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CRITERIA AND ESTIMATES FOR DECAYING OSCILLATORY
SOLUTIONS FOR SOME SECOND-ORDER QUASILINEAR ODES

TADIE

Dedicated to the family Teku Kuate Kamguem Ebenizer

ABSTRACT. Oscillation criteria for the solutions of quasilinear second order
ODE are revisited. In our early works [6] [7], we obtained basic oscillation
criteria for
{60/ ()} + act)ép(u()) = 0

by estimating of the diameters of the nodal sets of the solutions. The fo-
cus of this work is to estimate the decay of the oscillatory solutions. Let
u be a strongly oscillatory solution, (tm) the increasing sequence of zeros of
v/, and Dy, the nodal set of u that contains ¢,,. We estimate |u(tm)|oo 1=
maxtcp,, |u(t)| and the diameter of Dy, as m — oo.

1. INTRODUCTION

For some constants b, 3,q,co,a > 0 and ¢,(5) = |S|771S (with v > 0), we
consider problems of the type

{¢a (W' (1)} + act)ps(u(t)) =0, t>0;
uw(0) =0, «(0)=0b>0,

where ¢ € C1(RY, (cp, ), with ¢/ > 0 and ¢(t) = O(t?) as t — co. We will review
some oscillation criteria for such equations and establish estimates of the decay of
oscillatory solutions of (1.1)).

Definition 1.1. A function u is said to be oscillatory if it has a zeros in every
exterior domain Qp := (T,00) with 7" > 0. A function u is said to be strongly
oscillatory if its zeros are isolated, or if it has nodal sets in every Q7. A nodal set
of a function v is an interval D(v) = [¢, s] such that v(¢) = v(s) = 0 and v # 0 in
(t,s). For the function v*(¢) = max{0,v(t)}, the nodal set D(v") = [t, s] is such
that v(t) = v(s) = 0 with v > 0 in (¢, s).

An equation (or a problem) is said to be oscillatory in Qr if its bounded and
non-trivial solutions belong to C?(Qr) and are strongly oscillatory.

(1.1)

For a strongly oscillatory function u, [D(u)] will denote the set of nodal sets of
u. In this case there are two increasing sequences () and (t;) such that z; <
tr < Try1, u(zr) = 0, and u/(tx) = 0. We denote Dy := Dy(u) = [xg, Trt1] as
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a nodal set of u. We denote |u(ty)| := maxp, () [u(t)]. For a,b € R, we define
a Ab = min{a, b}.
Our main result for problem (1.1]) reads as follows.

Theorem 1.2. For allb, «, 3,co > 0, any non-trivial and bounded solution of
is strongly oscillatory in [0,00). With the corresponding elements as defined above.
as m — oo, with B, := a A 3, we have

Ta To

[e(@my1)]L/ (Bx+D) < |Tmy1 — Tm| < W, (1.2)
[u(tm)|oo < comst.[e(ty,)] "/ PF1) = const.[t,,] =¥/ P+, (1.3)
where
27
T 1=

(a+1)sin[r/(a+1)]

The result in [4] is limited to estimates of the diameters of the nodal sets,
for the case « = 8 > 0.

Now we present some Picone-type formulae which will be used throughout this
article. To start, for w,y € C'(R,R) and v > 0 we define (see e.g. [ 2])

Gw,9) 1= ol ¥ = (o ' (/) 42|

which is strictly positive and is null only if there exists p € R such that w = uy.
Let C,C1,a, 3 > 0 and w, z,u € C*(R), respectively, be solutions in RT, for

{6a(@/ ()} + c(t)ags(u(t) = 0;
(6a(2)) + Caga(z) =0,
(qba(w’))l + Crags(w) = 0.
Using that for v > 0 and S, T € R,
S¢,(8) = 794(S),  S¢5(S) = [S["*, ¢4(ST) = 6,(5)o4 (1),
wherever u # 0, we have
[20(=) — 26a(Zu)]' = Calzw) + alel {e®lul~ - C};

[wea(w') — wqﬁa(%u’)]/ = Colw,u) + a\w|ﬁ+1{c(t)}%|"*“ ~ ) (1.5)

(1.4)

= Calw,u) + awl™ {e(O]u]"" €[]},
Note that:
(1) For p > 0, if the function Z(t) := pz(t) is used in (L)), (pa(2")) +
Cape(Z) =0 and (1.5)(i) remains the same with Z replacing z.
(2) But if W(t) := pw(t) then

(6a(W') + pPCrads(W) =0

and (L.A)) (i) with W holds with C; replaced by u*="Cj.

