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I. INTRODUCTION

In mathematics it is common practice to find bounds on a certain problem

and then start to ask questions like: When do we have equality? What is the small-

est case we have equality in? The next case after that? Dr. Keller and Dr. Yang

started this process by finding a bound on the action of finite solvable groups on

finite faithful completely reducible G-modules in [9] which we will later state as

Theorem 1:

Let G be a finite solvable group and V a finite faithful completely reducible

G-module, possibly of mixed characteristic. Let M be the largest orbit size in the

action of G on V . Then

∣G/G′∣ ≤M

More precisely, we have one of the following

1. ∣G/G′∣ <M

2. ∣G/G′∣ =M and G is abelian; or

3. ∣G/G′∣ = M , G is nilpotent, and G has at least two different orbits of size M

on V .

As stated, the next intuitive question to ask yourself is when can we push these

bounds to the edge, in this case when part (c) is minimal and there are exactly two

orbits. This conjecture was proven by Nathan Jones and Dr. Thomas Keller in [7].

Let G be a finite nonabelian group and V a finite faithful irreducible G-

module. Suppose that M = ∣G/G′∣ is the largest orbit size of G on V , and that

there are exactly two orbits of size M on V . Then G is the dihedral group of or-

der 8, and ∣V ∣ = 9. Now the next intuitive question to ask ourselves is what happens

when there are three orbits. In fact, at the end of the first smallest case, Dr. Keller

hypothesizes at what the next smallest case is and offers it as the following conjec-
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ture:

Let G be a finite nonabelian group and V a finite faithful irreducible G-

module. Suppose that M = ∣G/G′∣ is the largest orbit size of G on V and that there

are exactly three orbits of size M on V . Then, G = EZ, where E = D8, Z = Z(G) is

cyclic of order 4, and E ∩ Z = Z(E) is cyclic of order 2, and V = V (2,5) is of order

25.

The goal of this thesis is to prove the conjecture. The proof method follows

very closely along to [7] and in the processes of reading the original paper some

inaccuracies were found and corrected. Most notably is the last case of [7] which

has earned its own section of this paper as it had to be corrected in order for this

proof to continue smoothly.

The first section will cover definition, theorems and lemmas that will be nec-

essary to read through the rest of the paper. Section two will prove to the reader

that our group D8 ○D4 does in fact meet the requirements and it will formally state

the theorem we plan to prove. The following section will just give additional infor-

mation to the reader about D8 ○ C4 and its subgroups, as well as all of their orbits

of V (2,5). We then have our section with serves as a correction to [7] and finally

we prove the main result.

Definitions

This thesis will assume that the reader is familiar with the undergraduate

concepts of a group; in this section we will establish the language used through-

out this thesis. The definitions used in this paper have been taken from [3] and the

notation is consistent with literature in finite group theory. To quickly review, a

group is a set along with an associative binary operation that is closed contains

both an identity element and inverses. This thesis is concerned with only finite

groups. Therefore, we may say that the size (or order) of G, denoted ∣G∣, is not
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infinite. Two examples of groups are the dihedral group of order 8, denoted D8,

and the cyclic group of order 4, denoted C4. The group D8 consists of the symme-

tries of a square, four rotations and four ”flips.” The group can be represented as

D8 = {1, r, r2, r3, s, rs, r2, s, r3s} where r is representing a 90 degree rotation of a

square and s is representing a flip over a fixed axis of symmetry of a square. We

can find smaller group structures within D8 called subgroups. A subset of a group

G is a subgroup if it is closed under G’s multiplication and forms a group with re-

spect to this multiplication. The statement that H is a subgroup of G will be de-

noted by H ≤ G. In this paper subgroups will be used to allow for inductions on

the group. In the case of D8 we can look at the subset of rotations {1, r, r2, r3} and

see that it forms a subgroup. Specifically, the cyclic group of order four is a group

of size four generated by one element, in this subgroup’s case, r. We will now define

more interesting structures and properties that a group can have.

Definition 1. The center of a group G, denoted Z(G), is the set Z(G) = {y ∈

G∣xy = yx for all x ∈ G}.

Note that the center Z(G) is a subgroup of G.

Definition 2. A normal subgroup is a subgroup H ≤ G such that for all g ∈ G we

have g−1Hg = H. This is denoted by H ⊴ G, and H ⊲ G if and only if H ⊴ G and

H ≠ G.

Notice that a normal subgroup is a group that is invariant under conjugation

by elements in G. These groups are also known to be characterized as the kernel of

some group homomorphism.

Definition 3. Let H ≤ G be a subgroup and let g ∈ G. The right coset of H

determined by g is the set Hg = {hg ∣h ∈H}.

Definition 4. Let H ⊴ G. The factor group of G by H is the set {Hg∣g ∈ G} with

identity element eH and multiplication defined as (Hx)(Hy) =Hxy for all x, y ∈ G.
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Definition 5. Let G and H be groups with V ≤ Z(G) and W ≤ Z(H) such that

there exists isomorphism φ ∶ V → W . The central product of G and H with

respect to φ is the factor group of (G ×H)/X where X = {(x,φ(x)−1)∣x ∈ V }.

