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Abstract. In this article, we present a mathematical six-dimensional dynam-
ical system involving a three-tiered microbial food web without maintenance.

We give a qualitative analysis of the model, and an analysis of the local sta-

bility of equilibrium points. Under general assumptions of monotonicity, we
prove the uniqueness and the local stability of the positive equilibrium point

corresponding to the persistence of the three bacteria. Possibilities of periodic

orbits are not excluded and asymptotic coexistence is satisfied.

1. Introduction

The anaerobic digestion model No. 1 (ADM1) is a sophisticated mathemati-
cal model developed by the international water association (IWA) modelling the
anaerobic digestion processes created for full-scale industrial plants design, systems
operational analysis and control [1]. This generic model permits to produce a plat-
form for dynamic simulations of a variety of anaerobic processes. A way to facilitate
the study of such a sophisticated model is by considering reduced models to better
understand the biological phenomena of sub-processes while reducing the number
of variables and parameters of the system in order to simplify the mathematical
analysis.

It has been proved previously that simplifying or reducing the complexity of the
model ADM1 can preserve biological significance while reducing the computational
effort needed to find mathematical solutions to the equations of this model [9]. Note
that when using gross simplification of a biological system, analytical techniques are
unable to provide general solutions for the system and then numerical simulations
must suffice.

In this work, we shall revisit the model proposed by Wade et al. [8] and analyzed
by Sari and Wade [5] in considering two main changes relevant from an applied point
of view. The contents of this paper is arranged as following. First, we present, in
Section 2, a description of the model to be investigated, which is a reduction of the
one given by [8]. Then existence, uniqueness and local stability of the 3D reduced
system is analyzed in Section 3. Global stability of the reduced system is also
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discussed. In section 4, asymptotic behavior of the 6D-system is then deduced.
Finally, in section 5, numerical simulations are given when using Monod’s growth
functions which are currently used in biotechnology

2. Mathematical model and results

Figure 1. Three-tiered microbial food web

The model developed here has six components, three substrate and three biomass
variables based on Anaerobic Digestion Model No. 1 (ADM1) (Batstone et al.[1]).
The chlorophenol degrader (X1) uses both chlorophenol (S1) and hydrogen (S3)
for growth, producing phenol (S2) as a product. Phenol (S2) is consumed by
the phenol degrader (X2), which is inhibited by the hydrogen. The methanogen
(X3) growth on the hydrogen. In the actual paper, we revisit the model proposed
by Wade et al. [8] and analyzed by Sari and Wade [5] in considering two main
changes relevant from an applied point of view. First, we neglect all species specific
mortality (maintenance) rates and take into account the dilution rate only. The
second modification of the model is that we neglect the part of hydrogen produced
by the phenol degrader. Chlorophenol, phenol and hydrogen are introduced into the
reactor with a constant dilution rate D and an input concentration Sini , i = 1, 2, 3,
respectively.

Biomass and substrate concentrations are then modelled by the following six-
dimensional dynamical system of ODEs:

Ẋ1 =
(
µ1(S3, S1)−D

)
X1 ,

Ṡ1 = D(Sin1 − S1)− µ1(S3, S1)
X1

Y1
,

Ẋ2 =
(
µ2(S3, S2)−D

)
X2 ,

Ṡ2 = D(Sin2 − S2) + µ1(S3, S1)
X1

Y4
− µ2(S3, S2)

X2

Y2
,

Ẋ3 =
(
µ3(S3)−D

)
X3 ,

Ṡ3 = D(Sin3 − S3)− µ1(S3, S1)
X1

Y5
− µ3(S3)

X3

Y3
.

(2.1)

with initial conditions
(
S1(0), S2(0), S3(0), X1(0), X2(0), X3(0)

)
∈ R6

+, where Yi,
i = 1, 2, 3, 4 are the yield coefficients.
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Assume that the functional response of each species µ1, µ2 : R2
+ → R+ and

µ3 : R+ → R+ satisfies

(A1) µ1, µ2 : R2
+ → R+ and µ3 : R+ → R+ are of class C1,

(A2) µ1(0, S1) = µ1(S3, 0) = µ2(S3, 0) = µ3(0) = 0 , for all S3, S1 ∈ R+,
(A3) ∂µ1

∂S1
(S3, S1) > 0, ∂µ1

∂S3
(S3, S1) > 0, for all S1, S3 ∈ R+,

(A4) ∂µ2
∂S2

(S3, S2) > 0, ∂µ2
∂S3

(S3, S2) < 0, for all S2, S3 ∈ R+,
(A5) µ′3(S3) > 0, for all S3 ∈ R+.

