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1. Introduction 

 While conducting an archaeological survey for the purpose of recording new data, 

companies and federal organizations alike often employ the use of an Archeological 

Predictive Model (APM) to aid in choosing their survey methods. Such methods 

primarily consist of sample survey, which covers a <100% portion of the project area 

(Plog 1981). This is done by spacing surveyors out in a row (~5-30m, depending on 

regional practice or local conditions) and walking over places they think are likely to hold 

cultural remains. APMs help them decide what those likely areas are by defining where 

sites have a higher probability of occurring (Verhagen and Whitley 2012). This creates 

the expectation that for n sites that exist, most will be found in High probability, less sites 

will be found in Low probability, and some number in between will be found in Moderate 

probability regions. The goal is to include as many sites as possible in higher categories 

of probability to reduce the chances of overlooking any resources. 

APMs account for spatial characteristics associated with the location of 

archaeological resources in a geographical region and produce discreet areas of site 

likelihood. Typical factors include elevation, slope, aspect, distance to water, soil type, 

ground cover, and many others. Often these factors are considered in some way to reflect 

favorable living conditions, such as flat surface area for convenient travel, easy access to 

natural resources and good farmland. This research recorded statistical data for 

archaeological site characteristics on the Black Mesa Ranger District (BMRD) of the 

Apache-Sitgreaves National Forest (ASNF; the Forest) and used three methods for 

creating APMs: a Binary Logistic Regression (BLR) Model, Frequency Ratios (FR) and a 

Statistical Index Model (Wi). The rationale for an updated APM comes from Black 
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Mesa’s unique transitional geography and its density of archaeological sites which, 

according to the current Zone Archaeologist (2022), includes over 52% of the cultural 

resources in the ASNF. To the southeast of the BMRD is the Lakeside District, which is 

pockmarked with cinder cones and contains an underlying layer of rough igneous rock, 

primarily basalt. East and south of Lakeside are the Springerville and Alpine Districts 

which become dominated by deep gullies and canyons. To the north of BMRD is a 

plateau of comparatively flat grassland with occasional sandstone or limestone 

outcroppings. The BMRD itself contains sandy soils with alluvial gravels and its surface 

is mainly striated with gentle washes/drainages. (Kanter 2004) 

Multivariate statistics, such as binary logistic regression, have been a traditional 

method of predictive mapping used since the late 1970s and gained popularity in the late 

‘80s as GIS technology became available (Ebert 2004, Kvamme 1992, Richards 1998, 

Verhagen and Whitley 2012). In a typical APM, factors are examined for their 

relationship to site placement and weighted according to their significance. These weights 

are then used to build a model that attempts to explain site likelihood. With logistic 

models, each factor can be assumed to be independent and its data to have non-Gaussian 

distribution. This allows the researcher some flexibility to add or remove factors to the 

model as they attempt to explain a greater percentage of variability in site location 

(Diwan 2020, Taliaferro 2021). 

Frequency Ratios and SI (Wi) are more recent additions to the archaeological 

researcher’s toolkit. Both have been used for decades to aid in Landslide Susceptibility 

Mapping (LSM), but have only just begun to be applied to archaeology (Diwan 2020, 

Nicu et al. 2019, Nsanziyera et al. 2018, Regmi et al. 2014, Zare et al. 2021). They 
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primarily differ from BLR, which collects discreet variables, by using fuzzy logic to 

apply a range of values to observations that vary in their geographic isolation.  

 

2. Study Area 

 The ASNF is in the White Mountains of eastern Arizona bordering New Mexico. 

Portions of the Forest sit along a geographic region known as the Mogollon Rim, an area 

of dramatic elevation change overlooking the low-lying southern and central regions of 

the state. The Black Mesa Ranger District is at the far western end of the Sitgreaves side 

of the ASNF, where it meets the Tonto National Forest, and encompasses the town of 

Heber-Overgaard (Figure 1). 
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Figure 1. Apache-Sitgreaves National Forest. Inset shows the Forest’s extent in relation 
to the Four Corners area. 

 
 
 Southern Arizona and portions of New Mexico both have records of human 

occupation from the Paleoindian (9500 - 6000 BCE) and Archaic Periods (6000 BCE - 

200 CE) (Dokter et al 2020, Kantner 2004). Traces of these periods are found on the 

ASNF as well, but the archeological record in the White Mountains begins in earnest 

with the Mogollon Tradition (200 CE - 1385 CE). This era observes a shift from early 

Basketmaker II hunter-gather practices (Hilltop to Cottonwood phases 200-600 CE) to 

increased reliance on agriculture in the late Basketmaker III Period (Forestdale phase 600 

- 800 CE). This transition also includes the introduction of brown ware ceramics, kivas 

and a progression in architecture for pit/slabhouses. (Dokter et al 2020, Kantner 2004)  

Table 1. North’s (North et al. 2003) Proposed Revisions to Haury’s Original Chronology 
and Mills and Herr’s (1999:279) Revised Chronology for the Mogollon Rim Region as 

provided by Dokter et al. 2020. 
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 The Pueblo Periods (I-IV), beginning with the Dry Valley Phase (900 - 1000 CE), 

are characterized by a steady increase in population through immigration, as evident in 

the influx of varied designs for black-on-white ceramics, the construction of great kivas, 

and small multi-roomed masonry structures. This continues until the Pinedale Phase 

(1275 - 1325 CE) when large, 100+ room pueblos are built to accommodate large 

populations. Well known pueblos include Pinedale Ruin and Bailey Ruin, both of which 

had over 200 masonry rooms constructed around plazas (Kantner 2004). Around 1300 

CE, there appears to be a decrease in population due to mass emigration or abandonment, 

continuing into the Canyon Creek Phase (1325 - 1385 CE) until much of the region is 

uninhabited. The White Mountains did not remain empty, however, as several Apache 

tribes moved into the area following its abandonment, raiding villages that remained and 

even reusing structures left behind by the Pueblo (Herr, North & Wood 2009). 

