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CRITERIA AND ESTIMATES FOR DECAYING OSCILLATORY
SOLUTIONS FOR SOME SECOND-ORDER QUASILINEAR ODES

TADIE

Dedicated to the family Teku Kuate Kamguem Ebenizer

Abstract. Oscillation criteria for the solutions of quasilinear second order

ODE are revisited. In our early works [6, 7], we obtained basic oscillation
criteria for ˘

φα(u′(t))
¯′

+ αc(t)φβ(u(t)) = 0

by estimating of the diameters of the nodal sets of the solutions. The fo-

cus of this work is to estimate the decay of the oscillatory solutions. Let
u be a strongly oscillatory solution, (tm) the increasing sequence of zeros of

u′, and Dm the nodal set of u that contains tm. We estimate |u(tm)|∞ :=

maxt∈Dm |u(t)| and the diameter of Dm as m→∞.

1. Introduction

For some constants b, β, q, c0, α > 0 and φγ(S) := |S|γ−1S (with γ > 0), we
consider problems of the type{

φα(u′(t))
}′ + αc(t)φβ(u(t)) = 0, t > 0;

u(0) = 0, u′(0) = b > 0,
(1.1)

where c ∈ C1(R+, (c0,∞)), with c′ > 0 and c(t) = O(tq) as t→∞. We will review
some oscillation criteria for such equations and establish estimates of the decay of
oscillatory solutions of (1.1).

Definition 1.1. A function u is said to be oscillatory if it has a zeros in every
exterior domain ΩT := (T,∞) with T ≥ 0. A function u is said to be strongly
oscillatory if its zeros are isolated, or if it has nodal sets in every ΩT . A nodal set
of a function v is an interval D(v) = [t, s] such that v(t) = v(s) = 0 and v 6= 0 in
(t, s). For the function v+(t) = max{0, v(t)}, the nodal set D(v+) = [t, s] is such
that v(t) = v(s) = 0 with v > 0 in (t, s).

An equation (or a problem) is said to be oscillatory in ΩT if its bounded and
non-trivial solutions belong to C2(ΩT ) and are strongly oscillatory.

For a strongly oscillatory function u, [D(u)] will denote the set of nodal sets of
u. In this case there are two increasing sequences (xk) and (tk) such that xk <
tk < xk+1, u(xk) = 0, and u′(tk) = 0. We denote Dk := Dk(u) = [xk, xk+1] as
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a nodal set of u. We denote |u(tk)| := maxDk(u) |u(t)|. For a, b ∈ R, we define
a ∧ b := min{a, b}.

Our main result for problem (1.1) reads as follows.

Theorem 1.2. For all b, α, β, c0 > 0, any non-trivial and bounded solution of (1.1)
is strongly oscillatory in [0,∞). With the corresponding elements as defined above.
as m→∞, with β∗ := α ∧ β, we have

πα
[c(xm+1)]1/(β∗+1)

< |xm+1 − xm| <
πα

[c(xm)]1/(β∗+1)
, (1.2)

|u(tm)|∞ ≤ const.[c(tm)]−1/(β∗+1) = const.[tm]−q/(β∗+1), (1.3)

where
πα :=

2π
(α+ 1) sin[π/(α+ 1)]

.

The result in [4] is limited to estimates (1.2) of the diameters of the nodal sets,
for the case α = β > 0.

Now we present some Picone-type formulae which will be used throughout this
article. To start, for w, y ∈ C1(R,R) and γ > 0 we define (see e.g. [1, 2])

ζγ(w, y) := |w′|γ+1 − (γ + 1)w′φγ
(w
y
y′
)

+ γ
∣∣w
y
y′
∣∣γ+1 (1.4)

which is strictly positive and is null only if there exists µ ∈ R such that w ≡ µy.
Let C,C1, α, β > 0 and w, z, u ∈ C1(R), respectively, be solutions in R+, for{

φα(u′(t))
}′ + c(t)αφβ(u(t)) = 0;(

φα(z′)
)′ + Cαφα(z) = 0,(

φα(w′)
)′ + C1αφβ(w) = 0.

