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EXISTENCE AND UNIQUENESS FOR ONE-PHASE STEFAN
PROBLEMS OF NON-CLASSICAL HEAT EQUATIONS WITH

TEMPERATURE BOUNDARY CONDITION AT A FIXED FACE

ADRIANA C. BRIOZZO, DOMINGO A. TARZIA

Abstract. We prove the existence and uniqueness, local in time, of a solution
for a one-phase Stefan problem of a non-classical heat equation for a semi-

infinite material with temperature boundary condition at the fixed face. We

use the Friedman-Rubinstein integral representation method and the Banach
contraction theorem in order to solve an equivalent system of two Volterra

integral equations.

1. Introduction

The one-phase Stefan problem for a semi-infinite material for the classical heat
equation requires the determination of the temperature distribution u of the liquid
phase (melting problem) or of the solid phase (solidification problem), and the
evolution of the free boundary x = s(t). Phase-change problems appear frequently
in industrial processes and other problems of technological interest [2, 3, 6, 8, 9, 10,
11, 12, 18, 29]. A large bibliography on the subject was given in [25].

Non-classical heat conduction problem for a semi-infinite material was studied
in [4, 7, 17, 27, 28], e.g. problems of the type

ut − uxx = −F (ux(0, t)), x > 0, t > 0,

u(0, t) = 0, t > 0

u(x, 0) = h(x), x > 0
(1.1)

where h(x), x > 0, and F (V ), V ∈ R, are continuous functions. The function F ,
henceforth referred as control function, is assumed to satisfy the condition

(H1) F (0) = 0.

As observed in [27, 28], the heat flux w(x, t) = ux(x, t) for problem (1.1) satisfies
a classical heat conduction problem with a nonlinear convective condition at x = 0,
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which can be written in the form

wt − wxx = 0, x > 0, t > 0,

wx(0, t) = F (w(0, t)), t > 0,

w(x, 0) = h′(x) ≥ 0, x > 0.
(1.2)

The literature concerning problem (1.2) has increased rapidly since the publi-
cation of the papers [19, 21, 22]. Related problems have been also studied; see
for example [1, 14, 16]. In [26], a one-phase Stefan problem for a non-classical
heat equation for a semi-infinite material was presented. There the free boundary
problem consists in determining the temperature u = u(x, t) and the free boundary
x = s(t) with a control function F which depends on the evolution of the heat flux
at the extremum x = 0 is given by the conditions

ut − uxx = −F (ux(0, t)), 0 < x < s(t), 0 < t < T,

u(0, t) = f(t) > 0, 0 < t < T,

u(s(t), t) = 0, ux(s(t), t) = −ṡ(t), 0 < t < T,

u(x, 0) = h(x) ≥ 0, 0 6 x 6 b = s(0) (b > 0).

(1.3)

The goal in this paper is to prove the existence and uniqueness, local in time, of
a solution to the one-phase Stefan problem (1.3) for a non-classical heat equation
with temperature boundary condition at the fixed face x = 0. First, we prove that
problem (1.3) is equivalent to a system of two Volterra integral equations (2.4)-(2.5)
following the Friedman-Rubinstein’s method given in [13, 23]. Then, we prove that
the problem (2.4)-(2.5) has a unique local solution by using the Banach contraction
theorem.

2. Existence and Uniqueness of Solutions

We have the following equivalence for the existence of solutions to the non-
classical free boundary problem (1.3).

Theorem 2.1. The solution of the free-boundary problem (1.3) is

u(x, t) =
∫ b

0

G(x, t; ξ, 0)h(ξ)dξ +
∫ t

0

Gξ(x, t; 0, τ)f(τ) dτ

+
∫ t

0

G(x, t; s(τ), τ)v(τ) dτ −
∫∫

D(t)

G(x, t; ξ, τ)F (V (τ))dξ dτ,
(2.1)

s(t) = b−
∫ t

0

v(τ) dτ , (2.2)

where D(t) = {(x, τ) : 0 < x < s(τ), 0 < τ < t}, with f ∈ C1[0, T ), h ∈ C1[0, b],
h(b) = 0, h(0) = f(0), F is a Lipschitz function over C0[0, T ], and the functions
v ∈ C0[0, T ], V ∈ C0[0, T ] defined by

v(t) = ux(s(t), t) , V (t) = ux(0, t) (2.3)
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must satisfy the following system of Volterra integral equations

v(t) = 2
∫ b

0

N(s(t), t; ξ, 0)h′(ξ)dξ − 2
∫ t

0

N(s(t), t; 0, τ)ḟ(τ) dτ

+ 2
∫ t

0

Gx(s(t), t; s(τ), τ)v(τ) dτ

+ 2
∫ t

0

[N(s(t), t; s(τ), τ)−N(s(t), t; 0, τ)]F (V (τ)) dτ.

