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EXISTENCE AND STABILITY OF ALMOST PERIODIC
SOLUTIONS FOR SHUNTING INHIBITORY CELLULAR
NEURAL NETWORKS WITH CONTINUOUSLY
DISTRIBUTED DELAYS

QIYUAN ZHOU, BING XIAO, YUEHUA YU

ABSTRACT. In this paper, we consider shunting inhibitory cellular neural net-
works (SICNNs) with continuously distributed delays. Sufficient conditions
for the existence and local exponential stability of almost periodic solutions
are established using a fixed point theorem, Lyapunov functional method, and
differential inequality techniques. We illustrate our results with an example
for which our conditions are satisfied, but not the conditions in [4} 6 [§].

1. INTRODUCTION

Consider the shunting inhibitory cellular neural networks (SICNNs) with con-
tinuously distributed delays

l‘;j (t) = —Q4j (t)xij (t) - Z Clk]lf(/ Kij (u)xkl(t — u)du)x” (t) + L,‘j (t),
Cri€NL(i,5) 0
(1.1)
where i = 1,2,...,m, j = 1,2,...,n, C;; denote the cell at the (,j) position of
the lattice, the r-neighborhood N,.(3, ) of C;; is

Ny (i,7) = {Cri - max(|k —i|,[l = j|) <r,1<k<m,1<I1<n}.

x;; is the activity of the cell C;;, L;;(t) is the external input to Cjj, a;;(t) > 0
represent the passive decay rate of the cell activity, C’fjl > 0 is the connection or
coupling strength of postsynaptic activity of the cell transmitted to the cell C;;, and
the activity function f is a continuous function representing the output or firing
rate of the cell Cy;.

Since Bouzerdout and Pinter in [Il [2, B] described SICNNs as a new cellular
neural networks(CNNs), SICNNs have been extensively applied in psychophysics,
speech, perception, robotics, adaptive pattern recognition, vision, and image pro-
cessing. Hence, they have been the object of intensive analysis by numerous authors
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in recent years. In particular, there have been extensive results on the problem of
the existence and stability of periodic and almost periodic solutions of SICNNs with
constant time delays and time-varying delays in the literature. We refer the reader
to [4 [6l 8] and the references cited therein. Moreover, in the above-mentioned
literature, we observe that the assumption

(TO) there exists a nonnegative constant M such that My = sup,cp | f(2)|

has been considered as fundamental for the considered existence and stability of
periodic and almost periodic solutions of SICNNS. However, to the best of our
knowledge, few authors have considered SICNNS without the assumptions (TO0).
Thus, it is worth while to continue to investigate the existence and stability of
almost periodic solutions of SICNNS.

The main purpose of this paper is to obtain some sufficient conditions for the ex-
istence and stability and local exponential stability of the almost periodic solutions
for system . By applying fixed point theorem, Lyapunov functional method
and differential inequality techniques, we derive some new sufficient conditions en-
suring the existence and local exponential stability of the almost periodic solution
of system , which are new and they complement previously known results. In
particular, we do not need the assumption (T0). Moreover, an example is also
provided to illustrate the effectiveness of the new results.

Throughout this paper, we set

{i[lj(t)} = (1’11(75), e ,ﬂfln(t), P ,CEil(t), e ,ﬂfin(t)7 e ,l'ml(t), e ,l’mn(t))

For all = {z;;(t)} € R™*", we define the norm ||z|| = max; ;){|=:;(t)[}. Set

B={p:9={pt)} = (eu1(t),---,p1alt),- ..,
(,Oil(t), Ty @zn(t)a RS @ml(t)v teey @mn(t))},
where ¢ is an almost periodic function on R. For all ¢ € B, we define induced

module |||l = sup,er ||¢(t)]; then B is a Banach space.
The initial conditions associated with system (|1.1]) are

zii(s) = ¢ij(s), se€(—00,0,i=1,2,...,m, j=1,2,...,n, (1.2)

where ¢;;(-) denotes real-valued bounded continuous function defined on (—o0, 0].
We also assume that the following conditions

(T1) Fori e {1,2,...,m}, j € {1,2,...,n}, the delay kernels K;; : [0,00) — R
are continuous, integrable and there exist nonnegative constants k;; such
that

oo
0
(T2) For each i € {1,2,...,m}, j € {1,2,...,n}, L;;j(t) and a;;(t) are almost
periodic functions on R, let L;rj = supseg |Lij(t)], 0 < a;; = infier ai;(t).