This paper will focus on the central product of D8 and C4. This group, de-

noted G = D8 ○C4, is of order 16 and can be represented as a subgroup of GL(2,5),

the group of invertible 2 × 2 matrices over the field with 5 elements.

Definition 6. A group G is solvable if there exists a chain of subgroups 1 = H0 ⊲

H1 ⊲ ⋅ ⋅ ⋅ ⊲Hn = G such that Hi+1/Hi is abelian for i = 0, . . . , n−1.

Notice this means that solvable groups are constructed by extensions of

abelian groups. Solvable groups will be the focus of this paper.

Definition 7. The Frattini subgroup, Φ(G) is the intersection of all maximal

proper subgroups of G.

The Frattini subgroup always exists in finite groups and possesses many use-

ful properties. For example, the Frattini subgroup is always normal. In the case of

D8 ○C4 we have three maximal subgroups D8 , C2×C4, and Q8. The reader can find

that, Φ(D8 ○C4) = C4. One property of the Frattini subgroup we will benefit from is

that it is nilpotent.

Definition 8. Let G be a finite group and p a prime. A Sylow p-subgroup of G

is a subgroup P ≤ G such that ∣P ∣ = pa is the full power of p dividing ∣G∣. The set of

all Sylow p-subgroups of G is denoted Sylp(G)

Definition 9. Let G be finite and solvable and let π be any set of prime numbers.

Hall’s Theorem guarantees a subgroup H ≤ G with order divisible only by primes in

π with ∣G∣/∣H ∣ divisible by none of these primes. A subgroup H ≤ G satisfying these

conditions is called a Hall π-subgroup of G.
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The Sylow and Hall subgroups will provide us a natural way to ‘split-up’

groups into two subgroups using a free product.

Definition 10. A group G is called nilpotent if there exists a chain of subgroups

1 = G0 ⊲ G1 ⊲ . . . ⊲ Gn = G such that Gi+1/Gi ≤ Z(G/Gi). Where Z(G/Gi) = {g ∈

G/Gi ∣ gx = xg for all x ∈ G/Gi}.

Note that a group G is nilpotent if and only if it can be written as the direct

product of its Sylow subgroups for all primes p dividing ∣G∣. Notice that because

D8 ○C4 is a finite p-group that it must be a nilpotent group.

Definition 11. The Fitting Subgroup of G, written as F (G) is the unique largest

normal nilpotent subgroup of G.

In the example of D8○C4, we would have F (D8○C4) =D8○C4, because D8○C4

is nilpotent. The Fitting subgroup will appear in relation to Gaschütz’ Theorem

which we will state in the next section.

Definition 12. Let H1 and H2 be subgroups of G. We define the commutator of

these groups to be

[H1,H2] = ⟨h−11 h−12 h1h2 ∣h1 ∈H1, h2 ∈H2⟩.

The commutator subgroup of G is the group [G,G] and denoted by G′.

The commutator subgroup is the smallest normal subgroup such that the

quotient group of the group by its commutator is abelian. It turns out that ∣G/G′∣

has a relation to the largest orbit size of a group action. In the case of D8 ○ C4 the

commutator subgroup is {( 1 0
0 1 ), ( 4 0

0 4 )}.

Definition 13. Let X be a set and G be a group. We say that G acts on X if for

every x ∈ X and g ∈ G there exists an element xg ∈ X such that x1 = x and xg
h = xgh

for all g, h ∈ G. If G acts on X, we call this a right group action.
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Definition 14. Let G act on the set X and x ∈ X. The orbit containing x of this

group action is the set {xg ∣ g ∈ G}

An orbit of an element x can be thought of informally as elements in the set

that x can be taken to by an element in the group.

Definition 15. A group action is faithful if there is no g ∈ G where g ≠ 1 such that

xg = x for all x ∈X.

One will notice that a faithful action induces an injection from G to the

symmetric group on X.

Definition 16. A group action of G on X is said to be transitive if for every two

elements x, y ∈ X, there exists g ∈ G with xg = y. If this g is unique, we say that the

action is regular.

Definition 17. Let G be a group and V a vector space over a field. Let G act on

V such that (a + b)g = ag + bg for all a, b ∈ V and g ∈ G. We call V a G-module.

Definition 18. Let D be a subgroup of G and V be a G-module. If we consider

only the action of D on V , we get a D-module denoted VD.

Definition 19. Let V , W be G-modules. We say V ≅ W as G-modules if and only

if there exists a vector space isomorphism φ ∶ V →W such that φ(vg) = φ(v)g for all

v ∈ V and g ∈ G.

Definition 20. A G-module V is irreducible if V has no proper non-zero G-

submodules.

