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Abstract

This thesis provides an alternate proof of the Matrix Tree Theorem by shifting the

focus to oriented incidences. We examine the weak walk contributors from the de-

terminant of the Laplacian matrix of oriented graphs and classify them according to

similar circle structures attained through circle activation. The members of each of

these contribution classes form an alternating rank-signed Boolean lattice in which

all members cancel. We then restrict our contributors to those corresponding to a

given cofactor Lij and demonstrate that those contributors that no longer cancel are

in one-to-one correspondence with the spanning trees of the graph. These results

allow for possible extension into examining tree-counts in signed graphs and oriented

hypergraphs.
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1 Background and Definitions

The following definitions and theorems provide background into the methods used

in this paper and possible extensions of the theory. In section 1.1, we begin by

defining the specific type of graphs we are going to be working with. In section 1.2,

we introduce weak walks and an important graphical structure, trees. In section 1.3,

we build the graphic matrices that are used in calculating the Laplacian of a specific

graph. In section 1.4, we introduce permutations which will be used to sort objects

defined in section 2.

1.1 Graph Definitions

The following definitions restrict the type of graph that will be used in the follow-

ing paper. Although the form of a graph used is restricted by not allowing loops

or hyperedges, our approach allows for the extension to the generalized case of ori-

ented hypergraphs (defined in [7]). The following definitions are adaptations of the

definitions in [6] that have been modified to fit this paper.

V is a finite set of elements called vertices and E is a finite set of elements called

edges. An incidence function is a function ι : V ×E → {0, 1} such that a vertex and

edge are said to be incident if ι(v, e) = 1. The double (v, e) is an incidence where

ι(v, e) = 1. I denotes a set of incidences determined by ι. An incidence orientation

is a function σ : I → {+1,−1}. An oriented graph G is a quadruple (V,E, I, σ) such

that:

1. σ(v, e)σ(w, e) = −1.

2. Each edge appears in exactly 2 incidences.

This notation for a graph has been chosen in order to place an emphasis on the

incidences of the graph. The results in section 3 use the incidences to develop a
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new approach to look at the Matrix Tree Theorem. Note that statement 2 from the

definition for an oriented graph disallows hyperedges and loops.

The degree of vertex v, denoted by deg(v) is equal to the number of incidences

containing v. Two distinct vertices v and w are said to be adjacent with respect to edge

e if there exist incidences (v, e) and (w, e) such that (v, e) 6= (w, e). An adjacency is

a triple (v, w; e) where v and w are adjacent with respect to e by incidences (v, e) and

(w, e). The sign of an adjacency (v, w; e) is defined as: sgne(v, w) = −σ(v, e)σ(w, e).

If v and w are not adjacent with respect to e, we say sgne(v, w) = 0. Notice that in

this paper, all adjacencies are positively signed because the definition for an oriented

graph requires that σ(v, e)σ(w, e) = −1 and thus sgne(v, w) = 1 for all e ∈ E. These

definitions were adapted from [3]. Figure 1 depicts the three possibilities for the

signing of adjacencies.

Negative Adjacency (Introverted) Negative Adjacency(Extroverted)

Positive Adjacency

Figure 1: Positive and Negative Signed Adjacencies.

1.2 Walks, Circles, and Trees

In this section, we adapt the definition of a weak walk from [3], and develop the

definition of a spanning tree of a graph G. The Matrix Tree Theorem proved in this

paper counts the number of spanning trees in a graph. Following the definitions,

we begin an example for a graph G1 and display the spanning trees for this specific

graph.

A weak walk is a sequence W̃ = a0, i1, a1, i2, a2, i3, a3, . . . , an−1, in, an of vertices,
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edges, and incidences, where {ak} is an alternating sequence of vertices and edges, ih

is an incidence containing ah−1 and ah and a0 ∈ V , an ∈ V . A walk is a weak walk

in which the condition i2h−1 6= i2h is added. This implies that when leaving a vertex

v, you must travel to another vertex w before returning to v. A weak walk of length

1 of the form v, i, e, i, v is called a backstep and because the unique incidence (v, e)

appears twice, we will represent this by (v, e)2.

The sign of a weak walk is:

sgn(W̃ ) = (−1)p
n∏
h=1

σ(ih), where p = bn/2c.

Thus the sign of a weak walk is the product of the signs of all incidences in the

weak walk times −1 for every pair of incidences in the walk. This signing is a direct

result of the signing for the adjacencies in the graph.

We let w̃(vi, vj, k) denote the number of weak walks of length k from vi to vj.