 

 Historic occupation of the White Mountains began with Spanish expeditions in 

1539 as they explored the inlands of the New World, although European settlement 

would remain sparse until the late 1800s. U.S military control of the area would begin 

after the Gadsen Purchase in 1854, which included all present-day Arizona. This would 

spur America’s efforts to make the land safe for new settlers, and in 1871 Lieutenant 

Colonel George Crook was sent to force the Apache bands onto reservations. This 

subjugation was followed by the establishment of several farming communities 

(including Heber) and, in 1882, the Atlantic and Pacific Railroad. Timber resources 

quickly became a major business along with sheep and cattle ranching. (Dokter et al. 

2020) 
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3. Data 

3.1 Archaeological Sites 

Archaeological site location data was obtained in the Fall of 2021 from the 

District Archaeologist for the Black Mesa Ranger District of the ASNF, and all following 

work was done using ArcGIS Pro. Site descriptions included with the feature layer first 

allowed sites to be organized according to their time period. The Select By Attributes tool 

was used to search for key words contained within the site description field of the feature 

attribute table to sort sites into Historic, Prehistoric, Multi-component, or Unknown 

categories. As some site descriptions occasionally surpassed the maximum character limit 

for the attribute table, it was sometimes difficult to ascertain the exact category to which 

each site belonged, and in these cases the best choice was made using the prior 

knowledge of the researcher. Also at the discretion of the researcher was the exclusion of 

some historical components from prehistoric sites. These would have otherwise been 

categorized as “Multi-component”, however, in these cases, the historical artifacts present 

did not appear to represent an actual occupation of the site but rather an incidental visit. 

These visits were perceived due to site descriptions that included phrases such as “…a 

couple of cans…” or “…a few bits of glass…”. This would be the modern-day equivalent 

of leaving a plastic water bottle behind after hiking around in the Forest and did not merit 

inclusion in the predictive models which primarily aim to identify permanent or semi-

permanent land use. 

A total of 4,698 sites were included in the geodatabase received from the BMRD 

District Archaeologist. After exhaustive sorting using key words, 4,088 were categorized 
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as Prehistoric, 245 as Historic, 40 as Multi-component, and 289 as Unknown due to a 

lack of site description. Multi-component sites were included in both Prehistoric and 

Historic site statistics. Thirty-six of the Historic sites were linear trails or roads that make 

the collection of discreet site statistics impossible, and so were removed from the current 

research along with all 289 sites of Unknown component.  

 
Figure 2. Black Mesa Ranger District. 
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3.2 Elevation 

 Two 1/3 arc-second Digital Elevation Models were downloaded from the US 

Geological Survey National Elevation Dataset (~10m resolution) which displayed the 

elevation range for all the Sitgreaves side of the ASNF. A Ranger District boundary 

shapefile from the US Department of Agriculture was used to mask the DEMs after they 

were made into a single raster using the Mosaic To New Raster Data Management tool in 

ArcGIS. Elevation on the BMRD ranged between 1739 – 2422 m (5705 – 7946 ft).  

3.3 Slope 

 Surface level is used as an indication of site fitness due to relative ease of use for 

daily activities (Diwan 2020, Regmi et al. 2014, Taliaferro 2021). Flat surfaces provide 

more comfortable living conditions and convenient agricultural space. The Slope Spatial 

Analyst Tool was used to derive a raster layer from the DEM that calculated the angle of 

slope in degrees (0-90°) for each 10m x 10m cell.  

3.4 Aspect 

 Aspect describes the dominate direction that a ground surface (i.e. slope) faces, 

measured in cardinal degrees (0-360°). By default, the Aspect Spatial Analyst tool results 

in 8 classifications consisting of the 4 cardinal directions (North, South, East, West) and 

the 4 ordinal directions (NE, SE, SW, NW), with each encompassing 45°, and a ninth 

class representing flat ground with no dominant viewshed.  Aspect is used as an 

indication that site inhabitants were seeking shelter from adverse weather such as wind, 
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or else using locations exposed to sunlight to their benefit for warmth or agriculture. 

(Diwan 2020, Nsanziyera et al. 2018, Regmi et al. 2014, Taliaferro 2021). 

3.5 Sun Exposure 

 To gage the relationship between Aspect and sunlight, the Area Solar Radiation 

Spatial Analyst tool was used to investigate the amount of sunlight the land surface 

receives over an entire year. Three factors were measured in the amount of direct 

radiation in WH/m2 (Solar Direct), the amount of total radiation from direct and diffuse 

light in WH/m2 (Solar Total) and the amount of time spent in direct sunlight in hours 

(Solar Hours). The amount of sunlight received by any given section of land would have 

been an important factor given its necessity for crop cultivation and the warmth that it 

provides to both people and plants (Kanter 2004, Salzer 2000, Salzer and Kipfmueller 

2005) 

3.6 Distance to Water 

 A basic assumption that can be made is that all humans throughout time have had 

a need for regular access to water. Given the agricultural lifestyle lead by Mogollon 

peoples, accessible water would have needed to be close by for crop irrigation during at 

least part of the year (Kantner 2004).  Indeed, over 120 sites from the BMRD dataset 

contained mention of some form of water control feature, commonly referred to as a 

“check dam”.  These are typically small linear features a few meters in length that are 

created by stacking local stone across drainages. 
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To understand this relationship with water, the linear distance from major water 

sources was calculated for each site point. A hydrology shapefile was downloaded from 

AZGeo, and its relevant features were selected using the Clip Analyst tool to select 

features within the BMRD boundary. These features were used in the Euclidean Distance 

Spatial Analyst tool to create a raster that measured the distance of each cell from the 

nearest stream feature (Diwan 2020, Nsanziyera et al. 2018). 