Definition 21. A G-module V is completely reducible if it can be represented

as the direct sum of irreducible G-modules.

Definition 22. Let V be a completely reducible G-module. Then V = V1⊕V2⊕ . . .⊕

Vn for irreducible G-modules Vi. One can write V = W1 ⊕ . . . ⊕Wm for some m ≤ n

6



such that Vi, Vj ≤ Wk for some i, j ∈ {1, . . . , n} and some k ∈ {1, . . . ,m} if and only

if Vi ≅ Vj (as G-modules). Then the Wi are called the homogeneous components

of V .

Definition 23. An irreducible G-module V is called imprimitive if V can be

written as V = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vn for n > 1 subspaces Vi that are permuted transitively

by G. We say that V is primitive if V is not imprimitive. V is called quasiprim-

itive if VN is homogeneous for all N ⊲ G (where VN denotes V viewed as an N -

module).

It is known that quasiprimitive is a weaker condition than primitive. That is

primitive implies quasiprimitive; however, the reverse implication is not true. This

concludes the formal definitions that will be required for the main result.

Useful Theorems and Lemmas

This section will contain some useful theorems and lemmas used throughout

the thesis. The following results are well-known in the group theory community and

appear in other papers. The original sources have been indicated for proofs. The

first lemma will come in handy when we examine abelian subgroups in our main

theorem.

Lemma 1. [9] Let A be an abelian finite group and let V be a finite faithful com-

pletely reducible A-module. It is well-known that A has a regular orbit on V . Write

V = V1⊕⋅ ⋅ ⋅⊕Vn for irreducible A-modules Vi. Suppose that A has exactly one regular

orbit on V . Then A/CA(Vi) is cyclic of order ∣Vi∣ −1 for all i and A ≅ ⨉n
i=1A/CA(Vi)

is of order ∏n
i=1(∣Vi∣ − 1).

The following theorem is important because it is the main result of [8] and

each part will be used throughout the paper. This paper is focused on expanding

the third case, but the first two cases will be used within the proof to show our re-

sult. The following theorem will reference modules of mixed characteristic. Mixed
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characteristic means that if V = V1 ⊕ . . .⊕ Vn then Vi and Vj need not have the same

characteristic for all i, j ∈ {1, . . . , n}

Theorem 1. [9] Let G be a finite solvable group and V a finite faithful completely

reducible G-module, possibly of mixed characteristic. Let M be the largest orbit size

in the action of G on V . Then

∣G/G′∣ ≤M

More precisely, we have one of the following

1. ∣G/G′∣ <M

2. ∣G/G′∣ =M and G is abelian; or

3. ∣G/G′∣ = M , G is nilpotent, and G has at least two different orbits of size M

on V .

The following Lemma is well-known, the reader may recognize this as a con-

sequence of the isomorphism theorems.

Lemma 2. [9] Let G be a finite group and N ⊴ G. Then

∣G/G′∣ = ∣G/G′N ∣ ⋅ ∣N ∶ N ∩G′∣;

and

∣G ∶ G′∣ divides ∣G/N ∶ (G/N)′∣ ⋅ ∣N ∶ N ′∣.

Theorem 2 (Gaschütz’ Theorem). [11] Let G be solvable. Then F (G/Φ(G)) =

F (G)/Φ(G) is a completely reducible and faithful G/F (G)-module (possibly of mixed

characteristic). Furthermore, G/Φ(G) splits over F (G)/Φ(G).

Lemma 3. [5] Let G be a nilpotent group that acts faithfully and irreducibly on a

finite vector space V, and assume that G′ is cyclic. Then there exists a vector v ∈ V

such that ∣CG(v)∣ ≤ 2

8



II. EXAMPLES AND STATEMENT OF MAIN RESULT

In this section we will be stating the topic of this thesis. The following the-

orem is a corrected version of the conjecture from [7]. The theorem will expand

upon the third case of Theorem 1. We will be considering the case where G is a fi-

nite nonabelian solvable group that has exactly three orbits of size M = ∣G/G′∣ on

V where V is a finite faithful irreducible G −module. Our claim is that this hap-

pens if and only if G = D8 ○ C4 and V = V (2,5), the rank 2 module over the field

of order 5. While the main proof is focused on showing that this is the only G and

V that qualifies, we will quickly show that G = D8 ○ C4 and V = V (2,5) fits the hy-

pothesis. To define the group action of G on V we will start with defining G. G is

isomorphic to a subgroup of the general linear group GL(2,5) that is generated by

the following matrices;

<
⎡⎢⎢⎢⎢⎢⎢⎣

2 0

0 2

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 3

1 4

⎤⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎣

1 3

0 4

⎤⎥⎥⎥⎥⎥⎥⎦
>

This creates a group of 16 elements. The group action will be right multipli-

cation of the matrices in G on the row vectors in V (2,5). Due to this action being

computation heavy, we will list the orbits created instead of computing a Cayley

table.