The number of positive weak walks of length k from vi to vj is w̃+(vi, vj, k), and

the number of negative weak walks of length k from vi to vj is w̃−(vi, vj, k). We let

w̃±(vi, vj, k) = w̃+(vi, vj, k)− w̃−(vi, vj, k).

A closed weak walk is a weak walk in which a0 = an. This means that the first

and last vertex of the walk are the same. A circle is a weak walk in which no vertex

or edge is repeated except for a0 = an. If the final condition is no longer required

– thus a0 does not have to equal an – the weak walk is called a path. A connected

graph is a graph in which there exists a path from each vertex to every other vertex.

Throughout this paper, all graphs are connected graphs.

A tree is a connected circle-free graph. A spanning tree of G is a tree that contains

all vertices of the graph. It is known from [4] that every connected graph is a tree if

and only if it contains |V |−1 edges. Thus, a spanning tree of G contains |V | vertices,

|V | − 1 edges, and no circles. Consider the oriented graph G1 in Figure 2.

3



v1 v2

v3v4

e1

e2

e3

e4 e5

Figure 2: The incidence-oriented graph G1.

Figure 3 below depicts the eight possible spanning trees of G1. Notice that each

of the trees has been created by removing two of the original edges.

Figure 3: All 8 spanning trees of G1 (the removed edges are left as dashed lines).

1.3 Graphic Matrices

In this section, we define five graphic matrices and provide examples of the matrices

corresponding to the graph G1 in Figure 2. We also discuss what the entries in certain

matrices represent in the graph. This is important because the link between weak

walks and the Laplacian matrix is the key idea to the following alternative proof of

the Matrix Tree Theorem. The following definitions and theorems are adapted from

[6].
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The degree matrix of a graph G is a V ×V matrix DG = diag(deg(v1), . . . , deg(vn)).

Theorem 1.3.1. The number of strictly weak-walks of length k in a graph G, from

vi to vj, is equal to the ij-entry of Dk
G.

The adjacency matrix of a graph G is a V × V matrix AG = [aij], where aij =∑
e∈E

sgne(vi, vj).

Theorem 1.3.2. The number of walks of length k in a graph G, from vi to vj, is

equal to the ij-entry of Ak.

Example 1.3.3. For the graph G1 in Figure 2, we have

DG1 =



3 0 0 0

0 2 0 0

0 0 3 0

0 0 0 2


AG1 =



0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0


.

The incidence matrix of an oriented graph G is the V × E matrix HG = [ηij],

where

[ηij] =


+1, if vi is the positive end of ej,

−1, if vi is the negative end of ej,

0, otherwise.

The Laplacian Matrix of a graph G is LG = HGH
T
G.

Example 1.3.4. For the graph G1 in Figure 2, we have

HG1 =



−1 0 0 1 1

1 −1 0 0 0

0 1 −1 0 −1

0 0 1 −1 0


LG1 =



3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2


.
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Theorem 1.3.5. If G is an oriented graph, then LG = HGH
T
G = DG − AG

It is important to understand why the two expressions in Theorem 1.3.5 are equiv-

alent. HG has elements which are the incidences of the graph G and thus represents

all of the possible weak walks of length k = 1
2

from vi to ej. H
T
G has elements which

are the incidences of the graph G and thus represents all of the possible weak walks of

length k = 1
2

from ei to vj. When HGH
T
G is calculated, through matrix multiplication

all of the possible weak walks of length k from vi to vj are calculated. On the other

side of the equality, DG is the number of strictly weak walks of length k from vi to

vj. Subtracted from that is the matrix AG which is the number of walks of length

k from vi to vj where i 6= j. Thus, both matrices hold the number of weak walks of

length k from vi to vj. The signs on these entries, however are off by −1. This issue

is resolved by the following corollary.

Corollary 1.3.6. By Theorem 1.3.1 and 1.3.2, the number of weak walks of length 1

in a graph G, from vi to vj, is

w̃(vi, vj, 1) =

 −(LG)ij, if i 6= j

(LG)ij, if i = j.

The k-weak-walk matrix of a graph G is W̃G,k = [wij] where wij = w̃±(ai, aj; k)

and ai, aj ∈ V .

Example 1.3.7. For the graph G1 in Figure 2, we have

W̃G1 =



−3 1 1 1

1 −2 1 0

1 1 −3 1

1 0 1 −2


.

Theorem 1.3.8 (Introduced in [7] and refined in [3]). For a graph G, LG = −W̃G,1.
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This theorem provides an important link between the elements of the Laplacian

and what they represent in the graph — weak walks.