3.7 Precipitation Runoff 

 Another important factor for agricultural purposes would be the inclusion of 

precipitation data. Kantner (2004) notes that the Mogollon Highlands receive more 

precipitation than lower elevations “with yearly totals commonly [measuring] 350-500 

mm”, or 13.8-19.7 in. Historic (1950 – present) annual averages from the National 

Oceanic and Atmospheric Administration (NOAA) range from 230-760 mm (9-30 in) of 

precipitation for the Black Mesa Ranger Station in Heber. WorldClim 2.1 provides 

historical climate data in 30s arc resolution rasters, which is roughly 5 km2, however, 

without finer resolution information it is difficult to perceive meaningful differences in 

precipitation per site. Therefore, a proxy for measuring the amount of rainfall that would 

pass through each site as it collected in the myriad drainages that pass through the BMRD 

was created. Following the example of Taliaferro 2021, Flow Direction and subsequent 

Flow Accumulation rasters were created, using their respective Spatial Analyst tools, to 

simulate the movement of water across the topography. An equation was then applied to 

the Flow Accumulation raster via the Raster Calculator Spatial Analyst tool to estimate 

the amount of water that would enter the next cell after a small amount (15%) is 

presumed absorbed by soil. This model was based on research by Toney (2012) and 
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Schollmeyer (2009), as well as climate data from Salzer and Kipfmueller (2005) from 

whom an annual mean precipitation of 27.4 cm was calculated. As Taliaferro 2021 

focused on the entire ASNF, the current research used the NOAA data from Heber, AZ as 

a more refined precipitation estimate for just the BMRD, and substituted the annual mean 

precipitation value for 20.99 cm which resulted in the equation: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.15 ∗  (0.85 ∗  (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝐴𝐴𝐴𝐴𝐴𝐴 ∗  (0.2 ∗  pp))) + (0.8 ∗  pp) 

3.8 Local Relief  

 Local Relief describes the amount of variation in elevation by calculating the 

difference in range within a user defined area. The Focal Statistics Spatial Analyst tool 

was used to set a radius of 0.5 km around each cell in the DEM and produce a range with 

smaller results representing less variability and higher results representing greater 

variability (Diwan 2020, Taliaferro 2021). This factor is used as a representation of how 

much uniformity in terrain was preferred for site location. A large range might indicate 

that access to multiple biomes was important to the inhabitants, while a low range might 

indicate focus on agriculture or ease of pedestrian travel. 

3.9 Land Texture 

 Land Texture also examines surface variation, this time using the Focal Statistics 

tool to measure the standard deviation within a user defined area, which was set as a 0.5 

km radius around each cell. This indicates where sites are located in elevation within a 

given range (Diwan 2020, Taliaferro 2021). It also provides an indication of how flat the 

surrounding landscape is. 
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3.10 Land Shelter 

 Another derivative of the Focal Statistics tool, the amount of shelter that a site 

receives from its environment is calculated by finding the mean elevation within a user 

defined area (0.5 km radius) and subtracting that mean from the local cell elevation via 

the Raster Calculator tool. This factor indicates the “level of protection from aspects of 

the environments offered by a location in relation to the surrounding landscape” 

(Taliaferro 2021).  

3.11 Topographic Positional Index 

Topographic Positional Index (TPI) is used to measure whether a location is 

placed high or low relative to the surrounding variation. If a pattern of favoratism for a 

given range of the TPI were observed, it may suggest a selection of habitation site based 

on ready access to specific landforms or natural resources (Taliaferro 2021). TPI was 

calculated using a 0.5 km radius as the local in the Focal Statistics tool and the equation: 

𝑇𝑇𝑇𝑇𝑇𝑇 =  
(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 –  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀)

(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) 
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Figure 3. Factor Maps. 
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Figure 4. Factor Maps cont’d. 
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4 Methodology 

4.1 Binary Logistic Regression 

 To facilitate the collection of site statistics, the site boundary polygons received 

from the District Archaeologist were converted using the Feature to Point Data 

Management tool to create a centroid that represented the middle of each site. These site 

points were considered “true sites” but accounted for only one-half of the binary outcome 

necessary for logistic regression, and so sets of random points were created to act as 

“false sites”. It was the intent of the researcher to use a portion of the true sites as training 

data and the remaining portion as verification data, which meant that the population of 

false sites needed to be equal to the population of the percentage of true sites chosen for 

training the predictive model. Due to the low number of Multicomponent sites (40), a 

threshold of 75% was chosen to ensure that a training population of at least 30 true sites 

was included in each component model. This goal was derived from the Central Limit 

Theorem which indicates that 30 is a useful sample size for obtaining data that reflects a 

general population (Urdan 2017, pg. 61). Similar divisions of data were used by Nicu et 

al. (2019) and Koohpayama et al. (2021) who chose an 80%/20% and 70%/30% split 

respectively. Thus, the Create Random Points Data Management tool in ArcGIS was used 

to generate the desired populations of training points that were constrained to true site 

locations for each component. An equal number of truly random false site points were 

also constructed and were then merged into unique feature classes for each component. 
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Once the factor rasters above were created, the Extract Multi Value Spatial Analyst 

tool was run to add raster values to all site points in each of the three component features 

classes. The attribute table for each component could then be exported to Excel (Table to 

Excel Data Management), whereby they could be opened in JMP Pro for analysis. In JMP 

there is a Fit Model function that allows the user to select the type of regression analysis 

they want to perform. The column representing true sites was set as a nominal variable 

and displayed on the y-axis while all remaining factors were considered independent 

variables along the x axis. Two component models were created: a Prehistoric model 

containing both prehistoric and multicomponent sites, and a Historic model containing 

both historic and multicomponent sites. Each component model was run multiple times 

using both Forwards and Backwards Stepwise methods to perform logistic regression 

(Tables 2 and 3). Model selection was based on the Omnibus test for significant P-values 

of P<0.05 and on the amount of variability explained in the Area Under the Curve 

(AUC). The confusion matrix generated by JMP Pro was also used to ascertain the 

number of True Positive and True Negative observations that were correctly predicted, as 

summarized in the % Accuracy Training Sites column of Table 3. 