Assumption (A2) means that species X1 cannot grow without substrates S1 and
S3 and that the intermediate product S2 is obligate for the growth of species X2

and that the substrate S3 is obligate for the growth of species X3. Hypothesis (A3)
expresses that the growth of species X1 increases with the substrate S1 and the
substrate S3. Hypothesis (A4) expresses that the species X2 growth increases with
intermediate product S2 produced by species X1 whereas X2 is inhibited by the
substrate S3. Hypothesis (A5) expresses that the growth of species X3 increases
with the substrate S3.

This proposed mathematical six-dimensional dynamical system describe a three-
tiered microbial food web without maintenance. Previous works on two-tier eco-
logical systems gave complete stability analysis, locally and globally (El Hajji et al.
[3]; Sari et al. [4], Weedermann et al. [9]).

To scale the system (2.1) consider the following change of variables and param-
eters:

s1 = S1, s2 =
Y4

Y1
S2, s3 =

Y5

Y1
S3, x1 =

X1

Y1
, x2 =

Y4

Y1Y2
X2,

x3 =
Y5

Y1Y3
X3, sin1 = Sin1 , sin2 =

Y4

Y1
Sin2 , sin3 =

Y5

Y1
Sin3 .

The dimensionless equations thus obtained are :

ẋ1 =
(
f1(s3, s1)−D

)
x1 ,

ṡ1 = D
(
sin1 − s1)− f1(s3, s1

)
x1 ,

ẋ2 =
(
f2(s3, s2)−D

)
x2 ,

ṡ2 = D(sin2 − s2) + f1(s3, s1)x1 − f2(s3, s2)x2 ,

ẋ3 =
(
f3(s3)−D

)
x3 ,

ṡ3 = D(sin3 − s3)− f1(s3, s1)x1 − f3(s3)x3 .

(2.2)

Here, functions f1, f2 : R2
+ → R+ and f3 : R+ → R+ are given by

f1(s3, s1) = µ1(
Y1

Y5
s3, s1), f2(s3, s2) = µ1(

Y1

Y5
s3,

Y1

Y4
s2), f3(s3) = µ3(

Y1

Y5
s3).

Then the Assumptions (A1)–(A5) satisfied by the functions µ1, µ2 and µ3 are trans-
lated to the following assumptions on the functions f1, f2 and f3:

(A6) f1, f2 : R2
+ → R+ and f3 : R+ → R+ are of class C1,

(A7) f1(0, s1) = f1(s3, 0) = f2(s3, 0) = f3(0) = 0, for all s1, s3 ∈ R+,
(A8) ∂f1

∂s1
(s3, s1) > 0, ∂f1

∂s3
(s3, s1) > 0, for all s1, s3 ∈ R+,

(A9) ∂f2
∂s2

(s3, s2) > 0, ∂f2
∂s3

(s3, s2) < 0, for all s2, s3 ∈ R+,
(A10) f ′3(s3) > 0, for all s3 ∈ R+.
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The closed non-negative cone R6
+, in R6, is positively invariant by the system

(2.2). More precisely we have the following result.

Proposition 2.1. (1) For all initial condition in R6
+ , the solution of system (2.2)

is bounded and has positive components and thus is defined for all t > 0.
(2) System (2.2) admits a positive invariant attractor set of all solution given by

Ω = {(s1, s2, s3, x1, x2, x3) ∈ R6
+/s1+x1 = sin1 , x1+s3+x3 = sin3 , s2+x2+s3+x3 =

sin2 + sin3 }.

Proof. (1) The positivity of the solution is proved by the fact that: If si = 0 then
ṡi = Dsini > 0 for i = 1, 3, and if xi = 0 then ẋi = 0 for i = 1, 2, 3. Now, if s2 = 0
then ṡ2 = Dsin2 + f1(s3, s1)x1 > 0. Next we have to prove the boundedness of
solutions of (2.2). By adding the two first equations of system (2.2), one obtains,
for z1 = s1 + x1 − sin1 , a single equation: ż1 = −Dz1 then

s1(t) + x1(t) = sin1 +
(
s1(0) + x1(0)− sin1

)
e−Dt (2.3)

Similarly, by adding the first and the two last equations of system (2.2), one obtains,
for z2 = x1 + s3 + x3 − sin3 , a single equation: ż2 = −Dz2 then

x1(t) + s3(t) + x3(t) = sin3 +
(
x1(0) + s3(0) + x3(0)− sin3

)
e−Dt (2.4)

Finally, by adding the last four equations of system (2.2), one obtains, for z3 =
s2 + x2 + s3 + x3 − sin2 − sin3 , a single equation: ż3 = −Dz3 then

s2(t) + x2(t) + s3(t) + x3(t)