Using that for γ > 0 and S, T ∈ R,

Sφ′γ(S) = γφγ(S), Sφγ(S) = |S|γ+1, φγ(ST ) = φγ(S)φγ(T ),

wherever u 6= 0, we have[
zφα(z′)− zφα(

z

u
u′)
]′ = ζα(z, u) + α|z|α+1

{
c(t)|u|β−α − C

}
;[

wφα(w′)− wφα(
w

u
u′)
]′ = ζα(w, u) + α|w|β+1

{
c(t)
∣∣ u
w

∣∣β−α − C1

}
= ζα(w, u) + α|w|α+1

{
c(t)
∣∣u∣∣β−α − C1

∣∣w∣∣β−α}.
(1.5)

Note that:
(1) For µ > 0, if the function Z(t) := µz(t) is used in (1.5)(i),

(
φα(Z ′)

)′ +
Cαφα(Z) = 0 and (1.5)(i) remains the same with Z replacing z.

(2) But if W (t) := µw(t) then(
φα(W ′)

)′ + µα−βC1αφβ(W ) = 0

and (1.5)(ii) with W holds with C1 replaced by µα−βC1.
(3) The Picone-type formulae in (1.5) will be the main tools in this work. In

fact as the formulae make sense only wherever u 6= 0 (w 6= 0), if the right-
hand side of the formula happens to be strictly positive in a set D then the
integration over D would give 0 at the left and a strictly positive value at
the right if u 6= 0 (w 6= 0) in D and u|∂D = 0. Therefore if the right-hand
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side of (1.5) is strictly positive on a set D, we cannot have u (w) 6= 0 inside
D and u|∂D = 0, implying that u has to have a zero inside such a D.

Now we study equations with positive constant coefficients.

Theorem 1.3. For each k, θ, β > 0, any bounded and non-trivial solution u of the
problem {

φθ(u′)
}′ + kθφβ(u) = 0, t > 0; u(0) = 0; u′(0) = A > 0 (1.6)

is oscillatory and

(β + 1)|u′(t)|θ+1 + k(θ + 1)|u(t)|β+1 = (β + 1)Aθ+1 ∀t > 0,

u(T ) = 0⇒ |u′(T )| = A ∀T > 0

u′(S) = 0⇒ |u(S)| =
[ (β + 1)Aθ+1

k(θ + 1)
] 1
β+1 ∀S > 0,

which implies max
R+
|u| =

[ (β + 1)Aθ+1

k(θ + 1)
] 1
β+1 and max

R+
|u′| = A.

(1.7)

When β = θ > 0, (1.7)(iv) reads

max
R+
|u| =

[1
k

] 1
β+1A and max

R+
|u′| = A.

Proof. That this problem is oscillatory has been established in [6, 7] but for self-
contained purpose we show it using a method relevant to the present work. Let
u ∈ C2(R+) be a non-trivial and bounded solution of (1.4). Then(

φθ(u′)
)′ =

([
u′2
](θ−1)/2

u′
)′

= u′′
([
u′2
](θ−1)/2

)
+ u′

(
(u′2)(θ−1)/2

)′
= u′′

(
|u′|θ−1

)
+ (θ − 1)u′′|u′|θ−1

= θu′′|u′|θ−1

and

u′
(
φθ(u′)

)′ =
θ

2
(u′2)′

(
u′2
)(θ−1)/2 =

θ

(θ + 1)
(
|u′|θ+1

)′
.

Similarly

θku′φβ(u) = θku′u|u|β−1 =
θ

2
k(u2)′

(
u2
)(β−1)/2 =

θ

(β + 1)
k
(
|u|β+1

)′
.

The two inequalities above lead to{
(β + 1)|u′|θ+1 + k(θ + 1)|u|β+1

}′ = 0 (1.8)

and (1.7)(i) follows. (1.7)(ii) to (1.7)(v) follow immediately.
Assume that u > ν > 0 in some ΩT . Then with k replacing c(t), in (1.5)(i),

k|u|β−α−C ≥ kνβ−α−C > 0 if we take C small enough. With this, the integration
over D(z+) ⊂ ΩT would lead to a contradiction as the left hand side would be zero
and the right strictly positive.

