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GROUND AND BOUND STATES OF PERIODIC
SCHRÖDINGER EQUATIONS WITH SUPER OR

ASYMPTOTICALLY LINEAR TERMS

QINGFANG WU, DONGDONG QIN

Abstract. This paper is concerned with existence of ground and bound states

for a class of nonlinear Schrödinger equation with periodic potential. We
impose general assumptions on the nonlinearity with super or asymptotically

linear growth, and find some refinements of known results and new results by

using the perturbation method and a mountain pass argument. In particular,
a critical point theory is established for the asymptotically linear growth case.

1. Introduction and statement of main results

We consider the nonlinear stationary Schrödinger equation

−4u+ V (x)u = f(x, u), for x ∈ RN ,
u(x)→ 0, as |x| → ∞,

(1.1)

where V ∈ C(RN ) and f ∈ C(RN ×R) depend periodically on x. Equation (1.1) is
a fundamental equation of quantum mechanics which appears in many applications,
such as studies of Bose-Einstein condensates in condensed matter physics and gap
solitons in photonic crystals [18]. Solutions of (1.1) can also be interpreted as
stationary states of the corresponding reaction-diffusion equation which models
phenomena from chemical dynamics [3].

The principal aim of this paper is to establish the existence of ground and bound
states of (1.1) when f is asymptotically linear or superlinear as |u| → ∞. Denote
by Φ the energy functional associated with (1.1), see (1.7). A nontrivial solution
u0 of (1.1) is called a ground state if Φ(u0) is the lowest level for Φ at which there
are nontrivial solutions of (1.1), i.e., u0 satisfies

Φ(u0) = inf
K

Φ, where K := {u ∈ E \ {0} : Φ′(u) = 0}, (1.2)

it will be seen later that ground state u0 can be characterized as the minimizer
of Φ on the Nehari-Pankov manifold N− which has infinite dimension and infinite
co-dimension, i.e.,

Φ(u0) = inf
N−

Φ,

where N− = {u ∈ E \ E− : 〈Φ′(u), u〉 = 〈Φ′(u), v〉 = 0, ∀v ∈ E−},
(1.3)
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N− is first introduced by Pankov [18], and E, E− are working spaces defined later
in Section 2. Since V (x) is periodic in x, the operator A := −4 + V has purely
continuous spectrum σ(A) which is bounded below and consists of closed disjoint
intervals (see [24, Theorem XIII.100]). Depending on the location of 0 in σ(A),
there are many results of existence and multiplicity solutions to equation (1.1) with
periodic potential V , see, e.g., [1, 3, 7, 13, 17, 18, 19, 23, 26, 29, 30, 36, 37, 38] for
superlinear case and [6, 8, 9, 10, 15, 16, 12, 21, 27, 31, 33, 34] for asymptotically
linear case.

In this article, we consider mainly the case when 0 is a boundary point of the
spectrum σ(A), i.e. the potential V (x) satisfies the assumption

(H1) V ∈ C(RN ) is 1-periodic in xi, i = 1, 2, . . . , N , 0 ∈ σ(A), and there exists
b0 > 0 such that (0, b0] ∩ σ(A) = ∅.

Different from the case 0 6∈ σ(A), the working space is only a Banach space, not a
Hilbert space. Another difficulty to overcome is the lack of a priori bounds for the
Palais-Smale sequences or Cerami sequences. Existence of nontrivial solutions were
obtained in [3, 37] with the aid of an approximation argument, and in [36] using an
improved generalized linking theorem. In recent paper [30], a new variational set-
ting which is more suitable for this case was established by Tang. Moreover, ground
state solutions satisfying (1.2) were obtained under following general assumptions:

(H2) f ∈ C(RN × R) is 1-periodic in each of x1, x2, . . . , xN , and there exist
constants c1, c2 > 0 and 2 < % ≤ p < 2∗ such that

c1 min
{
|t|%, |t|2

}
≤ tf(x, t) ≤ c2(|t|% + |t|p), ∀(x, t) ∈ RN × R; (1.4)

(H3) lim|t|→∞ F (x, t)/t2 =∞ uniformly in x ∈ RN , where F (x, t) =
∫ t

0
f(x, s)ds.

A similar result can be found in [17] where following Nehari type condition was
used,

(H4) t 7→ f(x, t)/|t| is strictly increasing on (−∞, 0) ∪ (0,∞).
The generalized Nehari manifold method used in [17, 26] depends heavily on (H4),
and it seems not valid by weakening (H4) to following weak version:

(H5) t 7→ f(x, t)/|t| is non-decreasing on (−∞, 0) ∪ (0,∞).
Therefore it is interesting to obtain a ground state solution of (1.1) without (H4).
Using the non-Nehari manifold method introduced in [31], existence of a ground
state solution satisfying (1.3) was proved in [19] under (H2)–(H3) and (H5), how-
ever, it is still unknown whether the same result can be found by using the gen-
eralized Nehari manifold method. So some new tricks are looked forward to being
introduced which is the right issue this paper intends to address. When the non-
linearity f is asymptotically linear at infinity, the variational framework and ap-
proaches used in [3, 17, 36, 37] seem no more applicable, there seem only two papers
in the literature dealing with this case, they are references [20, 21] where ground
state solutions satisfying (1.2) and (1.3), were obtained using the concentration
compactness arguments and the non-Nehari manifold method. In particular, (H2),
(H5) and following assumption on asymptotical behavior of f were used there.

(H6) f(x, t) = V∞(x)t+f∞(x, t), where V∞ ∈ C(RN ) is 1-periodic in x1, x2, . . . ,
xN , f∞(x, t) = o(|t|) as |t| → ∞ uniformly in x ∈ RN , and inf V∞(x) >
Λ := inf[σ(A) ∩ (0,∞)].

Therefore, it is nature to ask whether the asymptotically linear case can be studied
further via a new method different from those used in [20, 21]?
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Motivated by above works, in the paper, we shall introduce new tricks to solve
above intriguing problems. Using the idea introduced in [22], we first establish a
critical point theory for asymptotically linear growth case and show that infN− Φ
can be attained by a nontrivial solution of (1.1). Particularly, following weaker
condition than (H4) is used, which allows to introduce the Nehari-Pankov manifold
and to define a ground state as minimizer of the energy functional on it.

(H7) t 7→ f(x, t)/|t| is non-decreasing on (−∞, 0)∪(0,∞), and strictly increasing
on [−τ0, 0) ∪ (0, τ0] for some τ0 > 0.

Afterwards, we consider the superlinear growth case and introduce a abstract crit-
ical point theory on manifold N− and following manifold studied in [5]:

M := {u ∈ E : Φ′(u)|E− = 0}. (1.5)

Based on the perturbation method used in [32], we first show that infN− Φ is
achieved under (H2), (H3) and (H5). Subsequently, we obtain a nontrivial solution
of (1.1) via a mountain pass argument on the constraintM, provided the following
classic Ambrosetti-Rabinowitz condition and convexity condition (H9) are satisfied.
Minimax characterization of the corresponding critical value is also given if (H5) is
additionally satisfied.

(H8) there exists 2 < µ < 2∗ such that

tf(x, t) ≥ µF (x, t), ∀x ∈ RN , t ∈ R; (1.6)

(H9) F (x, t) is convex with respect to t ∈ R for all x ∈ RN , or, equivalently,
F (x, t+ s)− F (x, t)− f(x, t)s ≥ 0 for all t, s ∈ R, x ∈ RN .

By Lemma 3.4 we see that (H9) is satisfied if (H5) holds.
Let E be the Banach space defined in Section 2. Under assumptions (H1) and

(H2), the following functional

Φ(u) =
1
2

∫
RN

(|∇u|2 + V (x)u2) dx−
∫

RN
F (x, u) dx, (1.7)

is well defined for all u ∈ E, moreover Φ ∈ C1(E,R) (see Lemma 2.2). A standard
argument [35] shows that critical points of Φ are the solutions of (1.1).

Before stating result for asymptotically linear growth case, we introduce following
condition:
(H10) f(x, t) = V∞(x)t + f∞(x, t), where V∞ ∈ C(RN ) is 1-periodic in each of

x1, x2, . . . , xN with inf V∞ > 0, f∞(x, t) = o(|t|) as |t| → ∞ uniformly in
x ∈ RN , and there exists a u0 ∈ E+ \ {0} such that

‖u0‖2∗ − ‖v‖2∗ −
∫

RN
V∞(x)(u0 + v)2dx < 0, ∀v ∈ E−. (1.8)

The norm ‖ · ‖∗ is defined later in (2.3). Condition (H10) is weaker than (H6).
Indeed, let {E(λ) : −∞ < λ < +∞} be the spectral family of operator A, if
inf V∞ > Λ, then we have Λ̄‖ū‖22 ≤ ‖ū‖2∗ ≤ µ̄‖ū‖22 for every ū ∈ (E(µ̄) − E(0))E ⊂
E+ by taking µ̄ ∈

(
Λ̄, inf V∞

)
. Thus for any v ∈ E−,

‖ū‖2∗ − ‖v‖2∗ −
∫

RN
V∞(x)(ū+ v)2dx

≤ ‖ū‖2∗ − ‖v‖2∗ − inf V∞
(
‖ū‖22 + ‖v‖22

)
≤ −

[
(inf V∞ − µ̄)‖ū‖22 + inf V∞‖v‖22

]
< 0,
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this shows (1.8).

Theorem 1.1. Let (H1), (H2), (H7), (H10) be satisfied. Then (1.1) has a ground
state solution u0 ∈ E \ {0} satisfying Φ(u0) = infN− Φ = infK ≥ κ, where κ is a
positive constant. Moreover,∫

RN

[
|∇u0|2 + (V (x)− V∞(x))u2

0

]
dx < 0.