(3) The Picone-type formulae in will be the main tools in this work. In
fact as the formulae make sense only wherever v # 0 (w # 0), if the right-
hand side of the formula happens to be strictly positive in a set D then the
integration over D would give 0 at the left and a strictly positive value at
the right if u # 0 (w # 0) in D and u|pp = 0. Therefore if the right-hand
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side of (|1.5) is strictly positive on a set D, we cannot have u (w) # 0 inside
D and u|pp = 0, implying that u has to have a zero inside such a D.

Now we study equations with positive constant coeflicients.

Theorem 1.3. For each k,0,3 > 0, any bounded and non-trivial solution u of the
problem

{oo(W)Y + kbpg(u) =0, ¢t>0; u(0)=0; w(0)=A>0  (L6)
is oscillatory and
B+ D' @) + kO + Du(®)*! = (8 + 1A vt >0,
wWT)=0= [/ (T)=A YT >0
(B+1A, 1 (1.7)
k(0 +1)

(B+ 1AM, "
W] and I%E}rxht | = A.

W(S) = 0= |u(S) = |

which implies max |u| = |
R+
When 8 =60 >0, (L.7) (iv) reads
1, 1
max [u| = [+] FTA and max |u'| = A.
R+ k R+

Proof. That this problem is oscillatory has been established in [6, [7] but for self-

contained purpose we show it using a method relevant to the present work. Let
u € C?(RT) be a non-trivial and bounded solution of (1.4)). Then

(o(u)) = (2] ")
_ u//([uIQ] (9—1)/2> + ul((u/2)(071)/2>/
= (ju["7) + (0 = Du" |

— 9u”|u’|0_1
and
0 - 0
’ N P ey 2y (0-1)/2 10+1Y\/
o (60)) = S Y () e CIR
Similarly
Oku’ pg(u) = Ok ulul?~t = gk(uz)’(qﬁ)(ﬁfl)/z = (ﬁf— 1)k(\u|ﬁ+1),.

The two inequalities above lead to
{(B+ D17+ + k(O + D]u|*1} =0 (1.8)

and (1.7))(i) follows. (1.7)(ii) to (L.7)(v) follow immediately.
Assume that v > v > 0 in some Qp. Then with k replacing c(t), in (1.5 (i),

klu[P~*—C > kv~ —C > 0 if we take C small enough. With this, the integration
over D(zT) C Qr would lead to a contradiction as the left hand side would be zero
and the right strictly positive.

If in such an Qp u > 0 and w \, 0 then (i) or (ii) would be violated. Therefore
u has to have a zero in any Q. (I



4 TADIE EJDE-2017/28

Corollary 1.4. Let A1, A2,0,3> 060 > 3. Let u; and us, respectively, be oscilla-
tory solutions for
{do(u))} + kibds(ui) =0, t>0; w(0)=0; u'(0)=A4;>0 (1.9)
with
A9+1 0+1

1 Ay

k1 ko
Let D(uj) denote a nodal set of u;, and assume that D(uf) N D(uy) # 0. If
R € D :=D(u])ND(ug) with uj(R) = ub(R) = 0, then

max u; = u1(R) > max ug = uz(R). (1.10)
D(u7) D(uf)

Let uy, us, ug, respectively, be non-trivial oscillatory solutions for
{po(u))} + kifs(u;) =0, t >0; w(0)=0; u'(0)=A>0, (1.11)

where ky > kg > k3 > 0. Then if there is S > 0 such that for some D(uf), D(u3)
and D(ud),
SeDuf)NDu)NDui), Dui(S)=0, fori=1,23,

(3

then

max uj (t) = u3(S) < max uj (t) = u2(S) < max uf (t) = u1(9).
D(uf) D(u) D(uf)

The proof of the above corollary follows straight from (1.7)(iv).