(2.4)

V (t) =
∫ b

0

N(0, t; ξ, 0)h′(ξ)dξ

−
∫ t

0

N(0, t; 0, τ)ḟ(τ) dτ +
∫ t

0

Gx(0, t; s(τ), τ)v(τ) dτ

+
∫ t

0

[N(0, t; s(τ), τ)−N(0, t; 0, τ)]F (V (τ)) dτ,

(2.5)

where G, N are the Green and Neumann functions and K is the fundamental
solution of the heat equation, defined respectively by

G(x, t, ξ, τ) = K(x, t, ξ, τ)−K(−x, t, ξ, τ),
N(x, t, ξ, τ) = K(x, t, ξ, τ) +K(−x, t, ξ, τ),

K(x, t, ξ, τ) =


1

2
√

π(t−τ)
exp

(
− (x−ξ)2

4(t−τ)

)
t > τ

0 t ≤ τ ,

where s(t) is given by (2.2),

Proof. Let u(x, t) be the solution to (1.3). We integrate, on the domain Dt,ε =
{(ξ, τ) : 0 < ξ < s(τ), ε < τ < t− ε}, the Green identity

(Guξ − uGξ)ξ − (Gu)τ = GF (uξ(0, τ)) . (2.6)

Now we let ε→ 0, to obtain the following integral representation for u(x, t),

u(x, t) =
∫ b

0

G(x, t; ξ, 0)h(ξ)dξ +
∫ t

0

Gξ(x, t; 0, τ)f(τ) dτ

+
∫ t

0

G(x, t; s(τ), τ) u
ξ
(s(τ), τ) dτ −

∫∫
D(t)

G(x, t; ξ, τ)F (uξ(0, τ))dξ dτ .

From the definition of v(t) and V (t) by (2.3), we obtain (2.1) and (2.2). If we
differentiate u(x, t) in variable x and we let x → 0+ and x → s(t), by using the
jump relations, we obtain the integral equations for v and V given by (2.4) and
(2.5).

Conversely, the function u(x, t) defined by (2.1) where v and V are the solutions
of (2.4)and (2.5), satisfy the conditions (1.3) (i),(ii),(iv) and (v). In order to prove
condition (1.3) (iii) we define ψ(t) = u(s(t), t). Taking into account that u satisfy
the conditions (1.3) (i),(ii),(iv) and (v), if we integrate the Green identity (2.6) over
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the domain Dt,ε, (ε > 0) and we let ε→ 0 we obtain that

u(x, t) =
∫ b

0

G(x, t; ξ, 0)h(ξ)dξ +
∫ t

0

G(x, t; s(τ), τ)v(τ) dτ

+
∫ t

0

ψ(τ)[Gx(x, t; s(τ), τ)−G(x, t; s(τ), τ)v(τ)] dτ

+
∫ t

0

Gξ(x, t; 0, τ)f(τ) dτ −
∫∫

D(t)

G(x, t; ξ, τ)F (V (τ))dξ dτ.

Then, if we compare this last expression with (2.1), we deduce that

M(x, t) =
∫ t

0

ψ(τ)[Gx(x, t; s(τ), τ)−G(x, t; s(τ), τ)v(τ)] dτ ≡ 0 (2.7)

for 0 < x < s(t), 0 < t < σ. We let x → s(t) in (2.7) and by using the jump
relations we have that ψ satisfy the integral equation

1
2
ψ(t) +

∫ t

0

ψ(τ)[Gx(s(t), t; s(τ), τ)−G(s(t), t; s(τ), τ)v(τ)] dτ = 0 .