[0 0]G = {[0 0]}

[1 0]G = {[1 0] , [1 3] , [2 0] , [2 1] , [3 0] , [3 4] , [4 0] , [4 2]}

[0 1]G = {[0 1] , [1 4] , [0 4] , [0 2] , [2 3] , [0 3] , [4 1] , [3 2]}

[1 1]G = {[1 1] , [2 4] , [1 2] , [2 2] , [4 3] , [4 4] , [3 3] , [3 1]}

We see that G = D8 ○ C4 creates 3 orbits of size 8 and one fixed point. Let

us recall that the size of D8 ○ C4 is 16 and the size of G′ is 2, thus we see that M =

9



∣G/G′∣ = 8. Therefore this action satisfies the conditions of the following theorem.

Theorem 3. Let G be a finite nonabelian solvable group and V a finite faithful ir-

reducible G-module. Suppose that M = ∣G/G′∣ is the largest orbit size of G on V

and that there are exactly three orbits of size M on V . Then G = D8 ○ C4, the cen-

tral product of the dihedral group of order 8 and the cyclic group of order 4, and

V = V (2,5).
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III. THE STRUCTURE OF THE GROUP D8 ○C4

This paper requires us to look at abnormal representations of the subgroups

of D8 ○ C4. For example, naturally we would look at D8 in GL(2,3), but because

our main group D8 ○ C4 is represented in GL(2,5) and acts on V (2,5), we must

adapt to be able to see how D8 acts on V (2,5). While the computation on how to

get these subgroups and how these subgroups act on V (2,5) will not be shown, we

will observe the lattice of subgroups for D8 ○ C4 as well as the orbits generated by

each subgroup when acting on V (2,5). This lattice is a recreating of the D4 ○ C4

lattice from GroupNames.org with the dihedral group of order 8 renamed from D4

to D8 to stay consistent with the rest of the paper.

D8 ○C4

D8 D8 C2 ×C4 C2 ×C4 Q8 C2 ×C4 D8

C4 C2 ×C2 C2 ×C2 C4 C4 C2 ×C2 C4

C2 C2 C2 C2

C1

In order to save space, we will list the subgroups by their generators in

GL(2,5) and then their orbits when taking the natural group action on V (2,5).

This list will go in order from top left to bottom right of the subgroup lattice chart

starting with D8 ○C4 for completeness.

Our Group D8 ○C4 and its Orbits

D8 ○C4 = <
⎡⎢⎢⎢⎢⎢⎣

2 0

0 2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 3

1 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 3

0 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0]D8 ○C4 = {[0 0]}
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[1 0]D8 ○C4 = {[1 0] , [1 3] , [2 0] , [2 1] , [3 0] , [3 4] , [4 0] , [4 2]}

[0 1]D8 ○C4 = {[0 1] , [1 4] , [0 4] , [0 2] , [2 3] , [0 3] , [4 1] , [3 2]}

[1 1]D8 ○C4 = {[1 1] , [2 4] , [1 2] , [2 2] , [4 3] , [4 4] , [3 3] , [3 1]}

The First D8 Subgroup and its Orbits

(D8)1 = <
⎡⎢⎢⎢⎢⎢⎣

1 3

0 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 1

0 3

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (D8)1 = {[0 0]}

[1 0] (D8)1 = {[1 0] , [1 3] , [2 0] , [2 1] , [3 0] , [3 4] , [4 0] , [4 2]}

[0 1] (D8)1 = {[0 1] , [0 4] , [2 3] , [3 2]}

[0 2] (D8)1 = {[0 2] , [1 4] , [4 1] , [0 3]}

[1 1] (D8)1 = {[1 1] , [1 2] , [4 3] , [4 4]}

[2 2] (D8)1 = {[2 2] , [2 4] , [3 1] , [3 3]}

The Second D8 Subgroup and its Orbits

(D8)2 = <
⎡⎢⎢⎢⎢⎢⎣

1 0

1 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 1

0 3

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (D8)2 = {[0 0]}

[1 0] (D8)2 = {[1 0] , [2 1] , [4 0] , [3 4]}

[2 0] (D8)2 = {[2 0] , [4 2] , [3 0] , [1 3]}

[0 1] (D8)2 = {[0 1] , [0 3] , [1 4] , [0 4] , [0 2] , [2 3] , [3 2] , [4 1]}

[1 1] (D8)2 = {[1 1] , [2 4] , [4 4] , [3 1]}

[1 2] (D8)2 = {[1 2] , [2 2] , [3 3] , [4 2]}

The First C2 ×C4 Subgroup and its Orbits

(C2 ×C4)1 = <
⎡⎢⎢⎢⎢⎢⎣

1 0

1 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 0

0 2

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2 ×C4)1 = {[0 0]}

[1 0] (C2 ×C4)1 = {[1 0] , [2 0] , [4 0] , [3 0]}
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[1 3] (C2 ×C4)1 = {[1 3] , [4 2] , [2 1] , [3 4]}

