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EXISTENCE AND ATTRACTIVITY OF PERIODIC SOLUTIONS
TO COHEN-GROSSBERG NEURAL NETWORK WITH

DISTRIBUTED DELAYS

YONGKUN LI, LIFEI ZHU

Abstract. We study the existence and exponential attractivity of periodic
solutions to Cohen-Grossberg neural network with distributed delays. Our re-

sults are obtained by applying the continuation theorem of coincidence degree
theory and a general Halanay inequality.

1. Introduction

Since 1983, when Cohen and Grossberg [1] proposed a class of neural networks,
their model has received increasing interest due to its promising potential for ap-
plications in classification, parallel computing, associative memory, and specially in
solving some optimization problems. Such applications rely not only on the exis-
tence of equilibrium points, or on the unique equilibrium point and the qualitative
properties of stability, but on the dynamic behavior, such as periodic oscillatory be-
havior, almost periodic oscillatory properties, chaos, and bifurcation [6]. Thus, the
qualitative analysis of the dynamic behavior is a prerequisite step for the practical
design and application of neural networks.

Li [4] used the continuation theorem of coincidence degree theory and Liapunov
functions to study the existence and stability of periodic solutions for the following
Cohen-Grossberg neural network with multiple delays

dxi

dt
= −ai(t, xi(t))

[
bi(t, xi(t))−

K∑
k=0

n∑
j=1

tkij(t)sj(xj(t− τk)) + Ji(t)
]
,

for i = 1, 2, . . . , n, where the n × n matrixes Tk = (tkij(t)) represent the intercon-
nections which are associated with delay τk and the delays τk, k = 0, 1, . . . ,K, Ji,
i = 1, 2, . . . , n denote the inputs at time t from outside the system.
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In this paper, we are concerned with the Cohen-Grossberg neural networks with
distributed delays:

dxi

dt
= −ai(t, xi(t))

[
bi(t, xi(t))−

n∑
j=1

cij(t)gj

(∫ t

t−τij

lij(t−s)xj(s)ds
)
+Ii(t)

]
, (1.1)

for i = 1, 2, . . . , n, where the delay kernel functions lij are piecewise continuous and
satisfy

lij(t) ≥ 0,
∫ ∞

0

lij(t)dt = 1,
∫ ∞

0

tlij(t)dt <∞.

Throughout this paper, we assume that
(H1) cij , Ii, i = 1, 2, . . . , n, are continuous ω-periodic functions on R, and τ =

max{τij ≥ 0, i, j = 1, 2, . . . , n, }.
(H2) For each i = 1, 2, . . . , n, |gi(x)| ≤Mi, x ∈ R for some constant Mi > 0.
(H3) For each i = 1, 2, . . . , n, ai ∈ C(R2, (0,+∞)) is ω-periodic with respect to

its first argument.
(H4) For each i = 1, 2, . . . , n, bi ∈ C(R2, R) is ω-periodic with respect to its

first argument, limu→+∞ bi(t, u) = +∞ and limu→−∞ bi(t, u) = −∞ are
uniformly in t, respectively.

The purpose of this paper is to investigate the existence and exponential attac-
tivity of solutions to (1.1). This paper is organized as follows. In Sections 2, we
shall use Mawhin’s continuation theorem [2] to establish the existence of periodic
solutions of (1.1). In Sections 3, by using a general Halanay inequality we shall de-
rive sufficient conditions to ensure that the periodic solution of (1.1) is exponential
attractivity. In Sections 4, we give an example to illustrate that the conditions of
our results are feasible.

2. Existence of positive periodic solutions

In this section, based on the Mawhin’s continuation theorem, we study the exis-
tence of at least one positive periodic solution of (1.1). First, we shall make some
preparations.

Let X,Y be normed vector spaces, L : DomL ⊂ X → Y be a linear mapping,
and N : X → Y be a continuous mapping. The mapping L will be called a
Fredholm mapping of index zero if dim Ker L=codim Im L < +∞ and Im L is
closed in Y . If L is a Fredholm mapping of index zero and there exist continuous
projectors P : X → X and Q : Y → Y such that Im P=Ker L, Ker Q=Im L=Im
(I − Q), it follows that mapping L|DomL∩KerP : (I − P )X →Im L is invertible.
We denote the inverse of that mapping by KP . If Ω is an open bounded subset
of X, the mapping N will be called L-compact on Ω if QN(Ω) is bounded and
KP (I −Q)N : Ω → X is compact. Since Im Q is isomorphic to Ker L, there exists
an isomorphism J : ImQ→ Ker L.