Then we deduce that

|ψ(t)| ≤ C

∫ t

0

|ψ(τ)|√
t− τ

dτ

≤ C2

∫ t

0

dτ√
t− τ

∫ τ

0

|ψ(η)|√
τ − η

dη

= C2

∫ t

0

|ψ(η)|dη
∫ t

η

dτ

[(t− τ)(τ − η)]1/2

= πC2

∫ t

0

|ψ(η)|dη

where C = C(t); therefore by using the Gronwall inequality we have that ψ(t) = 0
over [0, σ]. �

Next, we use the Banach fixed point theorem in order to prove the local existence
and uniqueness of solution v, V ∈ C0[0, σ] to the system of two Volterra integral
equations (2.4)-(2.5) where σ is a positive small number. Consider the Banach
space

CM,σ =
{
~w =

(
v
V

)
: v, V : [0, σ] → R, continuous, with ‖~w‖σ ≤M

}
with

‖~w‖σ := ‖v‖σ + ‖V ‖σ := max
t∈[0,σ]

|v(t)|+ max
t∈[0,σ]

|V (t)|

We define A : CM,σ −→ CM,σ, such that

~̃w(t) = A(~w(t)) =
(
A1(v(t), V (t))
A2(v(t), V (t))

)
where

A1(v(t), V (t)) = F0(v(t)) + 2
∫ t

0

[N(s(t), t, s(τ), τ)−N(s(t), t, 0, τ)]F (V (τ)) dτ

(2.8)
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with

F0(v(t)) = 2
∫ b

0

N(s(t), t, ξ, 0)h′(ξ)dξ − 2
∫ t

0

N(s(t), t, 0, τ)ḟ(τ) dτ

+ 2
∫ t

0

Gx(s(t), t, s(τ), τ)v(τ) dτ

and

A2(v(t), V (t)) =
∫ b

0

N(0, t, ξ, 0)h′(ξ)dξ −
∫ t

0

N(0, t, 0, τ)ḟ(τ) dτ

+
∫ t

0

Gx(0, t, s(τ), τ)v(τ) dτ

+
∫ t

0

[N(0, t, s(τ), τ)−N(0, t, 0, τ)]F (V (τ)) dτ.

(2.9)

Lemma 2.2. If v ∈ C0[0, σ], maxt∈[0,σ] |v(t)| ≤M and 2Mσ ≤ b then s(t) defined
by (2.2) satisfies

|s(t)− s(τ)| ≤M |t− τ | |s(t)− b| ≤ b

2
, ∀t, τ ∈ [0, σ].

To prove the following Lemmas we need the inequality

exp
( −x2

α(t− τ)

)
/(t− τ)n/2 ≤

( nα

2ex2

)n/2

, α, x > 0, t > τ, n ∈ N. (2.10)

Lemma 2.3. Let σ ≤ 1, M ≥ 1, f ∈ C1[0, T ), h ∈ C1[0, b], F a Lipschitz function
over C0[0, T ]. Under the hypothesis of Lemma 2.2, we have the following properties:∫ t

0

|N(s(t), t, 0, τ)||ḟ(τ)| dτ ≤ ‖ḟ‖tC1(b)t (2.11)∫ t

0

|Gx(s(t), t, s(τ), τ)||v(τ)| dτ ≤M2C2(b)
√
t (2.12)∫ b

0

|N(s(t), t, ξ, 0)||h′(ξ)|dξ ≤ ‖h′‖ (2.13)∫ t

0

|N(s(t), t, s(τ), τ)−N(s(t), t, 0, τ)||F (V (τ))| dτ ≤ C4(L)M
√
t (2.14)∫ b

0

|N(0, t, ξ, 0)||h′(ξ)|dξ ≤ ‖h′‖ (2.15)∫ t

0

|N(0, t, 0, τ)||ḟ(τ)| dτ ≤ 2‖ḟ‖σ√
π

√
t (2.16)∫ t

0

|Gx(0, t, s(τ), τ)||v(τ)| dτ ≤ C3(b)Mt (2.17)∫ t

0

|N(0, t, s(τ), τ)−N(0, t, 0, τ)||F (V (τ))| dτ ≤ C4(L)M
√
t (2.18)
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where L is the Lipschitz constant of F and

C1(b) = (
8
eb2

)1/2 1√
π
, C2(b) =

1
2
√
π

+
3b

4
√
π

(
2

3eb2
)3/2

C3(b) =
3b

8
√
π

(
24
eb2

)3/2, C4(L) =
4L√
π
.