If in such an ΩT u > 0 and u ↘ 0 then (i) or (ii) would be violated. Therefore
u has to have a zero in any ΩT . �
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Corollary 1.4. Let A1, A2, θ, β > 0 θ ≥ β. Let u1 and u2, respectively, be oscilla-
tory solutions for{

φθ(u′i)
}′ + kiθφβ(ui) = 0, t > 0; u(0) = 0; u′(0) = Ai > 0 (1.9)

with
Aθ+1

1

k1
<
Aθ+1

2

k2
.

Let D(u+
i ) denote a nodal set of u+

i , and assume that D(u+
1 ) ∩ D(u+

2 ) 6= ∅. If
R ∈ D := D(u+

1 ) ∩D(u+
2 ) with u′1(R) = u′2(R) = 0, then

max
D(u+

1 )
u1 := u1(R) > max

D(u+
2 )
u2 := u2(R). (1.10)

Let u1, u2, u3, respectively, be non-trivial oscillatory solutions for{
φθ(u′i)

}′ + kiθφβ(ui) = 0, t > 0; u(0) = 0; u′(0) = A > 0, (1.11)

where k1 > k2 > k3 > 0. Then if there is S > 0 such that for some D(u+
1 ), D(u+

2 )
and D(u+

3 ),

S ∈ D(u+
1 ) ∩D(u+

2 ) ∩D(u+
3 ), D(u′i(S) = 0, for i = 1, 2, 3,

then

max
D(u+

3 )
u+

3 (t) = u3(S) ≤ max
D(u+

2 )
u+

2 (t) = u2(S) ≤ max
D(u+

1 )
u+

1 (t) = u1(S).

The proof of the above corollary follows straight from (1.7)(iv).

Remark 1.5. (1) It is easy to show that when the coefficient of φβ is a positive
constant, the solutions are periodic.

(2) There are two transformations which could be used in some proofs:

(i) For any oscillatory function u, and λ > 0, the associated function uλ(t) :=
λu(t) is also oscillatory, having exactly the same zeros as u but with |uλ|∞ =
λ|u|∞ and |u′λ|∞ = λ|u′|∞.

(ii) For ξ ∈ R, the translated function Uξ(t) := u(t+ξ) would be also oscillatory
as u and the curve (t, Uξ(t)) would be that of u, slit alongside the t-axis
forward (if ξ < 0) or backward (if ξ > 0).

(3) Let u and v, respectively, be oscillatory solutions of(
φα(u′)

)′ + c(t)φβ(u) = 0; t > 0;(
φα(v′)

)′ + Cφβ(v) = 0, t > 0; v(0) = 0, v′(0) = b > 0.

If some of their nodal sets satisfy D(u+) ∩ D(v+) 6= ∅, and R ∈ D(u+) satisfies
u′(R) = 0, then ξ can be chosen such that the transformed W (t) := v(t + ξ) has
the same singularity R in the resulted D(W+) i.e. W ′(R) = u′(R) = 0.

In summary if (a) D(u+) ∩ D(v+) 6= ∅ and (b) u has a zero inside D(v+),
then there is (ξ, λ) ∈ R × R+ such that for some R ∈ D(u+), then the function
V (t) := λv(t+ ξ) satisfies V ′(R) = u′(R) = 0 and |V |∞ = λ|v|∞.
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2. Equations with increasing and unbounded coefficients

It is known that if c(t) is increasing and unbounded then if (xn)n∈N denotes the
increasing successive zeros of the oscillatory solution z of(

φα(z′)
)′ + αc(t)φα(z) = 0, (2.1)

then
|xn+1 − xn| = O

(
πα[c(xn)]−1/(α+1)

)
for large n. In fact as for large m ∈ N, c(xm) ≤ c(t) ≤ c(xm+1), inside Dm :=
[xm, xm+1]; from [4], with C(x) := [c(x)]1/(α+1), we have

πα
C(xm+1)

≤ |xm+1 − xm| ≤
πα

C(xm)
. (2.2)

Lemma 2.1. For some c0 > 0 let c ∈ C1(R, (c0,∞)) be increasing, and let α, β > 0.
Then any non-trivial and bounded solution u of{

φα(u′(t))
}′ + c(t)αφβ(u(t)) = 0, t > 0;

u(0) = 0, u′(0) = b > 0

is oscillatory.

Proof. The oscillatory character of the equations have been established in our early
papers [4, 7] but for later use purpose, we provide some slightly different proofs
using Picone-type formulae.