Corollary 1.2. Let (H1), (H2), (H6), (H7) be satisfied. Then there is a ground
state solution u0 ∈ E \ {0} of (1.1) such that Φ(u0) = infN− Φ = infK Φ ≥ κ > 0
and ∫

RN

[
|∇u0|2 + (V (x)− V∞(x))u2

0

]
dx < 0.

Note that, N− contains all nontrivial critical points of Φ, i.e. the critical set K
is a very small subset of N−. Therefore infN− Φ ≤ infK Φ. If there is a nontrivial
solution u0 such that Φ(u0) = infN− Φ, then infK Φ is attained at u0 and Φ(u0) =
infN− Φ = infK Φ which implies that u0 is a ground state solution.

For superlinear growth case, we have following results.

Theorem 1.3. Let (H1), (H2) be satisfied.

(a) If (H3), (H5) hold, then (1.1) has a solution u0 ∈ E\{0} satisfying Φ(u0) =
infN− Φ = infK Φ ≥ κ0, where κ0 is a positive constant.

(b) (H8), (H9) hold, then (1.1) has a nontrivial solution. Moreover if (H5) is
satisfied, then (1.1) has a solution u0 ∈ E \ {0} such that

Φ(u0) = inf
N−

Φ = inf
γ∈Γ

sup
t∈[0,1]

Φ(γ(t)) ≥ κ0 > 0, (1.9)

where Γ = {γ ∈ C([0, 1],M) : γ(0) = 0, ‖γ(1)+‖ > r, Φ(γ(1)) < 0}, and
r > 0 satisfying infu∈E+:‖u‖=r Φ(u) > 0.

Theorems 1.1 and 1.3 give a positive answer to the problems mentioned in the
introduction. In Section 3, we give the proof of Theorem 1.1 by improving the
generalized Nehari manifold method [4, 26], see Theorem 3.1, as a consequence of
which the least energy value c0 := infN− Φ has a minimax characterization given
by

c0 = Φ(u0) = inf
v∈E+

0 \{0}
max

u∈E−⊕R+v
Φ(u), (1.10)

where E+
0 is defined later by (3.1). Theorem 1.1 complements the results in [21]

where Corollary 1.2 was obtained via the concentration compactness arguments.
Based on the generalized Nehari manifold method [26] and a perturbation argument,
we find the Palais-Smale sequences in Section 4 and give the proof of Theorem 1.3
in Section 5, respectively. It is easy to see that Theorem 1.3-(a) improves the
related results in [17, 37] and Theorem 1.3-(b) seems to be new. Compared with
[3, Theorem 1.1], the following necessary condition (H11) used in [3, 36, 37] is not
needed in Theorem 1.3-(b) with the additional convexity condition (H9).

(H11) there exist constants C > 0, 2 < % < 2∗ such that

tf(x, t) ≥ C|t|%, ∀(x, t) ∈ RN × R.
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Under condition (H5), characterization of minimal energy can be derived from
Theorem 1.3-(b), i.e.,

c0 = Φ(u0) = inf
v∈E+\{0}

max
u∈E−⊕R+v

Φ(u) = inf
γ∈Γ

sup
t∈[0,1]

Φ(γ(t)).

Note that these minimax principles are much simpler than the usual characteriza-
tions related to the concept of linking.

Remark 1.4. Under assumptions of Theorem 1.1, there exists a α0 > 0 such that

f(x, t)f∞(x, t) ≤ 0, ∀(x, t) ∈ RN × R, and

f(x, t)f∞(x, t) < 0 for 0 < |t| ≤ α0.
(1.11)

Indeed, by (H2), (H5) and (H10), one sees that f∞(x, t)/t is non-decreasing on
t ∈ (0,∞) and non-increasing on t ∈ (−∞, 0), and f∞(x, t)/t → −V∞(x) < 0 as
|t| → 0. These together with f∞(x, t) = o(|t|) as |t| → ∞ imply that tf∞(x, t) ≤ 0
for all (x, t) ∈ RN ×R. Together with the fact tf(x, t) > 0 for t 6= 0 using (1.4), we
deduce that there exists a α0 > 0 satisfying (1.11).

Before proceeding to the proof of main results, we give some nonlinear examples.
Functions listed in Examples 1.5, 1.6 satisfy all assumptions of Corollary 1.2. For
function f defined by Example 1.7, it satisfies all the assumptions of Theorem 1.3,
but it does not satisfy (H11).

Example 1.5. f(x, t) = V∞(x) min{|t|ν , 1}t, where ν ∈ (0, 2∗ − 2), V∞ ∈ C(RN )
is 1-periodic in each of x1, x2, . . . , xN and inf V∞ > Λ.

Example 1.6. f(x, t) = V∞(x)t[1− 1
ln(e+|t|ν) ]t, where ν ∈ (0, 2∗−2), V∞ ∈ C(RN )

is 1-periodic in each of x1, x2, . . . , xN and inf V∞ > Λ.

Example 1.7. f(x, t) = h(x) min{ 1
%1
|t|%1−2, 1

%2
|t|%2−2}t, where 2 < %1 < %2 < 2∗

and h ∈ C(RN ) is 1-periodic in each of x1, x2, . . . , xN with inf h > 0.

This article is organized as follows. In Section 2, we briefly introduce the vari-
ational framework setting established in [30]. Equation (1.1) with asymptotically
linear growth nonlinearity is considered in Section 3 where a critical point theory
is established and Theorem 1.1 is proved. In Section 4, we consider the superlinear
growth case and find the Palais-Smale sequences on the manifolds M and N−,
respectively. Theorem 1.3 is showed in the last Section by studying a perturbed
problem associated with (1.1).

2. Variational setting

In this section, as in [30], we introduce the variational framework associated
with problem (1.1). Throughout this paper, we denote by ‖ · ‖s the usual Ls(RN )
norm for s ∈ [1,∞) and Ci, i ∈ N for different positive constants. Note that
operator A = −∆ + V is self-adjoint in L2(RN ) with domain D(A) = H2(RN ).
Let {E(λ) : −∞ < λ < +∞} be the spectral family of A, and |A|1/2 be the square
root of |A|. Set U = id−E(0)−E(0−). Then U commutes with A, |A| and |A|1/2,
and A = U|A| is the polar decomposition of A (see [11, Theorem 4.3.3]). Let
E∗ = D(|A|1/2), the domain of |A|1/2, then E(λ)E∗ ⊂ E∗ for all λ ∈ R. E∗ is
Hilbert space with the inner product

(u, v)0 =
(
|A|1/2u, |A|1/2v

)
L2 + (u, v)L2 , ∀u, v ∈ E∗,
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and the norm
‖u‖0 =

√
(u, v)0, ∀u ∈ E∗,

here and in the sequel, (·, ·)L2 denotes the usual L2(RN ) inner product. Clearly,
C∞0 (RN ) is dense in E∗.

By (H1), there exists a a0 > 0 such that

V (x) + a0 > 0, ∀x ∈ RN . (2.1)

The argument of [30, (3.2)-(3.3)] shows that
1

1 + a0
‖u‖2H1(RN ) ≤ ‖u‖

2
0 ≤ (1 + 2a0 +M)‖u‖2H1(RN ), ∀u ∈ E∗ = H1(RN ). (2.2)

Denote
E−∗ = E(0)E∗, E+ = [E(+∞)− E(0)]E∗,

and

(u, v)∗ =
(
|A|1/2u, |A|1/2v

)
L2
, ‖u‖∗ =

√
(u, u)∗, ∀u, v ∈ E∗. (2.3)

Lemma 2.1 ([30, Lemma 3.1]). Suppose that (H1) is satisfied. Then E∗ = E−∗ ⊕
E+,

(u, v)∗ = (u, v)L2 = 0, ∀u ∈ E−∗ , v ∈ E+, (2.4)
and

‖u+‖2∗ ≥ Λ‖u+‖22, ‖u−‖2∗ ≤ a0‖u−‖22, ∀u = u− + u+ ∈ E∗ = E−∗ ⊕ E+, (2.5)

where a0 is given by (2.1).

It is easy to see that ‖ · ‖∗ and ‖ · ‖H1(RN ) are equivalent norms on E+, and if
u ∈ E∗ then u ∈ E+ ⇔ E(0)u = 0. Thus E+ is a closed subset of (E∗, ‖ · ‖0) =
H1(RN ). Define a new norm on E−∗ by setting

‖u‖− =
(
‖u‖2∗ + ‖u‖2%

)1/2
, ∀u ∈ E−∗ . (2.6)

Let E− be the completion of E−∗ with respect to ‖ · ‖−. Then E− is separable and
reflexive,

E− ∩ E+ = {0}, (u, v)∗ = 0, ∀u ∈ E−, v ∈ E+. (2.7)
Set E = E− ⊕ E+ and define norm ‖ · ‖ as follows

‖u‖ =
(
‖u−‖2− + ‖u+‖2∗

)1/2
, ∀u = u− + u+ ∈ E = E− ⊕ E+. (2.8)

It is easy to verify that (E, ‖ · ‖) is a Banach space, and√
Λ‖u+‖2 ≤ ‖u+‖∗ = ‖u+‖, ‖u+‖s ≤ γs‖u+‖, quad∀u ∈ E, s ∈ [2, 2∗], (2.9)

where γs ∈ (0,+∞) is imbedding constant.