(2.19)

Proof. To prove (2.11), we have

|N(s(t), t, 0, τ)| = |K(s(t), t, 0, τ) +K(−s(t), t, 0, τ)| = 2K(s(t), t, 0, τ)

= exp
( −s2(t)
4(t− τ)

) (t− τ)−1/2

√
π

≤ exp
( −b2

16(t− τ)
) (t− τ)−1/2

√
π

≤ (
8
eb2

)1/2 1√
π

= C1(b)

then (2.11) holds. To prove (2.12), we have

|Gx(s(t), t, s(τ), τ)| =
∣∣Kx(s(t), t, s(τ), τ) +Kx(−s(t), t, s(τ), τ)

∣∣
=

(t− τ)−3/2

4
√
π

∣∣∣(s(t)− s(τ)) exp
(−(s(t)− s(τ))2

4(t− τ)
)

− (s(t) + s(τ)) exp
(−(s(t) + s(τ))2

4(t− τ)
)∣∣∣

≤ (t− τ)−3/2

4
√
π

(
M(t− τ) + 3b exp

( −9b2

4(t− τ)
))

≤ 1
4
√
π

(
M(t− τ)−1/2 + 3b

( 2
3eb2

)3/2
)
.

Then ∫ t

0

|Gx(s(t), t, s(τ), τ)||v(τ)| dτ ≤ M

4
√
π

(
2M

√
t+ 3b(

2
3eb2

)3/2t
)

≤M2
√
t
( 1
2
√
π

+
3b

M4
√
π

(
2

3eb2
)3/2

)
≤M2C2(b)

√
t,

which implies (2.12). To prove (2.13), we have∫ b

0

|N(s(t), t, ξ, 0)||h′(ξ)|dξ ≤ ‖h′‖
∫ ∞

0

|N(s(t), t, ξ, 0)|dξ ≤ ‖h′‖

because ∫ ∞

0

|N(s(t), t, ξ, 0)|dξ ≤ 1.

To prove (2.14), by taking into account that

|N(s(t), t, s(τ), τ)−N(s(t), t, 0, τ)| ≤ 2√
π(t− τ)
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we obtain

∫ t

0

|N(s(t), t, s(τ), τ)−N(s(t), t, 0, τ)||F (V (τ))| dτ ≤ LM

∫ t

0

2√
π(t− τ)

dτ

= C4(L)M
√
t.

The inequality (2.15) is prove in the same way as (2.13). To prove (2.16), we have

∫ t

0

|N(0, t, 0, τ)||ḟ(τ)| dτ ≤ ‖ḟ‖σ

∫ t

0

|N(0, t, 0, τ)| dτ

= ‖ḟ‖σ

∫ t

0

1√
π(t− τ)

dτ

=
‖ḟ‖σ√
π

2
√
t.

To prove (2.17), we have

|Gx(0, t, s(τ), τ)| = (t− τ)−3/2

4
√
π

s(τ) exp
(−(s(τ))2

4(t− τ)

)
≤ 3b

8
√
π

(t− τ)−3/2 exp
( −b2

16(t− τ)

)
≤ 3b

8
√
π

(
24
eb2

)3/2 .

To prove (2.18), as in (2.14), we prove that

|N(0, t, s(τ), τ)−N(0, t, 0, τ)| ≤ 2√
π(t− τ)

and therefore (2.18) holds. �

Lemma 2.4. Let s1, s2 be the functions corresponding to v1, v2 in C0[0, σ], re-
spectively, with maxt∈[0,σ] |vi(t)| ≤M , i = 1, 2, Then we have

|s2(t)− s1(t)| ≤ t‖v2 − v1‖t,

|si(t)− si(τ)| ≤M |t− τ |, i = 1, 2,
b

2
≤ si(t) ≤

3b
2
, ∀t ∈ [0, σ], i = 1, 2.

(2.20)
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Lemma 2.5. Let f ∈ C1[0, T ), h ∈ C1[0, b], F a Lipschitz function in C0[0, T ].
We have

|F0(v2(t))− F0(v1(t))| ≤ E(b, h, f)
√
t‖v2 − v1‖t; (2.21)∫ t

0

|N(s2(t), t, s2(τ), τ)−N(s2(t), t, 0, τ)||F (V2(τ))− F (V1(τ))| dτ

≤ C4(L)
√
t‖V2 − V1‖t;

(2.22)

∫ t

0

|N(s2(t), t, 0, τ)−N(s1(t), t, 0, τ)||F (V1(τ))| dτ

≤ C5(b, L,M)t‖v2 − v1‖t;
(2.23)

∫ t

0

|N(s2(t), t, s2(τ), τ)−N(s1(t), t, s1(τ), τ)||F (V1(τ))| dτ

≤ [C6(L,M)
√
t+ C7(b, L,M)t]‖v2 − v1‖t;

(2.24)

∫ t

0

|Gx(0, t, s2(τ), τ)||v2(τ)− v1(τ)| dτ ≤ C8(b)t‖v2 − v1‖t; (2.25)∫ t

0

|Gx(0, t, s2(τ), τ)v2(τ)−Gx(0, t, s1(τ), τ)v1(τ)| dτ

≤ (C8(b)t+ C9(b,M)t2)‖v2 − v1‖t;
(2.26)

