does not imply continuity.

2. Existence and Filippov-Plís type results

First we recall that a function x is called solution of an ordinary differential
equation (resp. inclusion) with a maximum if x is absolutely continuous on some
interval and satisfies the differential equation (resp. inclusion) almost everywhere
on this interval.



EJDE-2018/115 AVERAGING FOR DIFFERENTIAL INCLUSIONS WITH MAXIMA 3

By an application of Schauder’s fixed point theorem [29, Chap.2], one can easily
prove the following result on existence of solutions of ordinary differential equations
with maxima.

Lemma 2.1. Let f : R+ × Rn × Rn → Rn be a continuous function. Suppose that
f is uniformly bounded by some locally Lebesgue integrable function. Let S : R+ →
Comp(R) be a continuous multifunction, with S(t) ⊂ [0, t] for t ≥ 0. Let x0 ∈ Rn

and L > 0. Then the initial-value problem associated with an ordinary differential
equation with a maximum

ẋ = f
(
t, x(t), max

s∈S(t)
x(s)

)
, t ∈ [0, L]

x(0) = x0

(2.1)

admits at least one solution defined on [0, L].

By use of the Michael’s selection theorem [6, Chap.2] and Lemma 2.1, it is not
hard to prove the following result on existence of solutions of ordinary differential
inclusions with maxima.

Lemma 2.2. Let F : R+ × Rn × Rn → Conv(Rn) be a continuous multifunction.
Suppose that F is uniformly bounded by some locally Lebesgue integrable function.
Let S : R+ → Comp(R) be a continuous multifunction, with S(t) ⊂ [0, t] for t ≥ 0.
Let x0 ∈ Rn and L > 0. Then the initial-value problem, associated with an ordinary
differential inclusion with a maximum

ẋ(t) ∈ F
(
t, x(t), max

s∈S(t)
x(s)

)
, t ∈ [0, L]

x(0) = x0

(2.2)

admits at least one solution defined on [0, L].

We need the following lemma which is a Filippov-Plís type result for ordinary
differential inclusions with maxima. Its proof follows the same pattern as in [8]
where a similar result is obtained in the without maxima case.

Lemma 2.3. Let F : R+ × Rn × Rn → Conv(Rn) and S : R+ → Comp(R) be
multifunctions that satisfy the following conditions:

• F is continuous.
• F is uniformly bounded by some locally Lebesgue integrable function, i.e.,

there exists m ∈ L1
loc(R+,R+) such that

H(F (t, x, y), 0) ≤ m(t), ∀t ∈ R+, ∀x, y ∈ Rn.

• F is OSL with constant λ ∈ R.
• S is continuous, with S(t) ⊂ [0, t] for t ≥ 0.

Let L > 0 and δ ∈ L1([0, L],R+). If x1 : [0, L] → Rn is an absolutely continuous
function satisfying

d
(
ẋ1(t), F (t, x1(t), max

s∈S(t)
x1(s))

)
≤ δ(t), ∀t ∈ [0, L]

then, for each x0 ∈ R, there exists a solution x of problem (2.2) such that, for
t ∈ [0, L],

|x1(t)− x(t)| ≤
(
|x1(0)− x0|+

∫ L

0

δ(t)dt
)

exp(2λ+t), (2.3)
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where λ+ = max{λ, 0}.

Proof. For t ∈ [0, L] and α, β ∈ Rn, we define the set

G(t, α, β) =
{
x ∈ F (t, α, β) : 〈ẋ1(t)− x, x1(t)− α〉

≤ λ|x1(t)− α|2 + |x1(t)− α|
(
λ| max

s∈S(t)
x1(s)− β|+ δ(t)

)}
.

We first prove that G(t, α, β) is nonempty for every t ∈ [0, L] and all α, β ∈ Rn.
Let w ∈ F (t, x1(t),maxs∈S(t) x1(s)) be such that

|ẋ1(t)− w| = d
(
ẋ1(t), F (t, x1(t), max

s∈S(t)
x1(s))

)
≤ δ(t).

