TEXAS3% STATE
UNIVERSITY

SAN MARCOS

Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2006-14
Software architecture for flexible integration of process model synthesis methods
Rodion Podorozhny
Anne Ngu

Dimitrios Georgakopoulos
and Dewayne Perry

2006-05-08

Software architecture for flexible integration of process
model synthesis methods

Rodion Podorozhny!, Anne Ngu', Dimitrios Georgakopoulos?, and Dewayne Perry?

! Texas State University, Computer Science Dept., 601 University Dr.,
78666 San Marcos, TX, USA
{rp31l, hnl2}@txstate.edu
2 Telcordia Research Austin Center, 106 e St., Littlefield Bldg.,
Austin, TX, USA
dimitris@research.telcordia.com
3 The University of Texas, ECE Dept.,
78712 Austin, TX, USA
perry@ece.utexas.edu

Abstract. In this paper we suggest an architecture that would integrate various
methods for synthesis of a software process model based on domain knowledge
about artifacts, process fragments, tools, and limited process execution observa-
tions. Our approach suggests using a meta-process specification for integration
of various process synthesis methods to provide a generalized process model.
We also propose using a process execution observation for confirmation of a
synthesized process model.

1 Introduction

The area of software engineering is mainly concerned with methods for synthesis
and analysis of software. In this paper we are focusing on an automated method for
synthesis of software processes based on very few observations and various domain
knowledge. The automation of synthesis brings many benefits: repeatability, effi-
ciency, cost reduction. In addition, a process synthesized by our approach is itself
automated due to the use of learning methods for synthesis of control flow decisions.
Some of the early work on process discovery is based on analysis of retrospective
data about the process executions [1,2,3,4]. The process models discovered with these
early methods focus on the set of activities and the process control flow. The process
synthesis method integration we suggest expands the earlier process discovery work
in several directions. Our approach is novel because it allows to automatically synthe-
size a process based on very few observations of process execution (process instance)
thanks to the use of learning methods and a greater variety of domain knowledge. It
provides a process model enhanced with activity attributes and control flow decision-
making.

In this work we are focusing on the architecture for integration of methods for syn-
thesis of various process aspects that comprise a process model. The architecture

assumes availability of the domain knowledge about the process artifacts, tools to be
used by a process, the environment in which a process is to be enacted, and a limited
number of observations of process execution. In a way, we propose an approach that
involves synthesis of a process model via limited observations of examples of its
execution.

2 Problem statement and approach intuition

The problem calls for a synthesis of a rich process model based on a single observa-
tion of process execution. The assumptions include availability of domain knowledge
including artifact well-formedness constraints, bill of materials, generalized descrip-
tion of a finished product or service, tools used for process execution, process frag-
ments, environment conditions for process execution and others. Each of these kinds
of information can be either incomplete or have some degree of uncertainty

Next let us give an explanation of our intuition about a possible solution. Ab-
stractly, this problem seems to require us to synthesize an accepting computation
abstraction specification (e.g. Turing machine) for a language based on one sentence
of that language. The retrospective data about previous executions of this process is
assumed to be very limited. How could we produce a generalized process specifica-
tion if we are given only one path which even might be providing an unreliable prod-
uct ? It seems that doing so without the knowledge about artifacts is impossible due
to the lack of information. Thus, our approach prescribes construction of a general-
ized process model based on whatever domain knowledge is available and then
checking whether the observed execution path is a feasible path through our model. It
is quite possible that the observed path itself provides a low quality product. Never-
theless, if that path is feasible in the “guessed” process model then it validates the
model. Otherwise, the path is considered to be a counterexample, the process model
is considered incorrect and thus it is modified to satisfy the observed path.

At the implementation level, we suggest specifying the synthesis process itself in a
process language, this allows for flexibility of the integration of methods for synthe-
sis of particular process aspects based on particular domain knowledge available.

2 Process model aspects

In this section we will discuss in greater detail the kinds of information needed to
specify a rich process model. The final integrated process synthesis system must be
able to synthesize the specification of these aspects from available domain knowledge
and the observation.

By a process we understand a systematic, disciplined way of either producing a fi-
nal artifact or delivering a service. Since it is possible to model a service as an elec-

tronic artifact we will use the term “final artifact” or product to denote a process out-
come.

