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PERIODIC SOLUTIONS FOR PLANAR SYSTEMS WITH
TIME-VARYING DELAYS

CHUANGXIA HUANG, LIHONG HUANG, YIMIN MENG

Abstract. This paper concerns delay differential systems that can be re-

garded as a model of two-neuron artificial neural network with delayed feed-
back. Some interesting results are obtained for the existence of a periodic

solution for the system. Our approach is based on the continuation theorem

of coincidence degree, and a-priori estimates of the periodic solutions.

1. Introduction

Neural networks are complex and large-scale nonlinear dynamics, while the dy-
namics of the delayed neural network are even richer and more complicated [10].
To obtain a deep and clear understanding of the dynamics of neural networks, there
has been an increasing interest in the investigations of delayed neural network mod-
els with two neurons, see [1, 3, 4, 6, 7, 8, 9, 11]. Táboas [9] considered the system
of delay differential equations

ẋ1(t) = −x1(t) + αf1(x1(t− τ), x2(t− τ)),

ẋ2(t) = −x2(t) + αf2(x1(t− τ), x2(t− τ)),
(1.1)

which arises as a model for a network of two saturating amplifiers (or neurons) with
delayed outputs, where α > 0 is a constant, f1, f2, are bounded C3 functions on R2

satisfying
∂f1

∂x2
(0, 0) 6= 0 and

∂f2

∂x1
(0, 0) 6= 0,

and the negative feedback conditions : x2f1(x1, x2) > 0, x2 6= 0; x1f2(x1, x2) < 0,
x1 6= 0. Táboas showed that there is an α0 > 0 such that for α > α0, there exists
a non-constant periodic solution with period greater than 4. Further study on the
global existence of periodic solutions to system (1.1) can be found in [1] and [6].
All together there is only one delay appearing in both equations. Ruan and Wei [8]
investigated the existence of non-constant periodic solutions of the following planar
system with two delays

ẋ1(t) = −a0x1(t) + a1f1(x1(t− τ1), x2(t− τ2)),

ẋ2(t) = −b0x2(t) + b1f2(x1(t− τ1), x2(t− τ2)),
(1.2)
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where a0 > 0, b0 > 0, a1 and b1 are constants, the function f1 and f2 satisfy
fj ∈ C3(R2), fj(0, 0) = 0, ∂fj

∂xj
(0, 0) = 0, j = 1, 2; x2f1(x1, x2) 6= 0 for x2 6= 0;

x1f2(x1, x2) 6= 0 for x1 6= 0; ∂f1
∂x2

(0, 0) 6= 0, ∂f2
∂x1

(0, 0) 6= 0.
Recently, Zhang and Wang [11] investigated the system

ẋ1(t) = −a1x1(t) + b1f1(x1(t− τ1), x2(t− τ2)),

ẋ2(t) = −a2x2(t) + b2f2(x1(t− τ3), x2(t− τ4)),
(1.3)

where a1, a2, b1, b2, τ1, τ2, τ3, τ4 are constants. By means of the continuation theorem
of the coincidence degree, they get some results about the periodic solutions to
system (1.3).

However, delays considered in all above systems are constant. It is well known
that the delays in artificial neural networks are usually time-varying, and sometimes
vary violently with time due to the finite switching speed of amplifiers and faults in
the electrical circuit. They slow down the transmission rate and tend to introduce
some degree of instability in circuits. Therefore, fast response must be required in
practical artificial neural-network designs. The technique to achieve fast response
troubles many circuit designers. So, it is more important to investigate the dynamic
behave of neural networks with time-varying delays. Keeping this in mind, in this
paper, we consider the following planar system where coefficients and delays are all
periodically varying in time:

ẋ1(t) = −a1(t)x1(t) + b1(t)f1(x1(t− τ1(t)), x2(t− τ2(t))),

ẋ2(t) = −a2(t)x2(t) + b2(t)f2(x1(t− τ3(t)), x2(t− τ4(t))),
(1.4)

where ai ∈ C(R, (0,∞)), bi ∈ C(R, R), i = 1, 2, are periodic with a common period
ω(> 0), fi ∈ C(R2, R), i = 1, 2; τi ∈ C(R, [0,∞)), i = 1, 2, 3, 4, being ω-periodic.

For a continuous function g: [0, ω] → R, we introduce the following notation:

g =
1
ω

∫ ω

0

g(t)dt,

a(t) = min{a1(t), a2(t)}, b(t) = max{|b1(t)|, |b2(t)|}.

Obviously, system (1.4) is more general than system (1.3). To our best knowl-
edge, the existence of ω-periodic solution of the system (1.4) has not been studied
in pervious works. We shall employ the powerful method of coincidence degree
to establish the existence of a periodic solution to (1.4). These conditions in our
results are very simple and easy to be verified.

