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ABSTRACT

In the oil exploration industry, perforated pipe assembly can be a prolonged

process in the manufacturing environment. A pipe keyway must be aligned to

successfully assemble the perforated outer and inner pipes. However, the current

method uses vision devices to rotate a pipe multiple times, eventually rotating to

the angle that meets the requirement, which is time-consuming, leading to a lack of

productivity. Therefore, the purpose of conducting this research is to establish an

automatic rotating angle correction method such that the keyway can be aligned by

only rotating a pipe once.

The system executes a series of processes: recognizing a pipe, picking it up,

detecting the keyway, and rotating it to the desired orientation using only a single

rotation. A General Regression Neural Network (GRNN) model predicts the actual

robot rotation angle needed for correct orientation. The robot will rotate the pipe

using the predicted rotation angle. After rotation, the deviation from the desired

keyway angle must be less than the given threshold.

This research is of importance in the application of machine vision (MV) in

industrial production. In this thesis research, the pipe keyway alignment problem is

addressed using a 2D machine vision method as well as the GRNN algorithm. The

proposed method is tested using a pipe handling process. A steel pipe with a keyway

is to be placed in a random orientation. As the keyway must be aligned in the

following manufacturing process, a robot is used to rotate the pipe to the correct

orientation by applying the machine learning algorithm. The experiment was set up

xii



and used to test the proposed machine learning method. Also, for easier automatic

picking up the pipe, we implemented a 3D machine vision recognition procedure.

Compared with the current method, the proposed method allows the robot to only

needs to rotate a pipe once to align the keyway. Hence the proposed method can

greatly increase the manufacturing efficiency and reduce manufacturing cost.

The thesis introduces the experimental system, explains the theories and the

methodologies, describes the procedure of the experiment, and arrives at a result.

The system uses an industrial robot ABB IRB 4400; Cognex DS1300 3D

Displacement Sensor; Cognex In-sight 7000 2D Smart Camera, and a computer with

the GRNN algorithm.
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I. INTRODUCTION

Harsh environments, over-sized components, and heavy workloads make some

tasks beyond the grasp of unaided human limitations. Robots are designed to

accomplish tasks that are beyond these human limitations. Robotics has been

widely applied to the manufacturing environment. From PricewaterhouseCoopers

(PWC) report, more than half of manufacturers are using robotics technology in

some ways [1]. Industrial robots are speeding up operations as well as making core

processes cheaper and more intelligent.

A Texas oil and gas perforating gun production and volume machining

manufacturer, Hunt & Hunt, is working on improving the automation technology to

accelerate the productivity of perforating guns to meet the oil and gas market

requirements. An ABB robot is machining perforating guns, as shown in Figure I.1.

Figure I.1: Hunt & Hunt Perforating Gun Machining.
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Human workers still manually align the keyway of the perforating gun at

perforating gun manufacturers like Hunt & Hunt. The thesis introduces an object

handling method to achieve automatic handling and rotating the perforating gun

pipes accurately and aligning them using a keyway.

Figure I.2: Perforating Gun Outer Pipe and Inner Pipe.

Figure I.2 shows an outer pipe and an inner pipe of the perforating gun. The

charge hole on the inner pipe should be aligned as the same phase as the outer pipe

while being assembled so the explosive charges can explode through the thinner hole

area on the outer pipe wall. Failure to align the outer and inner pipes would cause

perforation failure and low oil production. The methodology described in this thesis

is intended to improve this alignment process. The proper positioning of the keyway

of the outer pipe is defined as the main focus in this research. To facilitate the

complete the process, it required the addition of automatic recognition and

"pick-and-place" of pipes. The objects of the experiment involved in the process are

shown in Figure I.3.
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(a) A pile of steel pipes. (b) A single pipe with the keyway.

Figure I.3: Objects of Experiment.

Background

Texas is the largest domestic oil-producing area in the continental United States

and has had a petroleum industry for more than a century. In recent years, an oil

boom has recurred in Texas [2], [3]. With the increasing demand for oil production,

improving the processes of the oil industry, which includes exploitation, production,

refining, marketing etc. [4], comes back to researchers and businesspeople. In this

situation, robotics technology has been applied in the oil industry more than before.

According to the data available on Albert B. Alkek library search engine, from the

year 2015 to 2019, the Academic Journals and Conference Materials have

respectively 155 and 72 robotics and oil industry-related topics. From the year 2009

to 2014, the numbers are 72 and 42, respectively.
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Texas State University’s robotics laboratory, under the direction of Dr. Heping

Chen, attempts to improve the accuracy of robotics control in various

manufacturing environments. Some perforating gun manufacturers such as Hunt and

Hunt seek a solution for the high productivity as well as good precision of the

assembly of perforating gun system.

This presented research employed machine vision, robotics, and a

machine-learning algorithm to address the problem mentioned in the first section. In

the field of industrial manufacturing, the use of automated robotic assembly lines

instead of human workers can significantly cut costs for manufacturing. The

complexity of configuring robotics is growing due to the rapid development of

automation for hundreds of industries [5]. As an answer to this, by deploying vision

sensors in key applications, we can not only increase the industrial robot

application’s flexibility but also accelerate the rate of application development

cycles, reducing the life-cycle costs of a company [6].

Due to this reason, vision-based robotics started playing a more significant role in

modern manufacturing. From the 21st century, alliances within the manufacturing

field have been searching for methods of the development of automation, promotion

of intelligent manufacturing. Intelligent perception, industrial internet, and digital

information become the leading trend.

Problem Statement

One of the most common repetitive processes used in manufacturing is object

handling. Industrial robots are gradually replacing human workers due to increased

efficiency and productivity. However, positional accuracy is a practical consideration

in almost every production line. For a specific example, pipe assembly processes

require accuracy and the alignment of slotted and threaded pipes. The efficiency
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and accuracy of robotic manipulator control techniques are of great importance in

such applications.

Hunt & Hunt company is researching using vision sensors to address the

alignment problem. The current method is to rotate a pipe several times using a

robot, or manually align the keyway, to finally meet the accuracy requirement,

which is illustrated in Figure I.4. However, this method is time-consuming and not

efficient. This thesis addresses this problem by predicting the keyway rotation angle

using a machine learning algorithm. It improves the keyway alignment efficiency.

Figure I.4: Current Keyway Alignment Method in Hunt & Hunt.

In the research presented, we proposed a machine learning technique of pipe’s

pick-rotate-place manipulation using a vision-based robotic system, as shown in

Figure I.5.
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Figure I.5: Proposed Method.

The proposed method will be demonstrated using an industrial robotic arm, a 3D

laser displacement sensor, a 2D smart camera, and a computer with a General

Regression Neural Network algorithm. The robotic pipe handling process is carried

out in two different steps, namely a picking process and an execution process.

The first process automatically locates, picks up, and rotates steel pipes. Without

perfect tool center point (TCP) calibrated for this task, the robot end-effector could

not precisely rotate the pipe axis based on the detected keyway position and

orientation. The goal of this experiment is to solve the problem of a series of the

auto-assembly process: from picking up heavy metal pipes to rotating the pipes

based on the detected keyway angle, and finally, rotating the pipe using the

algorithm-corrected angle to meet the keyway alignment requirement with less than

0.5 degrees of keyway angle error.
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Literature Review

There are very few theories about how to align perforating gun pipe keyways with

engineering methods. However, the literature covers a wide variety of topics using

machine vision. This review will focus on two major themes that repeatedly emerge

throughout the literature review, and two sub-themes under the machine learning

algorithms. These two themes are: machine vision and machine learning algorithms,

and the two sub-themes are: neural networks and generalized regression neural

network.

Machine Vision

Machine vision is related to but still distinct from computer vision [7]. Machine

vision involves fields including image processing, pattern recognition, signal

processing, Opto-electromechanical integration, and so on [8]. Machine vision is

concerned with integrated mechanical-optical-electronic-software systems for

examining natural objects and materials, human artifacts, and manufacturing

processes to detect product defects and improve product quality, operating

efficiency, and safety of both products and processes [7].It is also used to control

machines in manufacturing [9]. In simple terms, a machine vision system uses

machine instead of human eyes to make various measurements and judgments in

manufacturing automation.