(T3) f(0) =0, f: R — R is Lipschitz with Lipschitz constant p, i.e.,

|f(u) = f(v)] < plu—wv|, forall u,v €R.
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(T4) there exist nonnegative constants L, g and § such that

+ ks N
I — max{ ij }’ 5= max{:u ] ZCMENT(%]) ij } 17
(4,.3) Q45 (i.4) Qij
L <1 = 26L <1
-9 =" A= T
(T5) For i€ {1,2,...,m}, j € {1,2,...,n}, there exists a constant Ao > 0 such
that

/ |K;(s)|e?%ds < +o0.
0

Definition. (see [0, [6]) Let u(t) : R — R™ be continuous in ¢. u(t) is said to be
almost periodic on R if, for each ¢ > 0, the set T(u,e) = {6 : |u(t +9) — u(t)] <
g, Vt € R} is relatively dense; i.e., for all € > 0, it is possible to find a real number
I =1(e) > 0, so that for any interval of length I(g), there exists a number § = d(¢)
in this interval such that |u(t 4 0) — u(t)| < ¢, for all t € R.

The remaining part of this paper is organized as follows. In Section 2, we shall de-
rive new sufficient conditions for checking the existence of almost periodic solutions.
In Section 3, we present some new sufficient conditions for the local exponential
stability of the almost periodic solution of (L.I). In Section 4, we shall give an
example to illustrate our results obtained in previous sections.

2. EXISTENCE OF ALMOST PERIODIC SOLUTIONS

Theorem 2.1. Under conditions (T1)—(T4)there exists a unique almost periodic
solution of (1.1)) in the region B* = {p: ¢ € B,|l¢v — vollp < %}, where

po(t) = {/t e I a”(“)d“)Lij(s)ds}

—o00
t

t
= (/ eI “U(“)d“Lll(s)dS, ... ,/ eI “"j(")d“Lij(s)ds,

¢ . -
e / e s “m"(“)d“Lmn(s)ds)

Proof. For ¢ € B, we consider the almost periodic solution z,(t) of nonlinear
almost periodic differential equation

dlL’i' i
Ty = YOI Kyt - u)dueg) + L),
Cri€N(i,5)
(2.1)
Because ¢;;(t), L;;(t), i =1,2,...,m, j = 1,2,...,n, are almost periodic functions.

By [7, P. 90-120], has a unique almost periodic solution
z,(t) = {/t e J& ais(w)du [ e
o Cri€N, (i)) (2.2)
< S /OOO Kij(u)pma(s — u)du)piy(s) + Lz‘j(S)} ds}'
Now, we define a mapping T : B — B by setting
T(p)(t) = z4(t), V€ B.
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Since B* = {¢ : ¢ € B,|l¢ — ¢ollp < 1‘5—_%}, it is easy to see that B* is a closed
convex subset of B. According to the definition of the norm of Banach space B,
we have

t
H(ponB :bupr(nax{/ Lij(s)efjs aij(u)duds}

teR (4,5) oo
+ L+ (23)

Sswpma (b = {0 =

Therefore, for all p € B*, we have

oL L
<Al — < = == .
lells < lle — wolls + [lvolls T 5Tl =1=5 (2.4)
In view of (T3), we have
[f(w)] = [f(w) = FO)] < plul,  VueR. (2.5)

Now, we prove that the mapping T is a self-mapping from B* to B*. In fact, for
all ¢ € B*, together with (2.4, and t£5 < 1, we obtain