By a generalized process model we understand a process “program” that, if speci-
fied in a rigorous process specification language, can be instantiated by a process
enactment engine provided an input and environment specifications. The following
aspects characterize a rich generalized process model:

- set of activities

- each activity characterized by an identifier, interface (sets of input and output ar-
tifact types), pre-condition and post-condition of activities

- constraints on control flow of activities, relaxed to the extent possible

- hierarchical decomposition of activities according to various sets of criteria

- specification of artifact type system manipulated by activities

- specification of resource needs of activities including people roles and tools

- predictors that provide distributions for cost, duration of individual activities and
assessment of quality of output artifacts of an activity.

The execution of a process is greatly influenced by guidelines or reasoning mecha-
nisms for control flow choices which are not part of process specification per se,
rather they are part of the resources specification. These guidelines define reasoning
of resources assigned to execution of process activities. It is our intent that the proc-
ess synthesis system will discover such guidelines to accompany the generalized
process model. The generalized process model must not over-constrain the control
flow. That is why a straightforward mapping of the observation onto the generalized
process model is unacceptable. For instance, it might turn out that a certain sequence
of artifact transformations was enforced by scarce resource availability while in the
generalized model those artifact transformations can happen in parallel given abun-
dant resources.

4 Architecture of process synthesis integrator

The previous section outlined the various aspects of a process model that must be
ultimately synthesized. Intuitively it is clear that various synthesis methods would be
needed to synthesize those aspects. The choice of a particular method depends on the
aspect, kind, amount, and certainty of domain knowledge available, nature of domain
knowledge, whether the chosen methods are an effective match. Thus the architecture
must allow for great flexibility in the choice of the set of activities involved in the
synthesis, the tools used, the sequence of their application. Therefore we suggest
using a process specification and an associated process execution system for the syn-
thesis process itself.

Components for Process
capturing #L Model

Domain-specific

demonstration Generator Simulator

{ initial

{Demonstration }\ process
episode} model } { tasks for { events about
resources sim. time, states
updates for me,
émpcess model to peﬂ@ of artifacts,
aspects and Process | oxecuton, oher
reasoning } Enactor environment
{ episodes } events}
{ process
model
. fragments }
Learning
Mechanism)
echanisms BemEd Kns;vslgtsige
{ learned (FEGET (domain, world,
process environment)
model } { set of ranked plans }

Figure 1. Architecture of a process synthesis integrator

According to Perry&Wolf [11] an architectural description is comprised of ele-
ments, form, and rationale. The architecture of the process synthesis integrator de-
picted in Fig. 1 contains the elements (sets of components and connectors) and the
form (constraints on their interconnections). The architectural description in Fig. 1
uses rounded corner rectangles to denote the internal components, yellow rectangles
denote external components, directed arcs to denote data flow, rectangles associated
with the arcs to denote the data, the cylinder to denote persistent storage.

Below we will describe the architecture rationale. The Process Model Generator
forms an initial process model in a chosen process specification language based on
the domain knowledge (product, process, known execution traces, resource utiliza-
tion) and refines some aspects of the initial process model based on the observation.
Next Process Enactor, Domain-specific Simulator, Learning Mechanisms, and Do-
main Planner synergistically subject the initial process model to dynamic analysis and
refinement. The interaction of these architecture elements is as follows. The Process
Enactor receives an initial process model and, provided the cost, duration, quality of
activities can be estimated, submits a fragment of the process to the Domain Planner.
If the estimates of cost, duration, quality are not available the Process Enactor
chooses the first set of alternative activities based on the control flow constraints
specified in the initial process model.

Once the set of the activities is identified and resources are assigned, the Simulator
starts modeling the artifact transformations by the modeled resources. It notifies the
Process Enactor of various events such as completion of activity instances by re-
sources, time ticks, contingencies due to the modeled environment, contingencies due
to artifact states. The Process Enactor reacts to the events from the Simulator or
events generated by the Process enactor itself (e.g. time-out of activity completion).
The reactions themselves are specified as process fragments, they can be either do-
main-specific or default reaction processes (e.g. reaction to time-out of activity com-

pletions, resource unavailability contingencies, resolution of contradictions between
needs of concurrently running process fragments, pre-emption control decisions).