The Machine Vision Association (MVA) of the Society of Manufacturing

Engineers (SME) describes machine vision as this: "The use of devices for optical

non-contact sensing to automatically receive and interpret an image of a real scene

in order to obtain information and/or control machines or processes" [10]. Machine

vision is the use of devices that are for capturing an image from an industrial

camera for inspection or process control of manufactured products.
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The usage of machine vision devices can reduce labor costs [11]. Recently,

machine vision application is fast-growing with the development of machine learning

algorithms, an artificial intelligence branch. It has a huge market with wide

prospects and big potential in manufacturing fields. Product measurement, part

inspection, recognition, and orientation are typical usages in the area [12]. Machine

vision is superior to manual inspection because it can handle high speed and volume

production, offers more precise readings and provides better process control [13].

Vision systems include a wide variety of vision sensors. There are several types,

including 2D camera, 3D camera. It is also called vision guided robotics (VGR)

when it is deployed with the robotics system [14].

The goal of applying machine vision systems is to improve quality and

productivity in the manufacturing process. Machine vision can be categorized by

functions, such as code reading, print verification, robotic guidance and flaw

detection.

Machine vision is one of the critical technologies of robot applications. It is also

fast developing with artificial intelligence (AI) technologies. Recently, the rapid

development of image processing and pattern recognition technology has greatly

promoted the development of machine vision. With AI ability, machine vision highly

increases manufacturing productivity. Because many factories have a demand for

machine vision systems, it has a huge market with significant potential and broad

prospects in the manufacturing filed. The typical deployment in manufacturing is

presented in Figure I.6.
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Figure I.6: Machine Vision in Manufacturing.

Machine Learning Algorithms

Machine learning is a multi-disciplinary, interdisciplinary subject and machine

learning algorithms do not refer to only a single method, but a combination of many

algorithms. It is regarded as the core of artificial intelligence and a fundamental way

to make machines intelligent.

It is applied in all fields that required artificial intelligence. Regression and

classification are two kinds of problems in machine learning. The main differences

are: the predicted output of the regression problem is continuous, while the output

of classification is finite discrete values representing different classes.

Specifically, machine learning algorithms attempt to extract implicit rules from a

large number of historical data and use them for prediction or classification. More

specifically, machine learning can be seen as looking for a function: the input is

sample data, and the output is the desired result, but the function is too complex to

be easily formalized. It should be noted that the purpose of machine learning is to

make the functions learned to apply well to "new samples" rather than just perform

well on training samples. Usually, a validation set is used in order to avoid

over-fitting [15]. The ability to apply the functions learned to new samples is

generalization [16].
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Machine learning has been developed for more than twenty years and has

penetrated into many fields, such as robotics, genome data analysis, and financial

markets.

Neural Networks

Neural Network (NN) or Artificial Neural Network (ANN), is developed from

modeling biological neural networks forming with biological brain neurons, cells and

other components.

ANNs are designed to imitate the working process of human brains. The

construction of a neural network is inspired by the operation of a biological neural

network. ANN is a kind of operation model, which consists of a large number of

connected nodes. Each node acts as a specific output function, named activation

function. The connection between every two nodes represents a weighted value of

the signal passing through the connection. Neural network simulates human

memory in this way. The network output is determined by structure, connection

mode, weight and activation function of the network. The network itself is usually

the approximation of some algorithms or functions in nature, or the expression of a

logic strategy. ANN combines the knowledge of biological neural network with

mathematical model and realizes it with a mathematical tools. Figure I.7 shows the

structure of a basic artificial neuron.

The Artificial Neural Network has been applied in the control field for a long

time. Liang and Du [17] designed and applied a direct neural network thermal

comfort controller for Variable-Air-Volume applications. In the paper, this Artificial

Neural Network learned from the user’s comfort zone and optimized the system

operation to achieve energy savings. Chow and Lin [18] demonstrated a control

approach as applying ANN and Genetic Algorithm (GA) integrated optimization

10



Figure I.7: Artificial Neuron Structure.

methods in the optimal control of an absorption chiller system [19], [20].

Error Back Propagation (ERBP) method was put forward by Rumelhart. in 1986

[21]. It is also known as Back Propagation (BP) algorithm. BP neural network is a

feed-forward and multi-layer neural network; it is the typical representative of the

artificial neural network and the most widely used neural network [22]. BP neural

network has been applied in different fields, such as function approximation, pattern

recognition, prediction, classification application automatic control, and data

compression research with its unique properties. BP neural network is proven to

offer an effective method in these above fields. Until today, the BP algorithm is still

the most important and most applied efficient algorithm in automatic control. It is a

well-known algorithm for multi-layer neural network training. It has the advantages

of a solid theoretical basis, rigorous deduction process, clear physical concept, and

strong versatility. However, people find that the BP algorithm has some

shortcomings, such as a slow convergence speed and a tendency to fall into a local

minimum.

In 1988, based on Powell’s Radial Basis Function (RBF) method of multi-variable

interpolation [23], Moody and Darken proposed a neural network structure very

different from BP neural network, named Radial Basis Function Neural Network

11



[24].

BP neural network uses a gradient descent method to approximates the minimum

error by constantly adjusting the weights of neurons. RBF network is a feed-forward

neural network. It does not approximate the minimum error by constantly adjusting

the weights. Its excitation function is generally a Gaussian function. Unlike the

S-type function of BP, the Gaussian function calculates the weight by the distance

between the input and the center of the function.

Generalized Regression Neural Network

In 1991, D. F. Specht first proposed a different neural network structure, named

General Regression Neural Network. GRNN is a kind of neural network which uses

Probability Density Function (PDF) to replace the pre-determined equation and

obtains the regression value of the independent variables and the dependent

variables from the samples [25]. GRNN is a variant of RBFNN mentioned

previously. From D. F. Specht, GRNN features fast learning that does not require

an iterative procedure and a highly parallel structure. It can be used for prediction,

modeling, mapping, and interpolating or as a controller. GRNN is similar in form to

the Probabilistic Neural Network (PNN), also proposed by D. F. Specht [26].

The advantages of GRNN relative to other nonlinear regression techniques include

but are not limited to [27]:

1. GRNN has good local approximation and global optimality;

2. GRNN has faster computing speed;

3. GRNN is easy to use. There is only one parameter, smoothing parameter

Spread that needs to be adjusted.
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GRNN has been implemented in different areas.

In Al-Mahasneh’s paper [28], an evolutionary GRNN is developed based on

limited incremental evolution and distance-based pruning to online dynamic

systems. Also, a variance-based method is suggested to adapt to the smoothing

parameter in GRNN for online applications. Kaur [29] portrays a blind audio

watermarking scheme in the transform domain using the combination of properties

of audio signal extracted through singular value decomposition and general

regression neural network leading to the exact extraction of the watermark. A

GRNN that can work with measurements without quantization has been evaluated

in the paper [30]. The result shows that the proposed method is reliable and

effective for condition assessment of transformers through an automated index

calculation. In the paper [31], a general regression neural network was applied to

predict the pressure loss of Herschel-Buckley drilling fluids in the concentric and

eccentric annulus. The predicted pressure losses in annulus using GRNN closely

followed the experimental ones with an average relative absolute error less than

6.24%, and a correlation coefficient (R) of 0.99 for pressure loss estimation.
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II. METHODOLOGICAL DESIGN

From Chapter 1, there are two different problems to be addressed: automatically

picking up perforating gun pipe and automatically aligning pipe keyway. Chapter II

illustrates the detailed methods and equipment.

According to the demand, the proposed methodology is described as the following:

• pipe picking process: the robot should pick up the pipes randomly placed or

piled on the ground automatically;

• keyway alignment process: rotating the pipe to align the keyway.

The two portions should be linked up by the operation movement of the robot.

The proposed robotic working process is shown in Figure II.1.