(1) Assume that α ≥ β > 0. Let u be such a solution and with some C > 0. Let
z be an oscillatory solution of(

φα(z′)
)′ + Cαφα(z) = 0; t > 0.

If we suppose that u > µ > 0 in some ΩS then c(t)|u(t)|β−α > c(t)µβ−α for
t > S and the right-hand side of (1.5)(i) is eventually strictly positive in ΩS .

Assume that u > 0 in some ΩT for some T > 0 and u ↘ 0 as t → ∞. Still
because 0 < β ≤ α, the function c(t)|u(t)|β−α is unbounded in ΩT and the right-
hand side of (1.5)(i) is eventually strictly positive in ΩS for large S > T . In those
cases, the right-hand side of (1.5)(i) is strictly positive in any such a D(z+) ⊂ ΩT .
Thus the assumption cannot stand; u has a zero in any ΩT .

(2) Assume that β > α > 0. For a constant C > 0 and an oscillatory solution z
of (

φα(w′)
)′ + αCφβ(w) = 0, t > 0; w(0) = 0, w′(0) = b > 0

wherever u 6= 0 in some interval D, (1.5)(ii) holds (with C instead of C1 ).
As C is constant, from (1.7), w+ has a constant maximum value in any nodal

set D(w+) which is

|w|∞ := |w|C(D(w+)) = max
D(w+)

|w| =
[ (β + 1)bα+1

(α+ 1)C
] 1

(β+1) .

We see that the smaller b := w′(0) is, the smaller |w|∞ will be.
If there exists ν > 0 such that u > ν in ΩR then as c is unbounded, the right-

hand side of (1.5)(ii) is eventually strictly positive in any nodal set D(w+) ⊂ ΩS
for large enough S > R as we would have{c(t)

C

∣∣ u
w

∣∣β−α − 1
}
>
{c(t)
C

∣∣ u

|w|∞
∣∣β−α − 1

}
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with an unbounded c(t).
Assume that u > 0 and u decreases to zero at ∞ in some ΩT , with T > 0. Then

for any R > T and JR := [R, 2R], we define ν := u(2R) := minJR [u+]. We take
C := c(R) := C1 and R > T so big that w(R) = O(R−q/(β+1)). With such a large
c(R), w+ has many nodal sets D(w+) in JR and with b small enough, |w|∞ < ν

and
{ c(t)
C(R)

∣∣ ν
w

∣∣β−α − |} > 0 in many of them.
The integration over such a D(w+) of (1.5)(ii) would lead to a contradiction as

the left hand side would give 0 and the right strictly positive. Thus u > 0 cannot
hold in any ΩT . This, as above, completes the oscillatory character of u. �

Theorem 2.2. (1) Let u and z, respectively, be oscillatory solutions of{
φα(u′(t))

}′ + c(t)αφβ(u(t)) = 0,
(
φα(z′)

)′ +mαφα(z) = 0, t > 0

where for some c0 > 0, c ∈ C1(R, (c0,∞)) is an increasing and unbounded function
and α ≥ β > 0.

Assume that there are two overlapping nodal sets D(z+) and D(u+) such that
(i) thee exists R ∈ D(z+) ∩D(u+) such that z′(R) = u′(R) = 0;

(ii) u has a zero inside D(z+) and
{
c(t)|u|β−α −m

}
> 0 in D(z+).

Then D(u+) ⊂ D(z+) whence

diam
[
D(u+)

]
≤ diam

[
D(z+)

]
= O

([ 1
m

]1/(α+1))
. (2.3)

(2) Also if 0 < α < β instead of z the solution w of(
φα(w′)

)′ +mαφβ(w) = 0, t > 0

is used, then under the conditions (i) and (ii) the results hold with w replacing z
with the following changes:

{
c(t)
∣∣ u
w

∣∣β−α −m} > 0 in D(w+) and we have

diam
[
D(u+)

]
≤ diam

[
D(w+)

]
= O

([ 1
m

]1/(β+1))
. (2.4)

Proof. Let D(z+) := [t1, t2] and D(u+) := [x1, x2] with t1 < x1 < R < t2. We
claim that R < x2 < t2.