With the selected models, the Raster Calculator tool was run in ArcGIS to apply a 

probability to each cell in the study area. As the resulting probabilities were not 

necessarily a perfect range from 0-1, each raster was reclassified into tercile groups so 

that each group contained roughly 33.3% of total cells. For the Prehistoric model, the 

lowest range of probabilities were classified as Low (value of 1), the middle range as 

Moderate (value of 2) and the highest as High (value of 3). For the Historic model, the 

same method was applied using values of 10, 20 and 30. Raster Calculator was used a 
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second time to combine the two models into values of 11, 12, 13, 21, 22, 23, 31, 32, and 

33 following the example of Taliaferro 2021. These final values represent combinations 

of Low, Moderate and High (Table 2) and were used for a final classification scheme of 

Very Low, Low, Moderate, High, and Very High. 

Table 2. Classification Scheme for Combined Models. This dictates which combination 
of values from the Component models receive a final classification of 1-5. 

 
 

  

1 11 L-L 1 Very Low
2 12 L-M 2 Low
3 13 L-H 3 Mod
1 21 M-L 2 Low
2 22 M-M 3 Mod
3 23 M-H 4 High
1 31 H-L 3 Mod
2 32 H-M 4 High
3 33 H-H 5 Very High30

Combined Model Classification Scheme

10

20
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Table 3. BLR Model Methods and JMP Pro Results. 

 
 

Table 4. BLR Model Equations. 

 

Component 
Type

Model 
Number

Model Personality Stopping Rule Omnibus AUC
% Accuracy 

Training Sites

1
Full - no 0.812 76.3

2
All Factors with P<0.05 - yes 0.812 76.4

3 Stepwise - Forwards AICc yes 0.805 75.4

4
Stepwise - Backwards AICc no 0.717 65.6

5
Stepwise - Forwards P-value < 0.05 no 0.812 75.9

6
Stepwise - Backwards P-value < 0.05 yes 0.718 65.4

7
Full - no 0.748 68.8

8 All Factors with P<0.05 - yes 0.745 67.7
9 Stepwise - Forwards AICc yes 0.745 67.7

10 Stepwise - Backwards AICc yes 0.641 58.3
11 Stepwise - Forwards P-value < 0.05 yes 0.745 67.7
12 Stepwise - Backwards P-value < 0.05 yes 0.641 58.3

Prehistoric

Historic

Component 
Type

Model 
Number

z =

1
(-24.8862) + (0.0294 * LocalTexture) + (0.0049 * LocalRelief) + (0.0217 * LandShelter) + (0.0004 * 
Sun_time) + (-1.2462e-6 * Sun_direct) + (8.6348e-6 * Sun_total) + (0.0355 * Slope) + (0.0104 * 

Elevation) + (0.0002e-1 * Runoff) + (-0.0001e-1 * Dis_Water) + (1.1616 * TPI) + (0.0645 * Aspect)

2
(-25.1203) + (0.0486 * LocalTexture) + (0.0219 * LandShelter) + (0.0004 * Sun_time) + (-0.0001e-2 * 

Sun_direct) + (0.0001e-2 * Sun_total) + (0.0351 * Slope) + (0.0105 * Elevation) + (1.1361 * TPI) + (0.064 * 
Aspect)

3 (-24.6825) + (0.0475 * LocalTexture) + (0.0005 * Sun_time) + (0.0371 * Slope) + (0.0106 * Elevation)

4
(-0.8808) + (-0.0233 * LocalTexture) + (0.0326 * LocalRelief) + (-0.0002 * Sun_time) + (-1.4618e-8 * 

Sun_direct) + (1.2213e-9 * Sun_total)

5
(-24.3049) + (0.0271 * LocalTexture) + (0.0054 * LocalRelief) + (0.0004 * Sun_time) + (-0.0001e-2 * 
Sun_direct) + (0.0007e-3 * Sun_total) + (0.0395 * Slope) + (0.0104 * Elevation) + (0.0693 * Aspect)

6
(-0.8158) + (0.0271 * LocalRelief) + (-0.0002 * Sun_time) + (-0.0001e-2 * Sun_direct) + (0.000001 * 

Sun_total)

7

.70   ( 0.0069  ocalTexture)  (0.00   ocalRelief)  (0.0385  andShelter)  ( . 8 4e 7  
Sun_time) + (-2.957e-11 * Sun_direct) + (1.1064e-10 * Sun_total) + (0.1929 * Slope) + (-0.003 * 
Elevation) + (-1.0003e-8 * Runoff) + (-1.0003e-8 * Dis_Water) + ( 4.4430 * TPI) + (0.0466 * Aspect)

8 2.7816 + (0.0387 * LandShelter) + (0.1922 * Slope) + (-0.0029 * Elevation) + (4.6247 * TPI)
9 2.7816 + (0.0387 * LandShelter) + (0.1922 * Slope) + (-0.0029 * Elevation) + (4.6247 * TPI)

10 0.5049 + (0.0102 * LocalRelief) + (-0.0245 * LandShelter)
11 2.7816 + (0.0387 * LandShelter) + (0.1922 * Slope) + (-0.0029 * Elevation) + (4.6247 * TPI)
12 0.5049 + (0.0102 * LocalRelief) + (-0.0245 * LandShelter)

Prehistoric

Historic
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4.2 Frequency Ratios 

Frequency Ratios compare the occurrence of a phenomenon in relation to its non-

occurrence (Diwan 2020, Nicu et al. 2019). The formula for FRs is clearly explained by 

Regmi et al. 2014 as: 

𝐹𝐹𝐹𝐹 =
�

N𝑝𝑝𝑝𝑝𝑝𝑝(S𝑋𝑋𝑖𝑖)
∑ (SX𝑖𝑖)𝑚𝑚
𝑖𝑖=1

�

⎝

⎛ N𝑝𝑝𝑝𝑝𝑝𝑝(X𝑗𝑗)

� N𝑝𝑝𝑝𝑝𝑝𝑝(X𝑗𝑗)
𝑛𝑛

𝑗𝑗=1 ⎠

⎞

 

Where:  
Npix(SXi): number of pixels with sites within class i of factor Xi, 
Npix(Xj): number of pixels within factor Xj,  
m: number of classes in the parameter Xi, 
n: number of factors in the study area. 