IT¢ — ¢ollB
t . e’}
= sup max {| / e~ Jo aij(w)du Z ijl (/ Kij(u)pri(s — u)du)p;; (5)d5|}
teR (11.7) —00 CkleNT(ivj) 0
t [ee]
< supma_x{/ e ) “”(“)d“uHQOHB/ [Kij(wldu Y Cfflpij(s)]ds}
teR (1.7) J_o 0 Cr1 €N (4,5)
t
< sup max {“kw Z ijl/ e ) aij(u)dudSH‘PH%}
teR (4,5) CreNL (i) — oo
k;: Ok
< (PN Oy
(1,5 Qij
L L
=64 < 6(——=)? < d——
ol < 8(- =) < 6=,

which implies T'(¢)(t) € B*. So, the mapping T is a mapping from B* to B*. Next,
we prove that the mapping T is a contraction mapping of the B*. In fact, for all
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p, Y € B*, we have

IT(e) —T ()|
= igﬁg ||T(QD)(75) - T(¢)(t)||

t o)
= sup max{| / e Ji aig(wydu Z Clkjl(f(/ Kij(u)pri(s —u)du)
e 0

teR (-7 CriENL(i,5)

X pij(s) — f(/ooo Kij(w)ri(s — u)du)i;;(s))ds|}

t o)
< sup max{/ e~ Ji aij(w)du Z Czkjl|f(/ Kij(w)eri(s — u)du)pij(s)
oo 0

teR (4,9) CrieNL(inf)
i / K ()5 — u)du)pis (s) + /1 / K (a5 — u)du)pi; (s)
5 / " Koy (u)na(s — w)du)iy (s)]ds)

In view of condition (T3), (2.4), (2.5) and the above inequality, we have
1T(p) = T(¥)|5

¢
< sup max{
teR (i.7) —o0

S SINCH Y i RN

CriEN,(i,5)

0 K wdbals o)
+ |f(/ooo Kij(u)ri(s — u)du)||pij(s) — ij(s)|]ds}

t o]
< sup max{/ e Js ais(w)du Z Cikjl [/ | K (w)|plopra (s — )
oo 0

teR (i.7) CreN(ir))

— (s — )l dulpis ()] + / VK ) (s — ) duliosg(s) — iy (5)])ds}

t
< supma,X{/ e~ rantde N Ok ullels + I1¥lllle - ¢llpds)
teRr (4,5) —0o0 Cri €Ny (3,5)

1kij 3 e i) ijl 2L

< max{
(4,5) Qij
L
— 26 -
(1_6)”90 wHBa

i.e.
1T(p) =T)B < glle —YlB-
Note that g = 26 ﬁ < 1, it is clear that the mapping T is a contraction. Therefore

the mapping T possesses a unique fixed point ¢* € B*, Tp* = ¢*. By (2.1), ¢*

satisfies ([1.1). So ¢* is an almost periodic solution of system (1.1) in B*. The proof
is complete. (I
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3. STABILITY OF THE ALMOST PERIODIC SOLUTION

In this section, we establish some results for the uniqueness and local exponential
stability of the almost periodic solution of system (1.1)) in the region B*.

Theorem 3.1. Let 6(1 + 2:L5) < 1 and suppose that conditions (T1)~(T5) hold.
Then has ezactly one almost periodic solution ¢*(t) = {x};(t)} = {¢j;(t)} in
the region B*. Moreover, ¢*(t) is locally exponentially stable, and the domain of
attraction of p*(t) is the set

Gi(¢") = {p: ¢ € C((=00, 0; B™), [lo—¢"[l = sup max|pi;(s)—pi;(s)| <1}

—00<s<0 (1:7)

namely, there exist constants A > 0 and M > 1 such that for every solution Z(t) =
{zj(t)} of system (L.1) with any initial value p = {p;;(t)} € Gi(p*),

ji;(t) — 23;(1)] < Mllp — *[le™™,
forallt >0,i=1,2,...,m,7=1,2,..., n.
Proof. From Theorem system (|1.1)) has exactly one almost periodic solution
©*(t) = {z;(t)} = {};(t)} in the region B*. Let Z(t) = {x;;(t)} be an arbitrary

solution of system with initial value ¢ = {@;;(t)} € Gi(¢*). Set y(t) =
{vis (1)} = {wi(t) —23;(8)} = Z(t) — " (¢). Then

W) = —as@us ) - S CHI / " K (e (t — wdu)as (1)