Otherwise if u > 0 in (R, t2) the integration of (1.5)(i) (where m = C) over
(R, t2) leads to an absurdity as unlike the right-hand side, the left would be zero.
Thus x2 has to be between R and t2 and using (2.2), it leads to (2.3).

For the case of w we just use (1.5)(ii) instead of (1.5)(i). �

As a prelude for the next results we have the following Lemma;

Lemma 2.3. For the strongly oscillatory solution u of(
φα(u′)

)′ + αc(t)φβ(u) = 0, t > 0; u(0) = 0, u′(0) = b > 0 (2.5)

define the increasing sequences (Tk) and Sk) such that
(1) for all n ∈ N, [Tn, Tn+1] := Dn ∈

[
D(u+)

]
, Sn ∈ Dn; u′(Sn) = 0;

(2) cn(t) = c(t) for t ∈ (0, Tn] and cn(t) = c(Tn) for t ≥ Tn.
For any n, let un and zn, respectively, be the solutions of(

φα(u′)
)′ + αcn(t)φβ(u) = 0,(

φα(z′)
)′ + αc(Tn)φβ(z) = 0; z(0) = 0, z′(0) = u′(Tn).
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Then un ≡ zn in ΩTn and with β∗ := max{α, β}, as n→∞,

|un|D(u+
n ) = zn(Sn) =

[ (β + 1)u′(Tn)θ+1

c(Tn)(θ + 1)

] 1
β∗+1

= O
(
[Tn]−q/(β∗+1)

)
. (2.6)

Proof. The identity un ≡ zn in ΩTn is due to the fact that the two satisfy the same
initial values at Tn. In fact if w and v are two C2(ΩT ) solutions for(

φα(u′)
)′ + αc(t)φβ(u) = 0; u(T ) = 0, u′(T ) = b > 0

then without loss of generality we assume that u′ > v′ > 0 in some (T, τ).
From φα(w′)′ = αw

′′

w′ φα(w′) (as Sφ′α(S) = αφα(S)), and from their equations

v′u′′ − u′v′′ = c(t)|u′v′|1−α
[
vβ |u′|α−1 − uβ |v′|α−1

]
:= c(t)|u′v′|1−αΓ(u, v),

Γ(u, v) = 0 at T and remains strictly positive as long as v′ > 0. Therefore as long
as v′ > 0, u

′

v′ is increasing as v′u′′ − u′v′′ = (v′)2
(
u′

v′

)′. But from these formulae, v′

should not be zero while u′ > 0. Thus v′ and u′ have the same first zero after T
which is a contradiction. (2.6) follows from (2.3) and (2.4). �

3. Estimates for some decaying oscillatory solutions

Now we take for oscillatory functions z := zR which will a fortiori depend upon
the function u through their bounded coefficients. Namely we will use z, a solution
of {

φα(z′)
}′ + αCφβ(z) = 0; t > 0; z(0) = 0; u′(0) = b > 0

where C will be the value of c at some point R > 0.

Theorem 3.1. Let R, c0, β, α > 0 and c ∈ C1(R+, (c0,∞)) be unbounded and
increasing. Then if u and z := zR are, respectively, two non-trivial oscillatory
solutions of {

φα(u′(t))
}′ + c(t)αφβ(u(t)) = 0,(

φα(z′)
)′ + c(R)αφβ(z) = 0, t > 0; z(0) = 0; z′(0) = b > 0.

(3.1)

Then there is R1 > 0 such that u has a zero inside any nodal set D(z+) ⊂ ΩR for
all R > R1.

Proof. Let u and z be such oscillatory solutions. We saw that any multiplication
of z by a positive λ > 0 would not affect any D(z) but only that |λz|∞ = λ|z|∞.
Also for all T > 0, there are a multitude of D(z+) and D(u+) inside ΩT .

(1) Suppose that β > α > 0. Let T1 > 0 be such that c(t) > 1 for all t > T1.
Assume that there exists T > T1 such that for all R > T there is a nodal set
D(z+

R) := D1(z+) ⊂ ΩR such that u > 0 in D1(z+).
We take T1 big enough for JR := [R, 2R] to contain many nodal sets of z+

including D1(z+) which is guaranteed by the fact that bigger R is, the smaller
diam(D(z+

R)) is.
If for some ν > 0, |u|β−α > νβ−α > 0 in D1(z+), then, in D1(z+) := D(Z+),

the function Z(t) =: νz(t) satisfies(
φα(Z ′)

)′ + νβ−αc(R)αφβ(Z) = 0, t > 0,[
Zφα(Z ′)− Zφα(

Z

u
u′)
]′ = ζα(Z, u) + α|Z|α+1

{
c(t)|u|β−α − νβ−αc(R)

}
> 0.