From assumption (H3) it follows that there exists x ∈ F (t, α, β) such that

〈w − x, x1(t)− α〉 ≤ λ
(
|x1(t)− α|2 + |x1(t)− α|

∣∣ max
s∈S(t)

x1(s)− β
∣∣).

Therefore,

〈ẋ1(t)− x, x1(t)− α〉
≤ 〈w − x, x1(t)− α〉+ |ẋ1(t)− w||x1(t)− α|

≤ λ|x1(t)− α|2 + |x1(t)− α|
(
λ
∣∣ max

s∈S(t)
x1(s)− β

∣∣+ δ(t)
)
,

i.e., G(t, α, β) 6= ∅. Obviously, G is compact and convex valued and is continu-
ous. Furthermore G(t, α, β) ⊂ F (t, α, β). Therefore, by Lemma 2.2, there exists a
solution x of problem

ẋ(t) ∈ G
(
t, x(t), max

s∈S(t)
x(s)

)
, t ∈ [0, L]

x(0) = x0

(2.4)

such that, for t ∈ [0, L],

〈ẋ1(t)− ẋ(t), x1(t)− x(t)〉

≤ λ|x1(t)− x(t)|2 + |x1(t)− x(t)|
(
λ
∣∣ max

s∈S(t)
x1(s)− max

s∈S(t)
x(s)

∣∣+ δ(t)
)

≤ λ|x1(t)− x(t)|2 + |x1(t)− x(t)|
(
λ max

s∈S(t)
|x1(s)− x(s)|+ δ(t)

)
.

(2.5)

Let r(t) = |x1(t) − x(t)|, t ∈ [0, L]. The function r is absolutely continuous. At
every t ∈ [0, L] for which r is differentiable, by (2.5), we have the inequality

r(t)ṙ(t) =
1
2
d

dt
r2(t) ≤ λr(t)

(
r(t) + max

s∈S(t)
r(s)

)
+ r(t)δ(t). (2.6)

Define the set T = {t ∈ [0, L] : r(t) = 0} and let T0 be the set of the points of
density of T . It is known that meas(T0) = meas(T ), where meas is the measure of
Lebesgue. If t /∈ T , then, from (2.6) we deduce

ṙ(t) ≤ λ+
(
r(t) + max

s∈S(t)
r(s)

)
+ δ(t). (2.7)

If t ∈ T0 and if ṙ(t) exists, then ṙ(t) = 0. Hence, (2.7) is satisfied for almost all
t ∈ [0, L]. Therefore, one obtains that: r(t) ≤ r(t), for t ∈ [0, L], where r is the
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solution of

ṙ(t) = λ+
(
r(t) + max

s∈S(t)
r(s)

)
+ δ(t), t ∈ [0, L]

r(0) = r(0).

Taking into account that

r(t) ≤ r(0) +
∫ t

0

(
2λ+r(τ) + δ(τ)

)
dτ,

by the Gronwall Lemma [2, Chap.1] we deduce the desired boundedness in (2.3). �

3. Averaging result

Let F : R+ × Rn × Rn → Conv(Rn) and S : R+ → Comp(R) be multifunctions,
with S(t) ⊂ [0, t] for all t ≥ 0. Let ε > 0 be a small parameter. We are interested
in the limiting behavior of the trajectories of the initial-value problem

ẋ ∈ εF
(
t, x(t), max

s∈S(t)
x(s)

)
, t ≥ 0

x(0) = x0

(3.1)

on intervals of time [0, L/ε], L > 0, as the perturbation parameter ε tends to zero.
For this purpose we make use of the averaging method.

First, let us formulate the assumptions on the multifunctions F and S, needed
for proving our averaging result.

(H1) F = F (t, x, y) is continuous and the continuity in (x, y) is uniform with
respect to t.

(H2) There exist m ∈ L1
loc(R+,R+) and a constant M > 0 such that

H(F (t, x, y), 0) ≤ m(t), ∀t ∈ R+, ∀x, y ∈ Rn

with ∫ t2

t1

m(t)dt ≤M(t2 − t1), ∀t1, t2 ∈ R+, t1 ≤ t2.