Cri€N-(3,5) (3.1)

5 / " K (gt — u)du)a (1),

fori=1,2,....,m, j =1,2,...,n. Since § < 1, 6(14—2%) < 1, we can easily
obtain

L
ag >pky Y O tuky Y CiT—s

CkleNr(iaj) CklENr(iJl)
L
ki
+uky Y Ch =5
Cri€N.(3,5)

where i =1,2,...,m, j=1,2,...,n. Set

> wu L
Tjw)=w—ag+ Y N ij[u/O K ()| e du + pubi
CriENL(i,5)

° L
o [ 1K@l dur =),
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where ¢ = 1,2,...,m, j = 1,2,...,n. Clearly, I';;(w), ¢ = 1,2,....,m, j =

1,2,...,n, are continuous functions on [0, \g]. Since
° L
Ly(0) = —a; + Y. ijl[u/ Ky )| e+ pikyy =
Cri €N, (i.4) 0

> L
T O

L
< —aij + pkij Z ijl + ki Z Ozk]l 1-3

Cri€Ny(1,5) Cri€Ny(1,7)
L
Cri€N.(1,5)
where i = 1,2,...,m,j = 1,2,...,n. It follows that we can choose a positive

constant A € [0, Ao] such that

o L
T = (ma)+ 3 Ol [ Il du+ by

Cri€N,(i5) (3.2)
> L
A
where i =1,2,...,m, j=1,2,...,n. We consider the Lyapunov functional
Vii () = |y ()], i=1,2,....m, j=1,2,...,n. (3.3)

Calculating the upper right derivative of V;;(t) along the solution y(t) = {y;;(t)}
of system (3.1)) with the initial value ¢ = ¢ — ¢*, we have

D* (V1)
< —aglus O+ CHIA[ Kyl — w0
Cri€Ny(1,7) 0
A B = du) (O] + A (0] )

a0+ Y O K

Cri€N-(i,5)

/ K () (£ — w)du) — / K () (¢ — w)du)es; (£)| e,
where i =1,2,...,m, 7 =1,2,...,n. Let

o —¢"l = sup max|pi;(s) —¢;j;(s)] > 0.
—00<5<0 (4,7)

Since ||¢ — ¢*|| < 1, we can choose a positive constant M > 1 such that
Mllp =™l <1, (Mg —¢")* < Mg — " (3.5)
It follows from (3.3]) that
Vij(t) = lyij (£)|eX < Mo — "],
forallt € (—00,0],i=1,2,...,m, j=1,2,...,n. We claim that
Vij(t) = lyii (£)|e < Ml — "], (3.6)
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forall t > 0,7 =1,2,...,m, 7 = 1,2,...,n. Contrarily, there must exist ij €
{11,12,...,1n,...,m1,m2,...,mn} and t;; > 0 such that

Vij(tiz) = Mlle — @™, Vi;(t) < Mllp — @7[|,Vt € (=00, L), (3.7)

ij
where ij € {11,12,...,1n,...,m1,m2,...,mn}. It follows from ([3.7) that

Vij(ti) = Mllp = @™ = 0, Vi5(t) = Ml — ¢™[| <0, (3.8)

)

for all t € (—o0 t” where ij € {11,12,...,1n,...,m1,m2,...,mn}. From (2.4),

., . ) and ( .7 we obtain

0 < DF(Vi;(tij) — M|l¢ — ¢*|)

=D* ( ij ( ))
< (A —ag) |y (t ZJ)|6M” + Z Czkjl|f / Kij(wap(ti; — u)du)yi;(ti;)
Cri€ENL(i,5)
[f(/o Kij(wzp(ti; — / Kij(u)zy (tij — u)du)]x; ( ZJ)|6)\tij
<A —ayp)Mle—e* |+ > CH [“/0 | K i ()| (tiy — w)|dulyq;(ti;)|e™s
CriEN(1,5)

o
+ / 1K (1) [ ey (155 — )|~ dula (825 ]

<A —ayp)Mle-—e*l+ > ijl[ﬂ/ | K (W) (|zr(tiy — u) — 273 (ts; — w)|

Cri€N,(4,5) 0
+ [ai; (ti; — u)|)du|yij(tij)|€)\t”