Figure II.1: System Overview.
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In this experiment, a similar industrial robot to the one used by Hunt & Hunt

was utilized for the research. The industrial robot ABB IRB 4400 system is

composed of a manipulator, a controller, as in Figure II.2a and Figure II.2b. The

corresponding software is RobotStudio. RobotStudio 6.04 software and RAPID, a

robot programming language, RAPID, are used for configuring and editing the

commands to automatically control the robot in the experiment. This is a list of the

main parts of the robot system:

• An industrial robot ABB IRB 4400 system;

• A gripper as the end-effector of the robot;

• A host computer with RobotStudio;

• Corresponding power supplies, Ethernet cables and other related cables.

(a) Robot Manipulator. (b) Robot Controller.

Figure II.2: ABB IRB 4400 Industrial Robot.
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Pipe Picking

Before running the pipe picking process, there are some preparations for the

experiment. On the robot control side, the gripper movement path can be planed in

two common ways. In the program design, it shows the actual position on the ABB

teach pendant. There are two common ways to program a robot path:

• Teaching method;

• Lead through and offline programming.

This experiment used the "teaching method" by the teach pendant to determine

the points for moving. The robot was controlled by pressing buttons and moving a

joystick on the teach pendant in the process, so it can move from one precise point

to another. The teach pendant is used to save the position information into the

robot controller. It is also used off-line programming for the other robot commands.

The selected sensor for locating the pipe is a 3D vision system, Cognex DS1300

Series Laser Displacement Sensor. It can measure the object position. The laser

sensor system consists of the following parts [32]:

• A Cognex DS1300 Laser Displacement Sensor;

• A Cognex VC5 Vision Controller;

• A Cognex Designer software that is installed in the VC5.

This pipe picking process is defined as using the robot to pick the located pipe up

and place it on a fixed shelf automatically; the pipe should be located by a sensor.

The process requires two major tasks. The first is to use the sensing system to locate

the pipe, and the second is to move the robot to the current pipe location to relocate
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the pipe to the fixed inspection station. The fixed position is used for connecting the

keyway alignment process with pipe picking in the experiment setup, which is

optional or can be moved after setup. The shelf locates about 5 inches beside the

keyway alignment experiment position, and directly faced by the 2D image sensor.

The light source for the pipe picking process is the normal fluorescent lamp light

in the lab. In the Cognex system, all the parts are connected using Gigabit Ethernet

(GigE), a high-speed transmission Ethernet cable.

For the preparation of the pipe recognition process, the pipe should be put within

the working area of interest (AOI) of the laser sensor. It means the pipe must be in

the working range or it could cause the issue of the image not generated clearly. The

3D Laser Displacement Sensor oscillates during emission, resulting in a laser

scanning line. This line contains thousands of laser points. The Cognex Designer

software has a 3D Image Acquisition Wizard for setting up before the image

acquisition. In its adjustment tab, the Acquisition Wizard indicates a correct

exposure of the reflected laser stripe with red color on the VC5 screen. There are

three levels of reflected laser strength defined: red color lines/dots mean the

strength of the laser is strong, an adequate exposure time, around 0.05 ms; magenta

lines/dots means medium strength reflection; green lines/dots means the strength of

the laser is very weak. If the reflected laser stripe is represented as green or

magenta, it indicates the view is overexposed, should be readjusted before acquiring

clear images. The density of the dots can also indicate the strength level; thus it

demonstrates a sense of the depth in image form. Figure II.3 shows the laser

scanning the pipes. It is taken by a normal camera under the lab lighting

environment. Figure II.4 shows the screenshot of the responding reflection area

where the laser strikes on the pipes, taken by Cognex Laser Displacement Sensor

and shows in this image Acquisition Wizard in Designer. It shows the object is
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within the AOI, so the image acquisition setup of the laser sensor is done.

Figure II.3: Laser Stripe on Pipes.

Figure II.4: Screenshot of showing red line on pipes in Cognex Designer.
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The coordinates of a point location can be defined in three dimensions as

Pi(xi, yi, zi). Images captured from DS1300 Laser Displacement Sensor, are made up

of pixels. The relative location information Pi(xi, yi, zi) can be derived from the

pixels of the image. The point of the pipe is defined as Psensed(xsensed, ysensed, zsensed).

The value of xsensed, ysensed, zsensed are measured from DS1300 Laser Displacement

Sensor. The pipe picking workflow is shown in Figure II.5.

Figure II.5: Pipe Picking Flowchart.
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Firstly, the robot gripper with the 3D Laser Displacement Sensor moves to a

point Po(xo, yo, zo), defined as the initial position, then scans the working area.

Robot moving is programmed in advance. We build a task sequence in Cognex

Designer to accomplish the pipe recognizing, so the robot can move to the pipe

location to grab it. The task sequence is makeup by built-in function blocks. For

example, the block, Cog3DRangeImageHeightCalculatorTool1, measures the

height from the laser sensor to the point.The sequence making-up process is

elaborated in Chapter III. The pipe position result from the 3D Laser Displacement

Sensor is defined as Psensed(xsensed, ysensed, zsensed). Planar coordinates of the point

(xsensed, ysensed) denote the location in the plane of the floor of the central point of

the highest area on top of the pipe. The height from the laser sensor to the pipe

defined point is zsensed.

The location of the point sent to the robot needs to be converted to the robot

frame. With these coordinates of the point location, the robot gripper moves to the

location and picks the pipe up under the robot’s commands. The robot gripper

picks the pipe up from its location Ppickup, and places it on the shelf, then moves it

to the keyway alignment location.
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Figure II.6: Cognex Laser Displacement Sensor with Robot Gripper.

Keyway Alignment

A 2D image sensor is used for pipe keyway recognition. The 2D image sensor that

is qualified should have a quick response time to commands of the robot; also, it

should have great accuracy and be well-calibrated such that it can measure the

actual angle value. In the research, the 2D image sensor used is a Cognex In-sight
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7000 series Industrial Camera. It has a communication module and can connect

with Cognex Explorer software installed on a computer. The Cognex Explorer

software on the computer transmits the angle data from the camera to the robot.

The programmable module of the In-sight 7000 camera allows researchers to

develop applications in a spreadsheet. The spreadsheet tool categories include blob,

pattern recognition, calibration and image filters, histogram and edges, and so on

[33].

The Cognex camera is fitted with a Navitar F1.4/8mm lens to fit the required

depth of field, and a StockerYaleM10 High-Frequency Ring Light is chosen for

consistent illumination.

Thus, the 2D image sensor system for measuring the keyway angle contains these

main parts:

• A Cognex In-sight 7000 Series Camera and adaptable lens, Navitar F1.4/8mm;

• A Cognex In-sight Explorer software installed on a computer [34];

• A StockerYale M10 High Frequency Ring Light;

• Corresponding power supplies, Ethernet cables and other related cables;

Firstly, as shown in Figure II.7, the lens of the camera is pointing at the pipe

cross-section so that the lens, pipe cross-section and the axis of the robot gripper

are in a straight line. The focus tuning function of Cognex Explorer is used to

adjust the focal length and other parameters of the camera before taking images so

that it can be well exposed. Afterwards, we used Cognex In-sight Spreadsheet to

implement the image processing and angle recognition. The process workflow is
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(a) Pipe and Shelf. (b) Cognex In-sight Camera.

Figure II.7: Keyway Alignment Experiment Setup.

shown in Figure II.8. Figure II.9 demonstrates the keyway lays inside of a pipe,

marked with a red line and a circle to show the detected pattern for measuring the

keyway angle. The angle here is 0 degree. This 2D keyway recognition system has

been built and tested before the angle data collection experiment. The detailed

steps are elaborated in Chapter III.
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Figure II.8: Flowchart of Keyway Recognition.
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Figure II.9: Keyway and Circle in Keyway Recognition.

The angles from −20◦ to +20◦ are considered in the experiment. The range is

shown in Figure II.10.

Figure II.10: Angle Collection Range.
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Modeling

To further find out the performance of this system, we attempted to collect a

series of data from operating the robot. When we tried to get several angle data and

rotate the pipe to the baseline, we find the robot rotation has an error. System error

is common in robot control area [35], [36]. Our research is to minimize the error.