Remark 1.5. (1) It is easy to show that when the coefficient of ¢ is a positive
constant, the solutions are periodic.
(2) There are two transformations which could be used in some proofs:

(i) For any oscillatory function u, and A > 0, the associated function u(t) :=
Au(t) is also oscillatory, having exactly the same zeros as u but with |uy|eo =
Ao and |t oo = At |oo-

(ii) For & € R, the translated function U () := u(t+¢) would be also oscillatory
as u and the curve (¢, Ug(t)) would be that of u, slit alongside the t-axis
forward (if £ < 0) or backward (if £ > 0).

(3) Let uw and v, respectively, be oscillatory solutions of

(da(w)) +c(t)ds(u) = 0; t>0;
($a(v)) + Cop(v) =0, t >0; ©v(0)=0, v'(0)=>b>0.

If some of their nodal sets satisfy D(u™) N D(v") # 0, and R € D(u") satisfies
u'(R) = 0, then £ can be chosen such that the transformed W(t) := v(t + £) has
the same singularity R in the resulted D(W ™) i.e. W/(R) =« (R) = 0.

In summary if (a) D(u™) N D(v") # 0 and (b) u has a zero inside D(v"),
then there is (§,A) € R x RT such that for some R € D(u™), then the function
V() := M(t + €) satisfies V/(R) = «/(R) = 0 and |V = A|V]oo-
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2. EQUATIONS WITH INCREASING AND UNBOUNDED COEFFICIENTS

It is known that if ¢(t) is increasing and unbounded then if (z,,),cn denotes the
increasing successive zeros of the oscillatory solution z of

(6a(2) + ac(t)pa(z) =0, (2.1)
then
|$n+1 - xn| = O(Wa[c(xn)}_l/(a-i_l))
for large n. In fact as for large m € N, ¢(z,) < ¢(t) < c(Tmy1), inside Dy, =
[Zims Tmy1]; from [, with C(z) := [e(2)]/ (@D we have
7Ta

C(xm+1)

Lemma 2.1. For some co > 0 let ¢ € C1(R, (co,00)) be increasing, and let c, 3 > 0.
Then any non-trivial and bounded solution u of

{da (W' (1)} + clt)ags(u(t) =0, t>0;
w(0)=0, w(0)=b>0

T

C(mm) ’

<Tmt1 — Tm| < (2.2)

is oscillatory.

Proof. The oscillatory character of the equations have been established in our early
papers [4, [7] but for later use purpose, we provide some slightly different proofs
using Picone-type formulae.

(1) Assume that o > 8 > 0. Let u be such a solution and with some C' > 0. Let
z be an oscillatory solution of

(6a(2) + Caga(z) =0; t>0.

If we suppose that v > pu > 0 in some Qg then c(t)|u(t)|*~® > c(t)u?~« for
t > S and the right-hand side of (L.5)(i) is eventually strictly positive in Qg.

Assume that u > 0 in some Q7 for some 7' > 0 and u \, 0 as t — oo. Still
because 0 < 3 < a, the function c(t)|u(t)|’~* is unbounded in Q7 and the right-
hand side of (1) is eventually strictly positive in Qg for large S > T'. In those
cases, the right-hand side of (L5))(i) is strictly positive in any such a D(2™) C Q.
Thus the assumption cannot stand; u has a zero in any Q7.

(2) Assume that 8 > «a > 0. For a constant C > 0 and an oscillatory solution z
of

(Pa(w")) +aChp(w) =0, t >0; w(0)=0, w'(0)=>b>0

wherever u # 0 in some interval D, (L.5)(ii) holds (with C instead of C ).

As C is constant, from , wt has a constant maximum value in any nodal
set D(w™) which is
(ﬂ + l)ba+1] ﬁ

(a+1)C

We see that the smaller b := w’(0) is, the smaller |w|o, will be.

If there exists v > 0 such that v > v in Qg then as ¢ is unbounded, the right-
hand side of (L.5))(ii) is eventually strictly positive in any nodal set D(w™) C Qg
for large enough S > R as we would have

(2 -y = (-

|w]oo = |w|C(D(w+)) = 5?31() |w| = [
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with an unbounded ¢(t).