The Simulator models the transformations of artifacts as these artifacts are proc-
essed by resources according to manipulations prescribed by process activities. The
state of modeled artifacts is used by the Learning Mechanisms to update the knowl-
edge they accumulated about various aspects of the process such as the control flow
decisions, decisions on the sets of activities to be executed, activity attributes and
resource assignments. Thus the simulation and learning of a single process instance
continues until either all the activities are finished and/or final artifacts are produced
or predefined time runs out or it is determined that there are insufficient resources to
produce final artifacts. On completion of a process instance the Learning Mechanisms
update their knowledge based on the outcome.

The process synthesis integrator will attempt to recreate an observation by simula-
tion based only on the process model, resource knowledge and knowledge of envi-
ronment changes. Considering the space restrictions we cannot provide much more
detail about the components of this architecture. Some additional information about
process synthesis is mentioned below.

4.1 Process Model Generator: As our process specification and execution system
we chose the industry-level Atlas system developed at Telcordia Research Center in
Austin. The Atlas system has already been successfully used in a number of projects
[12][13][14]. Its design is tightly connected to a database used for persistent storage
of processes and process fragments which results in the linear dependency of the
scalability of the process execution system on the scalability of the database.

We have some initial experience with the process model generator implemented in
the Atlas process language.

Next we give a high-level description of the principle of operation of the process
model generator component of the integrator architecture.

1

Figure 2. Partial order state space.

In Fig. 2 each state corresponds to subsets of process artifacts that comply with ar-
tifact well-formedness constraints. It is possible to generate these states based on the
bill of materials and the well-formedness constraints of artifact combinations. The
transitions indicate a partial order of artifact composition transformations. In Fig. 2
we assume there are four product parts that comprise the final artifact(s). Octagons
represent states that are marked with the sets of parts. For instance, the blue octagons

denote the 4 individual atomic artifacts from the bill of materials and are marked with
artifact “1”, artifact “2” and so on. The well-formedness constraints allow for 5
physically possible combinations of these artifacts, one of which is the final product
(all artifacts combined). Fig. 2 shows two possible ways of deriving the final product.

Based on the partial order state space, the process model generator must construct
a hypothetical general process model.

Figure 3. Partial order activity state.

The result of this mapping is shown in Fig. 3 in which the rectangles correspond to
activities and the color of their border corresponds to the color of transitions in Figure
on which they were based. By using data flow analysis we can construct a partial
process model that represents functional decomposition of activities and the con-
straints on their execution. The partial process model in an Atlas-like process lan-
guage for this assembly example is shown in Fig. 4.

S123P1P2

5123P1

o

e
82P1 §3P1 B ox S1P1
xrx
4 4 = # | w ® ® *

123P2

83P2 e s52P2 e S1P2

Figure 4. Partially-specified process

Rigorous well-formedness constraints are not available in all process domains. Then
it is difficult to generate a partial order state space based on artifact combinations.
Other domain knowledge has to be used to form an initial process model in such
cases. For instance, the set of tools with well-defined functionality or domain-specific
intents can be used to suggest either sequences of tool applications or partial order of
sub-intents that can lead to a product.

4.2 Learning mechanisms: The learning mechanisms we considered are supervised
neural network learning, reinforcement learning, and evolutionary computation. The
hybrid method will leverage the strengths of each of the individual methods. Such
process aspects as duration, cost, quality, process activity clustering (to generate or
confirm activity decomposition captured by the synthesized process) and guide-
lines/automation for making control flow choices in the synthesized process are ex-
pected to be learned by these mechanisms.

In situations where the information consists of discrete state variables and discrete
actions, and the state is fully known, reinforcement learning [9] is an effective ap-
proach. In other situations, the state is not fully known, and the state and the actions
are described with continuous values. Such situations are difficult for reinforcement
learning because it is hard to discretize the space and to identify which utility values
need to be changed. However, recurrent neural networks can be constructed through
evolutionary learning, and can perform robustly in such situations [5,7].

These learning methods are brought together to learn an effective decision policy
for the process. The decision policy is initially represented statistically in terms of
neural network weights and Q-tables. Using standard techniques for knowledge ex-
traction, this knowledge is then translated into a rule-based description of the process
[8,9,10].