GRNN PRINCIPLE

The generalized regression neural network is a feed-forward neural network model

based upon the theory of nonlinear regression analysis. The regression analysis of

dependent variable Y to independent variable X is to calculate the maximum

probability value of Y . Assuming that the known joint probability density function

of random variables X and Y is f(x, y), the conditional mean of Y given x is

defined as:

E[Y |x] =

∫∞
−∞ yf(x, y)dy∫∞
−∞ f(x, y)dy

(II.1)

Where x is the sample observation of measured variable X, Ŷ is the Expectation

of Y under condition X. When f(x, y) is unknown, f̂(x, y) can be estimated by

Parzen nonparametric estimation [37], [38] of the sample observations of {xi, yi}.

The probability estimator f̂(x, y) can be expressed as

f̂(x, y) =
1

(2π)(m+1)/2σ(m+1)
· 1
n

n∑
i=1

exp[−(x− xi)T (x− xi)
2σ2

] ·exp[−(y − yi)2

2σ2
] (II.2)

Where n is the number of sample observations, m is the dimension of X (in this

experiment, m equals 1) and σ is the Gaussian kernel width. The σ is also named as
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the standard deviation of the PDF, but in GRNN, the σ is called smooth

parameter. The estimated probability equation for f̂(x, y) is derived at point (x, y)

by a measurement comparing that point with each of the neural network training

cases (xi, yi) leading to Equation II.2.

A new expression for Ŷ (x) can be written as Equation II.3 when using f̂(x, y) as

an estimate of the probability distribution, which is represented as:

Ŷ (x) =

∑n
i=1 exp[−

(x−xi)T (x−xi)
2σ2 ]

∫∞
−∞ yexp[−

(y−yi)2
2σ2 ]dy∑n

i=1 exp[−
(x−xi)T (x−xi)

2σ2 ]
∫∞
−∞ exp[−

(y−yi)2
2σ2 ]dy

(II.3)

The final network output is obtained using Equation (II.4). Ŷ (x) is the weighted

sum of the dependent variable yi of all the training samples. A detailed derivation

can be found in [25].

Ŷ (x) =

∑n
i=1 yiexp[−

(x−xi)T (x−xi)
2σ2 ]∑n

i=1 exp[−
(x−xi)T (x−xi)

2σ2 ]
(II.4)

GRNN STRUCTURE

The General Regression Neural Network implemented here has four layers in the

network structure. The four layers are: input layer, pattern layer, summation layer

and output layer. The structure of a GRNN depends on the number and type of

training samples. In addition, the smoothing parameter Spread, also noted as σ, is

the primary factor that affects the generated output of the network. The GRNN

structure is shown in Figure II.11.
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Figure II.11: The Detailed GRNN Model.

Input Layer

The number of neurons in input layer equals the dimension of the input. In this

case, the input vector consists of only the measured angle value for the pipe keyway.

Each neuron is a simple distribution unit, which directly transfers the input

variables to the pattern layer.

Pattern Layer

The number of neurons in pattern layer equals the number of learning samples n.

The training process for the neural network assigns weighting factors to each neuron

corresponding to the different training data samples. The activation function of

neurons in pattern layer is the Gaussian kernel function, pi,

pi = exp−
d2i
2σ2 , i = 1, 2, · · ·, n (II.5)
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di is the Euclidean distance between the network input variable α and the ith

training sample.

di =

√
(α− αi)2, i = 1, 2, · · ·, n (II.6)

The output of the pattern layer is the exponential square of the Euclidean

distance di.

Summation Layer

From D. F. Specht, two kinds of neurons are in summation layer. One is

Numerator SN , which is represented as

SN =
n∑
i=1

βipi (II.7)

Where βi is the ith training output. Numerator contains the summation of the

multiplication of activation function and the training output. Another one is

Denominator, SD

SD =
n∑
i=1

pi (II.8)

Denominator contains the summation of all activation function. Summation layer

feeds both the Numerator and Denominator to the output layer.
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Output Layer

The output of the output layer is the Numerator node divided by the

Denominator node.

y =
SN
SD

(II.9)

GRNN IMPLEMENTATION

MATLAB is used as the main tool for data analysis and modeling. MATLAB is a

common calculation software widely used in engineering fields such as automatic

control, mechanical design, and mathematical statistics[39]. The neural network

toolbox covers most basic commonly used NN models, including GRNN functions,

newgrnn[40][41]. The detailed steps will be explained in Chapter III.

Spread Selection

The controlling parameter to be determined in GRNN is the Spread σ. Measures

of Mean Square Error (MSE) at various σ are used to select a value of σ, which

produces results within the desired error tolerance. We only need to set the range of

Spread and the standard of selecting Spread. The definition of MSE is:

MSE =
1

n

n∑
i=1

(yi − βi)2 (II.10)

We also used Cross-validation method to find the training set leading to the best

MSE value.
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Cross-validation

Cross-validation is a validation method in statistical analysis for both regression

and classification problems. Cross-validation splits the whole dataset into several

subsets. The Cross-validation uses some subset(s) for training and the remaining

subset(s) for testing the resulting model.

The selected cross-validation model for this effort is called k-fold Cross-validation,

also called rotation estimation[42]. For k-fold Cross-validation, the total training set

is randomly selected into k subsets. Then, k − 1 subsets are used for training; the

remaining subset is used for validation to generate an MSE value. The process is

repeated rotating which subset is reserved for testing until all combinations have

been tried. This is illustrated in Figure II.12. The model being developed begins

with 90 training sets of data and 4-fold Cross-validation with subsets of 23 training

sets is used to create the final model. The equation of Overall Cross-validation MSE

can be written as

MSEcv =
1

k

k∑
i=1

MSEi (II.11)
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Figure II.12: K-fold Cross-validation.

The principal advantages of the GRNN are fast learning and convergence to the

optimal regression surface as the number of samples becomes large. It is particularly

advantageous with sparse data in a real-time environment because the regression

surface is instantly defined everywhere, even with just one sample [43]. The success

of the GRNN method depends heavily on the Spread factors[25]. The larger

Spread, the smoother function approximation. The Spread values obtaining a

minimum of MSE for the test period is considered.

The overall experimental procedure is shown in Figure II.13:
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Figure II.13: System Process.
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III. EXPERIMENTATION

This chapter includes system configuration and experimental procedures. The

detailed procedure and experimental results will be provided.

System Configuration

An overview of the entire system configuration design is shown in Figure III.1:

Figure III.1: System Configuration.

Pipe Picking Procedure

In the pipe picking process, the computation device used to capture the 3D image

information is Cognex Vision Controller, VC5 with Cognex Designer installed.

Cognex Designer does functions as, acquisition, selecting images, optimizing vision

effect, and interfacing with the robot.
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As mentioned in Chapter II, the pipe picking process should use Cognex DS1300

Laser Displacement Sensor to acquire the picking location of the target pipe. The

actual operation is designed and executed in the software, Cognex Designer.

Prior to using Cognex Designer, the first step is connecting devices. Cognex

Designer has connection configuration for Cognex DS1300 laser sensor, vision

controller VC5 and ABB robot. The communication of DS1300 Laser Displacement

Sensor and Vision Controller VC5 is using GigE standard cable. GigE Vision

Configuration Tool, a software tool for Cognex Designer.

Once the hardware is set up, the next step is to set up the device connection in

the software. In the Designer, there is a section called Devices List, "connect

DS1300" choice can be found under "Camera". Clicking it to add DS1300 to the

Task Sequence. Under the project environment of Designer, tasks were organized as

an execution sequence and displayed as connected block sequence. The task

sequence receives a command signal from the robot, executes locating a pipe, and

sends back the location of the pipe for the robot to pick up. The finished Task

Sequence under Cognex Designer is shown in Figure III.2.

Figure III.2: Pipe Picking Execution Sequence Built in Cognex Designer.

The sequence comprises of four general blocks, which are

1. ReceiveData, 2. DataParsing, 3. Image, and 4. SendData. ReceiveData,

DataParsing and SendData are single layer blocks, while Image block has multiple

sub-blocks under it. Each block plays a role as well as has its input and output.
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Block 1. ReceiveData

This is the interface block that manages the function of connecting with outside

devices. The setup includes selecting the signal type, device source, and which

transmission method to receive the signal data. Here we use to receive a String

signal from the ABB robot.