Assume that v > 0 and v decreases to zero at oo in some Qp, with 7" > 0. Then
for any R > T and Jg := [R,2R)], we define v := u(2R) := miny, [ut]. We take
C :=¢(R) := C; and R > T so big that w(R) = O(R~%/(#+1). With such a large
¢(R), wt has many nodal sets D(w™) in Jgr and with b small enough, |w|s < v

and {552) {ﬂﬁf& —|} > 0 in many of them.
The integration over such a D(w™) of (1.5)(ii) would lead to a contradiction as
the left hand side would give 0 and the right strictly positive. Thus u > 0 cannot

hold in any Q7. This, as above, completes the oscillatory character of u. O

Theorem 2.2. (1) Let u and z, respectively, be oscillatory solutions of

{qba(u’(t))}/ + c(t)apg(u(t)) =0, ((ﬁa(z’))/ +mage(z) =0, t>0

where for some ¢y > 0, ¢ € CH(R, (cg,0)) is an increasing and unbounded function
and o > 3 > 0.
Assume that there are two overlapping nodal sets D(27) and D(u™) such that

(i) thee exists R € D(z7) N D(u") such that 2'(R) = v'(R) = 0;
(i) u has a zero inside D(z") and {c(t)u[’~* —m} > 0 in D(z7).
Then D(u") C D(z") whence

diam [D(u")] < diam [D(=")] = O([] ). (2.3)

(2) Also if 0 < a < (8 instead of z the solution w of
(d)a(w'))/ +magg(w) =0, ¢t>0

is used, then under the conditions (i) and (i) the results hold with w replacing z
with the following changes: {c(t)|%|ﬁia —m} >0 in D(w") and we have
diam [D(u+)] < diam [D(w*)] = O([2]YE), (2.4)
m

Proof. Let D(z") = [t1,t2] and D(u't) := [z1,22] with t; < 71 < R < t3. We
claim that R < z9 < ts.

Otherwise if u > 0 in (R,t2) the integration of (L.5))(i) (where m = C) over
(R, t2) leads to an absurdity as unlike the right-hand side, the left would be zero.
Thus x5 has to be between R and t; and using , it leads to .

For the case of w we just use (L.5)(ii) instead of (L.5)(i). O

As a prelude for the next results we have the following Lemma;
Lemma 2.3. For the strongly oscillatory solution u of
(¢a(u)) + ac(t)ps(u) =0, t>0; u(0)=0,u'(0)=b>0 (2.5)

define the increasing sequences (Ty) and Si) such that

(1) for allm € N, [Ty, Ty41] := Dy, € [D(uT)], Sn € Dy w/(Sn) = 0;

(2) en(t) =c(t) fort € (0,T,] and ¢, (t) = c(T},) fort > T,,.
For any n, let u, and z,, respectively, be the solutions of

(¢a (@)’ + aca(t)ds(u) = 0,
(6a() + ac(Tu)és(z) = 0; 2(0) =0, =(0) =/(Ty).
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Then uy, = z, in Qr, and with B, := max{a, 5}, as n — oo,
(8 + Dul(T,)* | 5 ]

n = Zn\Pn) = = T, a4/ (B++1) . 2.
unlogity = =50 = [y ) =0 ) (26

Proof. The identity u,, = z, in Q7 is due to the fact that the two satisfy the same
initial values at T},. In fact if w and v are two C?(€2r) solutions for

(pa(@)) +ac(t)ps(u) = 0; u(T)=0, ' (T)=b>0

then without loss of generality we assume that v’ > v’ > 0 in some (T, 7).

From ¢, (w') = a%’/’% (w') (as S@L(S) = ada(S)), and from their equations

v — /v = ()| [vﬁ|u'|o‘_1 — u5|v’|a_l] = c(t) |V ' T (u, v),

I'(u,v) =0 at T and remains strictly positive as long as v’ > 0. Therefore as long

[ . N\
as v/ > 0, % is increasing as v'u” — u/v” = (v/)?(%) . But from these formulae, v/

should not be zero while ' > 0. Thus v’ and v’ have the same first zero after T

which is a contradiction. (2.6) follows from (2.3) and (2.4). O

3. ESTIMATES FOR SOME DECAYING OSCILLATORY SOLUTIONS

Now we take for oscillatory functions z := zr which will a fortiori depend upon
the function u through their bounded coefficients. Namely we will use z, a solution
of

{gzﬁa(z’)}/ +aCpg(z) =0; t>0; 2(0)=0; u'(0)=b>0

where C' will be the value of ¢ at some point R > 0.