This compares the site occurrence in a class to the sum of site occurrence in the factor, 

and the factor extent to the sum of all factor extents. The two ratios are then themselves 

used to create a final ratio, the FR (Table 4). By using the Lookup Spatial Analyst tool in 

ArcGIS Pro, a new raster can be created for each factor that assigns the appropriate FR to 

every cell (pixel). The sum of FRs for all factors is obtained through the Raster 

Calculator and results in the final APM, so that: 

𝐴𝐴𝑃𝑃𝑃𝑃 =  𝐹𝐹𝐹𝐹1  + 𝐹𝐹𝐹𝐹2 … +  𝐹𝐹𝐹𝐹𝑛𝑛 

Initially, each of the original factors was reclassified into ten classes using the Natural 

Breaks (Jenks) method with the Reclassify Spatial Analyst tool. A count of the occurrence 

for each class was then recorded. The Clip Raster Data Management tool used two 
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feature classes containing Prehistoric/Multi-component and Historic/Multi-component 

site polygons to isolate the values for archaeological site occurrence. The FR equation 

could then be calculated and applied to new rasters as described.  

4.3 Statistical Index Model (Wi) 

 As with FR models, the Wi method has only recently transferred to archaeological 

study from geological research and uses all cells within sites to build its statistics (Diwan 

2020, Nsanziyera et al. 2018, Regmi et al. 2014). Whereas FR is a comparison of site 

occurrence to factor occurrence, Wi uses site density in a class compared to site density in 

the factor. Each classes’ weight value is calculated using a natural logarithmic function of 

the density ratio which can result in both positive and negative weights, or the estimation 

of occurrence or non-occurrence respectively (Table 4). Wi values close to zero indicate a 

weaker estimation than values more distant from zero.  

 Outlined in Diwan 2020, Wi was calculated for each class following: 

ln W𝑖𝑖 = ln �
Densclas 
Densmap

� =
�

N𝑝𝑝𝑝𝑝𝑝𝑝(S𝑖𝑖)
N𝑝𝑝𝑝𝑝𝑝𝑝(N𝑖𝑖)

�

�
∑N𝑝𝑝𝑝𝑝𝑝𝑝(S𝑖𝑖)
∑N𝑝𝑝𝑝𝑝𝑝𝑝(N𝑖𝑖)

�
 

and the resulting weights were combined into the APM using the Lookup and Raster 

Calculator tools as with the FR method. 
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Table 5. Pixel Counts for all Factors and Site Components. FR and Wi for every class. 

 
 
 

Factor Class Npix(Ni) Npix(Si) Npix(Si)

Min Max Class Prehistoric Historic Prehistoric Historic Prehistoric Historic
0 Flat 16328 0 0 0.000 0.000 0.000 0.000
1 337.5° 22.5° 4930245 35478 14925 2.059 1.843 -0.009 -0.119
2 22.5° 67.5° 4733380 40091 17280 2.327 2.134 0.154 0.068
3 67.5° 112.5° 4299560 39058 12886 2.267 1.591 0.225 -0.129
4 112.5° 157.5° 3363902 28924 10736 1.678 1.326 0.170 -0.066
5 157.5° 202.5° 2119743 16014 9627 0.929 1.189 0.040 0.286
6 202.5° 247.5° 1848907 10006 8644 0.581 1.067 -0.293 0.315
7 247.5° 292.5° 2750595 13386 9322 0.777 1.151 -0.400 -0.006
8 292.5° 337.5° 4456470 24020 13839 1.394 1.709 -0.298 -0.094
1 1739.56 1891.92 1548618 20070 204 1.163 0.025 0.580 -3.253
2 1891.92 1940.03 3174642 26541 763 1.538 0.094 0.142 -2.651
3 1940.03 1988.15 3252208 32646 1309 1.891 0.161 0.325 -2.136
4 1988.15 2036.26 4136762 59031 5695 3.420 0.703 0.677 -0.906
5 2036.26 2087.05 3698727 43237 3111 2.505 0.384 0.477 -1.399
6 2087.05 2140.51 3163446 17421 12497 1.009 1.542 -0.275 0.148
7 2140.51 2199.31 2748843 3725 794 0.216 0.098 -1.677 -2.468
8 2199.31 2263.46 2615357 990 840 0.057 0.104 -2.953 -2.361
9 2263.46 2322.27 2860922 1762 62011 0.102 7.649 -2.466 1.850
10 2322.27 2421.16 1351362 1653 10037 0.096 1.238 -1.780 0.779
1 0.00 152.23 6968815 40709 17914 2.358 2.210 -0.217 -0.281
2 152.23 334.91 7382455 50672 22154 2.935 2.734 -0.056 -0.127
3 334.91 502.36 5581798 44118 20717 2.555 2.556 0.085 0.086
4 502.36 669.82 3899013 31910 18172 1.848 2.242 0.120 0.314
5 669.82 852.49 2507132 21581 14104 1.250 1.740 0.171 0.502
6 852.49 1065.61 1307517 11937 3770 0.691 0.465 0.230 -0.167
7 1065.61 1370.08 611482 5448 377 0.316 0.047 0.205 -1.709
8 1370.08 1841.99 206455 784 36 0.045 0.004 -0.648 -2.972
9 1841.99 2648.81 58868 0 0 0.000 0.000 0.000 0.000
10 2648.81 3881.88 24989 0 0 0.000 0.000 0.000 0.000
1 5.16 31.99 6598978 81222 35722 4.706 4.406 0.529 0.463
2 31.99 50.36 8699200 76028 49306 4.405 6.082 0.186 0.509
3 50.36 68.72 5395691 28599 5103 1.657 0.629 -0.314 -1.281
4 68.72 87.08 3403365 10812 3919 0.626 0.483 -0.825 -1.085
5 87.08 108.26 1991732 4810 859 0.279 0.106 -1.100 -2.067
6 108.26 133.68 953419 3231 1219 0.187 0.150 -0.761 -0.980
7 133.68 164.75 724255 1131 66 0.066 0.008 -1.536 -3.621
8 164.75 204.30 530976 192 41 0.011 0.005 -2.999 -3.787
9 204.30 256.55 220444 305 280 0.018 0.035 -1.657 -0.987
10 256.55 365.30 33287 746 746 0.043 0.092 1.128 1.884
1 -145.43 -49.28 91564 213 155 0.012 0.019 -1.137 -0.699
2 -49.28 -29.84 315930 1345 479 0.078 0.059 -0.533 -0.810
3 -29.84 -17.57 1011629 4970 970 0.288 0.120 -0.390 -1.268
4 -17.57 -9.39 2676070 17656 5296 1.023 0.653 -0.095 -0.543
5 -9.39 -2.23 7888778 72705 33557 4.212 4.139 0.240 0.222
6 -2.23 3.91 9315196 73960 35819 4.285 4.418 0.090 0.121
7 3.91 13.12 4738770 29180 18554 1.691 2.289 -0.164 0.139
8 13.12 28.46 1775575 5411 2199 0.314 0.271 -0.867 -1.012
9 28.46 53.01 545396 1339 232 0.078 0.029 -1.083 -2.080
10 53.01 115.40 192439 297 0 0.017 0.000 -1.547 0.000
1 0.96 7.12 7863804 93177 41560 5.398 5.127 0.491 0.439
2 7.12 11.95 9364161 71738 46591 4.156 5.747 0.055 0.379
3 11.95 17.23 5184822 26892 4672 1.558 0.576 -0.335 -1.330
4 17.23 22.94 2883193 8432 1806 0.489 0.223 -0.908 -1.693
5 22.94 29.97 1531249 2932 997 0.170 0.123 -1.332 -1.655
6 29.97 38.76 675549 2374 734 0.138 0.091 -0.725 -1.143
7 38.76 48.43 490362 732 208 0.042 0.026 -1.581 -2.083
8 48.43 59.42 325371 310 204 0.018 0.025 -2.030 -1.693
9 59.42 72.61 167342 238 238 0.014 0.029 -1.629 -0.873
10 72.61 113.04 65494 251 251 0.015 0.031 -0.638 0.118