(H3) F is OSL with constant λ ∈ R.
(H4) S is uniformly continuous.
(H5) For all x, y ∈ Rn, there exists a limit

F (x, y) := lim
T→+∞

1
T

∫ T

0

F (t, x, y)dt, (3.2)

i.e.,

lim
T→+∞

H
(
F (x, y),

1
T

∫ T

0

F (t, x, y)dt
)

= 0.

Note that in (3.2) and in what follows the integral of a multifunction G is un-
derstood in the Lebesgue-Aumann sense [4], i.e.∫ t2

t1

G(t)dt =
{∫ t2

t1

g(t)dt : g ∈ L1([t1, t2],Rn), g(t) ∈ G(t)
}
, ∀t1, t2 ∈ R, t1 ≤ t2.

Consider now problem (3.1) with the initial-value averaged problem

ẏ ∈ εF
(
y(t), max

s∈S(t)
y(s)

)
, t ≥ 0

y(0) = x0.
(3.3)
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The main result of this article is contained in the following theorem.

Theorem 3.1. Suppose that (H1)–(H5) are fulfilled. Let x0 ∈ Rn. Then, for every
L > 0 and η > 0, there exists ε0 = ε0(x0, L, η) > 0 such that, for any ε ∈ (0, ε0],
the following holds:

(i) for any solution x of problem (3.1), there exists a solution y of problem
(3.3) such that

|x(t)− y(t)| ≤ η, ∀t ∈ [0, L/ε]; (3.4)

(ii) for any solution y of problem (3.3), there exists a solution x of problem
(3.1) such that inequality (3.4) holds.

Let x0 ∈ Rn. For L > 0, denote by Sol(εF, x0, L) and Sol(εF , x0, L) the solutions
sets on [0, L/ε] of problems (3.1) and (3.3), respectively, and consider the associated
reachable sets at time t ∈ [0, L/ε] given by

R(εF, x0, t) = {x(t) : x ∈ Sol(εF, x0, L)},
R(εF , x0, t) = {y(t) : y ∈ Sol(εF , x0, L)}.

From Theorem 3.1 we obtain the following corollary.

Corollary 3.2. Suppose that (H1)–(H5) are fulfilled. Let x0 ∈ Rn. For any L > 0,
we have

lim
ε→0

sup
{
H
(
R(εF, x0, t), R(εF , x0, t)

)
: t ∈ [0, L/ε]

}
= 0.

Remark 3.3. In Theorem 3.1, solutions of problems (3.1) and (3.3) are defined
globally in time. On any interval of time [0, L/ε], L > 0, they are contained in the
compact ball in Rn of radius ML, centered at x0.

In problem (3.1), S is a general multifunction which is uniformly continuous.
In [24], the authors considered problem (3.1) in single-valued case (differential equa-
tions with maxima) with S an interval valued multifunction which is uniformly con-
tinuous, that is, S(t) = [g(t), γ(t)], where g, γ : R+ → R+ are uniformly continuous
functions such that 0 ≤ g(t) ≤ γ(t) ≤ t, for all t ∈ R+.

If a multifunction F = F (t, x, y) is continuous in t and satisfies a Lipschitz
condition on (x, y) (as assumed in [24]), then assumptions (H1) and (H3) are au-
tomatically fulfilled.

In assumption (H5), when the limit (3.2) is uniform with respect to (x, y), then
ε0 in the conclusion of Theorem 3.1 does not depend on the initial condition x0.

4. Proof of the main result

To prove Theorem 3.1 we need to establish the following two lemmas.

Lemma 4.1. Let F : R+ × Rn × Rn → Conv(Rn) be a multifunction.
(i) If F satisfies assumptions (H1) and (H2), then its average F in (H5) is

uniformly bounded by the constant M in (H2) and is continuous.
(ii) If F satisfies assumption (H3) then its average F in (H5) satisfies the OSL

condition with constant λ in (H3).