Lemma 2.2 ([30, Lemma 3.2]). Suppose that (H1) is satisfied. Then the following
statements hold:

(i) E− ↪→ Ls(RN ) for % ≤ s ≤ 2∗;
(ii) E− ↪→ H1

loc(RN ) and E− ↪→↪→ Lsloc(RN ) for 2 ≤ s < 2∗;
(iii) For % ≤ s ≤ 2∗, there exists a constant Cs > 0 such that

‖u‖ss ≤ Cs
[
‖u‖s∗ +

(∫
Ω

|u|% dx
)s/%

+
(∫

Ωc
|u|2 dx

)s/2
Big], ∀u ∈ E−, (2.10)

where Ω ⊂ RN is any measurable set, Ωc = RN \ Ω.
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Since E− is a separable and reflective subspace of E, it follows that (E−)∗

is also separable. Thus one may choose a dense subset {fk}k∈N ⊂ (E−)∗ with
‖fk‖(E−)∗ = 1. Now define a new norm

‖u‖τ := max
{
‖u+‖ :

∞∑
k=1

1
2k
|〈fk, u−〉|

}
, ∀u ∈ E. (2.11)

The topology generated by ‖ · ‖τ will be denoted by τ and all topological notions
related to it will include the symbol. It is clear that

‖u+‖ ≤ ‖u‖τ ≤ ‖u‖, ∀u ∈ E. (2.12)

If {un} ⊂ E− is bounded, then by [30, Lemma 2.1],

un
τ−→ u⇐⇒ un ⇀ u. (2.13)

By (H2) and Lemma 2.2, the functional Φ defined by (1.7) is of class C1, moreover

〈Φ′(u), v〉 =
∫

RN
(∇u∇v + V (x)uv) dx−

∫
RN

f(x, u)v dx, ∀u, v ∈ E. (2.14)

By (2.3), (2.4) and (2.8), it holds

Φ(u) =
1
2

(‖u+‖2∗ − ‖u−‖2∗)−
∫

RN
F (x, u) dx

=
1
2

(‖u+‖2 − ‖u−‖2∗)−
∫

RN
F (x, u) dx, ∀u = u+ + u− ∈ E,

(2.15)

and

〈Φ′(u), v〉 = (u+, v+)∗ − (u−, v−)∗ −
∫

RN
f(x, u)v dx, ∀u, v ∈ E. (2.16)

3. Critical point theory for asymptotically linear problems

Different from the superlinear linear case [4, 17, 26], the Nehari-Pankov manifold
N− is not homeomorphic to the unit sphere S+ in E+ for asymptotically linear
problem (1.1). In this section, following the idea used in [22], a critical point theory
for elliptic problem like or similar to (1.1) is established in a Banach space.

To explain this in detail, we define a set

E+
0 =

{
u ∈ E+ \ {0} : ‖u‖2 − ‖v−‖2 −

∫
Ω

V∞(x)|u+ v|2dx < 0, ∀v ∈ E−
}
. (3.1)

Clearly, E+
0 is nonempty by (H10) and it is a cone since for v ∈ E+

0 and α ∈ R\{0}
it holds αv ∈ E+

0 . For any u ∈ E \ E−, let

E(u) = E− ⊕ Ru, Ê(u) = E− ⊕ R+u = E− ⊕ R+u+.

Define
I(u) =

1
2
‖u−‖2∗ +

∫
RN

F (x, u) dx, (3.2)

then (2.15) can be rewritten as

Φ(u) =
1
2
‖u+‖2 − I(u), ∀u = u+ + u− ∈ E. (3.3)

It will be shown later if (H2) and (H7) and (H10) are satisfied, then Φ possesses
the following properties:
(H12) I ∈ C1(E,R) and I(u) ≥ I(0) = 0 for all u ∈ E;
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(H13) I is τ−sequentially lower semicontinuous: un
τ−→ u ⇒ lim infn→∞ I(un) ≥

I(u);
(H14) if un

τ−→ u and I(un)→ I(u) then un → u;
(H15) there exists a r > 0 such that κ := infu∈E+,‖u‖=r Φ(u) > 0;
(H16) For each u ∈ (E+

0 ⊕E−)\E−, there exists a unique nontrivial critical point
n̂(u) of J |Ê(u). Moreover n̂(u) is the unique global maximum of J |Ê(u);

(H17) For each compact subset W ⊂ (E+
0 ⊕ E−) \ E− there exists a constant

CW > 0 such that ‖n̂(u)‖ ≤ CW for all u ∈ W.
By (H16), we can define the mappings:

n̂ : (E+
0 ⊕ E−) \ E− → N−, u 7→ n̂(u) and n := n̂|S+

0
: S+

0 → N−, (3.4)

where
S+

0 := {u ∈ E+
0 : ‖u‖ = 1}.

For any u ∈ (E+
0 ⊕ E−) \ E−, we deduce from (3.3), (H12) and (H15)–(H17) that

Ê(u) ∩N− = {n̂(u)} and
1
2
‖n̂(u)+‖2 ≥ Φ(n̂(u)) ≥ Φ(ru+/‖u+‖) ≥ κ =⇒ ‖n̂(u)+‖ ≥

√
2κ. (3.5)

Theorem 3.1. Suppose that (H12)–(H17) are satisfied. Then following statements
hold.

(a) c0 := infN− Φ ≥ κ > 0 and Φ has a (PS)c0 sequence in N−.
(b) If Φ satisfies the (PS)τc0 condition in N−, i.e., every (PS)c sequence in N−

has a subsequence which converges in τ , then c0 is achieved by a critical
point of Φ.

Proof. First, we claim that
(i) n is a homeomorphism with inverse ň : N− → S+

0 , z 7→ z+/‖z+‖;
(ii) Φ ◦ n ∈ C1(S+

0 ,R) and

〈(Φ ◦ n)′(u), φ〉 = ‖n(u)+‖〈Φ′(n(u)), φ〉,
for all φ ∈ Tu(S+

0 ) = {ξ ∈ E+ | (u, ξ)∗ = 0}, where Tu
(
S+

0

)
is the tangent

space of S+
0 at u.

(iii) if {un} ⊂ S+
0 is a Palais-Smale sequence for Φ◦n, then {n(un)} is a Palais-

Smale sequence for Φ in N−. If {zn} ⊂ N− is a bounded Palais-Smale
sequence for Φ, then

{
n−1(zn)

}
is a Palais-Smale sequence for Φ ◦n in S+

0 ;
(iv) u ∈ S+

0 is a critical point of Φ ◦ n if and only if n(u) is a nontrivial crit-
ical point of Φ. Moreover, the corresponding critical values coincide and
infS+

0
Φ ◦ n = infN− Φ;

(v) if Φ is even, then so is Φ ◦ n.
Statements (i)–(v) have been proved in [22, Lemmas 3.4, 3.5 and Corollary 3.6]

in a Hilbert space. Since the working space E considered here is only a Banach
space, the argument should be modified. We postpone the proof to the Appendix.

(a) By (i) and (3.5) we have Φ(z) ≥ Φ(rz+/‖z+‖) ≥ κ for all z ∈ N− =⇒
‖z+‖ ≥

√
2κ. Thus c0 ≥ κ > 0. Existence of a (PS)c0 sequence for Φ in N−

follows from (ii), (iii) and the Ekeland variational principle [35, Theorem 2.4] since
c0 = infN− Φ = infS+

0
Φ ◦ n.

To prove (b) we consider a (PS)c sequence {un} ⊂ S+
0 for Φ◦n. Then {n(un)} is

a Palais-Smale sequence for Φ in N− by (iii), hence n(un) τ−→ z in N− after passing
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to a subsequence. This implies that un = n(un)+/‖n(un)+‖ → z+/‖z+‖ and we
have proved:

(vi) if Φ satisfies the (PS)τc condition in N− for some c > 0 then Φ ◦ n satisfies
the (PS)c condition.

Next observe that if Φ satisfies the (PS)τc0 condition in N−, then c0 is achieved by
a critical point u ∈ S+

0 of Φ ◦ n. It follows from (iv) that n(u) ∈ N− is a critical
point of Φ and Φ(n(u)) = c0. This proves (b). �

Note that, Theorem 3.1 can also be used to consider other nonlinear problems for
asymptotically linear case, such as p-Laplacian problems, Dirac equation, Hamil-
tonian system and elliptic system.

Lemma 3.2 ([30, Lemma 3.3]). Suppose that (H1), (H2) are satisfied. Then Φ ∈
C1(E,R) is τ -upper semi-continuous and Φ′ : (Φa, ‖·‖τ )→ (E∗, Tw∗) is continuous
for every a ∈ R, i.e.,

un, u ∈ E, ‖un − u‖τ → 0 ⇒ Φ(u) ≥ lim inf
n→∞

Φ(un),

un, u ∈ Φa, ‖un − u‖τ → 0 ⇒ lim
n→∞

〈Φ′(un), v〉 = 〈Φ′(u), v〉, ∀ v ∈ E,

where Φa := {u ∈ E : Φ(u) ≥ a} and Tw∗ denotes the weak∗ topology on E∗.

Lemma 3.3. Let (H1), (H2) be satisfied. Then (H12)–(H15) hold.