Now, we introduce Mawhin’s continuation theorem [2, p.40] as follows.

Lemma 2.1. Let Ω ⊂ X be an open bounded set and let N : X → Y be a continuous
operator which is L-compact on Ω. Assume

(a) For each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL,Lx 6= λNx
(b) For each x ∈ ∂Ω ∩Ker L,QNx 6= 0
(c) deg(JNQ,Ω ∩Ker L, 0) 6= 0.

Then Lx = Nx has at least one solution in Ω ∩DomL.
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Theorem 2.2. Assume that (H1)-(H4) hold. Then the system (1.1) has at least
one positive ω-periodic solution.

Proof. To apply the continuation theorem of coincidence degree theory and estab-
lish the existence of an ω-periodic solution of (1.1), we take

X = Y = {x ∈ C(R,Rn) : x(t+ ω) = x(t), t ∈ R}

and denote
‖x‖ = sup

t∈[0,ω]

{|xi(t)|, i = 1, 2, . . . , n}.

Then X is a Banach space. Set

L : Dom L ∩X, Lx = ẋ(t), x ∈ X

where DomL = {x ∈ C1(R,Rn)} and N : X → X

Nxi = −ai(t, xi(t))
[
bi(t, xi(t))−

n∑
j=1

cij(t)gi

(∫ t

t−τij

lij(t− s)xj(s)ds
)

+ Ii(t)
]
,

i = 1, 2, . . . , n. Define two projectors P and Q as

Qx = Px =
1
ω

∫ ω

0

x(s)ds, x ∈ X.

Clearly, Ker L = Rn,

ImL = {(x1, x2, . . . , xn)T ∈ X :
∫ ω

0

xi(t)dt = 0, i = 1, 2, . . . , n}

is closed in X and dim Ker L = codim ImL = n. Hence, L is a Fredholm mapping
of index 0. Furthermore, similar to the proof in [6, Theorem 1], one can easily show
that N is L-compact on Ω with any open bounded set Ω ⊂ X. Corresponding to
operator equation Lx = λNx, λ ∈ (0, 1), we have

dxi

dt
= −λai(t, xi(t))

[
bi(t, xi(t))−

n∑
j=1

cij(t)gi

(∫ t

t−τij

lij(t− s)xj(s)ds
)

+ Ii(t)
]
,

(2.1)
i = 1, 2, . . . , n. Suppose that x = (x1, x2, . . . , xn) ∈ X is a solution of (2.1) for
some λ ∈ (0, 1). Let ξi ∈ [0, ω] such that xi(ξi) = maxt∈[0,ω] xi(t), i = 1, 2, . . . , n,
then

−λai(ξi, xi(ξi))
[
bi(ξi, xi(ξi))−

n∑
j=1

cij(ξi)gi

(∫ ξi

ξi−τij

lij(ξi−s)xj(s)ds
)

+Ii(ξi)
]

= 0,

i = 1, 2, . . . , n. In view of (H3), we have

bi(ξi, xi(ξi)) ≤
n∑

j=1

|cij(ξi)|
∣∣∣gi

(∫ ξi

ξi−τij

lij(ξi − s)xj(s)ds
)∣∣∣+ |Ii(ξi)|

≤ n‖c‖M + ‖I‖, i = 1, 2, . . . , n.