Aspect

Elevation

Distance 
to Water

Local 
Relief

Land 
Shelter

Local 
Texture

FR WiClass Range
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Table 5. continued. 

 

 

Factor Class Npix(Ni) Npix(Si) Npix(Si)

Min Max Class Prehistoric Historic Prehistoric Historic Prehistoric Historic
1 16.79 444.23 28085650 205138 96096 11.885 11.854 0.007 0.004
2 444.23 1940.27 300164 1264 921 0.073 0.114 -0.544 -0.105
3 1940.27 4291.20 86250 304 144 0.018 0.018 -0.722 -0.713
4 4291.20 7283.28 39188 127 36 0.007 0.004 -0.806 -1.311
5 7283.28 11130.24 19777 107 24 0.006 0.003 -0.293 -1.032
6 11130.24 15832.09 9691 40 5 0.002 0.001 -0.564 -1.887
7 15832.09 21816.25 5249 31 18 0.002 0.002 -0.205 0.007
8 21816.25 29937.62 3160 11 17 0.001 0.002 -0.734 0.457
9 29937.62 40837.35 1328 31 0 0.002 0.000 1.169 0.000
10 40837.35 54515.44 430 23 0 0.001 0.000 1.998 0.000
1 0.00 510.06 36922 18 1006 0.001 0.124 -2.700 2.079
2 510.06 1122.13 59101 26 802 0.002 0.099 -2.803 1.382
3 1122.13 1496.17 96811 89 2180 0.005 0.269 -2.066 1.889
4 1496.17 1887.22 121515 121 284 0.007 0.035 -1.986 -0.377
5 1887.22 2346.27 94394 83 602 0.005 0.074 -2.110 0.627
6 2346.27 2805.32 135914 49 214 0.003 0.026 -3.002 -0.772
7 2805.32 3196.37 222241 287 518 0.017 0.064 -1.726 -0.379
8 3196.37 3587.41 558712 7110 3603 0.412 0.444 0.562 0.638
9 3587.41 4046.47 3985585 42967 14675 2.489 1.810 0.396 0.078
10 4046.47 4335.50 23239692 156326 73377 9.057 9.052 -0.075 -0.076
1 0.00 350378.77 4904637 39283 15841 2.276 1.954 0.099 -0.053
2 350378.77 644696.95 3600768 24934 13099 1.445 1.616 -0.046 0.066
3 644696.95 967045.42 2958205 19688 10293 1.141 1.270 -0.086 0.021
4 967045.42 1303409.04 2685958 19716 9362 1.142 1.155 0.012 0.023
5 1303409.04 1625757.51 2647906 19272 9309 1.117 1.148 0.003 0.032
6 1625757.51 1920075.68 2585014 17808 9386 1.032 1.158 -0.051 0.064
7 1920075.68 2242424.16 2648946 18867 10447 1.093 1.289 -0.018 0.146
8 2242424.16 2620833.23 6503367 47508 19524 2.753 2.408 0.007 -0.126
9 2620833.23 2929166.55 501 0 0 0.000 0.000 0.000 0.000
10 2929166.55 3573863.50 15585 0 0 0.000 0.000 0.000 0.000
1 7.10 596470.97 2504137 25218 7422 1.461 0.916 0.328 -0.139
2 596470.97 1043818.86 4153526 31247 14205 1.810 1.752 0.037 0.004
3 1043818.86 1491166.76 3922220 25043 14035 1.451 1.731 -0.127 0.049
4 1491166.76 1975793.65 3328820 22866 11848 1.325 1.462 -0.054 0.044
5 1975793.65 2441781.04 3298793 23006 11699 1.333 1.443 -0.039 0.040
6 2441781.04 2833210.45 3722950 25014 13818 1.449 1.705 -0.076 0.086
7 2833210.45 3261918.85 7603869 54680 24234 3.168 2.989 -0.009 -0.067
8 3261918.85 3765185.23 770 2 0 0.000 0.000 -1.027 0.000
9 3765185.23 4175254.13 279 0 0 0.000 0.000 0.000 0.000
10 4175254.13 4753078.50 15523 0 0 0.000 0.000 0.000 0.000
1 0.00 2.57 10774606 107044 48850 6.212 0.419 0.314 0.285
2 2.57 5.44 8184562 64635 32824 3.751 0.254 0.084 0.162
3 5.44 8.87 4025772 22128 11737 1.284 0.037 -0.278 -0.157
4 8.87 12.59 2286502 7889 2811 0.458 -0.054 -0.744 -1.020
5 12.59 16.88 1352045 2800 707 0.162 -0.076 -1.254 -1.875
6 16.88 21.74 783097 1233 265 0.072 -0.081 -1.528 -2.310
7 21.74 27.47 476422 575 59 0.033 -0.083 -1.794 -3.316
8 27.47 33.76 359952 394 6 0.023 -0.083 -1.892 -5.321
9 33.76 41.77 209031 205 0 0.012 -0.083 -2.002 0.000
10 41.77 72.96 67141 74 0 0.004 -0.083 -1.885 0.000
1 0.00 0.15 740674 3931 1162 0.228 0.143 -0.313 -0.776
2 0.15 0.25 1593532 11152 6419 0.646 0.791 -0.036 0.167
3 0.25 0.34 2279318 17517 6989 1.015 0.862 0.058 -0.106
4 0.34 0.43 2877416 21935 8716 1.270 1.075 0.049 -0.118
5 0.43 0.51 3360284 26273 10489 1.522 1.293 0.075 -0.088
6 0.51 0.60 3737739 27188 10646 1.575 1.313 0.003 -0.180
7 0.60 0.69 3935532 28511 12792 1.651 1.577 -0.001 -0.047
8 0.69 0.78 4029977 27098 16153 1.570 1.991 -0.076 0.162
9 0.78 0.87 3590387 24053 13953 1.393 1.720 -0.080 0.131
10 0.87 1.00 2406028 19487 9995 1.129 1.232 0.110 0.198