Theorem 3.1. Let R,cy,3,a > 0 and ¢ € CYH(RT,(co,0)) be unbounded and
increasing. Then if u and z := zgr are, respectively, two non-trivial oscillatory
solutions of

{da(u/' ()} + c(t)ags(u(t)) =0,
(¢a(2) +c(R)ags(2) =0, t>0; 2(0)=0; 2'(0)=b>0.

Then there is Ry > 0 such that u has a zero inside any nodal set D(z%) C Qg for
all R > Ry.

(3.1)

Proof. Let u and z be such oscillatory solutions. We saw that any multiplication
of z by a positive A > 0 would not affect any D(z) but only that |Az|ec = A|2|co-
Also for all T' > 0, there are a multitude of D(z") and D(u*) inside Q7.

(1) Suppose that 3 > a > 0. Let 71 > 0 be such that ¢(¢) > 1 for all ¢t > T3.
Assume that there exists T > T3 such that for all R > T there is a nodal set
D(z}) := D1(2") C Qp such that u > 0 in Dy (z7).

We take T; big enough for Jg := [R,2R] to contain many nodal sets of z*
including D1(27) which is guaranteed by the fact that bigger R is, the smaller
diam(D(z})) is.

If for some v > 0, |[u[?~% > v~ > 0 in D;(z"), then, in Dy(z%) := D(Z1),
the function Z(t) =: vz(t) satisfies

(6a(Z2")) + VP c(R)adp(Z) =0, >0,

[Za(Z') — Z%(%u')]’ = Ca(Z,u) + ol 21 {e(®) [ul P — P e(R)) > 0.

(3.2)
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The integration over D(Z7T) of provides a contradiction. Therefore the as-
sumption cannot be true and w has to have a zero in D1(27T).

(2) Assume that a > 8 > 0. For this case (1.5)(i) is used instead of (3.2), and
the same conclusion is obtained. 0

Corollary 3.2. (1) Let u and z be the two solutions in (3.1) where C > 0 is
arbitrary. Let two of their nodal sets, Let D(u™) and D(z"), be such that u has a
zero in D(z%) and S € D(u™) is the singularity of u™ therein. Then there is £ € R
such that the translated function Z(t) := z(t + £) satisfies

Z'(8)=4/(S)=0, D(u")c D(Z"), diamD(u") <diam D(z™").

(2) Moreover, fort large enough,

nax ut = |ulprury < Jnax 7t =1Z%pz+) = 12| p(s+)- (3.3)
Proof. (1) This follows from Theorem [2.2]and Theorem[3.1] (2) follows from Lemma
O

Proof of the Theorem[1.9. Any such a solution of (1.1]) is strongly oscillatory by
Lemma and [4 [7]. The estimates follow from Theorem Theorem and
O

Corollary [3:2]

4. AN APPLICATION
For a restoring h € C'(R) (i.e. Yy € R\ {0}, yh(y) > 0) consider the problem
{¢a(u)} + ac(t)h(u) =0, t > 0; w(0)=0, u'(0)=>b>0, (4.1)
where o, 8,¢ > 0 and ¢ being as before and for small S > 0, h((s) = O(S¥).
For the strongly oscillatory solution z of {(ba (z’)}/ + aCopuo(z) =0, t > 0, and
w of {d)a(w’)}/ + aC¢g(w) = 0, wherever u # 0, we have
[260(2) = 26 (Z0)]' = a0 + aClal™ H{F0H ~ 1),
c(t)h(u)
Coa(u)
As h is a restoring function, we can define the function hy € C(R*,RT) by h(S) :=

h1(S?)S for all S € R and define H;(t) := fg shy(s?)ds such that equation (4.1))
reads

(4.2)