∫ t

0

∣∣∣[N(0, t, s2(τ), τ)−N(0, t, 0, τ)]F (V2(τ))

− [N(0, t, s1(τ), τ)−N(0, t, 0, τ)]F (V1(τ))
∣∣∣ dτ

≤ C4(L)
√
t‖V2 − V1‖t + C5(b, L,M)t2‖v2 − v1‖t,

(2.27)

where the constants are defined by

C4(L) =
4L√
π
, C5(b, L,M) = LM

3b
8
√
π

(
24
eb2

)3/2 ,

C6(L,M) =
LM3

√
π
, C7(b, L,M) = (

6
eb2

)3/2 3bLM2

2
√
π

,

C8(b) =
3

4
√
π

(
24
eb2

)3/2 , C9(b,M) = [(
40
eb2

)
5
2

9b2

16
√
π

+
1

2
√
π

(
24
eb2

)3/2]
M

2
.

(2.28)

Proof. The proof of (2.21) can be found in [13]. To prove (2.22), we have

|N(s2(t), t, s2(τ), τ)−N(s2(t), t, 0, τ)| ≤
2√

π(t− τ)
.

Then ∫ t

0

|N(s2(t), t, s2(τ), τ)−N(s2(t), t, 0, τ)||F (V2(τ))− F (V1(τ))| dτ

≤ 4L√
π

√
t‖V2 − V1‖t
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To prove (2.23), we use the mean value theorem: There exists c = c(t, τ) between
s1(t) and s2(t) such that

|N(s2(t), t, 0, τ)−N(s1(t), t, 0, τ)||F (V1(τ))|
= |Nx(c, t, 0, τ)||s2(τ)− s1(τ)||F (V1(τ))|

≤ |c| exp
(
− c2

4(t− τ)
) (t− τ)−3/2

2
√
π

LMτ |v2(τ)− v1(τ)|

≤ 3b
4
√
π

exp
(
− b2

16(t− τ)
)
(t− τ)−3/2LMτ |v2(τ)− v1(τ)|

≤ 3b
4
√
π

(
24
eb2

)3/2LMτ |v2(τ)− v1(τ)| .

Then ∫ t

0

|N(s2(t), t, 0, τ)−N(s1(t), t, 0, τ)||F (V1(τ))| dτ

≤ 3b
8
√
π

(
24
eb2

)
3
2LMt‖v2 − v1‖t = C5(b, L,M)t‖v2 − v1‖t.

To prove (2.24), we have

N(s2(t), t, s2(τ), τ)−N(s1(t), t, s1(τ), τ)

= K(s2(t), t, s2(τ), τ)−K(s1(t), t, s1(τ), τ)

+K(−s2(t), t, s2(τ), τ)−K(−s1(t), t, s1(τ), τ) .

As in [24], for each (t, τ), 0 < τ < t, we define

ft,τ (x) = exp
( −x2

4(t− τ)
)
.

Then we have

K(s2(t), t, s2(τ), τ)−K(s1(t), t, s1(τ), τ)

=
(t− τ)−1/2

2
√
π

[
exp

(
− (s2(t)− s2(τ))2

4(t− τ)
)
− exp

(
− (s1(t)− s1(τ))2

4(t− τ)
)]

=
(t− τ)−1/2

2
√
π

[
ft,τ (s2(t)− s2(τ))− ft,τ (s1(t)− s1(τ))

]
and

K(−s2(t), t, s2(τ), τ)−K(−s1(t), t, s1(τ), τ)

=
(t− τ)−1/2

2
√
π

[
exp

(
− (s2(t) + s2(τ))2

4(t− τ)
)
− exp

(
− (s1(t) + s1(τ))2

4(t− τ)
)]

=
(t− τ)−1/2

2
√
π

[
ft,τ (s2(t) + s2(τ))− ft,τ (s1(t) + s1(τ))

]
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By the mean value theorem there exists c = c(t, τ) between s2(t) − s2(τ) and
s1(t)− s1(τ) such that

ft,τ (s2(t)− s2(τ))− ft,τ (s1(t)− s1(τ))

= f ′t,τ (c)(s2(t)− s2(τ)− s1(t) + s1(τ))

=
−c

2(t− τ)
exp(− c2

4(t− τ)
)(s2(t)− s2(τ)− s1(t) + s1(τ))

Taking into account that

|c| ≤ max{|si(t)− si(τ)|, i = 1, 2} ≤M(t− τ)

it results

|ft,τ (s2(t)− s2(τ))− ft,τ (s1(t)− s1(τ))| ≤
M

2
[|s2(t))− s1(t)|+ |s2(τ)− s1(τ)|]

≤M2‖v2 − v1‖t .