= sin2 + sin3 + (s2(0) + x2(0) + s3(0) + x3(0)− sin2 − sin3 )e−Dt
(2.5)

Since all terms of the two sums are positive, then the solution is bounded.
(2) The second point is simply a direct consequence of equalities (2.3)-(2.4)-

(2.5). �

3. Restriction to R3
+

Trajectories of the 6D-system (2.2) converge exponentially inside the set Ω and
our aim is to study the asymptotic behavior of these trajectories. The idea is to
restrict the study of the asymptotic behavior of the system (2.2) onto the attractive
set Ω. Using Theme’s results [7], the asymptotic behavior of the solutions of the
reduced system will be informative for the complete system (2.2) (cf. EL Hajji et
al. [2] and Sari et al. [4]). Note that in our case, periodic orbits are not excluded.

The projection on the three-dimensional space (x1, x2, x3) of the restriction of
system (2.2) on Ω is given by the following reduced system.

ẋ1 =
(
f1(sin3 − x1 − x3, s

in
1 − x1)−D

)
x1 ,

ẋ2 =
(
f2(sin3 − x1 − x3, s

in
2 + x1 − x2)−D

)
x2 ,

ẋ3 =
(
f3(sin3 − x1 − x3)−D

)
x3 .

(3.1)

Thus, for (3.1) the state-vector (x1, x2, x3) belongs to the following subset of R3
+:

S =
{

(x1, x2, x3) ∈ R3
+ : 0 ≤ x1 ≤ sin1 , 0 ≤ x2 ≤ x1 + sin2 , 0 ≤ x1 + x3 ≤ sin3

}
.

3.1. Local analysis.
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3.1.1. Equilibrium points. The system can have the following eight types of equi-
librium points.

• Trivial equilibria F 0 = (0, 0, 0).
• Boundary equilibria F 1 = (x̄1, 0, 0), where x1 = x̄1 is solution, if it exists,

of equation
f1(sin3 − x1, s

in
1 − x1) = D. (3.2)

• Boundary equilibria F 2 = (0, x̄2, 0), where x2 = x̄2 is a solution, if it exists,
of equation

f2(sin3 , s
in
2 − x2) = D. (3.3)

• Boundary equilibria F 3 = (0, 0, sin3 − s∗), where s∗ = f−1
3 (D).

• Boundary equilibria F 13 = (x∗1, 0, s
in
3 − s∗− x∗1), where x1 = x∗1 is solution,

if it exists, of equation

f1(s∗, sin1 − x1) = D. (3.4)

• Boundary equilibria F 23 = (0, ¯̄x2, s
in
3 − s∗), where x2 = ¯̄x2 is solution, if it

exists, of equation
f2(s∗, sin2 − x2) = D. (3.5)

• Boundary equilibria F 12 = (x̄1, ¯̄̄x2, 0), where x2 = ¯̄̄x2 is solution, if it exists,
of equation

f2(sin3 − x̄1, s
in
2 + x̄1 − x2) = D. (3.6)

• Positive equilibria F ∗ = (x∗1, x
∗
2, s

in
3 − s∗ − x∗1), where x2 = x∗2 is solution,

if it exists, of equation

f2(s∗, sin2 + x∗1 − x2) = D. (3.7)

Existence and uniqueness. For a given D, let s∗ = f−1
3 (D), x∗1 the unique

solution, if it exists, of f1(s∗, sin1 − x1) = D and x̄1 the unique solution, if it exists,
of f1(sin3 − x1, s

in
1 − x1) = D. We use the following notation

D1 = f1(sin3 , s
in
1 ), D2 = f2(sin3 , s

in
2 ), D3 = f3(sin3 ),

D4 = f1(s∗, sin1 ), D5 = f2(s∗, sin2 ), D6 = f2(s∗, sin2 + x∗1),

D7 = f2(sin3 − x̄1, s
in
2 + x̄1), D8 = f3(sin3 − x̄1).

Remark 3.1. By assumptions (A6)–(A10), one can easily verify that

D2 < D5 < D6, D2 < D7, D4 < D1, D8 < D3 .

Existence and uniqueness conditions of the equilibrium points F 0, F 1, F 2, F 3,
F 12, F 13, F 23 and F ∗ are given in the following theorem.

Theorem 3.2.
• F 0 = (0, 0, 0) exists always and is unique,
• F 1 exists and is unique if and only if D < D1,
• F 2 exists and is unique if and only if D < D2,
• F 3 exists and is unique if and only if D < D3,
• F 13 exists and is unique if and only if D < min(D3, D4),
• F 23 exists and is unique if and only if D < min(D3, D5),
• F 12 exists and is unique if and only if D < min(D1, D7),
• F ∗ exists and is unique if and only if D < min(D3, D4, D6).