[0 1] (C2 ×C4)1 = {[0 1] , [1 4] , [0 2] , [0 4] , [0 3] , [2 3] , [3 2] , [4 1]}

[1 1] (C2 ×C4)1 = {[1 1] , [2 4] , [1 2] , [2 2] , [4 3] , [4 4] , [3 3] , [3 1]}

The Second C2 ×C4 Subgroup and its Orbits

(C2 ×C4)2 = <
⎡⎢⎢⎢⎢⎢⎣

2 1

2 3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 0

0 2

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2 ×C4)2 = {[0 0]}

[1 0] (C2 ×C4)2 = {[1 0] , [1 3] , [2 0] , [2 1] , [3 0] , [3 4] , [4 0] , [4 2]}

[0 1] (C2 ×C4)2 = {[0 1] , [0 4] , [0 2] , [0 3] [1 4] , [2 3] , [3 2] , [4 1]}

[1 1] (C2 ×C4)2 = {[1 1] , [2 2] , [4 4] , [3 3]}

[1 2] (C2 ×C4)2 = {[1 2] , [2 4] , [4 3] , [3 1]}

The Only Q8 Subgroup and its Orbits

Q8 = <
⎡⎢⎢⎢⎢⎢⎣

4 0

0 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 0

2 3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 1

0 3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4 2

4 1

⎤⎥⎥⎥⎥⎥⎦
>

[0 0]Q8 = {[0 0]}

[1 0]Q8 = {[1 0] , [1 3] , [2 0] , [2 1] , [3 0] , [3 4] , [4 0] , [4 2]}

[0 1]Q8 = {[0 1] , [1 4] , [0 4] , [0 2] , [2 3] , [0 3] , [4 1] , [3 2]}

[1 1]Q8 = {[1 1] , [2 4] , [1 2] , [2 2] , [4 3] , [4 4] , [3 3] , [3 1]}

The Third C2 ×C4 Subgroup and its Orbits

(C2 ×C4)3 = <
⎡⎢⎢⎢⎢⎢⎣

1 3

0 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 0

0 2

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] ((C2 ×C4)3 = {[0 0]}

[1 0] (C2 ×C4)3 = {[1 0] , [1 3] , [2 0] , [2 1] , [3 0] , [3 4] , [4 0] , [4 2]}

[0 1] (C2 ×C4)3 = {[0 1] , [0 4] , [0 2] , [0 3]}

[1 4] (C2 ×C4)3 = {[1 4] , [2 3] , [3 2] , [4 1]}

[1 1] (C2 ×C4)3 = {[1 1] , [2 4] , [1 2] , [2 2] , [4 3] , [4 4] , [3 3] , [3 1]}
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The Third D8 Subgroup and its Orbits

(D8)3 = <
⎡⎢⎢⎢⎢⎢⎣

1 3

1 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 3

0 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (D8)3 = {[0 0]}

[1 0] (D8)3 = {[1 0] , [1 3] , [4 0] , [4 2]}

[2 0] (D8)3 = {[2 0] , [2 1] , [3 0] , [3 4]}

[0 1] (D8)3 = {[0 1] , [1 4] , [0 4] , [4 1]}

[0 2] (D8)3 = {[0 2] , [2 3] , [0 3] , [3 2]}

[1 1] (D8)3 = {[1 1] , [2 4] , [1 2] , [2 2] , [4 3] , [4 4] , [3 3] , [3 1]}

The First C4 Subgroup and its Orbits

(C4)1 = <
⎡⎢⎢⎢⎢⎢⎣

2 0

2 3

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C4)1 = {[0 0]}

[1 0] (C4)1 = {[1 0] , [2 0] , [4 0] , [3 0]}

[1 3] (C4)1 = {[1 3] , [3 4] , [4 2] , [2 1]}

[0 1] (C4)1 = {[0 1] , [2 3] , [0 4] , [3 2]}

[0 2] (C4)1 = {[0 2] , [4 1] , [0 3] , [1 4]}

[1 1] (C4)1 = {[1 1] , [4 3] , [4 4] , [1 2]}

[2 2] (C4)1 = {[2 2] , [3 1] , [3 3] , [2 4]}

The First C2 ×C2 Subgroup and its Orbits

(C2 ×C2)1 = <
⎡⎢⎢⎢⎢⎢⎣

2 1

2 3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4 0

0 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2 ×C2)1 = {[0 0]}

[1 0] (C2 ×C2)1 = {[1 0] , [2 1] , [4 0] , [3 4]}

[2 0] (C2 ×C2)1 = {[2 0] , [4 2] , [3 0] , [1 3]}

[0 1] (C2 ×C2)1 = {[0 1] , [0 4] , [2 3] , [3 2]}

[0 2] (C2 ×C2)1 = {[0 2] , [4 1] , [0 3] , [1 4]}
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[1 1] (C2 ×C2)1 = {[1 1] , [4 4]}