Proof. It follows from (H2) and Lemma 3.2 that (H12) and (H13) hold. Proof
of (H15) is standard, see [19, Lemma 3.1]. Next, we prove (H14). Assume that
un

τ−→ u and I(un)→ I(u) for un, u ∈ E. Then u+
n → u+ in E+ and

1
2
‖u−n ‖2∗ +

∫
RN

F (x, un) dx→ 1
2
‖u−‖2∗ +

∫
RN

F (x, u) dx. (3.6)

By the same argument as in [30, Lemma 3.3], we can show that {u−n } ⊂ E− is
bounded. By (2.12), u−n ⇀ u− in E− and passing to a subsequence it holds un → u
a.e. on RN . It follows from Fatou’s Lemma and weakly lower semicontinuity of the
norm that

‖u−n ‖2∗ → ‖u−‖2∗ and
∫

RN
F (x, un) dx→

∫
RN

F (x, u) dx. (3.7)

Therefore ‖u−n − u−‖2∗ = ‖u−n ‖2∗ + ‖u−‖2∗ − 2〈u−n , u−〉∗ → 0. Observe that∫
RN

(F (x, un)− F (x, un − u)) dx =
∫

RN

∫ 1

0

d

dt
F (x, un − u+ tu)dtdx

=
∫ 1

0

∫
RN

f(x, un − u+ tu)udxdt.
(3.8)

By (H2) and Hölder inequality, for any Ω ⊂ RN it holds∫
Ω

|f(x, un − u+ tu)u|dx

≤ c2
∫

RN

(
|un − u+ tu|%−1 + |un − u+ tu|p−1

)
|uχΩ|dx

≤ c2‖un − u+ tu‖%−1
% ‖uχΩ‖% + c2‖un − u+ tu‖p−1

p ‖uχΩ‖p,

(3.9)
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where χΩ denotes the characteristic function on Ω. By Lemma 2.2, {‖un−u+tu‖%}n
and {‖un − u + tu‖p}n are bounded. Then for any ε > 0 there is δ > 0 such that
for any Ω with Lebesgue measure |Ω| < δ it holds∫

Ω

|f(x, un − u+ tu)u|dx < ε, ∀n ∈ N. (3.10)

Moreover, for any ε > 0 there is Ω ∈ RN with |Ω| <∞ such that∫
RN\Ω

|f(x, un − u+ tu)u|dx < ε, ∀n ∈ N. (3.11)

In light of (3.10), (3.11) and Vitali convergence theorem, one sees that f(x, tu)u ∈
L1(RN ) and∫

RN
f(x, un − u+ tu)udx→

∫
RN

f(x, tu)udx, as n→∞. (3.12)

By (3.8), we have∫
RN

(F (x, un)− F (x, un − u)) dx→
∫ 1

0

∫
RN

f(x, tu)udxdt =
∫

RN
F (x, u) dx,

(3.13)
as n→∞, this together with (3.7) implies

lim
n→∞

∫
RN

F (x, un − u) dx = 0. (3.14)

By (H2),

o(1) =
∫

RN
F (x, un − u) dx

≥ c1
%

(∫
|un−u|≤1

|un − u|% dx+
∫
|un−u|≥1

|un − u|2 dx
)
,

(3.15)

then we deduce from (2.9), (2.10) and the fact u+
n → u+ in E+ that

‖u−n − u−‖%%

≤ C1

[
‖u−n − u−‖%∗ +

∫
|un−u|≤1

|u−n − u−|% dx+
(∫
|un−u|≥1

|u−n − u−|2 dx
)%/2]

≤ C2

[
‖u−n − u−‖%∗ +

∫
|un−u|≤1

|u+
n − u+|% dx+

∫
|un−u|≤1

|un − u|% dx

+
(∫
|un−u|≥1

|u+
n − u+|2 dx+

∫
|un−u|≥1

|un − u|2 dx
)%/2]

= o(1).

This shows that ‖un − u‖ → 0 as n→∞.
Before proving (H16)–(H17), we introduce a useful result for functions satisfying

(H5) or (H7).

Lemma 3.4. Suppose that h(x, t) is non-decreasing in t ∈ R.
(i) If h(x, 0) = 0 for any x ∈ RN , then(1− θ2

2
τ − θσ

)
h(x, τ)|τ | ≥

∫ τ

θτ+σ

h(x, s)|s|ds, ∀θ ≥ 0, τ, σ ∈ R. (3.16)
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(ii) If h(x, t) = 0⇔ t = 0 for any x ∈ RN , then(1− θ2

2
τ − θσ

)
h(x, τ)|τ | >

∫ τ

θτ+σ

h(x, s)|s|ds, (3.17)

for all θ ≥ 0, τ ∈ R, σ ∈ R \ {0}; moreover if h(x, t) is strictly increasing
on [−τ0, 0) ∪ (0, τ0] for some τ0 > 0, then

1− θ2

2
|τ |h(x, τ)τ >

∫ τ

θτ

h(x, s)|s|ds, ∀θ ∈ (0, 1), |τ | ∈ (0, τ0]. (3.18)

Proof. Since h(x, t) is non-decreasing in t ∈ R, then for any x ∈ RN ,

h(x, s) ≤ h(x, τ) ∀s ≤ τ ; h(x, s) ≥ h(x, τ), ∀s ≥ τ. (3.19)

To show (3.17), we consider five possible cases. Since sh(x, s) > 0 for s 6= 0, it
follows from (3.19) that
Case 1. τ = 0,∫ τ

θτ+σ

h(x, s)|s|ds =
∫ 0

σ

h(x, s)|s|ds <
(1− θ2

2
τ − θσ

)
h(x, τ)|τ | = 0.

Case 2. 0 ≤ θτ + σ ≤ τ or θτ + σ ≤ τ < 0,∫ τ

θτ+σ

h(x, s)|s|ds ≤ h(x, τ)
∫ τ

θτ+σ

|s|ds

=
(1− θ2

2
τ2 − θτσ − σ2

2

)
h(x, τ) signτ

<
(1− θ2

2
τ − θσ

)
h(x, τ)|τ |;

Case 3. θτ + σ < 0 < τ ,∫ τ

θτ+σ

h(x, s)|s|ds <
∫ τ

0

h(x, s)|s|ds ≤ h(x, τ)
∫ τ

0

|s|ds

≤ 1
2
(
τ2 − θτ(θτ + σ)− θτσ

)
h(x, τ)

=
(1− θ2

2
τ − θσ

)
h(x, τ)|τ |;

Case 4. τ < 0 < θτ + σ,∫ θτ+σ

τ

h(x, s)|s|ds >
∫ 0

τ

h(x, s)|s|ds ≥ h(x, τ)
∫ 0

τ

|s|ds

≥ 1
2

(
τ2 − θτ(θτ + σ)− θτσ

)
h(x, τ)

= −
(1− θ2

2
τ − θσ

)
h(x, τ)|τ |;

Case 5. 0 < τ < θτ + σ or τ < θτ + σ ≤ 0,∫ θτ+σ

τ

h(x, s)|s|ds ≥ h(x, τ)
∫ θτ+σ

τ

|s|ds
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=
(θ2 − 1

2
τ2 + θτσ +

σ2

2

)
h(x, τ) signτ

> −
(1− θ2

2
τ − θσ

)
h(x, τ)|τ |.

The above five cases show that (3.17) holds. By the same argument, one can prove
(3.16).

Since h(x, t) is strictly increasing on [−τ0, 0) ∪ (0, τ0], then for τ ∈ (0, τ0],∫ τ

θτ

h(x, s)|s|ds < h(x, τ)
∫ τ

θτ

|s|ds =
1− θ2

2
|τ |h(x, τ)τ, ∀θ ∈ (0, 1);

Similarly for τ ∈ [−τ0, 0) we have∫ θτ

τ

h(x, s)|s|ds > h(x, τ)
∫ θτ

τ

|s|ds

=
1− θ2

2
τ2h(x, τ) = −1− θ2

2
|τ |h(x, τ)τ, ∀θ ∈ (0, 1).

Both cases show that (3.18) holds. �

Lemma 3.5. Let (H1), (H2) be satisfied.

(i) If (H5) holds, then for any u ∈ E,

Φ(u) ≥ Φ(tu+ v) +
1
2
‖v‖2∗ +

1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), v〉, (3.20)

for all t ≥ 0, v ∈ E−, and the inequality is strict for v ∈ E−\{0}, moreover
if u ∈ N− then

Φ(u) > Φ(tu+ v) +
1
2
‖v‖2∗, ∀t ≥ 0, v ∈ E− \ {0}. (3.21)

(ii) If (H7) holds, then (i) holds, and for any u ∈ E \ {0},

Φ(u) > Φ(tu) +
1− t2

2
〈Φ′(u), u〉, ∀t ∈ (0, 1), |u(x)| ≤ τ0,

moreover if u ∈ N− then

Φ(u) > Φ(tu), ∀t ∈ (0, 1), |u(x)| ≤ τ0. (3.22)

Proof. For any x ∈ RN , from (H2), (H5) and (3.17) it follows that(1− θ2

2
τ − θσ

)
f(x, τ) >

∫ τ

θτ+σ

f(x, s)ds, (3.23)

for all θ ≥ 0, τ ∈ R, σ ∈ R \ {0}, Similarly, by (H7) and (3.18) we have (3.23) and

1− θ2

2
τf(x, τ) >

∫ τ

θτ

f(x, s)ds, ∀θ ∈ (0, 1), |τ | ∈ (0, τ0]. (3.24)
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Let u ∈ E \ {0}. Since u ∈ L2(RN ), meas{x ∈ RN : |u(x)| ≤ τ0} = ∞. Then we
deduce from (2.16), (3.2)–(3.3) and (3.23)–(3.24) that

Φ(u)− Φ(tu+ v)− 1− t2

2
〈Φ′(u), u〉+ t〈Φ′(u), v〉

= −
[
I(u)− I(tu+ v)− 1− t2

2
〈I ′(u), u〉+ t〈I ′(u), v〉

]
= −1

2
‖u−‖2∗ +

1
2
‖tu− + v‖2∗ +

1− t2

2
‖u−‖2∗ − t〈u−, v〉∗

+
∫

RN

(1− t2

2
f(x, u)u− tf(x, u)v −

∫ u

tu+v

f(x, s) ds
)

dx

=
1
2
‖v‖2∗ +

∫
RN

(
1− t2

2
f(x, u)u− tf(x, u)v −

∫ u

tu+v

f(x, s) ds
)

dx

(3.25)

which is positive when

t ≥ 0 and v ∈ E− \ {0}, or when

t ∈ (0, 1), v = 0 and |u(x)| ≤ τ0.
(3.26)

By the definition of N− and (3.26), we have (i) and (ii). �

Lemma 3.6. Let (H1), (H10), (H2), (H7) be satisfied. Then (H16)–(H17) hold.