1.4 Permutations

A permutation of a set X is a bijective function π : X → X. If there is a list of distinct

elements i1, i2, . . . ir such that π(i1) = i2, π(i2) = i3, . . . , π(ir−1) = ir, π(ir) = i1, then

there is a cycle of length r, denoted by (i1i2 . . . ir). The product of all cycles in π is

called the cycle decomposition of π. Every permutation can be written as a unique

product of disjoint cycles (see [5]).

Example 1.4.1. All possible permutations of the 4 element set {1, 2, 3, 4}:

e, (12), (13), (14), (23), (24), (34), (123), (132), (234), (243), (134), (143), (124), (142),

(12)(34), (13)(24), (14)(23), (1234), (1432), (1243), (1342), (1423), (1324).

2 Contributors

In this section, we introduce an important structure called a contributor. In section

2.2 we introduce theorems to count the number of contributors a graph has along

with the sign of each contributor. In section 2.3 we sort contributors into contribution

classes using unpacking along adjacencies and circle activation. In section 2.4 we show

that the signs of contributors in any contribution class sum to zero.

2.1 Relevant and Irrelevant Permutations

We will now examine permutations of the vertices of a graph G. We define the

relevant permutations of G, denoted R(SV , G), as the set of all permutations π such

that every cycle of π is a circle in G. Moreover, the irrelevant permutations of G,

7



denoted I(SV , G), is the set of all permutations π such that some cycle of π is not a

circle in G.

Referring to the graph G1 in Figure 2, (123) is a relevant permutation while (24)

is an irrelevant permutation.

Lemma 2.1.1. If π is an irrelevant permutation of G, then
∏

i∈[1,|V |]
π(i) 6=i

ai,π(i) = 0.

Proof. If π is an irrelevant permutation, then there exists a cycle in π such that its

adjacency sequence is not a circle in G, so at least one adjacency has sign 0. Therefore,

the product of the adjacencies is 0.

For the following example, we represent the vertex vi by its index i. In our example

G1, there is no adjacency between v2 and v4, thus the irrelevant permutations are those

in which the permutation includes π(2) = 4 or π(4) = 2.

Example 2.1.2. The irrelevant and relevant permutations of G1:

R(SV , G1) = {e, (12), (13), (14), (23), (34), (123), (132), (234), (134), (143),

(12)(34), (14)(23), (1234), (1432)}

I(SV , G1) = {(24), (243), (124), (142), (13)(24), (1243), (1423), (1342), (1324)}.

2.2 Contributors

Each permutation π of the set V of G creates objects called contributors, where

a contributor is an incidence structure consisting of weak walks that form circles

corresponding to the disjoint cycles from π and one backstep from each fixed element

in π. The sign of a contributor is sgn(c) = (−1)ψ(c) where ψ(c) is the number of

circles in contributor c. We define the set C to be the set of all contributors.

Each permutation can produce multiple contributors. For each fixed element (i)

in π there are deg(vi) many backsteps possible at vi, while for each non-fixed element

8



j in π, there are aj,π(j) many walks of length 1 possible from vj to vπ(j). From this

observation, we produce the following theorem.

Theorem 2.2.1. Each permutation π produces
∏

i∈[1,|V |]
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi) many con-

tributors.

By Lemma 2.1.1, the irrelevant permutations produce no contributors, so contrib-

utors only come from the relevant permutations. Thus, the total number of contribu-

tors is the sum of the number of contributors produced by each relevant permutation.

This is represented in the following theorem.

Theorem 2.2.2. The number of contributors is

∑
π∈R(SV ,G)

∏
i∈[1,|V |]
π(i) 6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi).

Example 2.2.3. For the graph G1, the number of contributors created by the permu-

tation (23) is

a2,3 · a3,2 · deg(v1) · deg(v4) = 1 · 1 · 3 · 2 = 6.

If this is applied to every relevant permutation in the graph G1, the total number of

contributors is 76.

Figure 4 displays all of the contributors of the graph G1 sorted by their permuta-

tions. When only one incidence is drawn with a 2 above it, this refers to a backstep

from that vertex along the corresponding incidence. Notice that the permutations

that contain non-trivial cycles create contributors with the corresponding circles. For

this reason, the terms cycle and circle can be used interchangeably.
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Figure 4: Contributors of the graph G1.

2.3 Contribution Classes

This section introduces the method used for grouping contributors together into

classes rather than sorting them by their permutations. This method of grouping

is proved to be a partition of all contributors.

Unpacking a backstep along an adjacency is a function ρ : (v, e)2 → (v, w; e)

such that the adjacency (v, w; e) exists. Given an adjacency, packing is the function

ρ−1 : (v, w; e) → (v, e)2 such that in the permutation, π(v) = w. Activating a circle
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of a contributor is the minimal sequence of unpackings that completes a circle in G

and such a circle is called active. Deactivating a circle of a contributor is the minimal

sequence of packings such that no adjacencies in the given circle remain and such a

circle is called inactive.