Proof. • F 0 = (0, 0, 0) exists always.
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• The mapping x1 7→ f1(sin3 − x1, s
in
1 − x1) is decreasing. Hence, there exists

a unique x̄1 such that f1(sin3 − x̄1, s
in
1 − x̄1) = D if and only if D < D1 =

f1(sin3 , s
in
1 ). Then, F 1 exists and is unique if and only if D < D1.

• The mapping x2 7→ f2(sin3 , s
in
2 − x2) is decreasing. Hence, there exists

a unique x̄2 such that f2(sin3 , s
in
2 − x̄2) = D if and only if D < D2 =

f2(sin3 , s
in
2 ). Then, F 2 exists and is unique if and only if D < D2

• The mapping s3 7→ f3(s3) is increasing. Hence, there exists a unique s∗

such that f3(s∗) = D if and only if D < D3 = f3(sin3 ). Then, F 3 exists and
is unique if and only if D < D3.
• s∗ exists if and only if D < D3. The mapping x1 7→ f1(s∗, sin1 − x1) is

decreasing. Hence, there exists a unique x∗1 such that f1(s∗, sin1 − x∗1) = D
if and only if D < D4 = f1(s∗, sin1 ). Then, F 13 exists and is unique if and
only if D < min(D3, D4).
• Similarly, the mapping x2 7→ f2(s∗, sin2 − x2) is decreasing. Hence, there

exists a unique ¯̄x2 such that f2(s∗, sin2 − ¯̄x2) = D if and only if D < D5 =
f2(s∗, sin2 ). Then, F 23 exists and is unique if and only if D < min(D3, D5).
• x̄1 exists and is unique if and only if D < D1. For D < D1, the mapping
x2 7→ f2(sin3 − x̄1, s

in
2 + x̄1− x2) is decreasing. Hence, there exists a unique

¯̄̄x2 such that f2(sin3 − x̄1, s
in
2 + x̄1 − ¯̄̄x2) = D if and only if D < D7 =

f2(sin3 − x̄1, s
in
2 + x̄1). One deduce that F 12 exists and is unique if and only

if D < min(D1, D7).
• s∗ = f−1

3 (D) exists and is unique if and only if D < D3. x∗1 exists and
is unique if and only if D < D4. For D < min(D3, D4), the mapping
x2 7→ f2(s∗, sin2 + x∗1 − x2) is decreasing. Hence, there exists a unique x∗2
such that f2(s∗, sin2 +x∗1−x∗2) = D if and only if D < D6. One deduce that
F ∗ exists and is unique if and only if D < min(D3, D4, D6).

�

Local stability. The Jacobian matrix of (3.1), at point (x1, x2, x3), is

J =

f1 −D − ∂f1
∂s3

x1 − ∂f1
∂s1

x1 0 −∂f1∂s3
x1

−∂f2∂s3
x2 + ∂f2

∂s2
x2 f2 −D − ∂f2

∂s2
x2 −∂f2∂s3

x2

−f ′3x3 0 f3 −D − f ′3x3


where the function f1 is evaluated at (sin3 − x1 − x3, s

in
1 − x1), f2 is evaluated at

(sin3 − x1 − x3, s
in
2 + x1 − x2) and f3 is evaluated at sin3 − x1 − x3. In the following

lemma, the nature of the equilibrium point F 0 is given.

Lemma 3.3. If D > max(D1, D2, D3) then F 0 is a stable node.
If min(D1, D2, D3) < D < max(D1, D2, D3) then F 0 is a saddle point.
If D < min(D1, D2, D3) then F 0 is an unstable node.

Proof. The Jacobian matrix at F 0 is

J0 =

D1 −D 0 0
0 D2 −D 0
0 0 D3 −D


The eigenvalues are D1 −D, D2 −D and D3 −D. Thus, if D > max(D1, D2, D3)
then F 0 is a stable node. If min(D1, D2, D3) < D < max(D1, D2, D3) then F 0 is a
saddle point. If D < min(D1, D2, D3) then F 0 is an unstable node. �
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In the following lemmas, the nature of the boundary equilibrium points F 1, F 2,
F 3, F 12, F 13 and F 23 is given.

Lemma 3.4. F 1 is a stable node if D > max(D7, D8). F 1 is a saddle point if
D < max(D7, D8).