Proof. By the same argument as in [21, Lemma 3.2], we can show that
(H18) for any compact set W ⊂ (E+

0 ⊕ E−) \ E−, there is a R > 0 such that
Φ(·) ≤ 0 on Ê(u) \BR(0) for every u ∈ W;

To prove (H16), we first prove that N−∩ Ê(u) 6= ∅ for each u ∈ (E+
0 ⊕E−)\E−.

Since Ê(u) = Ê(u+) for each u ∈ (E+
0 ⊕E−)\E−, we may assume that u ∈ E+

0 and
‖u‖ = 1. By (3.2), (3.3) and (H18) above, there exists R > 0 such that Φ(·) ≤ 0
on E− ∪ (Ê(u) \BR(0)). [19, Lemma 3.1] (i.e. (H15)) yields that Φ(ru+) ≥ κ > 0
for some r > 0, thus 0 < supÊ(u) Φ < ∞. By Lemma 3.2, Φ is weakly upper

semi-continuous on Ê(u), therefore Φ(u0) = supÊ(u) Φ for some u0 := t0u + v0 ∈
Ê(u) \ {0}. This u0 is a critical point of Φ|Ê(u), so

〈Φ′(u0), u0〉 = 〈Φ′(u0), v〉 = 0, ∀v ∈ E−.

Consequently, u0 ∈ N− ∩ Ê(u), and t0 > 0 (otherwise Φ(u0) ≤ 0, a contradiction).
Suppose that u1, u2 are two critical points of Φ|Ê(u). Then ui ∈ N− ∩ Ê(u) for

i = 1, 2 and we deduce from (3.20) that

Φ(u1) = max
Ê(u)

Φ(·) = Φ(u2). (3.27)

Moreover, it holds u1 = t1u2 + v1, u2 = t2u1 + v2 with vi ∈ E− and ti > 0. By
(3.21) we see that v1 = v2 = 0, i.e. u1 = t1u2. Let Ωi := {x ∈ RN : |ui(x)| ≤ τ0},
i = 1, 2. Since ui ∈ L2(RN ), the measure |Ωi| = ∞. If t1 < 1, then by (3.22) we
have

Φ(u2) > Φ(t1u2) = Φ(u1).
which contradicts with (3.27). Similarly t1 > 1 leads to Φ(u2) < Φ(u1). Then we
get t1 = 1, i.e. u1 = u2. Hence for each u ∈ (E+

0 ⊕E−)\E−, N−∩ Ê(u) consists of
precisely one point denoted by n̂(u) which is the unique global maximum of Φ|Ê(u).

Condition (H17) follows immediately form (H15)–(H16) and (H18). �
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Lemma 3.7. Let (H1), (H2), (H7), (H10) be satisfied. Then each Palais-Smale
sequence of Φ|N− is bounded, i.e. any sequence {un} ⊂ N− satisfying

‖Φ′(un)‖E∗ → 0, Φ(un) ≤ d for some d ∈ [c0,∞) (3.28)

is bounded in E

Proof. First we prove that {‖un‖∗} is bounded. To this end, arguing by contradic-
tion, suppose that ‖un‖∗ →∞. Let vn = un/‖un‖∗, then ‖vn‖∗ = 1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|v+
n |2dx = 0,

then by Lions’s concentration compactness principle ([14] or [35, Lemma 1.21]),
v+
n → 0 in Ls(RN ) for 2 < s < 2∗. Fix R > [2(1 + d)]1/2. It follows from (H2) that

lim sup
n→∞

∫
RN

F (x,Rv+
n )dx ≤ lim

n→∞
c2
(
R%‖v+

n ‖%% +Rp‖v+
n ‖pp

)
= 0. (3.29)

Let tn = R/‖un‖∗. Using (3.21) and (3.28)–(3.29), one has

d ≥ Φ(un)

≥ Φ(tnu+
n ) +

t2n
2
‖u−n ‖2∗ = Φ(Rv+

n ) +
R2

2
‖v−n ‖2∗

=
R2

2
‖vn‖2∗ −

∫
RN

F (x,Rv+
n )dx

=
R2

2
+ o(1) > d+ 1 + o(1),

which is a contradiction. Thus δ > 0. Passing to a ZN -transformation and using
the same argument as in [21, Lemma 3.5], one can show that {‖un‖∗} is bounded.
By (H2) and un ∈ N−, we have

‖u+
n ‖2∗ − ‖u−n ‖2∗ =

∫
RN

f(x, un)undx

≥ c1
(∫
|un|<1

|un|%dx+
∫
|un|≥1

|un|2dx
)
.

(3.30)

Then we deduce from (2.9)–(2.10) that

‖u−n ‖%% ≤ C3

[
‖u−n ‖%∗ +

∫
|un|<1

|u−n |%dx+
(∫
|un|≥1

|u−n |2dx
)%/2]

≤ C4

[
‖u−n ‖%∗ +

∫
|un|<1

|u+
n |%dx+

∫
|un|<1

|un|%dx

+
(∫
|un|≥1

|u+
n |2dx+

∫
|un|≥1

|un|2dx
)%/2]

≤ C5.

(3.31)

This shows that {‖u−n ‖%}n is also bounded. By (2.8) we have the boundedness of
{‖un‖}. �

Lemma 3.8 ([3, Corollary 2.3]). Suppose that (H1) is satisfied. If u ⊂ E is a weak
solution of the Schrödinger equation

−4u+ V (x)u = f(x, u), quadx ∈ RN , (3.32)
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i.e. ∫
RN

(∇u∇ψ + V (x)uψ) dx =
∫

RN
f(x, u)ψ dx, ∀ψ ∈ C∞0 (RN ), (3.33)

then u(x)→ 0 as |x| → ∞.

Proof of Theorem 1.1. By Lemmas 3.3, 3.6 and Theorem 3.1-(a), there is a sequence
{un} satisfying

un ∈ N−, Φ(un)→ c0 = inf
N−

Φ, ‖Φ′(un)‖E∗ → 0. (3.34)

Applying Lemma 3.7, we see that {un} is bounded in E, thus ‖un‖%%+‖un‖pp is also
bounded. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|u+
n |2 dx = 0,

then by Lions’s concentration compactness principle, u+
n → 0 in Ls(RN ) for 2 <

s < 2∗. We deduce from (H2), (2.9), (2.15), (2.16) and (3.34) that

2c0 + o(1) = ‖u+
n ‖2 − ‖u−n ‖2∗ − 2

∫
RN

F (x, un) dx

≤ ‖u+
n ‖2 =

∫
RN

f(x, un)u+
n dx+ 〈Φ′(un), u+

n 〉

≤ c2
∫

RN
(|un|%−1 + |un|p−1)|u+

n |dx+ o(1)

≤ c2(‖un‖%−1
% ‖u+

n ‖% + ‖un‖p−1
p ‖u+

n ‖p) + o(1) = o(1),

which is a contradiction since c0 > 0. Thus δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN

such that ∫
B(kn,1+

√
N)

|u+
n |2 dx >

δ

2
.

Let us define vn(x) = un(x+ kn) so that∫
B(0,1+

√
N)

|v+
n |2 dx >

δ

2
. (3.35)

Since V (x) and f(x, u) are periodic in x, we have ‖vn‖ = ‖un‖ and

Φ(vn)→ c0, ‖Φ′(vn)‖E∗ → 0. (3.36)

Passing to a subsequence, we have vn ⇀ v0 in E, vn → v0 in Lsloc(RN ) for 2 ≤ s < 2∗

and vn → v0 a.e. on RN . (3.35) implies that v+
0 6= 0, so v0 6= 0. By a standard

argument, we show that 〈Φ′(v0), ψ〉 = 0, for all ψ ∈ C∞0 (RN ). Since C∞0 (RN ) is
dense in E, we can conclude Φ′(v0) = 0. Thus v0 ∈ N− and Φ(v0) ≥ c0. On the
other hand, by (H7), (2.15), (2.16), (3.36) and Fatou’s Lemma, we have

c0 = lim
n→∞

[
Φ(vn)− 1

2
〈Φ′(vn), vn〉

]
= lim
n→∞

∫
RN

[1
2
f(x, vn)vn − F (x, vn)

]
dx

≥
∫

RN
lim
n→∞

[1
2
f(x, vn)vn − F (x, vn)

]
dx =

∫
RN

[1
2
f(x, v0)v0 − F (x, v0)

]
dx

= Φ(v0)− 1
2
〈Φ′(v0), v0〉 = Φ(v0).