2. Existence of Periodic Solution

In this section, we use the coincidence degree theory to obtain the existence of
an ω-periodic solution to (1.4). For the sake of convenience, we briefly summarize
the theory as below.

Let X and Z be normed spaces, L: Dom L ⊂ X → Z be a linear mapping and
N : X → Z be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dimKerL = codimIm L < ∞ and Im L is closed in Z. If L
is a Fredholm mapping of index zero, there exist continuous projectors P : X → X
and Q : Z → Z such that Im P = kerL and Im L = kerQ = Im(I −Q). It follows
that L

∣∣Dom L ∩ ker P : (I − P )X → Im L is invertible. We denote the inverse of
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this map by Kp. If Ω is a bounded open subset of X, the mapping N is called L-
compact on Ω if QN(Ω) is bounded and Kp(I−Q)N : Ω → X is compact. Because
Im Q is isomorphic to kerL, there exists an isomorphism J : Im Q → ker L.

Let Ω ⊂ Rn be open and bounded, f ∈ C1(Ω, Rn)∩C(Ω, Rn) and y ∈ Rn\f(∂Ω∪
Sf ), i.e., y is a regular value of f . Here, Sf = {x ∈ Ω : Jf (x) = 0}, the critical set
of f , and Jf is the Jacobian of f at x. Then the degree deg{f,Ω, y} is defined by

deg{f,Ω, y} =
∑

x∈f−1(y)

sgn Jf (x)

with the agreement that the above sum is zero if f−1(y) = ∅. For more details
about degree theory, we refer to the book by Deimiling [2].

Now, with the above notation, we are ready to state the continuation theorem.

Lemma 2.1 (Continuation Theorem [5, P.40]). Let L be a Fredholm mapping of
index zero and let N be L-compact on Ω. Suppose

(a) For each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω
(b) QNx 6= 0 for each x ∈ ∂Ω ∩ ker L and

deg{JQN, Ω ∩ ker L, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω.

The following is the main result of this section.

Theorem 2.2. Suppose that |fi(x1, x2)| ≤ αi|x1|+βi|x2|+Mi and D1
D > 0, D2

D > 0,
where αi ≥ 0, βi ≥ 0 and Mi > 0 are constants for i = 1, 2, D = a2 − abα1 −
abβ2 + b2α1β2 − b2α2β1, D1 = abM1 + b2M2β1 − b2M1β2, D2 = abM2 − b2M2α1 +
b2M1α2, a = mint∈[0,ω] a(t), b = maxt∈[0,ω] b(t). Then system (1.4) has an ω-
periodic solution.

Proof. Take X = {u(t) = (x1(t), x2(t))T ∈ C(R, R2) : u(t) = u(t + ω) for t ∈ R}
and denote

‖xi‖ = max
t∈[0,ω]

|xi(t)|, i = 1, 2;

‖u‖0 = max
i=1,2

‖xi‖.

Equipped with the norm ‖.‖0, X is a Banach space. For any u(t) ∈ X, because of
the periodicity, it is easy to check that

t 7→
(
−a1(t)x1(t) + b1(t)f1(x1(t− τ1(t)), x2(t− τ2(t))),
−a2(t)x2(t) + b2(t)f2(x1(t− τ3(t)), x2(t− τ4(t))).

)
∈ X.

Let
L : Dom L = {u ∈ X : u ∈ C1(R, R2)} 3 u 7→ u′ ∈ X,

P : X 3 u → u ∈ X, Q : X 3 x 7→ x ∈ X,

where for any K = (k1, k2)T ∈ R2, we identify it as the constant function in X with
the value vector K = (k1, k2)T . Define N : X → X given by

(Nu)(t) =
(
−a1(t)x1(t) + b1(t)f1(x1(t− τ1(t)), x2(t− τ2(t))),
−a2(t)x2(t) + b2(t)f2(x1(t− τ3(t)), x2(t− τ4(t))).

)
∈ X.
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Then system (1.4) can be reduced to the operator equation Lu = Nu. Note that N
is continuous, since fi are uniformly continuous on compact sets of R2. It is easy
to see that

ker L = R2,

Im L = {x ∈ X : x = 0}, which is closed in X,

dim kerL = codim Im L = 2 < ∞,

and P , Q are continuous projectors such that

Im P = kerL, ker Q = Im L = Im(I −Q).

It follows that L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (to L) Kp : Im L → ker P ∩Dom L is given by

(Kp(u))(t) =

(∫ t

0
x1(s)ds− 1

ω

∫ ω

0

∫ s

0
x1(v)dvds∫ t

0
x2(s)ds− 1

ω

∫ ω

0

∫ s

0
x2(v)dvds

)
.