TPI

Runoff

Solar 
Hours

Solar 
Direct

Solar 
Total

Slope

FR WiClass Range
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5 Results 

Applying the three model methods to the BRMD resulted in a series of susceptibility 

maps that highlighted Low, Moderate and High probability for both Prehistoric and 

Historic components. The combined models display Very Low, Low, Moderate, High and 

Very High probability ranges that suggest the least and most suitable geographic regions 

for discovering archaeological resources. Before these maps can be used, however, some 

semblance of their accuracy needs to be known. While this is a somewhat problematic 

subject (Grøn 2018, Yaworsky et al. 2020) we first look at the amount of variation that is 

predicted to be explained by our model. This is done using Receiver Operating 

Characteristic curves (ROC). The ROC plots a model’s ability to accurately predict a true 

positive or a true negative site, with the percentage of true values described in the AUC 

(Nicu et al. 2019, Regmi et al. 2014, Zare et al. 2021). While this is a natural product of 

logistic regression in JMP Pro, the process had to be done again for the FR and Wi 

models. The Extract Multi Values tool was used to retrieve the predictor value from both 

models for each of the two components, and these values were exported to JMP Pro. 

Binary logistic regression analysis was run using the predictor value as the independent 

variable and an ROC generated for every component model. The resulting AUC 

percentages were then recorded in Table 6.  

Use of Kvamme’s Gain as a measure of model significance is another common 

choice amongst researchers (Diwan 2020, Nicu et al. 2019, Nsanziyera et al. 2018, 

Tiaraferro 2021) and is simple to calculate. Gain is expressed with the equation: 

𝐺𝐺 = 1 −  �
%𝑃𝑃𝑃𝑃
%𝐺𝐺𝐺𝐺

� 

https://www.sciencedirect.com/science/article/abs/pii/S2352409X18300415#!
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Where Gain (G) is a value between 0 and 1, derived from the ratio of highest probability 

area (%PS) to percent of sites in that area (%GS) (Diwan 2020). Gain statistics for each 

model can also be found in Table 6. According to Diwan 2020 and others (Nicu et al. 

2019, Nsanziyera et al. 2018, Tiaraferro 2021) a successful Gain value of 0.5 or higher is 

preferred to verify model reliability. Several of the current models come close with BLR 

consistently scoring 0.45 or higher, but all three FR models, along with the Historic Wi 

model, fall short of 0.4. The combined Wi model scores the best at 0.56 which suggest 

that it has better predictive power.  

Table 6. Results of Kvamme’s Gain. All true-site points included in Gain results. The 
AUC column describes variation explained in the training data. Due to classification 

methods, cell specific predictor values were not included in the final models. 

 

A summation of model efficacy by exploring the percentage of verification sites (s = 

0.25n) captured by each probability class can be seen in Table 7. For all three methods 

there is a greater than 45% inclusion of verification sites in the High probability class for 

both components. Prehistoric site models for BLR and Wi both exceed 60%, along with 

the Historic site BLR model. The combined models all exceeded 50% inclusion of sites 

AUC
PS GS Gain

% Area Highest 
Probability

% Sites in 
Area

1 - (PS/GS)

BLR_P 33.35 60.47 0.45 0.81
BLR_H 32.99 61.97 0.47 0.745
FR_P 32.55 48.55 0.33 0.7
FR_H 32.79 42.46 0.23 0.529
Wi_P 33.07 63.94 0.48 0.799
Wi_H 32.05 45.26 0.29 0.577

BLR_C 14.42 26.72 0.46
FR_C 24.70 33.85 0.27
Wi_C 16.45 37.29 0.56

Kvamme's Gain
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in the High and Very High range with 54.5%, 64.8%, and 53% for BLR, Wi, and FR 

respectively. 

Table 7. Verification Data Classification. 