[1 2] (C2 ×C2)1 = {[1 2] , [4 3]}

[2 2] (C2 ×C2)1 = {[2 2] , [3 3]}

[2 4] (C2 ×C2)1 = {[2 4] , [3 2]}

The Second C2 ×C2 Subgroup and its Orbits

(C2 ×C2)2 = <
⎡⎢⎢⎢⎢⎢⎣

1 0

1 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4 0

0 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2 ×C2)2 = {[0 0]}

[1 0] (C2 ×C2)2 = {[1 0] , [4 0]}

[2 0] (C2 ×C2)2 = {[2 0] , [3 0]}

[1 3] (C2 ×C2)2 = {[1 3] , [4 2]}

[2 1] (C2 ×C2)2 = {[2 1] , [3 4]}

[0 1] (C2 ×C2)2 = {[0 1] , [1 4] , [0 4] , [4 1]}

[0 2] (C2 ×C2)2 = {[0 2] , [2 3] , [0 3] , [3 2]}

[1 1] (C2 ×C2)2 = {[1 1] , [2 4] , [4 4] , [3 1]}

[2 2] (C2 ×C2)2 = {[2 2] , [4 3] , [3 3] , [1 2]}

The Second C4 Subgroup and its Orbits

(C4)2 = <
⎡⎢⎢⎢⎢⎢⎣

2 0

0 2

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C4)2 = {[0 0]}

[1 0] (C4)2 = {[1 0] , [2 0] , [3 0] , [4 0]}

[1 3] (C4)2 = {[1 3] , [2 1] , [4 2] , [3 4]}

[0 1] (C4)2 = {[0 1] , [0 4] , [0 2] , [0 3]}

[1 4] (C4)2 = {[1 4] , [2 3] , [4 1] , [3 2]}

[1 1] (C4)2 = {[1 1] , [2 2] , [4 4] , [3 3]}

[1 2] (C4)2 = {[1 2] , [2 4] , [4 3] , [3 1]}
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The Third C4 Subgroup and its Orbits

(C4)3 = <
⎡⎢⎢⎢⎢⎢⎣

2 1

0 3

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C4)3 = {[0 0]}

[1 0] (C4)3 = {[1 0] , [2 1] , [3 4] , [4 0]}

[1 3] (C4)3 = {[1 3] , [2 0] , [3 0] , [4 2]}

[0 1] (C4)3 = {[0 1] , [0 4] , [0 2] , [0 3]}

[1 4] (C4)3 = {[1 4] , [2 3] , [4 1] , [3 2]}

[1 1] (C4)3 = {[1 1] , [2 4] , [4 4] , [3 1]}

[1 2] (C4)3 = {[1 2] , [2 2] , [4 3] , [3 3]}

The Third C2 ×C2 Subgroup and its Orbits

(C2 ×C2)3 = <
⎡⎢⎢⎢⎢⎢⎣

1 3

0 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4 0

0 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2 ×C2)3 = {[0 0]}

[1 0] (C2 ×C2)3 = {[1 0] , [1 3] , [4 0] , [4 2]}

[2 0] (C2 ×C2)3 = {[2 0] , [2 1] , [3 0] , [3 4]}

[0 1] (C2 ×C2)3 = {[0 1] , [0 4]}

[1 4] (C2 ×C2)3 = {[1 4] , [4 1]}

[0 2] (C2 ×C2)3 = {[0 2] , [0 2]}

[2 3] (C2 ×C2)3 = {[2 3] , [3 2]}

[1 1] (C2 ×C2)3 = {[1 1] , [1 2] , [4 4] , [4 3]}

[2 2] (C2 ×C2)3 = {[2 2] , [2 4] , [3 3] , [3 1]}

The Fourth C4 Subgroup and its Orbits

(C4)4 = <
⎡⎢⎢⎢⎢⎢⎣

1 3

1 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C4)4 = {[0 0]}

[1 0] (C4)4 = {[1 0] , [4 2] , [1 3] , [4 0]}
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[2 0] (C4)4 = {[2 0] , [3 4] , [3 0] , [2 1]}