Let R be the relation ciRcj if the contributors ci and cj can be made identical

through a sequence of activating or deactivating circles. These contributors are then

said to be in the same contribution class C.

Figure 5 depicts all of the contributors again, but also highlights three examples

of contribution classes and the contributors contained in them.
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Figure 5: Contributors of the graph G1 with 3 contribution classes shaded.
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The highlighted contributors are grouped into their corresponding contribution

classes, as shown in Figure 6. We organize each contribution class into a boolean

lattice which is ranked by ψ(c) (the number of active circles in a given contributor)

and ordered by subsets of active circles. The height of each lattice is h(C) which is

the rank of the largest element in the lattice. The highest level of each contribution

class is the contributor with all possible circles active, and the bottom level is the

contributor with all circles inactive.

2

2

2 2

2

2

2

2
2

2

2

2 2

2 2

2 2

2 2

Figure 6: Contribution classes in Boolean Lattices.

Theorem 2.3.1. R is an equivalence relation, where each contribution class is an

equivalence class.

The proof of this is trivial. Theorem 2.3.1 then implies that R forms a partition

of the contributors. Let C be the set of all contribution classes.

Theorem 2.3.2. The number of contribution classes in a graph G is
∏
v∈V

deg(v).

Proof. The 0 element of each boolean lattice is a contributor created from the identity

permutation. Thus, there are the same number of contributors from the identity

permutation as contribution classes. By Theorem 2.2.1, there are
∏
v∈V

deg(v) many

contribution classes.

Example 2.3.3. For the graph G1, the number of contribution classes is 3·2·3·2 = 36.
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Notice that this is the number of contributors from the identity permutation in Figure

4.

2.4 Counting Each Contribution Class

Theorem 2.4.1. Each contributor in its completely unpacked form contains at least

1 circle.

Proof. In the completely unpacked form, each contributor resembles a graph with

n vertices and n edges. By a known theorem, a graph with n vertices and n edges

contains a cycle.

We now let rC equal the number of circles in a completely activated contributor

of class C, and recall that ψ(c) equals the number of circles in a given contributor c.

Theorem 2.4.2. The number of contributors in each contribution class C is 2rC .

Proof. The contributors arise from all relevant permutations, so within each contri-

bution class, all possible combinations of cycles appear, thus every contributor has

a distinct boolean representation where 1’s represent cycles that are active and 0’s

represent cycles that are inactive. Because of this boolean nature, every contribution

class has 2rC members.

Theorem 2.4.3. Each contribution class has at least 2 members.

Proof. Each contribution class has at least one cycle in its completely unpacked mem-

ber. Thus, there are at least 21 members.

We know

 rC

ψ(c)

 is the number of contributors in C that have exactly ψ(c)

circles. Thus,

 rC

0

+

 rC

2

+

 rC

4

+. . . =

 rC

1

+

 rC

3

+

 rC

5

+. . .
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shows that in each contribution class, the number of contributors with an even number

of circles equals the number of contributors with an odd number of circles. Those

with an even number of circles are signed positively and those with an odd number

of circles are signed negatively. The highlighted contribution classes are represented

again, in Figure 7, with the signing function sgn(c) applied.

2

2

2 2

2

2

2

2
2

2

2

2 2

2 2

2 2

2 2

Figure 7: Contribution classes in Boolean Lattices with signs determined by sgn(c).

Since each contribution class is boolean and the alternating sum of binomial co-

efficients is zero, we have the following theorem.

Theorem 2.4.4. Given a graph G, for each contribution class C,
∑
c∈C

sgn(c) = 0.

3 The Determinant of the Laplacian Matrix

In this section we introduce determinants and examine what happens when we take

the determinant of the Laplacian matrix. This is an important step in proving the

Matrix Tree Theorem in section 4.
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3.1 Determinants

The determinant of a matrix A is

det(A) =
∑
π∈Sn

sgn(π)
n∏
i=1

ai,πi .

Where the sum is computed over all permutations π of {1, 2, 3, ..., n}. Where the sign

of a permutation is sgn(π) = (−1)N(π) and N(π) is the number of inversions in π.

An inversion is an instance where numbers are out of their natural order. We define

ec(π), oc(π), and tc(π) to be the number of even, odd, and total (non-trivial) cycles

in π, respectively.

Theorem 3.1.1. For a given permutation π, sgn(π) = (−1)ec(π)

Proof. Every transposition (cycle with 2 elements) contains one inversion. Every odd

cycle is the product of an even number of transpositions. Every even cycle is the

product of an odd number of transpositions. Thus, the number of even cycles is the

number of inversions in π, and sgn(π) = (−1)ec(π).