Proof. The Jacobian matrix at F 1 is

J1 =

−∂f1∂s3
x̄1 − ∂f1

∂s1
x̄1 0 −∂f1∂s3

x̄1

0 D7 −D 0
0 0 D8 −D


where f1 is evaluated at (sin3 − x̄1, s

in
3 − x̄1). The eigenvalues are given by

−∂f1
∂s3

x̄1 −
∂f1
∂s1

x̄1 < 0, D7 −D, D8 −D.

Thus F 1 is a stable node if D > max(D7, D8). F 1 is a saddle point if D <
max(D7, D8). �

Lemma 3.5. F 2 is a stable node if D > max(D1, D3). It is a saddle point if
D < max(D1, D3).

Proof. The Jacobian matrix at F 2 is

J2 =

 D1 −D 0 0
−∂f2∂s3

x̄2 + ∂f2
∂s2

x̄2 −∂f2∂s2
x̄2 −∂f2∂s3

x̄2

0 0 D3 −D


where the function f2 is evaluated at (sin3 , s

in
2 − x̄2). The eigenvalues are

−∂f2
∂s2

x̄2 < 0, D1 −D, D3 −D.

Thus F 2 is a stable node if D > max(D1, D3). It is a saddle point if D <
max(D1, D3). �

Lemma 3.6. F 3 is a stable node if D > max(D4, D5). F 3 is a saddle point if
D < max(D4, D5).

Proof. The Jacobian matrix at F 3 is

J3 =

 D4 −D 0 0
0 D5 −D 0

−f ′3(s∗)(sin3 − s∗) 0 −f ′3(s∗)(sin3 − s∗)


The eigenvalues are

−f ′3(s∗)(sin3 − s∗) < 0, D4 −D, D5 −D.
Thus F 3 is a stable node if D > max(D4, D5). F 3 is a saddle point if D <
max(D4, D5). �

Lemma 3.7. F 12 is a stable node if D > D8. F 12 is a saddle point if D < D8.

Proof. The Jacobian matrix at F 12 is

J12 =

−∂f1∂s3
x̄1 − ∂f1

∂s1
x̄1 0 −∂f1∂s3

x̄1

(−∂f2∂s3
+ ∂f2

∂s2
)¯̄̄x2 −∂f2∂s2

¯̄̄x2 −∂f2∂s3
¯̄̄x2

0 0 D8 −D

 ,
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where the function f1 is evaluated at (sin3 − x̄1, s
in
1 − x̄1), f2 is evaluated at (sin3 −

x̄1, s
in
2 + x̄1 − ¯̄̄x2). Then eigenvalues are λ1 = D8 − D, λ2 = −∂f2∂s2

¯̄̄x2 < 0 and
λ3 = −(∂f1∂s3

x̄1 + ∂f1
∂s1

x̄1) < 0. Thus F 12 is a stable node if D > D8. F 12 is a saddle
point if D < D8. �

Lemma 3.8. F 13 is a stable node if D > D6. F 13 is a saddle point if D < D6.

Proof. The Jacobian matrix at F 13 is

J13 =

 −∂f1∂s3
x∗1 −

∂f1
∂s1

x∗1 0 −∂f1∂s3
x∗1

0 D6 −D 0
−(sin3 − s∗ − x∗1)f ′3(s∗) 0 −(sin3 − s∗ − x∗1)f ′3(s∗)


where the function f1 is evaluated at (s∗, sin1 −x∗1) and f2 is evaluated at (s∗, sin2 +
x∗1).

The characteristic polynomial is

(D6−D−λ)
[
λ2+λ(

∂f1
∂s3

x∗1+
∂f1
∂s1

x∗1+(sin3 −s∗−x∗1)f ′3(s∗))+
∂f1
∂s1

f ′3(s∗)(sin3 −s∗−x∗1)x∗1
]

Eigenvalues are then λ1 = D6 −D and two other negative eigenvalues (by Routh’s
Stability Criterion). Thus F 13 is a stable node if D > D6. F 13 is a saddle point if
D < D6. �

Lemma 3.9. F 23 is a stable node if D > D4 and it is a saddle point if D < D4.

Proof. The Jacobian matrix at F 23 is

J23 =

 D4 −D 0 0
−∂f2∂s3

¯̄x2 + ∂f2
∂s3

¯̄x2 −∂f2∂s2
¯̄x2 −∂f2∂s3

¯̄x2

−(sin3 − s∗)f ′3(s∗) 0 −(sin3 − s∗)f ′3(s∗)

 ,
where the function f2 is evaluated at (s∗, sin2 − ¯̄x2). The eigenvalues are

D4 −D, −∂f2
∂s2

¯̄x2 < 0, −(sin3 − s∗)f ′3(s∗) < 0.