Proof. For the proof of (i) see [3].
(ii) Note that, for x ∈ Rn and A,B ∈ Conv(Rn), we have

|σ(x,A)− σ(x,B)| ≤ |x|
∣∣∣σ( x|x| , A)− σ( x|x| , B)∣∣∣ ≤ |x|H(A,B). (4.1)
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Now, let x1, x2, y1, y2 ∈ Rn. Using inequality (4.1), by assumption (H5) we can
easily deduce that, for any η > 0 there exists T0 = T0(x1, x2, y1, y2, η) > 0 such
that, for all T ≥ T0 we have

σ(x2 − x1, F (x1, y1))− σ(x2 − x1, F (x2, y2))

≤
[
σ(x2 − x1, F (x1, y1))− σ

(
x2 − x1,

1
T

∫ T

0

F (t, x1, y1)dt
)]

+
[
σ
(
x2 − x1,

1
T

∫ T

0

F (t, x1, y1)dt
)
− σ

(
x2 − x1,

1
T

∫ T

0

F (t, x2, y2)dt
)]

+
[
σ
(
x2 − x1,

1
T

∫ T

0

F (t, x2, y2)dt
)
− σ(x2 − x1, F (x2, y2))

]
≤ |x2 − x1|H

(
F (x1, y1),

1
T

∫ T

0

F (t, x1, y1)dt
)

+
1
T

∫ T

0

[
σ(x2 − x1, F (t, x1, y1))− σ(x2 − x1, F (t, x2, y2))

]
dt

+ |x2 − x1|H
( 1
T

∫ T

0

F (t, x2, y2)dt, F (x2, y2)
)

≤ 2|x2 − x1|η + λ
(
|x2 − x1|2 + |x2 − x1||y2 − y1|

)
.

Since the value of η is arbitrary, in the limit we obtain that

σ(x2 − x1, F (x1, y1))− σ(x2 − x1, F (x2, y2)) ≤ λ
(
|x2 − x1|2 + |x2 − x1||y2 − y1|

)
,

which completes the proof that F is OSL with constant λ. �

Lemma 4.2. Suppose that (H1)–(H4) are fulfilled. Let x0 ∈ Rn. Then, for every
solution x of (3.1) and L > 0 there exists a solution z : [0, L/ε] → Rn of the
discrete problem

ż(t) ∈ εF
(
t, z(ti), max

s∈S(ti)
z(s)

)
, t ∈ [ti, ti+1]

z(0) = x0

(4.2)

where 0 = t0 < t1 < · · · < tp = L/ε with ti+1 = ti + L/εp, i = 0, . . . , p − 1, such
that, for t ∈ [0, L/ε]

|z(t)− x(t)| ≤
(
L exp(2λ+L)

)
ωF

(M
p

(L+ ωS(L)) + εMωS(L)
)
,

where λ+ = max{λ, 0} and ωG is the modulus of continuity of multifunction G.

Remark 4.3. Note that on [0, L/ε], L > 0, solutions of (4.2) are contained in the
compact ball in Rn of radius ML, centered at x0.

Proof of Lemma 4.2. We present two steps.

Step 1. Let z(0) = x0 and suppose that z exists on [0, ti]. We prove inductively
that it exists on [ti, ti+1], i = 0, . . . , p − 1. For a given t ∈ [ti, ti+1] and α, β ∈ Rn

consider the map

G(t, α, β) = E(t, α, β) ∩ εF
(
t, z(ti), max

s∈S(ti)
z(s)

)
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where

E(t, α, β) =
{
z ∈ Rn : 〈ẋ(t)− z, x(t)− α〉 ≤ ε

[
λ|x(t)− α|2

+ |x(t)− α|
(
λ
∣∣ max

s∈S(t)
x(s)− β

∣∣+ δ(t)
)]}

with
δ(t) = H

(
F (t, α, β), F

(
t, z(ti), max

s∈S(ti)
z(s)

))
.