 

Component

Low %-Model Moderate %-Model High %-Model Total
Prehistoric 29 2.81 378 36.63 625 60.56 1032
Historic 8 11.27 19 26.76 44 61.97 71

Low %-Model Moderate %-Model High %-Model
Prehistoric 71 6.88 319 30.91 642 62.21 1032
Historic 17 23.94 22 30.99 32 45.07 71

Low %-Model Moderate %-Model HIgh %-Model
Prehistoric 145 14.05 389 37.69 498 48.26 1032
Historic 19 26.76 20 28.17 32 45.07 71

Very Low %-Model Low %-Model Moderate %-Model High %-Model Very High %-Model
Prehistoric 10 119 273 349 271 1022
Historic 17 19 19 4 2 61
Multi-component 4 3 1 2 0 10

Very Low %-Model Low %-Model Moderate %-Model High %-Model Very High %-Model
Prehistoric 66 124 165 285 382 1022
Historic 11 8 6 16 20 61
Multi-component 0 1 4 3 2 10

Very Low %-Model Low %-Model Moderate %-Model High %-Model Very High %-Model
Prehistoric 125 116 242 207 332 1022
Historic 13 4 9 13 22 61
Multi-component 3 0 2 1 4 10

Model Coverage of Verification Data - 25% Total Component Population

2.84 12.90 26.79 32.50 24.97

7.04

12.90 10.98

Frequency Ratios -Components

Frequency Ratios - Combined
12.17 16.01

23.15 20.22 32.75

36.9627.82

Statistical Index Model (Wi) - Components

Statistical Index Model (Wi) - Combined

Binary Logistic Regression - Combined

Binary Logistic Regression - Components
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Figure 5. Results for the Binary Logistic Regression Model. 

 
 

 
Figure 6. Results for the Statistical Index Model (Wi). 
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Figure 7. Results for the Frequency Ratio Model. 

 
 

6 Discussion 

While the Gain values for the final models would suggest that the Wi model is the 

highest performing method, there is a higher concentration of sites in the Moderate –

(Very) High categories for both BLR component models and the combined BLR model. 

Additionally, the three watershed models from Taliaferro 2021 that had low Gain values 

(Chevelon Canyon/Upper Salt – Historic, Silver Creek – Historic, Silver Creek – 

Prehistoric) all fall fully or partially within the BMRD. This suggests that the predictive 

ability of the current BLR model marginally outperforms both the old BLR model from 

Taliaferro 2022, and the ratio methods in the current research. Compared to results 

generated by either FR or Wi, multivariate statistics appear to have capture sites of higher 

interest as well. For example, the 200+ room pueblo of Bailey Ruin (Figure 8) is almost 

entirely classified as Low/Very Low probability using ratio methods, but is mostly 
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classified as High probability with BLR. Kivas, ceremonial structures built to 

accommodate large groups, are an important feature found in only a few sites, including 

Bailey Ruin. Of only 19 total kiva sites on the BMRD, 6 were classified as less than High 

probability by the FR model, 2 by the Wi model, and 4 by the BLR model. However, only 

the BLR model included every single kiva in at least Moderate probability (Figure 9). 

 

 
Figure 8. Bailey Ruin highlighted in blue. From left to right: BLR, FR, Wi. 
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Figure 9. Site 03010201892. Centered, kiva site 1892 includes high classification with 
the BLR model, despite its surroundings. The FR and Wi models capture this important 

site as only Low-Moderate. 
 
 

The results of this paper could perhaps be improved upon by incorporating further 

modelling methods such as species distribution (Franklin et al. 2014) to predict the 

availability of game animals in relation to habitation sites, Point Process Models (Davis 

et al. 2020) that create probability rasters around observation clustering, and 

Geographically Weighted Regression (GWR) in areas of low survey coverage (Shen et al. 

2022). GWR and similar concepts such as Maximum Entropy (Yarwosky 2020) are 

intriguing modeling techniques that attempt to overcome the absence of an observation 

by weighting factors to proximity with known observations. The predictive power of that 

factor is therefore lessened as distance from known observations increases. This would be 
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especially useful in context of the BMRD where sandy soils are prone to shift over time, 

occasionally revealing sites in areas previously surveyed and thought to be barren of 

cultural remains. Such instability causes the reliability of past survey to falter with age. 

Yaworsky et al. 2020 does raise some concerns in regard to the reliability of 

predictive models, namely that small observation populations, time scale, and the 

inductive nature of many APMs cause too much uncertainty. This dataset contains a large 

population of site data (n = 4373) with sites that have a fairly constrained time period of 

200 – 1400 AD, though this could be improved by creating sub-models based on site 

features. 1013 prehistoric site descriptions mention either masonry architecture or black-

on-white ceramics which are both indicators of habitation after 800 AD. It was the 

original intent of this research to include models for individual phases of occupation. 

However, the categorization of sites into specific periods of time is complicated by multi-

phase occupations that can make old sites appear more recent, poor or inconsistent site 

descriptions, and the ephemeral nature of semi-subterranean features (pithouses, kivas, 

etc.) that can cause them to go unidentified. 

 

7 Conclusions 

The effectiveness of any environmentally based APM is influenced by the 

geography of its study region and the amount of known archaeological site 

information available to the researcher. Although binary logistic regression appears to 

have been a more successful method than Frequency Ratios or the Statistical Index 

method in this context, it does not necessarily indicate that these methods are inferior 

in all situations. Additionally, it is an unfortunate reality that no single model is likely 
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to encapsulate the entirety of a region’s cultural resources with perfect accuracy as 

there may be social conditions beyond the physical landscape that influence site 

location.  

As demonstrated in this work, the techniques available to those in the GIS 

industry and in Cultural Resource Management are continuing to evolve along with 

our understanding of their shortcomings. It is the purpose of the research presented 

here to add to a growing body of comparison between common techniques to further 

the understanding of their abilities. Refinement of these methods offers valuable day 

to day use for the protection of unique, unrenewable resources like our archeological 

and historical sites, and for the efficiency of other conservation and land management 

practices.  
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