Thus F 23 is a stable node if D > D4 and it is a saddle point if D < D4. �

Let us discuss now the local stability of the positive equilibria F ∗ = (x∗1, x
∗
2, x
∗
3)

where x∗1 > 0, x∗2 > 0 and x∗3 > 0.

Lemma 3.10. F ∗, if it exists, is always a stable node.

Proof. The Jacobian matrix at F ∗ is

J∗ =

−∂f1∂s3
x∗1 −

∂f1
∂s1

x∗1 0 −∂f1∂s3
x∗1

(−∂f2∂s3
+ ∂f2

∂s2
)x∗2 −∂f2∂s2

x∗2 −∂f2∂s3
x∗2

−f ′3(s∗)x∗3 0 −f ′3(s∗)x∗3

 ,
where the function f1 is evaluated at (s∗, sin1 −x∗1) and f2 is evaluated at (s∗, sin2 +
x∗1 − x∗2). The eigenvalues are

−f ′3(s∗)x∗3 < 0, −∂f2
∂s2

x∗2 < 0, −∂f1
∂s3

x∗1 −
∂f1
∂s1

x∗1 < 0.

Thus F ∗, if it exists, is always a stable node. �

3.2. Summary. Conditions of existence and uniqueness and the nature of equilib-
rium points are summarized in Table 1.
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Table 1. Condition of existence and uniqueness and the nature
of equilibrium points.

Equil. Existence/uniqueness Stable node Saddle point

F 0 always D > max(D1, D2, D3) min(Di) < D <
max(Di), i = 1, 2, 3

F 1 D < D1 D > max(D7, D8) D < max(D7, D8)
F 2 D < D2 D > max(D1, D3) D < max(D1, D3)
F 3 D < D3 D > max(D4, D5) D < max(D4, D5)
F 13 D < min(D3, D4) D > D6 D < D6

F 23 D < min(D3, D5) D > D4 D < D4

F 12 D < min(D1, D7) D > D8 D < D8

F ∗ D < min(D3, D4, D6) always

3.3. Global analysis. In the following, we consider only the case when

(A11) D < min(D2, D4, D8)

This hypothesis guarantees that D < min(D1, D2, D3, D4, D5, D6, D7, D8) which
ensure the existence of F ∗, the only stable node for the system (3.1). F 1, F 2, F 3,
F 12, F 13 and F 23 are saddle points. F 0 is an unstable node.

Remark 3.11. Consider a solution of system (2.2) belonging to Ω. Consider the
transformation of the system (2.2) through the change of variables ηi = ln(xi),
i = 1, 2, 3. Then one gets the new system

η̇1 = h1(η1, η2, η3) := f1(sin3 − eη1 − eη3 , sin1 − eη1)−D ,

η̇2 = h2(η1, η2, η3) := f2(sin3 − eη1 − eη3 , sin2 + eη1 − eη2)−D ,

η̇3 = h3(η1, η2, η3) := f3(sin3 − eη1 − eη3)−D .

(3.8)

We have
∂h1

∂η1
+
∂h2

∂η2
+
∂h3

∂η3
= −

(∂f1
∂s3

eη1 +
∂f1
∂s1

eη1 +
∂f2
∂s2

eη2 + f ′3e
η3
)
< 0.

From Dulac criterion [6], the system (3.8) has no invariant sets (including tori) with
no-zero volume wholly inside Ω. If there is a strange attractor it must be (typically)
a fractal set with zero volume. Note that periodic orbits (of zeros volume) are not
excluded.

• ∂h1
∂η1

+ ∂h2
∂η2

= −
(
∂f1
∂s3

eη1 + ∂f1
∂s1

eη1 + ∂f2
∂s2

eη2
)
< 0. From Dulac criterion [6],

then the system (2.2) has no periodic trajectory in the plane x1x2 (x3 = 0).
• ∂h1

∂η1
+ ∂h3
∂η3

= −
(
∂f1
∂s3

eη1 + ∂f1
∂s1

eη1 +f ′3e
η3
)
< 0. From Dulac criterion [6], then

the system (2.2) has no periodic trajectory in the plane x1x3 (x2 = 0).
• ∂h2

∂η2
+ ∂h3

∂η3
= −

(
∂f2
∂s2

eη2 + f ′3e
η3
)
< 0. From Dulac criterion [6], then the

system (2.2) has no periodic trajectory in the plane x2x3 (x1 = 0).