Theorem 3.1.2. For a given permutation π,
n∏
i=1

`i,π(i) = (−1)oc(π)
n∏
i=1

|`i,π(i)| where

`i,π(i) is the (i, π(i)) entry of the Laplacian matrix.

Proof. In LG = DG−AG, the sign of `i,π(i) where i = π(i) is positive because entries in

DG are positive. The sign of `i,π(i) where i 6= π(i) is negative because the entries in AG

are positive but they are each subtracted from 0 in the calculation of the Laplacian.

Thus the sign of each entry of the Laplacian is (−1)α(π) where α(π) is the number of

adjacencies in π. Each odd cycle in π contains an odd number of adjacencies. Each

even cycle in π contains an even number of adjacencies. Thus, the number of odd

cycles is the number of adjacencies in π. Therefore,
n∏
i=1

`i,π(i) = (−1)oc(π)
n∏
i=1

|`i,π(i)|.
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3.2 Taking the Determinant of the Laplacian

In this section we show that calculating det(LG) is equivalent to summing all of the

signs of the contributors. Using Theorem 2.4.4, and the fact that the contribution

classes form a partition of the contributors, we prove the following theorem:

Theorem 3.2.1. For an oriented graph G,

det(LG) = 0.

This theorem is a known result. However, the proof below utilizes contribution

classes which will aid in the final proof of the Matrix Tree Theorem.

Proof. From the definition we have

det(LG) =
∑
π∈SV

sgn(π)
∏

i∈[1,|V |]

`i,π(i)

=
∑
π∈SV

(−1)ec(π)
∏

i∈[1,|V |]

`i,π(i)

=
∑
π∈SV

(−1)ec(π)(−1)oc(π)
∏

i∈[1,|V |]

∣∣`i,π(i)∣∣
=

∑
π∈SV

(−1)tc(π)
∏

i∈[1,|V |]

∣∣`i,π(i)∣∣ .
We now separate the summation by relevant and irrelevant permutations, and get

=
∑

π∈R(SV ,G)

(−1)tc(π)
∏

i∈[1,|V |]

∣∣`i,π(i)∣∣+
∑

π∈I(SV ,G)

(−1)tc(π)
∏

i∈[1,|V |]

∣∣`i,π(i)∣∣ .
By Lemma 2.1.1, the second summation equals 0. Simplifying the expression to:

=
∑

π∈R(SV ,G)

(−1)tc(π)
∏

i∈[1,|V |]

∣∣`i,π(i)∣∣ .
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We now separate the product into off-diagonal and diagonal elements,

=
∑

π∈R(SV ,G)

(−1)tc(π)
∏

i∈[1,|V |]
π(i)6=i

∣∣`i,π(i)∣∣ ∏
i∈[1,|V |]
π(i)=i

∣∣`i,π(i)∣∣
=

∑
π∈R(SV ,G)

(−1)tc(π)
∏

i∈[1,|V |]
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

di,π(i)

=
∑

π∈R(SV ,G)

(−1)tc(π)
∏

i∈[1,|V |]
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi).

From Theorem 2.2.2 we sum over all contributors,

=
∑
c∈C

sgn(c) · 1.

Summing over all contributors within their disjoint contribution classes gives us:

=
∑
C∈C

∑
c∈C

sgn(c).

By Theorem 2.4.4,

=
∑
C∈C

0

= 0.

Thus, det(LG) = 0.

4 Matrix Tree Theorem

In this section, we introduce the Matrix Tree Theorem and then provide an alternative

way of showing that it is true. This method is useful because it generalizes the theorem

by breaking it down to the smallest pieces possible, incidences.
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Theorem 4.0.1 (Matrix Tree Theorem). The number of spanning trees of a graph

G is the value of any cofactor of the Laplacian matrix.

One proof of this theorem is found in [2] where Seth Chaiken uses directed arcs

and also provides a count of objects when multiple rows and columns are deleted.

In [8], Tutte uses spanning aboresences, darts and the conductances of link-darts to

prove this theorem.

4.1 Calculating a Determinant by Expansion by Minors

The method of taking a determinant using expansion by minors will allow us to see

what contributors are present when we examine a cofactor of the Laplacian matrix.

The determinant is defined as follows:

det(A) =
k∑
i=1

(−1)i+jaijMij

such that Mij is a minor of A (determinant of A with row i and column j crossed

out). A cofactor Cij of A is a signed version of a minor where Cij = (−1)i+jMij.