This shows Φ(v0) ≤ c0, thus Φ(v0) = c0 = infN− Φ, which together with Lemma
3.8 implies that v0 is a ground state solution of problem (1.1). �
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4. Palais-Smale sequence for the superlinear case

In this section, we consider the superlinear case and make use of following as-
sumptions instead of (H16)–(H17).
(H19) ‖u+‖+ I(u)→∞ as ‖u‖ → ∞;
(H20) I(tnun)/t2n →∞ if tn →∞ and u+

n → u+ for some u+ 6= 0 as n→∞;
(H21) For each u ∈ N−, v ∈ E− and t ≥ 0,

t2 − 1
2
〈I ′(u), u〉+ t〈I ′(u), v〉+ I(u)− I(tu+ v) ≤ 0,

the strict inequality holds if in addition t ∈ (0, 1] and v 6= 0, or t ∈ (0, 1),
v = 0 and |u| ≤ τ0;

(H21’) t2−1
2 〈I

′(u), u〉+ t〈I ′(u), v〉+ I(u)− I(tu+ v) < 0 for every u ∈ N−, t ≥ 0
and v ∈ E− such that u 6= tu+ v;

(H22) I(u) < I(u+ v) for every v ∈ E− \ {0} and u ∈M, where

M = {u ∈ E : Φ′(u)|E− = 0} = {u ∈ E : I ′(u)|E− = 0}. (4.1)

It follows from (3.26) that (H21) is satisfied under (H7). By [4, Proposition 4.2],
(H16)–(H17) hold for all u ∈ E \E−, under (H12), (H13), (H15), (H19), (H20) and
(H21’). Combining the proof of Lemma 3.6 with the argument of [4, Proposition
4.2], we see that (H16) and (H17) hold for all u ∈ E \E−, also using (H21’) instead
of (H21). We deduce from the definition of M and (3.26) that (H22) holds under
the following strict convexity condition:
(H23) F (x, t+ s)− F (x, t)− f(x, t)s > 0 for all t, s ∈ R, x ∈ RN and s 6= 0.

By (3.23) we see that (H23) holds if (H5) and (H2) are satisfied.
In light of (H12) and (H22), u 6∈ E− if u ∈M\{0}. By the definition ofM and

a similar argument as in [4, Proposition 4.2], following conditions (H24) and (H25)
are satisfied under (H13), (H19), (H20) and (H22).
(H24) for any u ∈ E+, there is a unique nontrivial critical point m(u) of Φ|{u}⊕E− .

Moreover, m(u) is the unique global minimum of Φ|{u}⊕E− ;
(H25) for each compact subset W ⊂ E+, there exists a constant CW > 0 such

that ‖m(u)‖ ≤ CW for all u ∈ W.
Similarly, we can define mapping

m : E+ →M, u 7→ m(u). (4.2)

The following critical point theorem was established in [5].

Theorem 4.1 ([5, Theorem 4.1, 4.3]). Let Φ ∈ C1(E,R) satisfy (H12)–(H15),
(H19), (H20).
(I) If (H21) is satisfied, then c0 = infN− Φ > 0 and Φ has a (PS)c0 sequence in
N−.
(II) If (H22) is satisfied, then following statements hold.

(i) The mapping m : E+ → M is a homeomorphism with inverse M 3 u 7→
u+ ∈ E+.

(ii) Φ has a (PS)ĉ0 sequence in M and

ĉ0 = inf
γ∈Γ

sup
t∈[0,1]

Φ(γ(t)) > 0, (4.3)

where

Γ = {γ ∈ C([0, 1],M) : γ(0) = 0, ‖γ(1)+‖ > r, Φ(γ(1)) < 0}, (4.4)
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and r > 0 satisfying infu∈E+:‖u‖=r Φ(u) > 0.
(iii) If in addition (H21) is satisfied, then ĉ0 ≤ c0, and if ĉ0 is achieved by a

critical point then c0 = ĉ0 .

The functional Φ ◦m has the classical mountain pass geometry. In fact, (H15)
and (H22) imply that

Φ ◦m(u) ≥ Φ(u) ≥ κ > 0 for u ∈ E+, ‖u‖ = r, (4.5)

moreover, for u ∈ E+ \ {0} write m(tu) = tu + vt with vt ∈ E− and set ut =
u+ 1

t vt = 1
tm(tu), then by (H20),

1
t2
I(m(tu)) =

1
t2
I(tut)→∞ as t→∞,

this implies that

Φ ◦m(tu) =
t2

2
‖u‖2 − I(m(tu))→ −∞ as t→∞. (4.6)

Then the classical mountain pass geometry follows. Set

Σ := {σ ∈ C([0, 1], E+) : σ(0) = 0, ‖σ(1)‖ > r, and Φ ◦m(σ(1)) < 0}, (4.7)

the mountain pass value of Φ ◦m can be written by

ĉ0 = inf
σ∈Σ

sup
t∈[0,1]

Φ ◦m(σ(t)) ≥ κ > 0. (4.8)

Remark 4.2. By (4.6), there is t0 > 0 such that Φ(m(t0u)) < 0 for any u ∈
E+ \{0}. Therefore the path γu(t) := m(tt0u+), t ∈ [0, 1], lies in Γ. Assuming that
(H5) holds, it follows from (3.21) that for any u ∈ N−,

sup
t∈[0,1]

Φ(γu(t)) ≤ Φ(u) =⇒ ĉ0 ≤ c0. (4.9)

If ĉ0 is achieved by a critical point u0 ∈ E, then one deduces from (3.3) and (4.8)
that u+

0 6= 0 and u0 ∈ N−. This yields ĉ0 = Φ(u0) ≥ c0, and so ĉ0 = Φ(u0) = c0.

Lemma 4.3. Let (H1)–(H3) be satisfied. Then (H12)–(H15), (H19), (H20) hold.
Moreover, (H21) is satisfied under (H7), and (H22) holds under (H23).

Proof. It follows from Lemma 3.3 that (H12)–(H15) hold. In view of (3.26), (H23)
implies (H22), and (H7) yields (H21).

To prove (H19), assume that ‖un‖ → ∞. By (3.2),

‖u+
n ‖+ I(un)

= ‖u+
n ‖+

1
2
‖u−n ‖2∗ +

∫
RN

F (x, un) dx

≥ ‖u+
n ‖+

1
2
‖u−n ‖2∗ +

c1
%

(∫
|un|<1

|un|% dx+
∫
|un|≥1

|un|2 dx
)
.

(4.10)
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If ‖un‖∗ →∞, the conclusion holds. Suppose ‖un‖∗ is bounded, then ‖u−n ‖% →∞.
By (2.9) and (2.10), one has

‖u−n ‖%% ≤ C6

[
‖u−n ‖%∗ +

∫
|un|<1

|u−n |% dx+
(∫
|un|≥1

|u−n |2 dx
)%/2]

≤ C7

[
‖u−n ‖%∗ +

∫
|un|<1

|u+
n |% dx+

∫
|un|<1

|un|% dx

+
(∫
|un|≥1

|u+
n |2 dx+

∫
|un|≥1

|un|2 dx
)%/2]

≤ C8

[
1 +

∫
|un|<1

|un|% dx+ 2(%−2)/2
(∫
|un|≥1

|un|2 dx
)%/2]

,

(4.11)

this and (4.10) imply that ‖u+
n ‖+ I(un)→∞.

To show (H20), suppose that there are sequences tn →∞ and u+
n → u+ 6= 0 such

that I(tnun)/t2n is bounded. By (4.10) and (4.11), one sees that {‖u−n ‖∗+ ‖u−n ‖%}n
is bounded. Passing to a subsequence, we may assume that u−n ⇀ u− in E−. Let
Ω := {x ∈ RN : u+ + u− 6= 0}. If |Ω| > 0, then we deduce from (H3) and Fatou’s
lemma that

I(tnun)
t2n

=
1
2
‖u−n ‖2∗ +

∫
RN

F (x, t2nun)
t2n

dx→∞,

a contradiction. Thus |Ω| = 0, i.e. u+ = −u− a.e. on RN . By (2.7), (u+, u−)∗ = 0.
Then u+ = 0 which is also a contradiction. Therefore I(tnun)/t2n →∞. �

5. Perturbation method and proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3 by considering a perturbed
problem associated with (1.1). For any ε > 0, define Fε(x, u) = F (x, u) + ε|u|% and

Φε(u) =
1
2
‖u+‖2 − Iε(u), u ∈ E, (5.1)

where
Iε(u) =

1
2
‖u−‖2∗ +

∫
RN

Fε(x, u)dx. (5.2)

Similarly, we define

N−ε :=
{
u ∈ E \ E− : Φ′ε(u)|Ê(u) = 0

}
, Mε := {u ∈ E : I ′ε(u)|E− = 0}. (5.3)

Let

cε = inf
u∈N−ε

Φε(u), ĉε = inf
γ∈Γε

sup
t∈[0,1]

Φε(γ(t)) = inf
σ∈Σε

sup
t∈[0,1]

Φε ◦mε(σ(t)), (5.4)

where

Γε = {γ ∈ C([0, 1],Mε) : γ(0) = 0, ‖γ(1)+‖ > r0, Φε(γ(1)) < 0},
Σε := {σ ∈ C([0, 1], E+) : σ(0) = 0, ‖σ(1)‖ > r0, Φε ◦mε(σ(1)) < 0},

r0 > 0 satisfies infu∈E+, ‖u‖=r0 Φε(u) > 0 for all ε ∈ (0, 1], and mε : E+ →Mε.
Note that Fε satisfies (H7) (actually (H4) is also satisfied) and (H23) provided

that F satisfies (H5) and (H9), respectively. �

Lemma 5.1. Let (H2), (H5) be satisfied. Then for every ε ∈ (0, 1], there exists a
κ0 > 0 independent of ε such that cε ≥ κ0.
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Proof. For any u ∈ N−ε , by a similar argument as in (3.21) it holds

Φε(u) ≥ Φε(tu+ v) +
1
2
‖v‖2∗, ∀v ∈ E−, t ≥ 0. (5.5)

In view of (H2) and (2.9),

Φε(u) ≥ Φε(tu+) =
t2

2
‖u+‖ −

∫
Ω

F (x, tu+)dx− εt%‖u+‖%%

≥ t2

2
‖u+‖2 −

(c2
%

+ 1
)
t%‖u+‖%% −

c2
p
tp‖u+‖pp

≥ t2

2
‖u+‖2 −

(c2
%

+ 1
)
γ%%t

%‖u+‖% − c2
p
γppt

p‖u+‖p ∀u ∈ N−ε , t ≥ 0.