Block 2. DataParsing

DataParsing is a script block simply connecting to the next tool block Image

from the last block. The block converts String signal to Boolean signal.

Block 3. Image

This block is the main block. It contains a series of sub-blocks to configure the

image processing procedure for locating the pipes. The scanned image result is from

the function, CogAcqF ifoTool1, which is to acquire image from the DS1300 laser

sensor. Figure III.3 is a screenshot of part of the settings for the image acquisition.

The image gotten from DS1300 sensor is in Figure III.4.
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Figure III.3: CogAcqF ifoTool1 Settings.

Figure III.4: Image Result from CogAcqF ifoTool1.

The second function sub-block, CogPixelMapTool1 converts the original image

to an 8bit image as a required format for CogToolBlock1 to use.
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The CogBlobTool is the major function block in CogToolBlock1. Better

processing the image using CogBlobTool requires enabling the Color Mapping

function to enhance contrast. The color differences indicate the different heights

from the laser sensor to the objects in AOI. The red-orange color is the highest area

among the objects. A square blob is set to capture the highest area in the image.

The center point is the one defined to be picked up. The results of CogBlobTool1

with the enhanced contrast mode effect is shown in Figure III.5. The light green

square is the highest area of the pipe. Figure III.6 is the result tag of CogBlobTool1

getting the point of the pipe. In the Figure III.6, X, Y are the position coordinates

of the center of the square.

Figure III.5: Output Image from CogBlobTool1.

Cog3DRangeImageHeightCalculatorTool1 calculates the height from the sensor

to the point we get from the last step. Figure III.7 is the screenshot of part of

settings of Cog3DRangeImageHeightCalculatorTool.
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Figure III.6: Getting the Pipe Point.

Figure III.7: Sub-block Cog3DRangeImageHeightCalculatorTool Part Settings.

Figure III.8 is an output interface of Image block. When the blocks have been

run, the sensed result of the center point is shown in the output area.
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Figure III.8: Final Result Outputs.

The finished Image block with sub-blocks in Designer – Figure III.9.

Figure III.9: Image Block with Sub-blocks.
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Block 4. SendData

This is another interface block. It is for connection configuration. The pipe

position "X, Y, Z" is converted from Double type to String and sent to the robot.

The robot side receives data and guides the gripper to above the location of the pipe.

In the end, we add a user interface, which is shown in Figure III.10. The whole

Task Sequence can be run by pressing the "run sequence" button in the menu of

Designer or "start" button in the user interface. With this user interface, image

processing of pipe handling can be viewed in the run.

Figure III.10: User Interface.

This pipe position from laser sensor Psensed(xsensed, ysensed, zsensed) is sent to the

robot after a software sequence run. The xsensed, ysensed, zsensed are output variables

of X, Y , Z from the above blocks. Since the robot frame and the laser sensor frame

are not the same, the calculated pipe picking position under the robot frame is

represented as Ppickup (xrobot − (ysensed − yo), yrobot − (xsensed − xo), zrobot − zo).

Figure III.11 is the photos of the procedure of a full pipe-picking process from

recognition to loading a pipe to a fixed location. Since the proposed method is
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always searching for the highest point within the vision range, it should be fine with

multiple layers of pipes. However, the gripper is best utilized for one-layer pipe

grasping.

Summary

The 3D pipe picking system is verified and meets the requirements of pipe

handling process. Once there is more than one pipe within the working area of laser

displacement sensor camera, the tool block can output all the possible results in the

sequence. The pipe picking process has been tested fifty times, 90% of them works

well. The rest fail to pick pipes up due to operation miss. The result means that the

proposed method can handle a pipe correctly.
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(a) Recognizing a pipe. (b) Reaching the pipe.

(c) Picking up the pipe. (d) Moving the pipe towards a fixed location.

(e) Placing the pipe to the fixed location.

Figure III.11: Final Pipe Picking.
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Keyway Alignment Procedure

According to system configuration shown in Figure III.1, we have the 2D device,

Cognex In-sight 7000 camera connected with the ABB robot for keyway alignment

experiment.

The communication with each components of the system uses wired Ethernet.

Two Ethernet ports of the robot controller are used. The service port is connected

to host computer, in which RobotStudio is installed to access internal programs and

files in the robot controller. The WAN port is connected with the Cognex In-sight

7000 camera. The robot software part of the communication mechanism uses socket

programming in RAPID language. The overall 2D system is shown in Fig III.12.

After the communication is tested, the next step is to utilize this system to do

keyway alignment experiments and get angle data for modeling.

The functions in Cognex In-sight Explorer Spreadsheet is encapsulated and provides

some interfaces. We use some functions to process image from capturing original

gray image to extracting and sending the angle to the robot. The process is as

follows:

1. Image Acquisition: In step 1, we use "Image" function to get the original gray

image;

2. Circle center point searching: "FindCircle" function is used to recognize a

circle pattern on the gray image gotten from Step 1. Once the circle is found,

the coordinate of the pixel point (Row,Column) of the circle center is shown

in the spreadsheet cells;

3. Keyway pattern and edge line searching: The functions

"FindPatMaxPatterns" and "TrainPatMaxPattern" are used to recognize the

keyway pattern, Figure III.13 shows a gray image of pipe keyway (on the left
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Figure III.12: The Integrated System Overview during the Experiment.

45



side), and the pattern of keyway found by "FindPatMaxPatterns" (on the

right side). It captures the defined center of the keyway, recorded as

(Row,Column) pixel point coordinate in the spreadsheet cells;

4. Keyway angle calculation: In this step, we use the tool "LineToLine" to

measure the keyway angle formed by two rays: one is from the circle center

point to the keyway line, and the other one is the base line starts from the

center point;

5. Data sending to the robot: Function "FormatString" formats the measured

angle to a String. "TCPDevice" manages the devices and port information.

The host is In-sight Camera, the client is the ABB robot, and the port is set

to 23.

The screenshot of the finished process via the Cognex Explorer spreadsheet is

shown in Figure III.14.

Figure III.13: Keyway Pattern Captured from "FindPatMaxPatterns" Function.
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Figure III.14: Execution Using Cognex In-sight Explorer.

Data Collection

Ideally, the rotation angle would be the same as the detected angle, or the

relationship would be linear with an offset[44]. However, after experimentation, it is

found that the angle before rotation alpha and the angle after rotation beta has a

nonlinear relationship[45]. More data were collected and analyzed to address this

nonlinear error problem.

Here is a little elaboration about the way of measuring two sets of angles. The

angle is a representation of keyway orientation. The angle data are collected by

repeating the same pick and rotating routine and with random keyway orientation.

130 experiments are performed. The original measured angle α and the angle after

robot rotation β in about -20.0 to +20.0 degrees are recorded. 120 datasets are

recorded in Table III.1. It is found that the robot rotation had error ranging from

-3.0 to 3.0 degrees. The data sets show a nonlinear trend. However, in the research

requirement, the final angle after rotating should be as small as possible.
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Table III.1: Data collected (Unit: Degrees).