(2.2)

where M = sup{Mi, i = 1, 2, . . . , n}. According to (H4), we know that there exists
a constant A1 > 0 such that

xi(ξi) ≤ A1, i = 1, 2, . . . , n.
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Similarly, let ηi ∈ [0, ω] such that xi(ηi) = mint∈[0,ω] xi(t), i = 1, 2, . . . , n, then

−λai(ηi, xi(ηi))
[
bi(ηi, xi(ηi))−

n∑
j=1

cij(ηi)gi

(∫ ηi

ηi−τij

lij(ηi−s)xj(s)ds
)
+Ii(ηi)

]
= 0,

i = 1, 2, . . . , n. Then,

bi(ξi, xi(ξi)) ≥ −
n∑

j=1

|cij(ξi)|
∣∣∣gi

(∫ ξi

ξi−τij

lij(ξi − s)xj(s)ds
)∣∣∣− |Ii(ξi)|

≥ −n‖c‖M − ‖I‖, i = 1, 2, . . . , n.

where M is the same as those in (2.2). Therefore, there exists a constant A2 > 0
such that

xi(ηi) ≥ −A2, i = 1, 2, . . . , n.

Denote D = max{A1, A2}, clearly, D is independent of λ. Now, we take Ω = {x ∈
X, ‖x‖ < D}. This Ω satisfies condition (a) in Lemma 2.1.

When x ∈ ∂Ω ∩ Ker L = ∂Ω ∩ Rn, x is a constant vector in Rn with ‖x‖ = D.
Then

xTQNx =
1
ω

n∑
i=1

xi

∫ ω

0

−ai(t, xi(t))
[
bi(t, xi(t))

−
n∑

j=1

cij(t)gi

(∫ t

t−τij

lij(t− s)xj(s)ds
)

+ Ii(t)
]
dt

≤ − 1
ω

n∑
i=1

xi

∫ ω

0

ai(t, xi)
[
bi(t, xi)− n‖c‖M − ‖I‖

]
dt < 0,

i = 1, 2, . . . , n. If necessary, we let D be large enough such that

− 1
ω

n∑
i=1

xi

∫ ω

0

ai(t, xi)
[
bi(t, xi)− n‖c‖M − ‖I‖

]
dt < 0.

So for any x ∈ ∂Ω ∩ ker L,QNx 6= 0. This prove that condition (b) in Lemma 2.1
is satisfied.

Finally, we prove that condition (c) in Lemma 2.1 is also satisfied. Indeed, let
ψ(ν;x) = −νx+ (1− ν)QNx, then for any x ∈ ∂Ω ∩Ker L, xTψ(ν, x) < 0, we get

deg(JQM,Ω ∩Ker L, 0) 6= 0.

Thus, by Lemma 2.1, we conclude that Lx = Nx has at least one solution inX, that
is, (1.1) has at least one positive ω-periodic solution. The proof is complete. �

3. Attractivity of periodic solution

First, we introduce the general Halanay inequality whose proof can be found in
[3].

Lemma 3.1. Let a > b > 0, and x(t) be a nonnegative continuous function on
[t0 − τ, t0], and as t ≥ t0, satisfies the following inequality:

D+x(t) ≤ −ax(t) + bx(t),



EJDE-2005/12 EXISTENCE AND ATTRACTIVITY OF PERIODIC SOLUTIONS 5

where x(t) = supt−τ≤s≤t x(s), τ is a constant, and τ ≥ 0, then as t ≥ t0, the
following inequality holds

x(t) ≤ x(t0)e−λ(t−t0),

in which λ is unique positive solution of the equation λ = a− beλτ .

Next, we use this general Halanay inequality to prove that all solution to (1.1)
converge exponentially to an ω-periodic solution. In fact, this ω-periodic solution
is unique.

Let x(t) = (x1(t), . . . , xn(t)) be a solution of (1.1) and x∗(t) = (x∗1(t), . . . , x
∗
n(t))

be an ω-periodic solution of (1.1). Set u(t) = x(t)− x∗(t). Then
dui

dt
= −αi(ui(t)) + βi(ui(t)) + γ(ui(t))− δ(ui(t)), i = 1, 2, . . . , n, (3.1)

where

αi(ui(t)) = ai(t, xi(t))bi(t, xi(t))− ai(t, x∗i (t))bi(t, x
∗
i (t)),

βi(ui(t)) = ai(t, xi(t))
n∑

j=1

cij(t)
[
gj

(∫ t

t−τij

lij(t− s)xj(s)ds
)

− gj

(∫ t

t−τij

lij(t− s)x∗j (s)ds
)]
,

γ(ui(t)) = [ai(t, xi(t))− ai(t, x∗i (t))]
n∑

j=1

cij(t)gj

(∫ t

t−τij

lij(t− s)x∗j (s)ds
)
,

δ(ui(t)) = [ai(t, xi(t))− ai(t, x∗i (t))]Ii(t), i = 1, 2, . . . , n.