Thus,

(QNu)(t) =
(

1
ω

∫ ω

0
{−a1(s)x1(s) + b1(s)f1(x1(s− τ1(s))x2(s− τ2(s)))}ds

1
ω

∫ ω

0
{−a2(s)x2(s) + b2(s)f2(x1(s− τ3(s))x2(s− τ4(s)))}ds

)
,

and

(Kp(I −Q)Nu)(t)

=

(∫ t

0
{−a1(s)x1(s) + b1(s)f1(x1(s− τ1(s)), x2(s− τ2(s)))}ds∫ t

0
{−a2(s)x2(s) + b2(s)f2(x1(s− τ3(s)), x2(s− τ4(s)))}ds

)

−
(

1
ω

∫ ω

0

∫ s

0
{−a1(v)x1(v) + b1(v)f1(x1(v − τ1(v)), x2(v − τ2(v)))}dvds

1
ω

∫ ω

0

∫ s

0
{−a2(v)x2(v) + b2(v)f2(x1(v − τ3(v)), x2(v − τ4(v)))}dvds

)
+
(

( 1
2 −

t
ω )
∫ ω

0
{−a1(s)x1(s) + b1(s)f1(x1(s− τ1(s)), x2(s− τ2(s)))}ds

( 1
2 −

t
ω )
∫ ω

0
{−a2(s)x2(s) + b2(s)f2(x1(s− τ3(s)), x2(s− τ4(s)))}ds

)
.

Clearly, QN and Kp(I−Q)N are continuous. For any bounded open subset Ω ⊂ X,
QN(Ω) is obviously bounded. Moreover, applying the Arzela-Ascoli theorem, one
can easily show that Kp(I −Q)N(Ω) is compact. Note that Kp(I − Q)N is a
compact operator and QN(Ω) is bounded, therefore, N is L-compact on Ω for any
bounded open subset Ω ⊂ X. Since Im Q = kerL, we take the isomorphism J
of Im Q onto kerL to be the identity mapping. Corresponding to equation Lu =
λNu, λ ∈ (0, 1), we have

ẋ1(t) = λ{−a1(t)x1(t) + b1(t)f1(x1(t− τ1(t)), x2(t− τ2(t)))},
ẋ2(t) = λ{−a2(t)x2(t) + b2(t)f2(x1(t− τ3(t)), x2(t− τ4(t)))}.

(2.1)

Now we reach the position to search for an appropriate open bounded subset Ω
for the application of the Lemma 2.1. Assume that u = u(t) ∈ X is a solution
of system (2.1). Then, the components xi(t)(i = 1, 2) of u(t) are continuously
differentiable. Thus, there exists ti ∈ [0, ω] such that |xi(ti)| = maxt∈[0,ω] |xi(t)|.
Hence, ẋi(ti) = 0. This implies

ai(ti)xi(ti) = b1(ti)fi(x1(ti − τ1(ti)), x2(ti − τ2(ti))), (2.2)

for i = 1, 2. Since

|fi(x1, x2)| ≤ αi|x1|+ βi|x2|+ Mi for i = 1, 2,
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we get

|xi(ti)| ≤
αib|x1(ti − τ1(ti))|

a
+

βib|x2(ti − τ2(ti))|
a

+
bMi

a
, (2.3)

for i = 1, 2. From k1 = D1
D , k2 = D2

D , we find that

k1 =
α1b

a
k1 +

β1b

a
k2 +

bM1

a
,

k2 =
α2b

a
k1 +

β2b

a
k2 +

bM2

a
.

(2.4)

Now, we choose a constant number d > 1 and take

Ω = {(x1, x2)T ∈ R2; |xi| < dki for i = 1, 2},
where k1 = D1

D > 0, k2 = D2
D > 0. We will show that Ω satisfies all the requirements

given in Lemma 2.1. In fact, we will prove that if xi(ti−τ1(ti)) ∈ Ω then xi(ti) ∈ Ω
for i = 1, 2. Therefore, it means that u = u(t) is uniformly bounded with respect
to λ when the initial value function belongs to Ω. It follows from (2.3) that

|xi(ti)| ≤
αib|x1(ti − τ1(ti))|

a
+

βib|x2(ti − τ2(ti))|
a

+
bMi

a

< d
(αib

a
k1 +

βib

a
k2 +

bMi

a

)
.