We obtain the existence of a solution of the initial-value problem

α̇ ∈ G
(
t, α(t), max

s∈S(t)
α(s)

)
, t ∈ [ti, ti+1]

α(ti) = z(ti).
(4.3)

We have, G(t, α, β) is nonempty for every t, α and β. Indeed, by assumption (H3)
(OSL condition) there is w ∈ εF (t, α, β) such that

〈ẋ(t)− w, x(t)− α〉 ≤ ελ
(
|x(t)− α|2 + |x(t)− α|

∣∣ max
s∈S(t)

x(s)− β
∣∣).

Further, for w we find z ∈ εF
(
t, z(ti),maxs∈S(ti) z(s)

)
such that

|w − z| ≤ εH
(
F (t, α, β), F

(
t, z(ti), max

s∈S(ti)
z(s)

))
= εδ(t).

Then

〈ẋ(t)− z, x(t)− α〉 ≤ ε
[
λ|x(t)− α|2 + |x(t)− α|

(
λ
∣∣ max

s∈S(t)
x(s)− β

∣∣+ δ(t)
)]

;

that is, z ∈ G(t, α, β).
Now, it is easy to see that G is compact and convex valued, and is continuous.

Hence, problem (4.3) has a solution that we denote also by z. This completes the
induction step.
Step 2. For t ∈ [0, L/ε], we have t ∈ [ti, ti+1] for some i = 0, . . . , p− 1 and:

On the one hand,

|z(t)− z(ti)| ≤
∫ ti+1

ti

εm(s)ds ≤ εM(ti+1 − ti) ≤
LM

p
,

∣∣ max
s∈S(t)

z(s)− max
s∈S(ti)

z(s)
∣∣ ≤ εMωS

( L
εp

)
≤M

(1
p

+ ε
)
ωS(L)

where ωS is the modulus of continuity of the multifunction S, and then

δ(t) := H
(
F
(
t, z(t), max

s∈S(t)
z(s)

)
, F
(
t, z(ti), max

s∈S(ti)
z(s)

))
≤ ωF

(M
p

(L+ ωS(L)) + εMωS(L)
)
,

where ωF is the modulus of continuity of the multifunction F which is, by assump-
tion (H1), independent of t.

On the other hand

〈ẋ(t)− ż, x(t)− z〉

≤ ε
[
λ|x(t)− z|2 + |x(t)− z|

(
λ
∣∣ max

s∈S(t)
x(s)− max

s∈S(ti)
z(s)

∣∣+ δ(t)
)]
.
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We repeat the arguments following inequality (2.5) to obtain that, for all t ∈
[0, L/ε],

|z(t)− x(t)| ≤
(∫ L/ε

0

εδ(t)dt
)

exp(2ελ+t)

≤
(
L exp(2λ+L)

)
ωF

(M
p

(L+ ωS(L)) + εMωS(L)
)
,

with λ+ = max{λ, 0}. �

Proof of Theorem 3.1. Let x0 ∈ Rn and x be a solution of (3.1). Let L > 0. By
Lemma 4.2 there exists a solution z : [0, L/ε]→ Rn of the discrete problem

ż(t) ∈ εF
(
t, z(ti), max

s∈S(ti)
z(s)

)
, t ∈ [ti, ti+1]

z(0) = x0

where 0 = t0 < t1 < · · · < tp = L/ε with ti+1 = ti + L/εp, i = 0, . . . , p − 1, such
that, for t ∈ [0, L/ε]

|z(t)− x(t)| ≤
(
L exp(2λ+L)

)
ωF

(M
p

(L+ ωS(L)) + εMωS(L)
)
, (4.4)

where λ+ = max{λ, 0}.
Notice that by assumption (H5), for any µ > 0 there exists ε such that for every

ε ∈ (0, ε] we have

H
(εp
L

∫ ti+1

ti

F
(
t, z(ti), max

s∈S(ti)
z(s)

)
dt, F

(
z(ti), max

s∈S(ti)
z(s)

))
≤ µ. (4.5)

For i = 0, . . . , p − 1, let vi : [ti, ti+1] → Rn be continuous function satisfying:
for t ∈ [ti, ti+1], vi(t) ∈ F

(
t, z(ti),maxs∈S(ti) z(s)

)
and z(t) = z(ti) + ε

∫ t

ti
vi(s)ds.