[0 1] (C4)4 = {[0 1] , [0 4] , [4 1] , [1 4]}

[0 2] (C4)4 = {[0 2] , [3 2] , [0 3] , [2 3]}

[1 1] (C4)4 = {[1 1] , [3 3] , [4 4] , [2 2]}

[1 2] (C4)4 = {[1 2] , [2 4] , [4 3] , [3 1]}

The First C2 Subgroup and its Orbits

(C2)1 = <
⎡⎢⎢⎢⎢⎢⎣

2 1

2 3

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2)1 = {[0 0]}

[1 0] (C2)1 = {[1 0] , [2 1]}

[2 0] (C2)1 = {[2 0] , [4 2]}

[3 0] (C2)1 = {[3 0] , [1 3]}

[4 0] (C2)1 = {[4 0] , [3 4]}

[0 1] (C2)1 = {[0 1] , [2 3]}

[0 2] (C2)1 = {[0 2] , [4 1]}

[0 3] (C2)1 = {[0 3] , [1 4]}

[0 4] (C2)1 = {[0 4] , [3 2]}

[1 1] (C2)1 = {[1 1] , [4 4]}

[2 2] (C2)1 = {[2 2] , [3 3]}

[1 2] (C2)1 = {[1 2]}

[2 4] (C2)1 = {[2 4]}

[4 3] (C2)1 = {[4 3]}

[3 1] (C2)1 = {[3 1]}

The Second C2 Subgroup and its Orbits

(C2)2 = <
⎡⎢⎢⎢⎢⎢⎣

1 0

1 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2)2 = {[0 0]}
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[1 0] (C2)2 = {[1 0]}

[2 0] (C2)2 = {[2 0]}

[3 0] (C2)2 = {[3 0]}

[4 0] (C2)2 = {[4 0]}

[1 3] (C2)2 = {[1 3] , [4 2]}

[2 1] (C2)2 = {[2 1] , [3 4]}

[0 1] (C2)2 = {[0 1] , [1 4]}

[0 2] (C2)2 = {[0 2] , [2 3]}

[0 3] (C2)2 = {[0 3] , [3 2]}

[0 4] (C2)2 = {[0 4] , [4 1]}

[1 1] (C2)2 = {[1 1] , [2 4]}

[2 2] (C2)2 = {[2 2] , [4 3]}

[3 3] (C2)2 = {[3 3] , [1 2]}

[4 4] (C2)2 = {[4 4] , [3 1]}

The Third C2 Subgroup and its Orbits

(C2)3 = <
⎡⎢⎢⎢⎢⎢⎣

4 0

0 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2)3 = {[0 0]}

[1 0] (C2)3 = {[1 0] , [4 0]}

[2 0] (C2)3 = {[2 0] , [3 0]}

[1 3] (C2)3 = {[‘ 3] , [4 2]}

[2 1] (C2)3 = {[2 1] , [3 4]}

[0 1] (C2)3 = {[0 1] , [0 4]}

[0 2] (C2)3 = {[0 2] , [0 3]}

[1 4] (C2)3 = {[1 4] , [4 1]}

[2 3] (C2)3 = {[2 3] , [3 2]}

[1 1] (C2)3 = {[1 1] , [4 4]}
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[2 2] (C2)3 = {[2 2] , [3 3]}

[1 2] (C2)3 = {[1 2] , [4 3]}

[2 4] (C2)3 = {[2 4] , [3 1]}

The Fourth C2 Subgroup and its Orbits

(C2)4 = <
⎡⎢⎢⎢⎢⎢⎣

1 3

0 4

⎤⎥⎥⎥⎥⎥⎦
>

[0 0] (C2)4 = {[0 0]}

[1 0] (C2)4 = {[1 0] , [1 3]}

[2 0] (C2)4 = {[2 0] , [2 1]}

[3 0] (C2)4 = {[3 0] , [3 4]}

[4 0] (C2)4 = {[4 0] , [4 2]}

[0 1] (C2)4 = {[0 1] , [0 4]}

[0 2] (C2)4 = {[0 2] , [0 3]}

[1 4] (C2)4 = {[1 4]}

[2 3] (C2)4 = {[2 3]}

[4 1] (C2)4 = {[4 1]}

[3 2] (C2)4 = {[3 2]}

[1 1] (C2)4 = {[1 1] , [1 2]}

[2 2] (C2)4 = {[2 2] , [2 4]}

[3 3] (C2)4 = {[3 3] , [3 1]}

[4 4] (C2)4 = {[4 4] , [4 3]}

The final subgroup is the trivial subgroup which results in 25 fixed points when

acting naturally on V (2,5).
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IV. CORRECTIONS TO A PREVIOUS PAPER

This section serves as a correction to case 2.4 in [7]. An issue was found dur-

ing the creation of this paper and as a result Dr. Keller wrote a corrected version

to the section with the following proof. This same proof will later be adapted to fit

the current paper.

Case 2.4: There is ”<” in the first and ”=” in the second inequality.

Suppose we have equality in (4) and strict inequality in (3). That is

M ≥M1M2 ≥ p∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣ ≥ p∣D/D′∣ = ∣G ∶ G′∣.

Because ∣G ∶ G′∣ = M we have equality everywhere, and M = M1M2,M1 = p∣D ∶

D′CD(V1)∣ > ∣D ∶ D′CD(V1)∣,M2 = ∣CD(V1) ∶ CD(V1)′∣. Again let MD denote

the largest orbit size of D on V , then MD ≥ M1M2 so MD = M . By Theorem 1.1

CD(V1) is abelian or has at least two orbits of size M2 on W1. We consider again

some subcases.

Case 2.4.1 CD(V1) has at least two orbits of size M2 on W1.