No. α β No. α β No. α β No. α β

1 -25.58 -28.55 11 -18.9 -20.22 21 -13.81 -15.73 31 -12.79 -13.69
2 -25.4 -27.59 12 -17.86 -19.08 22 -13.67 -14.94 32 -11.93 -12.99
3 -23.19 -25.24 13 -17.61 -18.80 23 -13.51 -14.88 33 -10.11 -12.99
4 -23.15 -25.18 14 -17.36 -18.56 24 -13.46 -14.51 34 -9.85 -10.75
5 -21.16 -22.6 15 -17.33 -18.88 25 -13.37 -14.92 35 -8.81 -9.49
6 -20.87 -22.27 16 -17.32 -18.5 26 -13.31 -14.4 36 -8.53 -9.59
7 -20.63 -22.01 17 -15.74 -16.93 27 -13.28 -14.41 37 -8.31 -8.88
8 -19.45 -20.78 18 -14.09 -15.41 28 -13.25 -14.08 38 -8.06 -9.59
9 -19.41 -21.04 19 -13.87 -15.39 29 -12.85 -13.82 39 -8.04 -8.78
10 -19.3 -20.66 20 -13.86 -15.78 30 -12.81 -14.02 40 -7.99 -8.74
41 -7.82 -8.26 51 1.26 1.49 61 4.37 5.27 71 5.9 6.4
42 -7.09 -7.45 52 2.37 2.75 62 4.38 5.15 72 5.98 6.22
43 -6.14 -6.69 53 2.41 2.8 63 4.51 5.08 73 6.14 6.7
44 -3.85 -4.18 54 2.98 2.43 64 4.76 5.31 74 6.16 6.73
45 -3.84 -4.55 55 3.16 3.63 65 4.89 5.4 75 6.19 6.93
46 -3.56 -4.16 56 3.17 3.52 66 5.29 5.57 76 6.23 7.56
47 -3.26 -3.73 57 3.23 3.64 67 5.43 5.97 77 6.29 7.27
48 -2.14 -2.38 58 3.33 3.7 68 5.48 6.26 78 6.36 6.83
49 -1.25 -1.58 59 3.96 4.47 69 5.64 5.99 79 6.42 7.24
50 -0.26 -0.34 60 4.26 4.73 70 5.87 6.98 80 6.65 6.83
81 6.19 6.93 91 7.24 7.39 101 8.78 9.65 111 13.93 15.39
82 6.23 6.36 92 7.26 8.02 102 9.14 9.83 112 14.22 15.33
83 6.29 6.93 93 7.31 8.28 103 10.10 11.09 113 14.50 15.67
84 6.36 7.56 94 7.32 8.00 104 10.70 11.92 114 14.65 15.80
85 6.42 7.27 95 7.38 7.76 105 10.71 11.74 115 14.83 15.57
86 6.65 6.83 96 7.55 8.39 106 11.75 12.8 116 15.47 16.65
87 6.68 7.27 97 7.57 8.66 107 12.99 13.98 117 16.62 18.62
88 6.79 7.90 98 7.62 8.16 108 13.35 14.48 118 17.43 19.06
89 6.92 7.79 99 7.74 8.29 109 13.69 14.97 119 19.54 21.33
90 7.07 7.61 100 8.02 8.86 110 13.71 14.73 120 21.33 23.92
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Figure III.15: Measured angle αi.

Figure III.16: Measured angle βi.

Modeling

The data analysis and model building process were accomplished in MATLAB

Ver.9.5.0 (R2018b). The training process used MATLAB newgrnn function:

net = newgrnn(α, β, Spread), where α is assigned by the set of α, β is assigned by
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the set of β, and Spread is assigned by σ. The total sample size is 120.

As mentioned in Chapter II, k-fold Cross-validation was used for pre-selecting the

corresponding σ value of the training sample. The smoothing parameter σ was

arranged by certain increments, which are the value of ∆σ for a predefined

range[σmin, σmax]. The range is from 0.1 to 2.0, and the step is 0.1.

In the Cross-validation process, the mean value of the accuracy of the four results

was used to estimate the modeling accuracy. Sample datasets were randomly

divided into four different subsets. The samples were divided into 3 folds for

training, 1 fold for validation. The program switched the training folds, and the test

fold in turns for 4 times. The corresponding pseudo-code of Cross-validation in

program is written as below:

Cross-validation method to find GRNN σ

1: Initialize σ, MSE

2: For σ from 0.1 to 2, step is 0.1, do
3: For k from 1 to 4, do
4: Remove subset k from dataset
5: Build net=newgrnn from remaining dataset
6: Use subset k for testing, get the output of GRNN y of the input
7: Get the MSE for testing data subset k
8: Record σ and MSE

9: End for
10: Select the case k with the lowest overall MSE value and the corresponding σ
11: End for
12: Select the case k with the lowest overall MSE

From running the program for forty times to collect different σ, MSE under the

corresponding training sets, we get Table III.2 and Table III.3 of those forty results.
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Table III.2: Different σ of the GRNN model results (Part1)

σ MSEcv train error test error σ MSEcv train error test error
0.3 0.575 0.280 0.307 0.8 0.443 0.233 0.517
0.8 0.33 0.148 0.690 0.8 0.293 0.185 0.430
1.1 0.800 0.356 0.769 1.0 0.515 0.247 0.349
0.8 0.625 0.447 1.575 0.7 0.444 0.246 0.502
0.5 0.562 0.319 0.389 0.7 1.079 0.096 0.655
0.9 0.291 0.165 0.223 0.6 0.445 0.237 0.380
0.8 0.438 0.144 0.357 0.9 0.420 0.506 0.816
1.1 0.438 0.251 0.490 1.2 0.664 0.463 0.665
0.8 0.390 0.150 0.226 1.1 0.358 0.189 0.350
1.0 0.405 0.281 0.290 1.1 0.650 0.339 0.333

Table III.3: Different σ of the GRNN model results (Part2)

σ MSEcv train error test error σ MSEcv train error test error
0.3 0.424 0.393 0.415 1.0 0.346 0.212 0.164
0.9 0.415 0.189 0.294 1.1 0.325 0.352 0.169
0.6 0.949 0.489 0.423 0.7 0.569 0.453 0.437
0.9 0.421 0.565 0.815 1.2 0.664 0.587 0.663
1.1 0.476 0.323 0.378 0.8 0.349 0.472 0.405
0.6 0.901 1.564 2.380 0.8 0.667 0.812 1.871
0.5 0.703 0.598 0.619 0.5 0.479 0.398 0.548
1.2 0.511 0.613 0.659 1.2 0.478 0.297 0.288
0.6 0.466 0.533 0.549 0.8 0.392 0.219 0.226
1.2 0.520 0.565 0.697 0.3 0.424 0.468 0.415

In one run, the σ = 1.0, the overall Cross-Validation MSE was 0.346, the test

error was 0.164, and the training error was 0.212. This run had the smallest test

error out of forty runs. In addition, the Cross-Validation MSE and training error

were also among the smallest out of these tests. The three error values being close

to each other, the training data shows a stable and even distribution. This was

thanks to the application of Cross-Validation in this process.
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Figure III.17: Distribution of training errors.
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Figure III.18: Distribution of testing errors.

The test error shows there are twenty-six out of thirty points are within [-0.5,

0.5], three points are within [-1, -0.5) and (0.5, 1], and one point is beyond -1.

Experiment Validation Using Predicted Angles

We tried to use the predicted value to control the robot operation. A 400x2 table

was made. The detailed angle number is shown in Table Appendix A.1 and Table

Appendix A.2. Column 1 contains the angles of all the possible cases from -20 to

+20 degrees. Column 2 includes the corresponding predicted angles. The overall

data plot is shown in Figure III.19.
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Figure III.19: Predicted Angle from -20 degrees to 20 degrees.

We inserted the prediction data to the robot control program through ABB

RAPID. The leftover angles were measured to see whether they met the requirement

or not. Once the keyway angle was measured, the robot used the predicted angle to

rotate the pipe. These measured initial keyway angles represented as "Ini". The

measured corresponding leftover keyway angles after rotation, represented as "Lef",

We executed two sets of experiment, the data were collected and recorded in Table

III.4 and Table III.5.
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Table III.4: Result 1 (Unit: Degrees).

No. Ini Lef No. Ini Lef No. Ini Lef
1 -19.603 -0.257 11 -3.019 0.366 21 8.904 0.625
2 -13.808 0.455 12 -5.169 -0.178 22 6.812 0.461
3 -2.351 0.063 13 -7.725 -0.363 23 6.603 0.404
4 -6.029 -0.395 14 -9.881 -0.354 24 5.075 -0.175
5 -4.084 -0.038 15 -12.255 0.342 25 1.234 -0.494
6 -4.698 0.099 16 -12.221 0.287 26 3.101 -0.585
7 -6.935 0.397 17 -16.71 -0.187 27 2.561 -0.387
8 -5.287 -0.503 18 -19.885 -0.362 28 2.234 -0.125
9 -4.792 -0.402 19 19.735 0.49 29 -2.837 0.427
10 -4.505 -0.091 20 12.103 0.555 30 -3.655 0.436

Table III.5: Result 2 (Unit: Degrees).