This, together with (2.4), implies |xi(ti)| < dki, for i = 1, 2. Therefore,

‖xi‖ < dki for i = 1, 2. (2.5)

Clearly, dki, i=1,2, are independent of λ. It is easy to see that there are no λ ∈ (0, 1)
and u ∈ ∂Ω such that Lu = λNu. If u = (x1, x2)T ∈ ∂Ω ∩ ker L = ∂Ω ∩ R2, then
u is a constant vector in R2 with |xi| = dki for i = 1, 2. Note that QNu = JQNu,
we have

QNu =
(
−a1x1 + b1f1(x1, x2)
−a2x2 + b2f2(x1, x2)

)
(2.6)

We claim that
|(QNu)i| > 0 for i = 1, 2. (2.7)

Contrarily, suppose that there exists some i such that |(QNu)i| = 0, i.e., aix1 =
bifi(x1, x2). So, we have

dki = |xi|

≤ b

a
|fi(x1, x2)|

≤ αib

a
dk1 +

βib

a
dk2 +

bMi

a

<
αib

a
dk1 +

βib

a
dk2 + d

bMi

a
= dki,

(2.8)

this is a contradiction. Therefore, (2.7) holds, and hence,

QNu 6= 0, for any u ∈ ∂Ω ∩ ker L = ∂Ω ∩ R2. (2.9)

Consider the homotopy F : (Ω ∩ ker L)× [0, 1] → Ω ∩ ker L, defined by

F (u, µ) = −µdiag(a1, a2)u + (1− µ)QNu, (2.10)

for all u ∈ Ω ∩ ker L = Ω ∩ R2 and µ ∈ [0, 1].
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When u ∈ ∂Ω∩ker L = ∂Ω∩R2 and µ ∈ [0, 1], u = (x1, x2)T is a constant vector
in R2 with |xi| = dki for i = 1, 2. Thus

‖F (u, µ)‖0 = max
i=1,2

| − µaixi + (1− µ)[−aixi + bifi(x1, x2)]|

= max
i=1,2

| − aixi + (1− µ)bifi(x1, x2)|.

We claim that

‖F (u, µ)‖0 > 0 . (2.11)

Contrarily, suppose that ‖F (u, µ)‖0 = 0, then

aixi = (1− µ)bifi(x1, x2) for i = 1, 2.

Thus

dki = |xi|

= (1− µ)
bi

ai
|fi(x1, x2)|

≤ b

a
|fi(x1, x2)|

≤ αib

a
dk1 +

βib

a
dk2 +

bMi

a

<
αib

a
dk1 +

βib

a
dk2 + d

bMi

a
= dki.

This is impossible. Thus, (2.11) holds. Therefore,

F (u, µ) 6= 0 for (u, µ) ∈ (∂Ω ∩ ker L)× [0, 1].

From the property of invariance under a homotopy, it follows that

deg{JQN, Ω ∩ ker L, 0} = deg{F (· , 0),Ω ∩ ker L, 0}
= deg{F (· , 1),Ω ∩ ker L, 0}

= sgn

∣∣∣∣∣−a1 0
0 −a2

∣∣∣∣∣
= sgn{a1 · a2} 6= 0.

We have shown that Ω satisfies all the assumptions of Lemma 2.1. Hence, Lu = Nu
has at least one ω-periodic solution on Dom L ∩ Ω. This completes the proof. �

Corollary 2.3. Suppose there exist positive constants Mi such that |fi(x1, x2)| ≤
Mi for i = 1, 2. Then system (1.4) has at least an ω-periodic solution.

Proof. Since |fi(x1, x2)| ≤ Mi (i = 1, 2,) implies that αi, βi = 0, hence the condi-
tions in Theorem 2.2 are all satisfied. �
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[1] M. Baptistini and P. Táboas; On the existence and global bifurcation of periodic solutions to
planar differential delay equations, J. Diff. Eqns., 127 (1996), 391-425.

[2] K. Deimling; Nonlinear Functional Analysis, Springer, NewYork, 1985.

[3] T. Faria; On a planar system modelling a neuron network with memory, J. Differential
Equations, 168(2000), 129-149.

[4] K. Gopalsamy and I. Leung; Delay induced periodicity in a neural netlet of excitation and

inhibition, Physica D 89(1996), 395-426.
[5] R. E. Gaines and J. L. Mawhin; Coincidence Degree and Nonlinear Differenial Equations,

Springer-Verlag, Berlin, 1977.
[6] S. M. S. Godoy and J. G. Dos. Reis; Stability and existence of periodic solutions of a func-

tional differential equation, J. Math. Analysis Appl., 198 (1996), 381-398.

[7] L. Olien and J. Bélair; Bifurcations, stability, and monotonicity properties of a delayed neural
network model, Physica D 102(1997), 349-363.

[8] S. Ruan and J. Wei; Periodic solutions of planar systems with two delays, Proc. R. Soc.

Edinb., 129A(1999), 1017-1032.
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