(3.2)
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The integration over D(Z+) of (3.2) provides a contradiction. Therefore the as-
sumption cannot be true and u has to have a zero in D1(z+).

(2) Assume that α ≥ β > 0. For this case (1.5)(i) is used instead of (3.2), and
the same conclusion is obtained. �

Corollary 3.2. (1) Let u and z be the two solutions in (3.1) where C > 0 is
arbitrary. Let two of their nodal sets, Let D(u+) and D(z+), be such that u has a
zero in D(z+) and S ∈ D(u+) is the singularity of u+ therein. Then there is ξ ∈ R
such that the translated function Z(t) := z(t+ ξ) satisfies

Z ′(S) = u′(S) = 0, D(u+) ⊂ D(Z+), diamD(u+) ≤ diamD(z+).

(2) Moreover, for t large enough,

max
D(u+)

u+ := |u|D(u+) ≤ max
D(Z+)

Z+ := |Z+|D(Z+) = |z+|D(z+). (3.3)

Proof. (1) This follows from Theorem 2.2 and Theorem 3.1. (2) follows from Lemma
2.3. �

Proof of the Theorem 1.2. Any such a solution of (1.1) is strongly oscillatory by
Lemma 2.1 and [4, 7]. The estimates follow from Theorem 2.2, Theorem 3.1 and
Corollary 3.2. �

4. An application

For a restoring h ∈ C(R) (i.e. ∀y ∈ R \ {0}, yh(y) > 0) consider the problem{
φα(u′)

}′ + αc(t)h(u) = 0, t > 0; u(0) = 0, u′(0) = b > 0, (4.1)

where α, β, q > 0 and c being as before and for small S > 0, h((s) = O
(
Sβ
)
.

For the strongly oscillatory solution z of
{
φα(z′)

}′ + αCφα(z) = 0, t > 0, and
w of

{
φα(w′)

}′ + αCφβ(w) = 0 , wherever u 6= 0, we have[
zφα(z′)− zφα(

z

u
u′)
]′ = ζα(z, u) + αC|z|α+1

{c(t)h(u)
Cφα(u)

− 1
}
,

[
wφα(w′)− wφα(

w

u
u′)
]′ = ζα(w, u) + α|w|α+1

{c(t)h(u)
Cφα(u)

− |w|β−α
} (4.2)

As h is a restoring function, we can define the function h1 ∈ C(R+,R+) by h(S) :=
h1(S2)S for all S ∈ R and define H1(t) :=

∫ t
0
sh1(s2)ds such that equation (4.1)

reads (
φα(u′)

)′ + αc(t)h1(u2)u = 0, t > 0; u(0) = 0, u′(0) = b > 0. (4.3)

Thus, similar to Theorem 1.3, we have the following result.

Lemma 4.1. With h1 defined in (4.3), ∀C,α, b, β > 0 the problem(
φ(u′)

)′ + αCh1(u2)u = 0, t > 0; u(0) = 0, u′(0) = b

is strongly oscillatory. furthermore and for its solution u, and all t > 0, we have

2|u′(t)|α+1 + (α+ 1)CH1(u2(t)) = 2bα+1,

u(S) = 0 and u′(T ) = 0 =⇒ |u′(S)| = b and |u(T )| =
[
H−1

1

( 2bα+1

(α+ 1)C
)]1/2

.