Theorem 3.12. For every initial conditions x1(0) > 0, x2(0) > 0, x3(0) > 0 in S,
three species coexist i.e.

lim
t→+∞

x1(t) > 0, lim
t→+∞

x2(t) > 0, lim
t→+∞

x3(t) > 0.
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Proof. Let x1(0) > 0, x2(0) > 0, x3(0) > 0, and let ω the ω-limit set of (x1(0),
x2(0), x3(0)) which is compact and invariant such that ω ⊂ S̄. Suppose that ω
contains a point M on the boundary of the positive cone R3

+ then:
• As F 0 is an unstable node then F 0 can’t be a part of the ω-limit set of

(x1(0), x2(0), x3(0)), and thus M can not be F 0.
• If M ∈]x̄1, s

in
1 ] × {0} × {0} (similarly M ∈ {0}×]x̄2, s

in
2 ] × {0} or M ∈

{0} × {0}×]sin3 − s∗, sin3 ]). As ω is invariant then γ(M) ⊂ ω and this is impos-
sible because ω is bounded and γ(M) =]x̄1,+∞[×{0} × {0} (similarly γ(M) =
{0}×]x̄2,+∞[×{0} or γ(M) = {0} × {0}×]sin3 − s∗,+∞[).
• If M ∈]0, x̄1[×{0} × {0} (similarly M ∈ {0}×]0, x̄2[×{0} or M ∈ {0} ×

{0}×]0, sin3 − s∗[). ω contains γ(M) =]0, x̄1[×{0} × {0} (similarly γ(M) =
{0}×]0, x̄2[×{0} or γ(M) = {0} × {0}×]0, sin3 − s∗[). As ω is a compact, then it
contains the adherence of γ(M), [0, x̄1]×{0}× {0} (similarly {0}× [0, x̄2]×{0} or
{0} × {0} × [0, sin3 − s∗]). In particular, ω contains F 0 and this is impossible.
• If M = F 1 (similarly M = F 2 or M = F 3). ω is not reduced to F 1 (similarly

to F 2 or to F 3). By Butler-McGehee theorem, ω contains a point P of (0,+∞)×
{0} × {0} other that F 1 (similarly of {0} × (0,+∞)× {0} other that F 2 or {0} ×
{0} × (0,+∞) other that F 3) and this is impossible.
• If M ∈]x̄1, s

in
1 ]×{0}×]sin3 −s∗, sin3 ] (similarly M ∈ {0}×]x̄2, s

in
2 ]×]sin3 −s∗, sin3 ]

or M ∈]x̄1, s
in
1 ]×]x̄2, s

in
2 ] × {0}). As ω is invariant then γ(M) ⊂ ω and this is im-

possible because ω is bounded and γ(M) =]x̄1,+∞[×{0}×]sin3 −s∗,+∞[ (similarly
γ(M) = {0}×]x̄2,+∞[×]sin3 − s∗,+∞[ or γ(M) =]x̄1,+∞[×]x̄2,+∞[×{0}).
• If M ∈]x̄1, s

in
1 ]× {0}×]0, sin3 − s∗[ (similarly M ∈]0, x̄1[×{0}×]sin3 − s∗, sin3 ] or

M ∈ {0}×]x̄2, s
in
2 ]×

]0, sin3 − s∗[ or M ∈ {0}×]0, x̄2[×]sin3 − s∗, sin3 ] or M ∈]x̄1, s
in
1 ]×]0, x̄2[×{0} or

M ∈]0, x̄1[×]x̄2, s
in
2 ] × {0}). As ω is invariant then γ(M) ⊂ ω which is impossible

because ω is bounded and γ(M) =]x̄1,+∞[×{0}×]0, sin3 − s∗[ (similarly γ(M) =
]0, x̄1[×{0}×]sin3 − s∗,+∞[ or γ(M) = {0}×]x̄2,+∞[×]0, sin3 − s∗[ or γ(M) =
{0}×]0, x̄2[×]sin3 − s∗,+∞[ or γ(M) =]x̄1,+∞[×]0, x̄2[×{0} or γ(M) =
]0, x̄1[×]x̄2,+∞[×{0}).
• If M ∈]0, x̄1[×{0}×]0, sin3 − s∗[ (similarly M ∈ {0}×]0, x̄2[×]0, sin3 − s∗[ or