* /0 Ky (w)| X plyia (tiy — w)|e* ™) dulzy; (t:;)]]

SO-ag)Mle—gl+ 3 Ol [ I s = wle s
Cri€NR(1,5) 0

o0
X Jyij (tij)| e e M + u/o | Kij (w) || (ti5 — w)|dulyi; (ti;) |
o0
+/0 | K (u) e plyra (tiy — w)|eX 5 dulay; (ti;)]]

A —ai)Mllp - |+ > ¥ [M/ | Kij(w)|eX du(M || — @7 |))?e
CriENL(i,5) 0

o L o0 L i
i [N @l e =l [ K@) M~ )

“ L
B-a)+ Y Cff[u/ Kl eMd + iy
Cri€N,(i,5) 0

o0
i [ I ey

]}MIIsD ol
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Therefore,
0< (X —ay i [k, Aug iy~
SOag) b D Ol Kl dut
Cri€N,(i,5)
> Au L
o [Kij(u)le™du ],

which contradicts (3.2]). Hence, (3.6]) holds. It follows that

3 (t) = 235 (0)] = lyis (O] < Ml — %[,
fort>0,7=1,2,...,m, j=1,2,...,n. This completes the proof. (Il

4. EXAMPLE

To illustrate the results obtained in previous sections we present the following
example. Consider the shunting inhibitory cellular neural network with delays

dl‘i]‘

dt

ki - (u)x —u)du)x;q i 7
S o ‘/0 Ky (w)ra(t — w)du)es; + Lig (),

Cri€Ny(1,5)

—ag;(t)zi; —

where i = 1,2,3, j = 1,2, 3,

an(t) alg(t) alg(t) 1+ ‘ sin t| 14+ | sin tl 3+ | sint\
a1 (t) aga(t) ags(t)| = [3+|sint| 1+ |sint| 3+ |sint||,
asi(t) asza(t) ass(t) 3+ |sint] 1+ |sint| 34 |sint|
011 012 013 0.1 0.2 0.1
021 022 C23 = (0.2 0 0.2 N
C31 Cs3 Cs 0.1 0.2 0.1
L11 L12 L13 0.5sint 0.5cost 0.2sint
Loy Loo Log| = |0.4cost 0.2sint  0.3sint
L3y Lgo L3z 0.4cost 0.6sint 0.2cost
Set r = 1, K;j(u) = (sinu)e™™, i =1,2,3, j = 1,2,3, and f(x) = 1—1036. Clearly

p=0.1, Y0 en ) CH =05,

>, Oh= >, Ohi=
Cri€N1(1,2) Cri€N1(1,3)

>, G- >, =
CMGNl(Q,l) Ckl€N1(2,2)

>, Cn= > Gi=
CMENl(Q,?)) Ckl€N1(3,1)

> k=08, Yo k=
Cri€N1(3,2) Cri€N1(3,3)
> X ay=e,

(4,3) Cr1€N1(%,5)
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kz] :1ai:172a35j:172737

kl
'U’ZCMGNl(iJ) Cij }

§ = max { =012 <1,
(4,9) Qij
+
L_Igil%({ii} =06, (155) - 1—()6(5.12 <l
q:26ﬁ22x0.12x%<1,
5(1+21Lf6):0.12(1+2><0.12><1_0%06.12)<1.

By theorem the system has a unique almost periodic solution ¢*(t) in the
region ¢ — ¢ollz < 0.08128. Moreover, ¢*(t) is locally exponentially stable, the
domain of attraction of ¢*(t) is the set G1(¢*).

We remark that System is a very simple form of SICNNs, and that it does
not not satisfy the condition (T0). Therefore, the results in [4], [6, [8] can not be
applied to this system. This implies that the results of this paper are essentially
new.

Conclusion. The shunting inhibitory cellular neural networks with continuously
distributed delays have been studied. Some sufficient conditions for the existence
and local exponential stability of almost periodic solutions have been established.
The obtained results are new and complement previously known results. Moreover,
an example is given to illustrate our results.
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