6 Conclusions and Future work

The experience we have with synthesizing assembly processes based on the bill of
materials and the final product description is encouraging, yet the vast majority of
work still lies ahead. We need to make the process model generator be able to use a
more generalized description of the final product that does not directly refer to the
artifacts in the bill of materials. The other approaches to generation of the initial proc-
ess model that do not rely on availability of the rigorous artifact well-formedness
specifications must be implemented. The learning mechanisms must be evaluated
based on their applicability to capturing the various process aspects described. Finally
the whole integrator must be evaluated on real-life process domain knowledge from
various process domains, to name a few: mechanical assembly, web-services integra-
tion, mechanical object control procedures, software development, crisis responses.

We would like to thank Dr. Misty Nodine of Telcordia Research for discussions,
useful comments, and editing, Dr. Donald Baker of Telcordia Research for his help
with the Atlas process execution system, and Prof. Risto Miikkulainen of the Univer-
sity of Texas, Austin for discussions and help with the application of reinforcement
learning and neuroevolution methods to the process synthesis.

References

1. Jonathan E. Cook and Alexander L. Wolf, "Discovering Models of Software Processes from Event-
Based Data", ACM Transactions on Software Engineering and Methodology 7(3), July, 1998, pp 215-
249.

2. Jonathan E. Cook, Lawrence G. Votta and Alexander L. Wolf, "Cost-Effective Analysis of In-Place
Software Processes", IEEE Transactions on Software Engineering SE-24(8), August 1998, pp 650-663.

3. Jonathan E. Cook and Alexander L. Wolf, "Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model", ACM Transactions on Software Engineering and Methodol-
ogy 8(2), April, 1999.

4. Alexander L. Wolf and David S. Rosenblum, "A Study in Software Process Data Capture and Analysis",
ICSP 2 - 2nd International Conference on Software Process, February, 1993, pp. 115—124.

5. Moriarty, D. E., Schultz, A. C., and Grefenstette, J. J. (1999). Evolutionary Algorithms for Reinforce-
ment Learning. Journal of Artificial Intelligence Research, 11:199-229.

6. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), Learning Internal Representations by Error
Propagation. In Rumelhart, D. E. and McClelland J. M., Parallel Distributed Processing. Cambridge,
MA: MIT Press.

7. Stanley, K. and Miikkulainen, R. (2002). Evolution of Neural Networks through Augmenting Topolo-
gies. Evolutionary Computation, 10:99-127.

8. Stanley, K. and Miikkulainen, R. (2004). Competitive Coevolution through Evolutionary Complexifica-
tion. Journal of Artificial Intelligence Research, 21:63-100.

9. Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA: MIT
Press.

10. Towell, G. G. and Shavlik, J. W. (1993). The Extraction of Refined Rules from Knowledge-Based
Neural Networks. Machine Learning, 13:71-101.

11. Dewayne E. Perry and Alexander L. Wolf. “Foundations for the study of Software Architecture”, ACM
SIGSOFT Software Engineering Notes, 17:4 (October 1992).

12. D.Georgakopoulos, H.Schuster, A.Cichocki, and D.Baker. (1999) “Collaboration Management Infra-
structure in Crisis Response Situations”, Technical Report CMI-009-99, Microelectronics and Computer
Technology Corporation

13. D.Baker, A.R.Cassandra, H.Schuster, D.Georgakopoulos, and A.Cichocki. (1999) “Providing Custom-
ized Process and Situation Awareness in the Collaboration Management Infrastructure”, Proceedings of
the 4™ IFCIS Conference on Cooperative Information Systems (CoopIS'99)

14. Dimitrios Georgakopoulos, Hans Schuster, Donald Baker, and Andrzej Cichocki. (2000) “Managing
Escalation of Collaboration Processes in Crisis Mitigation Situations”, Proceedings of the 16" Interna-
tional Conference on Data Engineering (ICDE'2000)

15. Wagner, Thomas A., Garvey, Alan J. and Lesser, Victor R., “Satisficing Evaluation Functions: The
Heart of the New Design-to-Criteria Paradigm”, UMass Computer Science Technical Report 1996