In the sequel, we use the notation

a = sup
t∈[0,ω], x∈R

{|ai(t, x)|, i = 1, 2, . . . , n}, A = max{Ai, i = 1, 2, . . . , n}.

For the next theorem, we assume:
(H5) For each i = 1, 2, . . . , n, gi : R → R is globally Lipschitz continuous with a

Lipschitz constant Li.
(H6) For each i = 1, 2, . . . , n, ai is bounded on R2 and there exists a constant

Ai ≥ 0 such that

|ai(t, x)− ai(t, y)| ≤ Ai|x− y|, x, y ∈ R, t ∈ [0, ω].

Moreover, aibi ∈ C1(R2, R) and there exists a positive constant Eab such
that

[ai(t, u)bi(t, u)]
′

u ≥ Eab, t ∈ [0, ω], u ∈ R.
(H7)

Eab − n‖c‖AM −A‖I‖ > nτa‖c‖L.

Theorem 3.2. Assume that (H1)-(H7) hold. Then all solutions of (1.1) converge
exponentially to the unique ω-periodic solution.

Proof. Set ‖u(t)‖0 = maxi∈{1,2,...,n} |ui(t)| = |ui0(t)|. Then

d‖u(t)‖0
dt

=
d|ui0(t)|

dt
= sign(ui0(t)){−αi0(ui0(t)) + βi0(ui0(t)) + γ(ui0(t))− δ(ui0(t))}

≤ −Eab|ui0(t)|+ |βi0(ui0(t))|+ |γ(ui0(t))|+ |δ(ui0(t))|
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≤ −Eab|ui0(t)|+ |ai0(t, xi0(t))|
n∑

j=1

|ci0j(t)|
∣∣∣gj

(∫ t

t−τi0j

li0j(t− s)xj(s)ds
)

− gj

(∫ t

t−τi0j

li0j(t− s)x∗j (s)ds
)∣∣∣+ |ai0(t, xi0(t))− ai0(t, x

∗
i0(t))|

n∑
j=1

|ci0j(t)|
∣∣∣gj

(∫ t

t−τi0j

li0j(t− s)x∗j (s)ds
)∣∣∣

+ |ai0(t, xi0(t))− ai0(t, x
∗
i0(t))||Ii0(t)|

≤ −Eab|ui0(t)|+ na‖c‖L sup
t−τ≤s≤t

‖u(s)‖0 + n‖c‖AM |ui0(t)|+A‖I‖|ui0(t)|

≤ −(Eab − n‖c‖AM −A‖I‖)‖u(t)‖0 + na‖c‖L sup
t−τ≤s≤t

‖u(s)‖0.

By the general Halanay inequality, we derive that there exist constant λ > 0,K > 0
such that

‖u(t)‖0 ≤ Ke−λ(t−t0),

where K = supt0−τ≤s≤t0 ‖u(s)‖0. This implies that all solution of (1.1) converge
exponentially to the unique periodic solution. This completes the proof. �

Example. Consider the Cohen-Grossberg neural network with distributed delays(
ẋ1

ẋ2

)
=
(

2 + cos t 0
0 3 + sin t

)[(
1 0
0 1

)(
6x1 + sin t

3x2 − 1
6 cosx2

)
−
(

sin t 1
7 cos t

cos t 1
5 sin t

)(
sin
( ∫ t

t−1
x1(s)ds

)
cos
( ∫ t

t−1
x2(s)ds

))+
(

2
9 sin t
cos t

)]
.

(3.2)

Clearly, n = 2, ω = 2π, M = 1, ‖c‖ = 1
5 , ‖I‖ = 2

9 , L = 1, A = 4, a = 4, Eab = 5,
and

Eab − n‖c‖AM −A‖I‖ =
13
3
> na‖c‖L =

8
5
.

By Theorems 2.2 and 3.2, the system (3.2) has a periodic solution and all other
solution of the system (3.2) converge exponentially to the unique periodic solution.
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