[wa(w) = wha ()] = Calw,u) + aful**{ ~ =}

(¢a(u)) +act)hi(uP)u=0, t >0; u(0)=0, u'(0)="b>0. (4.3)
Thus, similar to Theorem we have the following result.
Lemma 4.1. With hy defined in , VC,a,b, 3 > 0 the problem
(¢(w) +aChi(u®)u=0,t>0; w(0)=0, u'(0)=bh
is strongly oscillatory. furthermore and for its solution u, and all t > 0, we have
20w/ (1) + (a+ 1)CH; (u?(t)) = 2677,
2pt1 }1/2

u($) =0 and (T) =0 = /($)] = b and [u(T)] = [ (g5

(4.4)
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Proof. From ( (u )), +aChy(u?)u = 0, v ¢l (u') + aChy (u?)ur' = au’ ¢ (') +

a$ (u?)'hi(u?) = 0 thus
1 a-l C 1 o C ’
§(u/2)/(u/2) + 5(”2)/h1(u2) _ [m‘u/‘ +1 + §H1(u2)] =0

leading to (4.4))(i). Then (4.4)(ii) follows as well. The oscillation of the solution is
obtained as for the Theorem [L3l O

Theorem 4.2. For cy,a,3,q > 0, let hy € C(R,[0,00)) with hy(S?)S = O(s?) for
small S > 0 and ¢ € CH(R, (cg,00)) with ¢ > 0 and c(t) = O(t?) as t — oo. Then
any non-trivial and bounded solution of

(¢a(u)) +act)hi(uP)u=0, t >0; u(0)=0; «'(0)=b>0 (4.5)

is strongly oscillatory.
(1) Moreover for any R > 0 let z := zg be a non-trivial oscillatory solution of

(6a(2) + c(R)aga(z) =0; t>0.
Then for S > 0 large enough, the oscillatory solution u of (4.5) has a zero in any

nodal set D(z},) C Qg for R > S.
(2) Consequently ast — oo, for By := aAf the solution in (4.5)) has the estimates

1
lu(t)| < const.[t] 7T 1 := const. [7}1/(&“)

1 1jg?+1) (4.6)
. + _ - *
diam(D(u™)) = O([c(t)] )
Proof. (1) For some C' > 0 let z be a strongly oscillatory solution to
{¢a(z’)}/ + aCea(z) = 0.
Then ([4.2))(i) with h(u) replaced by hi(u?)u becomes
t)h
[z<ba(z') — z¢a(iu’)] = Calz,u) + aC’|z|°‘+1{¢ — 1}.

u Ca(u)

If we assume that v > v > 0 in some g, then
2
Calz,u) + aClz |0‘+1{¢ —1} > Calz,u) + aClz|* T {c(t)G(v) — 1}

Ca(u)
with (O (%)
. oc(t)hi(u)u
Gl) =l =70
Because ¢(t) is unbounded, {c¢(t)G(v) — 1} is eventually strictly positive. Assume
that that © > 0 and decreases to zero in some {2g.
(a) Case where a > 8 > 0. For very large R > S, as u \, 0,

c(t)h (u?)u ct), 5
————— — 1} > const. “—11>0
(OO ) coms [Dpur=e 1
eventually and the integration over D(z) of . leads to a contradiction.
(b) Let 8 > a > 0 and w the oscﬂlatory solutlon in (4.2))(ii). Assume that
u > 0 in some Qg. We use hi(u?)u instead of h(u) there. For T > 0, We define

Jr = (T,2T) and v := v(T) = inf, @;Z?I)‘ We take R > S so large that w™
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has many nodal sets in Jg and ¢(t) > C there. We choose b = w’(0) such that
(wt)P~® < v(R). Then in Jg,

EOCR U
Tl M0

and integration over D(w) of ([.2))(ii) leads to a contradiction. Therefore u cannot
remain positive throughout any Q.

Assume that there is T" > 0 such that for all R > T, there is a nodal set
D(Z;;) := D C Jg such that for some g > 0, v > p on Dr. We remind that
c(t) > ¢(R) for all t > R. Then similar to (a) and (b) above, we see that as we
can make zg arbitrary small in Jg, we cannot find T and g > 0 such that the
assumption holds.

(2) The estimates are obtained through the Corollary keeping in mind that
as hy(72) < const.7”, we have H;(7) < const.7A*1. O
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