(4.4)
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Proof. From
(
φ(u′)

)′ + αCh1(u2)u = 0, u′u′′φ′α(u′) + αCh1(u2)uu′ = αu′′φα(u′) +
αC2 (u2)′h1(u2) = 0 thus

1
2

(u′2)′
(
u′2
)α−1

2 +
C

2
(u2)′h1(u2) =

[ 1
α+ 1

|u′|α+1 +
C

2
H1(u2)

]′ = 0

leading to (4.4)(i). Then (4.4)(ii) follows as well. The oscillation of the solution is
obtained as for the Theorem 1.3. �

Theorem 4.2. For c0, α, β, q > 0, let h1 ∈ C(R, [0,∞)) with h1(S2)S = O(sβ) for
small S > 0 and c ∈ C1(R, (c0,∞)) with c′ > 0 and c(t) = O(tq) as t → ∞. Then
any non-trivial and bounded solution of(

φα(u′)
)′ + αc(t)h1(u2)u = 0, t > 0; u(0) = 0; u′(0) = b > 0 (4.5)

is strongly oscillatory.
(1) Moreover for any R > 0 let z := zR be a non-trivial oscillatory solution of(

φα(z′)
)′ + c(R)αφα(z) = 0; t > 0.

Then for S > 0 large enough, the oscillatory solution u of (4.5) has a zero in any
nodal set D(z+

R) ⊂ ΩS for R > S.
(2) Consequently as t→∞, for β∗ := α∧β the solution in (4.5) has the estimates

|u(t)| ≤ const.[t]
−q
β+1 := const.

[ 1
c(t)

]1/(β∗+1)
,

diam(D(u+)) = O
([ 1
c(t)

]1/(β∗+1)
)
.

(4.6)

Proof. (1) For some C > 0 let z be a strongly oscillatory solution to{
φα(z′)

}′ + αCφα(z) = 0.

Then (4.2)(i) with h(u) replaced by h1(u2)u becomes[
zφα(z′)− zφα(

z

u
u′)
]′ = ζα(z, u) + αC|z|α+1

{c(t)h1(u2)u
Cφα(u)

− 1
}
.

If we assume that u > ν > 0 in some ΩR, then

ζα(z, u) + αC|z|α+1
{c(t)h1(u2)u

Cφα(u)
− 1
}
> ζα(z, u) + αC|z|α+1

{
c(t)G(ν)− 1

}
with

G(ν) := inf
u≥ν

c(t)h1(u2)u
Cφα(u)

.

Because c(t) is unbounded, {c(t)G(ν) − 1} is eventually strictly positive. Assume
that that u > 0 and decreases to zero in some ΩS .

(a) Case where α > β > 0. For very large R > S, as u↘ 0,{c(t)h1(u2)u
Cφα(u)

− 1
}
> const.

[c(t)
C
|u|β−α − 1

]
> 0

eventually and the integration over D(z) of (4.2)(i) leads to a contradiction.
(b) Let β ≥ α > 0 and w the oscillatory solution in (4.2)(ii). Assume that

u > 0 in some ΩS . We use h1(u2)u instead of h(u) there. For T > 0, We define
JT := (T, 2T ) and ν := ν(T ) = infJT

h1(u
2)u

Cφα(u) . We take R > S so large that w+



10 TADIE EJDE-2017/28

has many nodal sets in JR and c(t) > C there. We choose b = w′(0) such that
(w+)β−α < ν(R). Then in JR,{c(t)h1(u2)u

Cφα(u)
− |w|β−α

}
> 0,

and integration over D(w) of (4.2)(ii) leads to a contradiction. Therefore u cannot
remain positive throughout any ΩT .

Assume that there is T > 0 such that for all R > T , there is a nodal set
D(z+

R) := DR ⊂ JR such that for some µ > 0, u > µ on DR. We remind that
c(t) ≥ c(R) for all t > R. Then similar to (a) and (b) above, we see that as we
can make z+

R arbitrary small in JR, we cannot find T and µ > 0 such that the
assumption holds.

(2) The estimates are obtained through the Corollary 3.2, keeping in mind that
as h1(τ2) ≤ const.τβ , we have H1(τ) ≤ const.τβ+1. �

References

[1] J. Jaros, T. Kusano; A Picone-type identity for second order half-linear differential equations

Acta Math. Univ. Comenianae, (1999) vol. LXVIII, 137-151.

[2] J. Jaros, T. Kusano, N. Yosida; Picone-type Inequalities for Nonlinear Elliptic Equations
and their Applications J. of Inequal. & Appl., (2001), vol. 6, 387-404.

[3] Patricia Pucci, James Serrin; The strong maximum principle revisited, Journal of Differential

Equations, 196 (2004), 1-66.
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