There exists vi ∈ F
(
z(ti),maxs∈S(ti) z(s)

)
such that, by (4.5),∣∣∣εp

L

∫ ti+1

ti

vi(t)dt− vi
∣∣∣ =

∣∣∣εp
L

∫ ti+1

ti

(vi(t)− vi)dt
∣∣∣ ≤ µ.

Then we consider the function z1 : [0, L]→ Rn given by

z1(t) = z1(ti) + ε

∫ ti+1

ti

vids, t ∈ [ti, ti+1].

For t ∈ [ti, ti+1] we have

|z1(t)− z1(ti)| ≤
∫ ti+1

ti

Mεds ≤ ML

p
.

By the definition of z1 and z, we have

|z1(ti+1)− z(ti+1)| ≤ |z1(ti)− z(ti)|+ ε
∣∣∣ ∫ ti+1

ti

(vi(t)− vi)dt
∣∣∣

≤ |z1(ti)− z(ti)|+
Lµ

p
≤ . . .

≤ pLµ
p

= Lµ.
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For t ∈ [ti, ti+1] we obtain

|z1(t)− z(t)| ≤ |z1(t)− z1(ti)|+ |z1(ti)− z(ti)|+ |z(ti)− z(t)|

≤ Lµ+
2ML

p

(4.6)

and ∣∣∣ max
s∈S(ti)

z1(s)− max
s∈S(ti)

z(s)
∣∣∣ ≤ max

s∈S(ti)

∣∣z1(s)− z(s)
∣∣ ≤ Lµ+

2ML

p

so that

H
(
F
(
z(ti), max

s∈S(ti)
z(s)

)
, F
(
z1(t), max

s∈S(ti)
z1(s)

))
≤ ωF

(
2Lµ+

4ML

p

)
,

where ωF is the modulus of continuity of the multifunction F .
Therefore, for t ∈ [ti, ti+1], i = 0, . . . , p− 1,

d
(
ż1(t), εF

(
z1(t), max

s∈S(ti)
z1(s)

))
≤ εd

(
vi, F

(
z1(t), max

s∈S(ti)
z1(s)

))
≤ εH

(
F
(
z(ti), max

s∈S(ti)
z(s)

)
, F
(
z1(t), max

s∈S(ti)
z1(s)

))
≤ εωF

(
2Lµ+

4ML

p

)
.

Taking into account that εF is OSL with constant ελ, by Lemma 2.3 there exists
a solution y of (3.3), such that, for t ∈ [0, L/ε],

|z1(t)− y(t)| ≤
(

exp(2λ+L)
) ∫ L/ε

0

εωF

(
2Lµ+

4ML

p

)
ds

≤
(
L exp(2λ+L)

)
ωF

(
2Lµ+

4ML

p

)
.

(4.7)

By inequalities (4.4), (4.6) and (4.7) it follows that, for t ∈ [0, L/ε],

|x(t)− y(t)| ≤ |x(t)− z(t)|+ |z(t)− z1(t)|+ |z1(t)− y(t)|

≤
(
L exp(2λ+L)

)
ωF

(M
p

(L+ ωS(L)) + εMωS(L)
)

+ Lµ+
2ML

p

+
(
L exp(2λ+L)

)
ωF

(
2Lµ+

4ML

p

)
.

Therefore, for any η > 0, by appropriate choice of µ, sufficiently large p and suffi-
ciently small ε, we get the inequality |x(t)− y(t)| ≤ η for t ∈ [0, L/ε]. The proof of
assertion (i) is now complete.

Adopting the process presented above, we obtain assertion (ii). In this way the
proof is complete. �

Remark 4.4. In all the results above, it is not necessary to consider the whole
space R+ × Rn × Rn. One can restrict the domains of definition of function f in
(2.1) and multifunctions F in (2.2) and (3.1) to R+ × U × U for any open subset
U ⊂ Rn with additional technical assumptions.
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