No. Ini Lef No. Ini Lef No. Ini Lef
1 -19.970 -0.226 11 9.067 0.409 21 -0.265 -0.154
2 -17.178 -0.094 12 12.016 0.550 22 -1.993 -0.551
3 -13.338 0.252 13 14.575 0.612 23 -2.925 0.436
4 10.500 0.042 14 16.521 0.471 24 -3.617 -0.611
5 -8.836 0.110 15 18.886 0.606 25 -7.089 0.025
6 -6.639 -0.151 16 9.478 0.508 26 -8.468 0.057
7 -1.980 -0.159 17 7.758 0.420 27 -13.166 0.010
8 0.887 0.172 18 5.228 0.210 28 -15.068 -0.003
9 3.981 0.433 19 3.354 0.574 29 -16.570 -0.241
10 6.104 0.462 20 1.346 0.304 30 -17.851 -0.153

In the leftover angle column in the table above, we can see the absolute maximum

value is 0.625, the absolute minimum value is 0.003, and the absolute average angle

is 0.322.
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Summary

In the process of establishing the model, a few essential parameters need to be

taken care of: data size, the Spread value σ and the k number in k-fold

Cross-validation. Once the data size is fixed, the bigger k is, the fewer data in each

fold. If the k is big, but the whole data size is small, then it might result as a big

bias, and not enough data for each shift case to use.

From the observation of training error and testing error, we can see the error with

the corresponding σ and training, testing sets still have cases haven’t met the

requirement as being within the range [-0.5, 0.5]. We analyze the error that occurs

in this validation experiment. The following are some possible factors:

1. robot assembly error;

2. TCP measurement error;

3. positioning error;

4. workpiece position calibration error.

Nevertheless, it is an alternative way from the current angle to address the

problem. We are working on further research to lead to a better result.
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IV. CONCLUSION AND FUTURE WORK

Conclusion

After analyzing the problem and performing a review of the relevant literature,

we proposed using a generalized regression neural network with machine vision

devices to address the problem of keyway alignment.

Our work includes setting up the keyway alignment robot system: integrating the

robot with 2D and 3D vision devices, researching the General Regression Neural

Network algorithm and applying it to solve the keyway alignment problem.

One of the contributions of this thesis is to use the angle information extracted

from images and to establish the GRNN prediction model to achieve a shorter robot

pipe handling cycle. The GRNN method requires a smaller training set than many

methods, which means it requires less time to collect training data, thus it can

reduce manufacturing costs. This method allows the pipe keyway’s repositioning in

one step rather than several steps, resulting in a faster process. Simultaneously, the

GRNN method retains sufficient accuracy for the overall process to be successful.

Even the result was not as expected, but it was close to our goal, and the error

analyzing was given out. Another contribution is to establish a 3D image processing

method for locating pipes, which makes it automatic and flexible to recognize and

grasp metal pipes with robots.

There had been many difficulties that were handled. During setting up the

system, the difficulties were, for example, image-related problems: such as light

reflections, the object not being found in the image, or the work-piece not being in

view. Mechanical problems were like interference between robot gripper and frame
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or pipes, the robot reachability, collision with other objects in the laboratory. For

both data collection and testing, experiments were repeated hundreds and

thousands of times for testing and verifying if the operations were correct and

repeatable, and data were usable.

GRNN has a quick training process, and only one primary parameter Spread

needs to be determined. From experiment execution, GRNN is proven to be flexible,

practical, and easy to use.

Future Work

There are lots of experiments that have been done when we address the thesis

problem. But further investigation can be carried on for future research. The work

will concern different methods of data collection and extraction. These are a few we

can propose:

1. In the data collection, the data range selected is between −20◦ and +20◦.

However, the keyway could be in any location. Therefore, future research

could include a wider range, or even from −180◦ to +180◦.

2. Image processing plays a great role in angle measurement research. How

accurate the angle can be detected affects the prediction result. For the

keyway pattern search, we can see the keyway shape is slightly different each

time, due to the light reflecting on the metal pipe. Also, when the keyway is

not in the middle of the camera, the locations of shadows and over-reflections

are different. If the shape changes dramatically, the camera will not recognize

the keyway pattern very well. This increases the error rate of pattern finding.

The image processing method can be improved. A new spreadsheet tool called

"lineMax" has been developed by Cognex. It is used to precisely find lines and

threads in a low contract and other confusing environments. If we can use this
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tool instead of "PatternMax", it might improve the accuracy, and efficiency

compared to "PatternMax".

3. As for data collection, the smaller data size usually leads to a higher bias.

However, the variance decreases with the data volume. We can improve to

check the data with enough points for getting the low bias, but not too many

points to cause big variance - to find the bias-variance balance. Also, checking

the irreducible error maybe useful for analyzing the data characteristics before

modeling.

4. In the end, we can search and compare a more advanced algorithm to the

presented one. In the GRNN model, the parameters that need to be adjusted

are very few. What we can do is to try other GRNN methods. Using the

collected data, we can compare if different algorithms are better or worse.
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APPENDIX SECTION

APPENDIX A

Table Appendix A.1: Predicted angle using for rotation (Unit: Degrees).(part1)