Each part of the sum consists of the entry aij, a signing function, and the minor

Mij. So when we examine a cofactor of the matrix LG we will rather examine the

contributors of G that consist of the weak walk from vi to vj.

4.2 Partitioning Contribution Classes

Fix vertex vr, let M0(vr, C) be the maximal element in contribution class C where vr

appears in no active circle, and let m1(vr, C) be the minimal element in contribution

class C where vr is contained in an active circle. The downset of a contributor c is

↓ c = {x ∈ C | x ≤ c} and the upset of a contributor c is ↑ c = {x ∈ C | x ≥ c} (see

[1]).
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Lemma 4.2.1. If m1(vr, C) exists and C has height n, then:

1. rk(m1(vr, C)) = 1.

2. m1(vr, C) and M0(vr, C) are complements.

3. ↓M0(vr, C) and ↑ m1(vr, C) are sub-boolean lattices of C, both with height n−1.

4. ↓ M0(vr, C) and ↑ m1(vr, C) bipartition the elements of C into sub-boolean

lattices (one may be empty).

Proof. The order of these proofs is important because the conclusions from each part

build upon each other to prove part 4.

part 1: By definition, m1(vr, C) is the contributor in C with only one circle

activated, and thus has rank 1.

part 2: By the definition of m1(vr, C) and M0(vr, C), m1(vr, C) ∧M0(vr, C) = 0

since they have no circles in common. Also, m1(vr, C) ∨M0(vr, C) = 1 because all

possible circles not in m1(vr, C) are in M0(vr, C) and thus their join contains all

possible circles. Therefore, m1(vr, C) and M0(vr, C) are complements.

part 3: The upset and downset of any element of a boolean lattice is still a

boolean lattice. Thus, ↓ M0(vr, C) and ↑ m1(vr, C) are sub-boolean lattices of C.

M0(vr, C) has corank 1 so h(↓ M0(vr, C)) = n − 1. Also, m1(vr, C) has rank 1 so

h(↑ m1(vr, C)) = n− 1.

part 4: It follows from parts 1, 2 and 3 that there is no element in both ↓M0(vr, C)

and ↑ m1(vr, C). Also, each contributor in the contribution class C is either in

↓ M0(vr, C) or ↑ m1(vr, C) because vr must either be in an active circle or not in

an active circle. In addition, if m1(vr, C) does not exist, the two sets still create a

bipartition with ↑ m1(vr, C) empty.
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We define the following subsets of C:

C0(vr) = {c ∈ C | vr � v, {c} = ↓M0(vr, C) for some c ∈ C}

C1,k(vr) = {c ∈ C | vr ∼ vk, {c} = ↑ m1(vr, C) for some c ∈ C}.

Recall from Theorem 2.4.3 that each boolean lattice has at least 2 contributors.

However, the sub-boolean lattices ↓ M0(vr, C) and ↑ m1(vr, C) may only contain 1

contributor. The subsets C0(vr) and C1,k(vr) are the sets of contributors which were

in height 1 boolean lattices that have now been split into two height 0 sub-boolean

lattices and thus their signs no longer cancel within their respective sub-boolean

lattices. All of the contributors not contained in these subsets belong to sub-boolean

lattices of height greater than or equal to 1 and therefore, the sum of the signs of

these contributors is 0 within their respective sub-boolean lattices.

Example 4.2.2. Figure 8 is an adaptation of Figure 6 in which each contribution

class has been partitioned by ↓M0(vr, C) and ↑ m1(vr, C).

2

2

2 2

2

2

2

2
2

2

2

2 2

2 2

2 2

2 2

Figure 8: The sub-boolean lattices corresponding to ↓M0(v1, C).

The elements which are circled in this figure are in the set ↓M0(v1, C) and those

which are not circled are in the set ↑ m1(vr, C). In the first contribution class ↓

M0(v1, C) is a height 1 sub-boolean lattice and ↑ m1(vr, C) is a height 1 sub-boolean
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lattice. In the second contribution class ↓ M0(v1, C) is a height 1 sub-boolean lattice

and ↑ m1(vr, C) is empty. Therefore, because the height of these sub-boolean lattices

is greater than or equal to 1, the sum of the signs of the contributors in each of these

sub-boolean lattices is 0. In the third contribution class ↑ m1(vr, C) is a height 0

sub-boolean lattice and ↓ M0(vr, C) is a height 0 sub-boolean lattice so m1(vr, C) =↑

m1(vr, C) and M0(vr, C) =↓ M0(vr, C), moreover, these contributors are in C1,k(vr)

and C0(vr), respectively.