Note that 2 < % ≤ p. Thus for ‖tu+‖ small, there exists a κ0 > 0 independent of ε
such that cε ≥ κ0. �

Lemma 5.2. Let (H2) and (H9) be satisfied. Then for every ε ∈ (0, 1], there exists
a κ̂ > 0 independent of ε such that ĉε ≥ κ̂.

Proof. Since Fε satisfies (H23), we see that (H22) holds for Iε. Then for any u ∈Mε,

Φε(u) ≥ Φε(u+).

We deduce from (H2) and (2.9) that for any u ∈ E+,

Φε(mε(u)) ≥ Φε(u) = Φ(u)− ε‖u‖%%

≥ 1
2
‖u‖2 −

(c2
%

+ 1
)
‖u‖%% −

c2
p
‖u‖pp

≥ 1
2
‖u‖2 −

(c2
%

+ 1
)
γ%%‖u‖% −

c2
p
γpp‖u‖p.

(5.6)

By (5.4) and 2 < % ≤ p, for ‖u‖ small there exists a κ̂ > 0 independent of ε such
that ĉε ≥ κ̂ε. �

Proof of Theorem 1.3. Under the conditions of Theorem 1.3-(a), it is not difficult
to verify that Fε satisfies (H2), (H3) and (H7). In view of Theorem 4.1-(I) and
Lemma 4.3, for any ε > 0, there exists a sequence {uεn} satisfying

uεn ∈ N−ε , Φε(uεn)→ cε, ‖Φ′ε(uεn)‖E∗ → 0. (5.7)

Lemma 5.1 yields that cε ≥ κ0 > 0. Let {εn} be a sequence such that εn ↘ 0 as
n→∞, and

uεnn ∈ N−εn , Φεn(uεnn )→ c̄ ≥ κ0 > 0, ‖Φ′εn(uεnn )‖E∗ → 0. (5.8)

For the sake of notational simplicity, write un = uεnn . The rest of the proof is
divided into three steps.

Step 1. Prove that {un} is bounded in E. First we prove that {‖un‖∗} is
bounded. To this end, arguing by contradiction, suppose that ‖un‖∗ → ∞. Let
vn = un/‖un‖∗, then ‖vn‖∗ = 1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B(y,1)

|v+
n |2dx = 0,
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then by Lions’s concentration compactness principle, v+
n → 0 in Ls(RN ) for 2 <

s < 2∗. Fix R > [2(1 + c̄)]1/2; it follows from (H2) that

lim sup
n→∞

∫
RN

Fεn(x,Rv+
n )dx ≤ lim

n→∞
(c2 + εn)

(
R%‖v+

n ‖%% +Rp‖v+
n ‖pp

)
= 0. (5.9)

Let tn = R/‖un‖∗. Using (5.5), (5.8) and (5.9), one has

c̄+ o(1) = Φεn(un)

≥ Φεn(tnu+
n ) +

t2n
2
‖u−n ‖2∗ = Φεn(Rv+

n ) +
R2

2
‖v−n ‖2∗

=
R2

2
‖vn‖2∗ −

∫
RN

Fεn(x,Rv+
n )dx

=
R2

2
+ o(1) > c̄+ 1 + o(1),

which is a contradiction. Thus δ > 0. Passing to a ZN -transformation and using
the same argument as in [30, Lemma 4.4], one can show that {‖un‖∗} is bounded.
By (3.31), {un} is bounded in E.

Step 2. Verify that Φ′(v0) = 0 and Φ(v0) ≤ c̄ for some v0 ∈ E \ {0}. By (5.8)
and the same argument as in the Proof of Theorem 1.1, we can show that there is
a v0 ∈ E with v+

0 6= 0 such that Φ′(v0) = 0 and Φ(v0) ≤ c̄. By Lemma 3.8, v0 is a
nontrivial solution of problem (1.1).

Step 3. Show that Φ(v0) = c̄ = c0. We infer form Step 2 and v0 ∈ N− that
c̄ ≥ Φ(v0) ≥ c0. Next, we prove that c̄ ≤ c0.

Let ε be any positive number. Then there exists a uε ∈ N− such that Φ(uε) <
c0 + ε, and

〈Φ′(uε), uε〉 = 0, 〈Φ′(uε), v〉 = 0, ∀v ∈ E−. (5.10)

Applying [19, Lemma 3.3], there exist tn > 0 and vn ∈ E− such that tnuε + vn ∈
N−εn . Then

cεn ≤ Φεn(tnuε + vn) =
t2n
2
‖u+

ε ‖2 − Iεn(tnuε + vn)

=
t2n
2
‖u+

ε ‖2 −
1
2
‖tnu−ε + vn‖2∗ −

∫
RN

F (tnuε + vn)dx− εn‖tnuε + vn‖%%
(5.11)

which, together with (H20), imply that there exists a Kε > 0 such that 0 < tn < Kε

and ‖vn‖ < Kε. By Lemma 2.2-(i), ‖vn‖% ≤ C9Kε. Using (3.3), (3.20), (5.1), (5.10)
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and Hölder inequality, we are led to

c0 + ε

> Φ(uε) = Φεn(uε) + εn‖uε‖%%

≥ Φεn(tnuε + vn) +
1
2
‖vn‖2∗ +

1− t2n
2
〈Φ′εn(uε), uε〉 − tn〈Φ′εn(uε), vn〉

≥ cεn +
1
2
‖vn‖2∗ +

1− t2n
2
〈Φ′εn(uε), uε〉 − tn〈Φ′εn(uε), vn〉

= cεn +
1
2
‖vn‖2∗ −

1− t2n
2

εn%‖uε‖%% + tnεn%(|uε|%−2uε, vn)2

≥ cεn −
εn%

2
‖uε‖%% −Kεεn%‖uε‖%−1

% ‖vn‖%

≥ cεn −
εn%

2
‖uε‖%% − C9K

2
ε εn%‖uε‖%−1

% ,

(5.12)

this yields

c̄ = lim
n→∞

cεn ≤ c0 + ε. (5.13)

Since ε > 0 is arbitrary, one has c̄ ≤ c0. Thus c0 = c̄ ≥ κ0, i.e.,

Φ(v0) = c0 = inf
u∈N−

Φ(u).

Theorem 1.3-(a) is proved.

Under the assumptions of Theorem 1.3-(b), one can verify that Fε satisfies (H2),
(H8) and (H23). In view of Theorem 4.1-(ii) and Lemma 4.3, for any ε > 0 there
exists a sequence {uεn} satisfying

uεn ∈Mε, Φε(uεn)→ ĉε, ‖Φ′ε(uεn)‖E∗ → 0. (5.14)

Lemma 5.2 yields that ĉε ≥ κ̂ε > 0. Let {εn} be a sequence such that εn ↘ 0 as
n→∞, and

uεnn ∈Mεn , Φεn(uεnn )→ c̃ ≥ 0, ‖Φ′εn(uεnn )‖E∗ → 0. (5.15)

For the sake of notational simplicity, write un = uεnn . Similar to the proof of
Theorem 1.3-(a), the rest of the proof is also divided into three steps.

Step 1. Prove that {un} is bounded in E. Since (3.20) does not hold under (H9),
the argument used in the Proof of Theorem 1.3-(a) is not applicable. We modify it
as follows.

Arguing by contradiction, suppose that ‖un‖ → ∞. (5.15) implies the existence
of an M > 0 such that Φεn(un) ≥ −M for all n ∈ N. By (H2) and (5.1), we have

−2M ≤ 2Φεn(un) = ‖u+
n ‖2 − ‖u−n ‖2∗ − 2

∫
RN

Fεn(x, un)dx

≤ ‖u+
n ‖2 − ‖u−n ‖2∗ −

2c1
%

(∫
|un|<1

|un|%dx+
∫
|un|≥1

|un|2dx
)
.

(5.16)
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From (2.9), (2.10) and (5.16), one sees that

‖u−n ‖%% ≤ C10

[
‖u−n ‖%∗ +

∫
|un|<1

|u−n |%dx+
(∫
|un|≥1

|u−n |2dx
)%/2]

≤ C10‖u−n ‖%∗ + C11

(∫
|un|<1

|u+
n |%dx+

∫
|un|<1

|un|%dx
)

+ C11

(∫
|un|≥1

|u+
n |2dx+

∫
|un|≥1

|un|2dx
)%/2

≤ C10‖u−n ‖%∗ + C12

(
‖u+

n ‖% + ‖u+
n ‖2 − ‖u−n ‖2∗ + 2M

)
+ C13

(
‖u+

n ‖2 − ‖u−n ‖2∗ + 2M
)%/2

≤ C14(1 + ‖u+
n ‖% + ‖u+

n ‖2),

(5.17)

this with (2.6), (2.8) and (5.16) imply that

‖un‖2 = ‖u+
n ‖2 + ‖u−n ‖2∗ + ‖u−n ‖2%

≤ 2‖u+
n ‖2 + 2M + C14

(
1 + ‖u+

n ‖% + ‖u+
n ‖2

)2/%
.