Then we have

|K(s2(t), t, s2(τ), τ)−K(s1(t), t, s1(τ), τ)| ≤
M2

2
√
π(t− τ)

‖v2 − v1‖t.

In the same way we have

ft,τ (s2(t) + s2(τ))− ft,τ (s1(t) + s1(τ))

= f ′t,τ (c∗)(s2(t) + s2(τ)− s1(t)− s1(τ))

=
−c∗

2(t− τ)
exp(− c∗2

4(t− τ)
)(s2(t) + s2(τ)− s1(t)− s1(τ))

where c∗ = c∗(t, τ) is between s2(t)+ s2(τ) and s1(t)+ s1(τ). Since s1(t)+ s1(τ) ≤
c∗ ≤ s2(t)+s2(τ), (or viceversa), we deduce that b ≤ c∗ ≤ 3b, that is exp(−c∗2/4(t−
τ)) ≤ exp(−b2/4(t− τ)). Then we obtain

|K(−s2(t), t, s2(τ), τ)−K(−s1(t), t, s1(τ), τ)|

=
(t− τ)−1/2

2
√
π

|ft,τ (s2(t) + s2(τ))− ft,τ (s1(t) + s1(τ))|

≤ 3b
4
√
π(t− τ)3/2

exp
(
− b2

4(t− τ)
)
2M‖v2 − v1‖t

≤ (
6
eb2

)3/2 3bM
2
√
π
‖v2 − v1‖t

and

|N(s2(t), t, s2(τ), τ)−N(s1(t), t, s1(τ), τ)|

≤ (
M2

2
√
π(t− τ)

+ (
6
eb2

)3/2 3bM
2
√
π

)‖v2 − v1‖t.



EJDE-2006/21 ONE-PHASE STEFAN PROBLEMS 11

Therefore, ∫ t

0

|N(s2(t), t, s2(τ), τ)−N(s1(t), t, s1(τ), τ)||F (V1(τ))| dτ

≤
∫ t

0

( M2

2
√
π(t− τ)

+ (
6
eb2

)3/2 3bM
2
√
π

)
‖v2 − v1‖t|F (V1(τ))| dτ

≤ LM
(M2

√
t√

π
+ (

6
eb2

)3/2 3bM
2
√
π
t
)
‖v2 − v1‖t

= (C6(L,M)
√
t+ C7(L,M, b)t)‖v2 − v1‖t.

To prove (2.25), we take into account (2.10):

Gx(0, t, s2(τ), τ) = K(0, t, s2(τ), τ)
s2(τ)
t− τ

= exp
(
− s22(τ)

4(t− τ)
) (t− τ)−3/2

2
√
π

s2(τ)

≤ 1
2
√
π

( 24
eb2

)3/2
s2(τ) ≤

3b
4
√
π

(
24
eb2

)
3
2 = C8(b).

To prove (2.26), we have

|Gx(0, t, s2(τ), τ)v2(τ)−Gx(0, t, s1(τ), τ)v1(τ)|
≤ |Gx(0, t, s2(τ), τ)||v2(τ)− v1(τ)|

+ |Gx(0, t, s2(τ), τ)−Gx(0, t, s1(τ), τ)||v1(τ)|.

Using the mean value theorem there exists c = c(τ) between s2(τ) and s1(τ) such
that Gx(0, t, s2(τ), τ)−Gx(0, t, s1(τ), τ) = Gxξ(0, t, c, τ)(s2(τ)−s1(τ)). Taking into
account the following properties

Gxξ(0, t, c, τ) =
K(0, t, c, τ)

t− τ

( c2

2(t− τ)
+ 1

)
,

K(0, t, c, τ)
t− τ

=
1

2
√
π

exp
(
− c2

4(t− τ)
)
(t− τ)−3/2 ≤ 1

2
√
π

(
24
eb2

)3/2,

K(0, t, c, τ)
c2

2(t− τ)2
=

1
4
√
π

exp
(
− c2

4(t− τ)
)
(t− τ)−

5
2 c2 ≤ 9b2

16
√
π

(
40
eb2

)5/2

we have

|Gx(0, t, s2(τ), τ)−Gx(0, t, s1(τ), τ)||v1(τ)|

≤ (
1

2
√
π

(
24
eb2

)
3
2 +

9b2

16
√
π

(
40
eb2

)
5
2 )|s2(τ)− s1(τ)||v1(τ)|

≤M(
1

2
√
π

(
24
eb2

)
3
2 +

9b2

16
√
π

(
40
eb2

)
5
2 )τ |v2(τ)− v1(τ)| .