M ∈]0, x̄1[×]0, x̄2[×{0}). ω contains γ(M) =]0, x̄1[×{0}×]0, sin3 − s∗[ (similarly
γ(M) = {0}×]0, x̄2[×]0, sin3 −s∗[ or γ(M) =]0, x̄1[×]0, x̄2[×{0}). As ω is a compact,
then it contains the adherence of γ(M), [0, x̄1]×{0}× [0, sin3 − s∗] (similarly {0}×
[0, x̄2]× [0, sin3 − s∗] or [0, x̄1]× [0, x̄2]×{0}). In particular, ω contains F 0 and this
is impossible.
If M = F 13 (similarly M = F 23 or M = F 12). ω is not reduced to F 13 (similarly
to F 23 or to F 12). By Butler-McGehee theorem, ω contains a point P of (0,+∞)×
{0}× (0,+∞) other that F 13 (similarly of {0}× (0,+∞)× (0,+∞) other that F 23

or (0,+∞)× (0,+∞)× {0} other that F 12) and this is impossible.
No points on the boundary of the positive cone R3

+ can be inside the ω-limit set.
System (3.1) has possible “positive” periodic orbit inside S. Using the Poincaré-
Bendixon Theorem [6], the solution of system (3.1) converge asymptotically either
to the unique stable node F ∗ or to a ”positive” periodic orbit (if it exists) such that

lim
t→+∞

x1(t) > 0, lim
t→+∞

x2(t) > 0, lim
t→+∞

x3(t) > 0.

�
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4. Back to R6
+

Theorem 4.1. Consider the system (2.2) under Assumptions (A6)–(A11). For
every initial conditions s1(0) > 0, s2(0) > 0, s3(0) > 0, x1(0) > 0, x2(0) > 0,
x3(0) > 0 in R6

+, three species coexist i.e.

lim
t→+∞

x1(t) > 0, lim
t→+∞

x2(t) > 0, lim
t→+∞

x3(t) > 0.

Proof. Let (s1(t), x1(t), s2(t), x2(t), s3(t), x3(t)) be a solution of (2.2). From (2.3),
(2.4) and (2.5) we deduce that

s1(t) = sin1 − x1(t) +K1e
−Dt,

s2(t) = sin2 + x1(t)− x2(t) +K3e
−Dt,

s3(t) = sin3 − x1(t)− x3(t) +K2e
−Dt,

(4.1)

where K1 = s1(0) +x1(0)− sin1 , K2 = x1(0) +x3(0)− sin3 and K3 = −sin3 −x1(0) +
x2(0). Hence (x1(t), x2(t), x3(t)) is a solution of the non-autonomous system of
three differential equations:

ẋ1 =
(
f1(sin3 − x1 − x3 +K2e

−Dt, sin1 − x1 +K1e
−Dt)−D

)
x1 ,

ẋ2 =
(
f2(sin3 − x1 − x3 +K2e

−Dt, sin2 + x1 − x2 +K3e
−Dt)−D

)
x2 ,

ẋ3 =
(
f3(sin3 − x1 − x3 +K2e

−Dt)−D
)
x3 .

(4.2)

This system is an asymptotically autonomous differential system converging to the
autonomous system (3.1). Note that Ω is an attractor of all trajectories in R6

+

and that the phase portrait of the reduced (to Ω) system (3.1) contains only one
locally stable node, one unstable node, and six saddle points and possible “positive”
periodic trajectory. Thus applying Themes’s results [7] and concluding that the
asymptotic behavior of solution of system (4.2) is the same as the one of solution
of the reduced system (3.1). The result is then deduced. �

5. Numerical example

In this section we consider growth functions

f1(s3, s1) =
m1s1s3

(K1 + s1)(L1 + s3)
, f2(s3, s2) =

m2s2
(K2 + s2)(L2 + s3)

,

f3(s3) =
m3s3
L3 + s3

.
(5.1)

These functions are currently used in biotechnology where the growth of a species is
limited by one or more than one substrates. One can easily check that (5.1) satisfy
the given Assumptions (A6) to (A10).

Table 2. Parameters for (5.1)

Parameter D m1 K1 L1 m2 K2 L2 m3 L3 sin1 sin2 sin3
Value 1 3 1 1 12 1 1 4 3 5 5 5

D1 D2 D3 D4 D5 D6 D7 D8
75
36

60
36

20
8

15
12 15 16

3 4.545 1.251
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Note that D = 1 < min(D2, D4, D8). As it is shown in Figure 1, all trajecto-
ries inside the whole positive cone R3

+ converge to the positive equilibrium point
(x∗1, x

∗
2, x
∗
3) = (3, 7.8, 1) corresponding to the persistence of the three bacteria.

Figure 2. The x1x2x3 behavior.

Conclusion. A mathematical model involving a three-tiered microbial food web
without maintenance was proposed. A detailed qualitative analysis is carried out.
The local stability analysis of the equilibria are performed. It is concluded from this
study that, under general and natural assumptions of monotonicity on the growth
rates, the asymptotic persistence of the three bacteria is guaranteed.
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