Theorem 4.2.3. We can rewrite the determinant of the Laplacian using the sets

C0(vr) and C1,k(vr) as follows:

det(LG) = deg(vr)

[
1

deg(vr)

∑
c∈C0(vr)

1

]
+

∑
k∈[1,|V |]r{r}

−ar,k

[
1

−ar,k

∑
c∈C1,k(vr)

−1

]
.

Proof. We continue from a step in the proof of Theorem 3.2.1.

det(LG) =
∑
c∈C

sgn(c)

=
∑
C∈C

∑
c∈C

sgn(c).

By Lemma 4.2.1, each contribution class can be partitioned as follows:

=
∑
C∈C

 ∑
c∈↓M0(vr,C)

sgn(c) +
∑

c∈↑m1(vr,C)

sgn(c)


=

∑
C∈C

∑
c∈↓M0(vr,C)

sgn(c) +
∑
C∈C

∑
c∈↑m1(vr,C)

sgn(c).

The first pair of sums is the signed number of contributors where vr is not adjacent

to any other vertex, while the second pair of sums is the signed number of contributors

where vr is adjacent to some other vertex. By Theorem 2.4.4 each inner sum is 0 if,

and only if, ↓M0(vr, C) or ↑ m1(vr, C) is a boolean lattice with height greater than 0.
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Moreover, in a height 1 contribution class C with non-empty partitions ↓ M0(vr, C)

and ↑ m1(vr, C), the contributors M0(vr, C) and m1(vr, C) are the elements 0 and 1

of the lattice C, respectively. Thus,

=
∑

c∈C0(vr)

sgn(c) +
∑

k∈[1,|V |]r{r}

∑
c∈C1,k(vr)

sgn(c).

In the first summation, sgn(c) = 1 for all contributors because none of these con-

tributors contain circles. In the second summation, sgn(c) = −1 for all contributors

because they are all top elements in height 1 boolean lattices. Therefore,

=
∑

c∈C0(vr)

1 +
∑

k∈[1,|V |]r{r}

∑
c∈C1,k(vr)

−1.

The determinant of the Laplacian can now be written as follows:

det(LG) = deg(vr)

[
1

deg(vr)

∑
c∈C0(vr)

1

]
+

∑
k∈[1,|V |]r{r}

−ar,k

[
1

−ar,k

∑
c∈C1,k(vr)

−1

]
.

4.3 Proving the Matrix Tree Theorem

We will now examine the expressions from Theorem 4.2.3 within the brackets. Below

we show that each expression represents the number of spanning trees in the graph

G and is a cofactor of the Laplacian matrix of G.

Theorem 4.3.1. The number of spanning trees in a graph G, T (G), is represented

by:

T (G) =
1

deg(vr)

∑
c∈C0(vr)

1 =
1

−ar,k

∑
c∈C1,k(vr)

−1

for some k ∈ [1, |V |]r {r}.

22



Proof. The first expression is the number of contributors in C0(vr) divided by deg(vr),

thus those contributors in C0(vr) that are identical when the weak walk corresponding

to deg(vr) is eliminated will be grouped as one contributor. The remaining contribu-

tors in the first expression now contain |V | vertices and |V |−1 weak walks (which via

unpacking are in one-to-one correspondence with edges). These contributors when

unpacked also do not contain a circle by the definition of C0(vr). Therefore, these

unpacked contributors are the spanning trees of the graph G.

Similarly, the second expression is negative the number of contributors in C1,k(vr)

divided by −ar,k, thus those contributors in C1,k(vr) that are identical when the weak

walk corresponding to ar,k is eliminated will be grouped as one contributor. The

remaining contributors in the second expression now contain |V | vertices and |V | − 1

weak walks (which via unpacking are in one-to-one correspondence with edges). These

contributors when unpacked also do not contain a circle because the definition of

C1,k(vr) requires that they each had only one circle containing the weak walk from vr

to vk which has now been eliminated. Therefore, these unpacked contributors are the

spanning trees of the graph G.

Example 4.3.2. Figure 9 is an adaptation of Figure 5 where the contributors that

contain a weak walk from v1 to v1 are outlined in bold. The contributors that contain

an active or inactive circle after the weak walk from v1 to v1 has been eliminated are in

height 1 sub-boolean lattices while the others are in height 0 sub-boolean lattices. The

contributors that are shaded alike are examples of contributors that are identical when

the weak walk from v1 to v1 is eliminated. After grouping the identical contributors

that are in height 0 sub-boolean lattices, only 8 remain. These 8 contributors when

completely unpacked are the spanning trees in Figure 3.
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Figure 9: Contributors of the graph G1 with a weak walk from v1 to v1.

Now we must prove that the expressions from Theorem 4.3.1 are the cofactors of

LG, thus completing the proof of the Matrix Tree Theorem.