Then ∫ t

0

|Gx(0, t, s2(τ), τ)−Gx(0, t, s1(τ), τ)||v1(τ)| dτ

≤ (
1

2
√
π

(
24
eb2

)
3
2 +

9b2

16
√
π

(
40
eb2

)
5
2 )
Mt2

2
‖v2 − v1‖t.
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Then (2.26) holds by using (2.25). To prove (2.27), we have

[N(0, t, s2(τ), τ)−N(0, t, 0, τ)]F (V2(τ))

− [N(0, t, s1(τ), τ)−N(0, t, 0, τ)]F (V1(τ))

= [N(0, t, s2(τ), τ)−N(0, t, 0, τ)][F (V2(τ))− F (V1(τ))]

+ [N(0, t, s2(τ), τ)−N(0, t, s1(τ), τ)]F (V1(τ))

(2.29)

Using |N(0, t, s2(τ), τ)−N(0, t, 0, τ)| ≤ 2√
π(t−τ)

we get

|N(0, t, s2(τ), τ)−N(0, t, 0, τ)||F (V2(τ))−F (V1(τ))| ≤
2√

π(t− τ)
L|V2(τ)−V1(τ)|,

and ∫ t

0

|N(0, t, s2(τ), τ)−N(0, t, 0, τ)||F (V2(τ))− F (V1(τ))| dτ

≤ 4
√
t√
π
L‖V2 − V1‖t = C4(L)

√
t‖V2 − V1‖t.

(2.30)

Furthermore,

|N(0, t, s2(τ), τ)−N(0, t, s1(τ), τ)| = |Nξ(0, t, c, τ)||s2(τ)− s1(τ)|

where c = c(τ) is between s2(τ) and s1(τ) and

|Nξ(0, t, c, τ)||s2(τ)− s1(τ)| = | −Gx(0, t, c, τ)||s2(τ)− s1(τ)|

≤ |c|
2
√
π

(
24
eb2

)3/2τ |v2(τ)− v1(τ)|

≤ 3b
4
√
π

(
24
eb2

)3/2τ |v2(τ)− v1(τ)|.

Then ∫ t

0

|N(0, t, s2(τ), τ)−N(0, t, s1(τ), τ)||F (V1(τ))| dτ

≤ LM
3b

4
√
π

(
24
eb2

)3/2 t
2

2
‖v2 − v1‖t = C5(L,M, b)t2‖v2 − v1‖t

(2.31)

Therefore, by (2.29), (2.30), and (2.31)), the inequality (2.27) holds. �

Theorem 2.6. The map A : CM,σ → CM,σ is well defined and is a contraction
map if σ satisfies the following inequalities:

σ ≤ 1 , 2Mσ ≤ b (2.32)

(2‖ḟ‖σC1(b) +MC3(b))σ + (2M2C2(b) +
2‖ḟ‖σ√

π
+ 3MC4(L))

√
σ ≤ 1 (2.33)

D(b, f, h, L,M)
√
σ < 1, (2.34)

where

M = 1 + 3‖h′‖ (2.35)
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and

D1(b, f, h, L,M) = E(b, f, h) + 2C6(L,M) + 3C4(L)

D2(b, L,M) = 2[C5(b, L,M) + 2C7(b, L,M) + C8(b)]

D3(b, L,M) = C9(b,M) + C5(b, L,M)

D(b, f, h, L,M) = D1(b, f, h, L,M) +D2(b, L,M) +D3(b, L,M).

Then there exists a unique solution on CM,σ to the system of integral equations
(2.4), (2.5).

Proof. Firstly we demonstrate that A maps Cσ,M into itself, that is

‖A(~w)‖σ = max
t∈[0,σ]

|A1(v(t), V (t))|+ max
t∈[0,σ]

|A2(v(t), V (t))| ≤M (2.36)

Using the Lemmas 2.3, 2.4 and the definitions (2.8)-(2.9), we have

|A1(v(t), V (t))| ≤ 2‖ḟ‖σC1(b)t+ 2M2C2(b)
√
t+ 2‖h′‖+ 2C4(L)M

√
t,

|A2(v(t), V (t))| ≤ ‖h′‖+ (
2‖ḟ‖σ√

π
+ C4(L)M)

√
t+ C3(b)Mt.