No. α β No. α β No. α β No. α β No. α β

1 -20.0 -21.386 11 -19.0 -20.340 21 -18.0 -19.418 31 -17.0 -18.318 41 -16.0 -17.337
2 -19.9 -21.280 12 -18.9 -20.237 22 -17.9 -19.115 32 -16.9 -18.219 42 -15.9 -17.235
3 -19.8 -21.175 13 -18.8 -20.134 23 -17.8 -19.015 33 -16.8 -18.120 43 -15.8 -17.137
4 -19.7 -21.070 14 -18.7 -20.031 24 -17.7 -19.015 34 -16.7 -18.022 44 -15.7 -17.038
5 -19.6 -20.965 15 -18.6 -19.928 25 -17.6 -18.915 35 -16.6 -17.923 45 -15.6 -16.940
6 -19.5 -20.860 16 -18.5 -19.826 26 -17.5 -18.715 36 -16.5 -17.824 46 -15.5 -16.841
7 -19.4 -20.756 17 -18.4 -19.724 27 -17.4 -18.615 37 -16.4 -17.727 47 -15.4 -16.742
8 -19.3 -20.652 18 -18.3 -19.622 28 -17.3 -18.516 38 -16.3 -17.628 48 -15.3 -16.643
9 -19.2 -20.548 19 -18.2 -19.520 29 -17.2 -18.516 39 -16.2 -17.530 49 -15.2 -16.544
10 -19.1 -20.444 20 -18.1 -19.418 30 -17.1 -18.417 40 -16.1 -17.431 50 -15.1 -16.445
51 -15.0 -16.346 61 -14.0 -15.342 71 -13.0 -14.316 81 -12.0 -13.255 91 -11.0 -12.139
52 -14.9 -16.246 62 -13.9 -15.240 72 -12.9 -14.212 82 -11.9 -13.146 92 -10.9 -12.024
53 -14.8 -16.147 63 -13.8 -15.139 73 -12.8 -14.107 83 -11.8 -13.036 93 -10.8 -11.909
54 -14.7 -15.046 64 -13.7 -15.037 74 -12.7 -14.002 84 -11.7 -12.926 94 -10.7 -11.794
55 -14.6 -15.946 65 -13.6 -14.832 75 -12.6 -13.897 85 -11.6 -12.815 95 -10.6 -11.678
56 -14.5 -15.846 66 -13.5 -14.832 76 -12.5 -13.791 86 -11.5 -12.704 96 -10.5 -11.562
57 -14.4 -15.746 67 -13.4 -14.730 77 -12.4 -13.685 87 -11.4 -12.592 97 -10.4 -11.446
58 -14.3 -15.645 68 -13.3 -14.623 78 -12.3 -13.578 88 -11.3 -12.480 98 -10.3 -11.330
59 -14.2 -15.545 69 -13.2 -14.523 79 -12.2 -13.471 89 -11.2 -12.367 99 -10.2 -11.213
60 -14.1 -15.544 70 -13.1 -14.420 80 -12.1 -13.363 90 -11.1 -12.253 100 -10.1 -11.097
101 -10.0 -10.981 111 -9.0 -9.844 121 -8.0 -8.759 131 -7.0 -7.703 141 -6.0 -6.665
102 -9.9 -10.866 112 -8.9 -9.734 122 -7.9 -8.653 132 -6.9 -7.603 142 -5.9 -6.561
103 -9.8 -10.750 113 -8.8 -9.623 123 -7.8 -8.547 133 -6.8 -7.499 143 -5.8 -6.456
104 -9.7 -10.635 114 -8.7 -9.513 124 -7.7 -8.441 134 -6.7 -7.395 144 -5.7 -6.352
105 -9.6 -10.521 115 -8.6 -9.405 125 -7.6 -8.336 135 -6.6 -7.290 145 -5.6 -6.271
106 -9.5 -10.407 116 -8.5 -9.296 126 -7.5 -8.231 136 -6.5 -7.186 146 -5.5 -6.142
107 -9.4 -10.293 117 -8.4 -9.188 127 -7.4 -8.126 137 -6.4 -7.082 147 -5.4 -6.037
108 -9.3 -10.190 118 -8.3 -9.080 128 -7.3 -8.021 138 -6.3 -6.978 148 -5.3 -5.932
109 -9.2 -10.068 119 -8.2 -8.973 129 -7.2 -7.916 139 -6.2 -6.873 149 -5.2 -5.827
110 -9.1 -9.956 120 -8.1 -8.866 130 -7.1 -7.812 140 -6.1 -6.769 150 -5.1 -5.722
151 -5.0 -5.616 161 -4.0 -4.544 171 -3.0 -3.434 181 -2.0 -2.275 191 -1.0 -1.081
152 -4.9 -5.510 162 -3.9 -4.435 172 -2.9 -3.320 182 -1.9 -2.157 192 -0.9 -0.961
153 -4.8 -5.404 163 -3.8 -4.326 173 -2.8 -3.206 183 -1.8 -2.038 193 -0.8 -0.841
154 -4.7 -5.297 164 -3.7 -4.216 174 -2.7 -3.091 184 -1.7 -1.919 194 -0.7 -0.721
155 -4.6 -5.191 165 -3.6 -4.105 175 -2.6 -2.976 185 -1.6 -1.800 195 -0.6 -0.602
156 -4.5 -5.084 166 -3.5 -3.995 176 -2.5 -2.861 186 -1.5 -1.680 196 -0.5 -0.483
157 -4.4 -4.977 167 -3.4 -3.883 177 -2.4 -2.744 187 -1.4 -1.561 197 -0.4 -0.364
158 -4.3 -4.869 168 -3.3 -3.771 178 -2.3 -2.628 188 -1.3 -1.441 198 -0.3 -0.245
159 -4.2 -4.761 169 -3.2 -3.660 179 -2.2 -2.511 189 -1.2 -1.321 199 -0.2 -0.127
150 -4.1 -4.653 170 -3.1 -3.557 180 -2.1 -2.393 190 -1.1 -1.201 200 -0.1 -0.010
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Table Appendix A.2: Predicted angle using for rotation (Unit: Degrees). (part2)

No. α β No. α β No. α β No. α β No. α β

201 0.0 0.108 211 1.0 1.256 221 2.0 2.364 231 3.0 3.446 241 4.0 4.511
202 0.1 0.225 212 1.1 1.369 222 2.1 2.473 232 3.1 3.553 242 4.1 4.616
203 0.2 0.341 213 1.2 1.480 223 2.2 2.582 233 3.2 3.660 243 4.2 4.722
204 0.3 0.457 214 1.3 1.592 224 2.3 2.690 234 3.3 3.767 244 4.3 4.827
205 0.4 0.573 215 1.4 1.703 225 2.4 2.799 235 3.4 3.873 245 4.4 4.933
206 0.5 0.688 216 1.5 1.814 226 2.5 2.907 236 3.5 3.980 246 4.5 5.038
207 0.6 0.802 217 1.6 1.925 227 2.6 3.015 237 3.6 4.086 247 4.6 5.143
208 0.7 0.917 218 1.7 2.035 228 2.7 3.123 238 3.7 4.192 248 4.7 5.248
209 0.8 1.030 219 1.8 2.145 229 2.8 3.231 239 3.8 4.299 249 4.8 5.353
210 0.9 1.143 220 1.9 2.255 230 2.9 3.338 240 3.9 4.405 250 4.9 5.458
251 5.0 5.563 261 6.0 6.606 271 7.0 7.645 281 8.0 8.686 291 9.0 9.741
252 5.1 5.668 262 6.1 6.710 272 7.1 7.749 282 8.1 8.791 292 9.1 9.847
253 5.2 5.772 263 6.2 6.814 273 7.2 7.853 283 8.2 8.896 293 9.2 9.954
254 5.3 5.877 264 6.3 6.918 274 7.3 7.957 284 8.3 9.000 294 9.3 10.061
255 5.4 5.981 265 6.4 7.022 275 7.4 8.061 285 8.4 9.106 295 9.4 10.168
256 5.5 6.086 266 6.5 7.126 276 7.5 8.165 286 8.5 9.211 296 9.5 10.276
257 5.6 6.199 267 6.6 7.230 277 7.6 8.269 287 8.6 9.316 297 9.6 10.384
258 5.7 6.294 268 6.7 7.333 278 7.7 8.373 288 8.7 9.422 298 9.7 10.493
259 5.8 6.398 269 6.8 7.437 279 7.8 8.477 289 8.8 9.528 299 9.8 10.601
260 5.9 6.502 270 6.9 7.541 280 7.9 8.582 290 8.9 9.634 300 9.9 10.711
301 10.0 10.820 111 11.0 11.929 121 12.0 13.038 131 13.0 14.115 141 14.0 15.171
302 10.1 10.930 112 11.1 12.041 122 12.1 13.147 132 13.1 14.221 142 14.1 15.277
303 10.2 11.040 113 11.2 12.152 123 12.2 13.256 133 13.2 14.327 143 14.2 15.382
304 10.3 11.150 114 11.3 12.264 124 12.3 13.365 134 13.3 14.433 144 14.3 15.488
305 10.4 11.261 115 11.4 12.375 125 12.4 13.473 135 13.4 14.5380 145 14.4 15.594
306 10.5 11.372 116 11.5 12.486 126 12.5 13.581 136 13.5 14.644 146 14.5 15.700
307 10.6 11.483 117 11.6 12.597 127 12.6 13.688 137 13.6 14.749 147 14.6 15.807
308 10.7 11.594 118 11.7 12.708 128 12.7 13.795 138 13.7 14.855 148 14.7 15.913
309 10.8 11.706 119 11.8 12.818 129 12.8 13.902 139 13.8 14.960 149 14.8 16.020
310 10.9 11.817 120 11.9 12.928 130 12.9 14.009 140 13.9 15.066 150 14.9 16.127
351 15.0 16.234 361 16.0 17.324 371 17.0 18.453 381 18.0 19.633 391 19.1 20.996
352 15.1 16.342 362 16.1 17.435 372 17.1 18.568 382 18.1 19.754 392 19.2 21.122
353 15.2 16.450 363 16.2 17.550 373 17.2 18.684 383 18.2 19.876 393 19.3 21.249
354 15.3 16.558 364 16.3 17.658 374 17.3 18.801 384 18.3 19.999 394 19.4 21.375
355 15.4 16.667 365 16.4 17.770 375 17.4 18.918 385 18.4 20.122 395 19.5 21.501
356 15.5 16.775 366 16.5 17.883 376 17.5 19.036 386 18.5 20.245 396 19.6 21.627
357 15.6 16.884 367 16.6 17.996 377 17.6 19.154 387 18.6 20.369 397 19.7 21.753
358 15.7 16.993 368 16.7 18.109 378 17.7 19.273 388 18.7 20.494 398 19.8 21.879
359 15.8 17.103 369 16.8 18.223 379 17.8 19.392 389 18.8 20.619 399 19.9 22.004
360 15.9 17.213 370 16.9 18.338 380 17.9 19.512 390 19.0 20.870 400 20.0 22.129
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