Thus
‖u+

n ‖ → ∞ as n→∞, and ‖un‖ ≤ C15(1 + ‖u+
n ‖). (5.18)

By (H8) and (5.1)–(5.2), one has

Φεn(un)− 1
2
〈Φ′εn(un), un〉

=
∫

RN

[1
2
f(x, un)un − F (x, un)

]
dx+

(%
2
− 1
)
εn‖un‖%%

≥ µ− 2
2µ

∫
RN

f(x, un)un dx+
(%

2
− 1
)
εn‖un‖%%;

(5.19)

then setting θn = ‖Φ′εn(un)‖E∗ ,

εn‖un‖%% ≤ C16(1 + θn‖un‖), and θn → 0 as n→∞. (5.20)

Let ψ ∈ C∞(R,R) be such that 0 ≤ ψ(t) ≤ 1 and ψ(t) = 0 if |t| ≤ 1, ψ(t) = 1 if
|t| ≥ 2. Set

f1(x, t) := ψ(t)f(x, t), and f2(x, t) := f(x, t)− f1(x, t) = (1− ψ(t))f(x, t).
(5.21)

Then by (H2) we obtain with %′ = %
%−1 , p′ = p

p−1

C17|f1(x, t)|p
′
≤ tf1(x, t), C17|f2(x, t)|%

′
≤ tf2(x, t). (5.22)

Using (5.15) and (5.19), we see that

‖f1(x, un)‖p
′

p′ + ‖f2(x, un)‖%
′

%′ ≤ C18(1 + θn‖un‖).

Moreover, the Hölder inequality yields∫
RN

f(x, un)u+
n dx ≤ ‖f1(x, t)‖p′‖u+

n ‖p + ‖f2(x, t)‖%′‖u+
n ‖%

≤ C19(1 + θn‖un‖)1/p′‖u+
n ‖p + C19(1 + θn‖un‖)1/%′‖u+

n ‖%.
(5.23)
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Then we deduce from (2.9), (5.15), (5.18), (5.20) and εn → 0 as n→∞ that

‖u+
n ‖2 = 〈Φ′εn(un), u+

n 〉+
∫

RN
f(x, un)u+

n dx+ εn%(|un|%−2un, u
+
n )L2

≤ C20

(
1 + ‖un‖1/p

′
+ ‖un‖1/%

′
)
‖u+

n ‖+ %ε1/%n

(
ε1/%n ‖un‖%

)%−1

‖u+
n ‖%

≤ C21

(
1 + ‖un‖1/p

′
+ ‖un‖1/%

′
)
‖u+

n ‖

≤ C22

(
1 + ‖u+

n ‖1/p
′
+ ‖u+

n ‖1/%
′
)
‖u+

n ‖.
(5.24)

This is a contradiction since 1/%′ < 1 and 1/p′ < 1. Thus {‖un‖} is bounded.
Step 2. Verify that Φ′(ṽ) = 0 and Φ(ṽ) ≤ c̃ for some ṽ ∈ E \ {0}. By (5.15) and
the same argument as in the Proof of Theorem 1.1, we can certify that there is
ṽ ∈ E with ṽ+ 6= 0 such that Φ′(ṽ) = 0 and Φ(ṽ) ≤ c̃. This and Lemma 3.8, imply
that ṽ is a nontrivial solution of problem (1.1).
Step 3. Show that Φ(ṽ) = ĉ0 = c0 if (H5) is additionally satisfied. Note that
if (H23) is satisfied, it does not need to consider the perturbation term ε|u|%, and
Φε, ĉε in (5.14) should be replaced by Φ and ĉ0, respectively. Then by Step 2
there is a ṽ ∈ E with ṽ+ 6= 0 such that Φ′(ṽ) = 0 and Φ(ṽ) ≤ ĉ0. This yields
that c0 ≤ Φ(ṽ) ≤ ĉ0 since ṽ ∈ N−. It follows from (4.9) that ĉ0 ≤ c0. Thus
Φ(ṽ) = ĉ0 = c0 ≥ κ0 > 0. In view of (3.23), (H23) holds under (H2) and (H5).
This completes the proof. �

6. Appendix

Here we show statements (i)–(v) in the proof of Theorem 3.1.
(i) Suppose that un ∈ (E+

0 ⊕ E−) \ E−, un → u ∈ (E+
0 ⊕ E−) \ E−. By (H17),

{n̂(un)} is bounded. It suffices to show that n̂(un) → n̂(u) after passing to a
subsequence. Write n̂(un) = tnun + vn with vn ∈ E−. Passing to a subsequence,
we may assume that tn → t and vn ⇀ v in E−. Then n̂(un) τ−→ tu + v. Setting
n̂(u) = t̄u+ ξ, it follows from (H16) that

Φ(n̂(un)) ≥ Φ
(
t̄un + ξ

)
→ Φ

(
t̄u+ ξ

)
= Φ(n̂(u)),

and hence, using the τ -sequentially lower semicontinuity of I,

Φ(n̂(u)) ≤ lim sup
n→∞

Φ(n̂(un))

= lim sup
n→∞

(1
2
t2n‖u+

n ‖2 − I (n̂(un))
)

≤ 1
2
t2‖u+‖2 − I

(
tu+ v

)
= Φ(tu+ v) ≤ Φ(n̂(u)).

Hence the inequalities above must be equalities. It follows that Φ(tu+v) = Φ(n̂(u))
and I (n̂(un))→ I(tu+ v). By (H14), n̂(un)→ tu+ v and so vn → v. On the other
hand, the uniqueness property (H16) yields that n̂(u) = tu+v. Thus n̂(un)→ n̂(u).

Define ň : N− → S+, z 7→ z+/‖z+‖, we first certify that ň(z) ∈ E+
0 . Since

z ∈ L2(RN ), meas{x ∈ RN : |z(x)| ≤ α0} =∞, it follows from (1.11) that∫
RN

f(x, z)f∞(x, z)
V∞(x)

< 0. (6.1)
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By the same argument as in [22, Lemma 3.2], for any u ∈ E it holds

〈Φ′(u), u+ 2v〉 ≥ ‖u+‖2 − ‖u− + v‖2∗ + ‖v‖2∗ −
∫

RN
V∞(x) |u+ v|2 dx

+
∫

RN

V∞(x)f(x, u)u− |f(x, u)|2

V∞(x)
dx, ∀v ∈ E−.

(6.2)

From (6.1), (6.2) and the fact z ∈ N−, we deduce for any v ∈ E− that

‖ň(z)‖ − ‖v‖2∗ −
∫

RN
V∞(x)|ň(z) + v|2dx

=
‖z+‖2

‖z+‖2
− ‖v‖2∗ −

∫
RN

V∞(x)
∣∣ z

‖z+‖
− z−

‖z+‖
+ v
∣∣2dx

≤ 1
‖z+‖2

〈Φ′(z), z + 2(‖z+‖v − z−)〉 − 1
‖z+‖2

‖‖z+‖v − z−‖2∗

− 1
‖z+‖2

∫
RN

V∞(x)f(x, z) · z − |f(x, z)|2

V∞(x)
dx

= −‖v − 1
‖z+‖

z−‖2∗ +
1

‖z+‖2

∫
RN

f(x, z)f∞(x, z)
V∞(x)

< 0.

(6.3)

Thus ň(z) ∈ E+
0 . It is easy to see that ň is continuous and ň = n−1 (the inverse of

n). Then (i) follows immediately.
(ii) Let u ∈ E+

0 , φ ∈ E+ and put n̂(u) = suu + ξu, ξu ∈ E−. We claim that
u + tφ ∈ E+

0 for |t| small. Arguing indirectly, assume that there exists a sequence
{tn} such that u+ tnφ 6∈ E+

0 and tn → 0. Then there is {vn} ⊂ E− such that

‖u+ tnφ‖2 − ‖vn‖2∗ −
∫

RN
V∞(x)|u+ tnφ+ vn|2dx ≥ 0, (6.4)

this with (2.10) imply that {vn} is bounded in E. Passing to a subsequence, we may
assume that vn ⇀ v0 in E−. Then it follows from (6.4) and the weakly sequentially
lower semicontinuity of the norm that

‖u‖2 = lim
n→∞

‖u+ tnφ‖2

≥ lim inf
n→∞

[
‖vn‖2∗ +

∫
RN

V∞(x)|u+ tnφ+ vn|2dx
]

≥ ‖v0‖2∗ +
∫

RN
V∞(x)|u+ v0|2dx,

which contradicts with the fact that u ∈ E+
0 . Thus u+ tφ ∈ E+

0 for |t| small.
By (H16) and the mean value theorem, we obtain

Φ(n̂ (u+ tφ))− Φ(n̂(u)) = Φ (su+tφ(u+ tφ) + ξu+tφ)− Φ (suu+ ξu)

≤ Φ (su+tφ(u+ tφ) + ξu+tφ)− Φ (su+tφu+ ξu+tφ)

= 〈Φ′
(
su+tφu+ ξu+tφ + tτtsu+tφφ

)
, tsu+tφφ〉

for some τt ∈ (0, 1). Similarly,

Φ(n̂ (u+ tφ))− Φ(n̂(u)) ≥ Φ (su(u+ tφ) + ξu)− Φ (suu+ ξu)

= 〈Φ′ (suu+ ξu + tηtsuφ) , tsuφ〉
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for some ηt ∈ (0, 1). Since the map u 7→ n̂(u) is continuous according to (i), we see
combining two inequalities that

〈(Φ ◦ n̂)′(u), φ〉 = lim
t→0

Φ(n̂ (u+ tφ))− Φ(n̂(u))
t

= su〈Φ′ (suu+ ξu) , φ〉

=
‖n̂(u)+‖
‖u‖

〈Φ′(n̂(u), φ〉

Hence the Gâteaux derivative of Φ ◦ n̂ is bounded linear in φ and continuous in u.
It follows that Φ ◦ n̂ is of class C1, see e.g. [35, Proposition 1.3]. Then (ii) holds.
(iii), (iv) and (v) are easy consequences of (ii) and the definition of n̂.
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