Then

‖A(~w)‖σ = max
t∈[0,σ]

|A1(v(t), V (t))|+ max
t∈[0,σ]

|A2(v(t), V (t))|

≤ 3‖h′‖+ (2‖ḟ‖σC1(b) + C3(b)M)σ

+
(
2M2C2(b) +

2‖ḟ‖σ√
π

+ 3MC4(L)
)√

σ.

Selecting M by (2.35) and σ such that (2.32) and (2.33) hold, we obtain (2.36).
Now, we prove that

‖A( ~w2)−A(
−→
w1)‖σ ≤ D(b, h, f, L,M)

√
σ‖ ~w2 − ~w1‖σ

where ~w1 =
(

v1
V1

)
, ~w2 =

(
v2
V2

)
. By selecting σ such that (2.34) holds, A becomes a

contraction mapping on Cσ,M and therefore it has a unique fixed point. To prove
this assertion we consider

A( ~w1)(t)−A( ~w2)(t) =
(
A1(v2(t), V2(t))−A1(v1(t), V1(t))
A2(v2(t), V2(t))−A2(v1(t), V1(t))

)
where

A1(v2(t), V2(t))−A1(v1(t), V1(t))

= F0(v2(t))− F0(v1(t)) + 2
∫ t

0

[N(s2(t), t, s2(τ), τ)−N(s2(t), t, 0, τ)]F (V2(τ)) dτ

− 2
∫ t

0

[N(s1(t), t, s1(τ), τ)−N(s1(t), t, 0, τ)]F (V1(τ)) dτ
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and

A2(v2(t), V2(t))−A2(v1(t), V1(t))

=
∫ t

0

[Gx(0, t, v2(τ), τ)v2(τ)−Gx(0, t, v1(τ), τ)v1(τ)] dτ

+
∫ t

0

{
[N(0, t, s2(τ), τ)−N(0, t, 0, τ)]F (V2(τ))

− [N(0, t, s1(τ), τ)−N(0, t, 0, τ)]F (V1(τ))
}
dτ .

Taking into account the Lemmas 2.4 and 2.5 it results

|A1(v2(t), V2(t))−A1(v1(t), V1(t))|

≤ E(b, h, f)
√
t‖v2 − v1‖t + 2C4(L)

√
t‖V2 − V1‖t

+ 2C5(b, L,M)t‖v2 − v1‖t + 2[C6(L,M)
√
t+ C7(b, L,M)t]‖v2 − v1‖t,

and

|A2(v2(t), V2(t))−A2(v1(t), V1(t))|
≤ (C8(b)t+ C9(b,M)t2)‖v2 − v1‖t

+ C4(L)
√
t‖V2 − V1‖t + C5(b, L,M)t2‖v2 − v1‖t .

Therefore,

‖A( ~w2)−A( ~w1)‖σ

≤ max
t∈[0,σ]

|A1(v2(t), V2(t))−A1(v1(t), V1(t))|

+ max
t∈[0,σ]

|A2(v2(t), V2(t))−A2(v1(t), V1(t))|

≤ {D1(b, f, h, L,M)
√
σ +D2(b, L,M)σ +D3(b, L,M)σ2}‖ ~w2 − ~w1‖σ

≤ D(b, f, h, L,M)
√
σ‖ ~w2 − ~w1‖σ .

By hypothesis (2.34) we have that A is a contraction. �

Remark. If F satisfies the conditions
(H2) F (V ) > 0, for all V 6= 0 and F (0) = 0,

then by the maximum principle [5], u is a sub-solution for the same problem with
F ≡ 0, that is

u(x, t) ≤ u0(x, t) , s(t) ≤ s0(t)

where u0(x, t) and s0(t) solve the classical Stefan problem

u0t − u0xx = 0, 0 < x < s0(t), 0 < t < T,

u0(0, t) = f(t) > 0, 0 < t < T,

u0(s0(t), t) = 0, u0x(s0(t), t) = −ṡ0(t).0 < t < T,

u0(x, 0) = h(x) 0 6 x 6 b = s0(0) .
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Departamento de Matemática, FCE, Universidad Austral, Paraguay 1950, S2000FZF
Rosario, Argentina

E-mail address: Adriana.Briozzo@fce.austral.edu.ar

Domingo Alberto Tarzia
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