Theorem 4.3.3. For the Laplacian matrix for a graph G the cofactors are

Crr =
1

deg(vr)

∑
c∈C0(vr)

1

Crk =
1

−ar,k

∑
c∈C1,k(vr)

−1 for some k ∈ [1, |V |]r {r}.
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Proof. Recall from the proof of Theorem 3.2.1

det(LG) =
∑

π∈R(SV ,G)

(−1)tc(π)
∏

i∈[1,|V |]
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi).

To calculate this determinant using expansion by minors across row r (the matrix

can expanded, across any row or column) we have the following:

det(LG) = deg(vr)
∑

π∈R(SV ,G)
π(r)=r

(−1)tc(π)
∏

i∈[1,|V |]
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]r{r}
π(i)=i

deg(vi) (4.1)

+
∑

k∈[1,|V |]r{r}

−ar,k
∑

π∈R(SV ,G)
π(r)=k

(−1)tc(π)−1
∏

i∈[1,|V |]r{r}
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi). (4.2)

The signing function in Equation 4.2 has changed because the adjacency ar,k has

been factored out and every adjacency in an oriented graph is negative so a negative

sign has been removed from the summation as well.

Thus, the cofactors of LG are

Crr =
∑

π∈R(SV ,G)
π(r)=r

(−1)tc(π)
∏

i∈[1,|V |]
π(i) 6=i

ai,π(i)
∏

i∈[1,|V |]r{r}
π(i)=i

deg(vi)

Crk =
∑

π∈R(SV ,G)
π(r)=k

(−1)tc(π)−1
∏

i∈[1,|V |]r{r}
π(i) 6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi)

for k ∈ [1, |V |]r {r}.

The expression in Equation 4.1 is the sum of the signs of all contributors containing

a weak walk from vr to vr, which is equivalent to the number of elements in C0(vr)

because the sum of the signs of the contributors that are in sub-boolean lattices of

25



height greater than 0 will equal 0. All of the remaining contributors are positively

signed because they do not contain circles, so

deg(vr)
∑

π∈R(SV ,G)
π(r)=r

(−1)tc(π)
∏

i∈[1,|V |]
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]r{r}
π(i)=i

deg(vi) =
∑

c∈C0(vr)

1. (4.3)

Similarly, the expression in Equation 4.2 is the sum of the signs of all contributors

containing a weak walk from vr to vk for some k ∈ [1, |V |]r {r}, which is equivalent

to −1 times the number of elements in C1,k(vr) because the sum of the signs of the

contributors that are in sub-boolean lattices of height greater than 0 will equal 0. All

of these contributors are negatively signed because they each contain one circle, so

−ar,k
∑

π∈R(SV ,G)
π(r)=k

(−1)tc(π)−1
∏

i∈[1,|V |]r{r}
π(i) 6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi) =
∑

c∈C1,k(vr)

−1. (4.4)

for some k ∈ [1, |V |]r {r}.

Therefore, by dividing both sides of Equation 4.3 by deg(vr) and by dividing both

sides of Equation 4.4 by ar,k we have

∑
π∈R(SV ,G)
π(r)=r

(−1)tc(π)
∏

i∈[1,|V |]
π(i) 6=i

ai,π(i)
∏

i∈[1,|V |]r{r}
π(i)=i

deg(vi) =
1

deg(vr)

∑
c∈C0(vr)

1

∑
π∈R(SV ,G)
π(r)=k

(−1)tc(π)
∏

i∈[1,|V |]r{r}
π(i)6=i

ai,π(i)
∏

i∈[1,|V |]
π(i)=i

deg(vi) =
1

−ar,k

∑
c∈C1,k(vr)

−1

for some k ∈ [1, |V |]r {r}.

We have now shown that any cofactor of the Laplacian matrix for a graph G is

the number of spanning trees in the graph. This completes the proof of the Matrix

Tree Theorem.
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5 Conclusion

This new interpretation of the Matrix Tree Theorem shifts the focus to oriented

incidences in order to provide a representation of the incidence structures that appear

in the determinant of the Laplacian matrix for a graph. This generalization can

possibly aid future investigations into the tree-count for signed graphs and oriented

hypergraphs. Evaluating tree-counts using the contributor method for the duals of

graphs may lead to further conclusions about oriented hypergraphs and their tree

structures.

Future investigations may also include the examination of cycle covers and their

relationship to contributors. In addition, we have begun to investigate what the

eigenvalues for Laplacian matrices represent in relation to the incidence structure of

the graph. Hopefully this new interpretation will be a valuable tool when attempting

to answer these questions.
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