Let w1,w2 ∈W1 be representatives of such orbits.

Assume that D/CD(V1) has at least two orbits of size M1 on V1. Because

M = M1M2 we have that (v1 + w1)D, (v1 + w2)D, (v2 + w2)D and (v2 + w1)D are

all distinct orbits of size MD = M , contradicting there being only two orbits of size

M . Therefore D/CD(V1) has exactly one orbit of size M1 on V1. Let v1 ∈ V1 be a

representative of this orbit.

Now let w1,w2 be representatives of two distinct orbits of size M2 of CD(V1)

on W1, then (v1 + w1)D and (v1 + w2)D are two distinct D−orbits of size M , and if

CD(V1) had a third orbit of size M2 on W1, similarly we would get a third orbit of

G of size M , a contradiction. Thus CD(V1) exactly two orbits of size M2 on W1.

20



Now write W1 =
k

⊕
i=1
Xi for a suitable k ∈ {1, . . . , n} and irreducible CD(V1)-

modules Xi (i = 1, . . . , k). We may assume that X1 ≤ V2. Then the intersection of all

the CCD(V1)(Xi) is trivial, and hence

CD(V1) ⪅ CD(V1)/CCD(V1)(X1) × ⋅ ⋅ ⋅ ×CD(V1)/CCD(V1)(Xk) (+)

Moreover, if we put N0 = CD(V1), Z0 = W1 and recursively for i ≥ 1 let Yi ≤

Zi−1 be an irreducible Ni−1-module, Ni = CNi−1
(Yi), and Zi be a CD(V1)-invariant

complement of Yi in Zi−1, and put t = i − 1 and stop the process as soon as Zi = 0

and Ni = 1, then we have that ⋂t
i=0Ni = 1 and W1 = ⊕t

i=0 Yi. Also, Ri−1 ∶= Ni−1/Ni

acts faithfully and irreducibly on Yi−1 for i = 1, . . . , t. Write M∗
i−1 for the largest

orbit size of Ni−1/Ni on Yi−1 for i = 1, . . . , t. Then by repeated use of Lemma 2.1 we

see that

M2 = ∣CD(V1) ∶ CD(V1)′∣ ≤
t

∏
i=1

∣Ri ∶ Ri
′∣ ≤

t

∏
i=1
M∗

i ≤M2, (++)

the last inequality easily following by considering the sum of representatives of or-

bits of size M∗
i−1 of Ni−1/Ni on Yi−1. Thus we have equality everywhere, and it fol-

lows that ∣Ri ∶ Ri
′∣ =M∗

i for i = 1, . . . , t. It also follows that the elements of every or-

bit of CD(V1) on W1 of size M2 have the form y1+. . . , yt for some yi ∈ Yi (i = 1, . . . , t)

which lies in an orbit of size M∗
i of Ni/Ni+1 on Yi (+ + +).

Case 2.4.1.1 CD(V1) is not abelian.

Put C = CD(V1) ∩ CD(X1) = CCD(V1)(X1). Then by (+) we may assume

that CD(V1)/C is nonabelian, and it also acts faithfully and irreducibly on X1. We

also clearly may assume that Y1 = X1 and hence with (++) and (+ + +) conclude

that CD(V1)/C has exactly two orbits of size of its abelian quotient on X1. Hence

we may apply induction and, in particular, get p = 2, ∣X1∣ = 9 and CD(V1)/C ≅

D8. Moreover, since CD(V1) has exactly two orbits of size M2 on W1, then from
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(+ + +) it follows that Ri−1 has exactly one orbit of size M∗
i−1 on Yi−1 for i = 2, . . . , t.

This forces, for i = 2, . . . , t, that Ri−1 is cyclic of order 2, ∣Yi−1∣ = 3, and hence

CCD(V1)(X1) is elementary abelian of order pdimW1−2. Note that W1 = V2 since p = 2.

Assume that k ≥ 2, so t ≥ 3 (since the Xi all have dimension 2). Then we

may assume that X2 = Y1 ⊕ Y2, and from the above we know that C/CC(X2) is

elementary abelian of order 4.

Now consider the action of CD(V1) on X1. We know that CD(V1) is isomor-

phic to a subgroup of a direct product of k copies of D8, and CD(V1)/C is isomor-

phic to D8 and has four noncentral involutions. If all of them have inverse images

in CD(V1) which act trivially on X2 ⊕ ⋅ ⋅ ⋅ ⊕Xk, then CD(V1) has a D8 as a subgroup

which acts trivially on X2 ⊕ ⋅ ⋅ ⋅ ⊕ Xk, and since the Xi are transitively permuted

by D, it follows that CD(V1) is isomorphic to a direct product of k copies of D8; in

particular, then C/CC(X2) ≅ CD(V1)/CCD(V1)(X2) ≅ D8, contradicting the above

observation that C/CC(X2) is elementary abelian of order 4. Hence there exists an

element c ∈ CD(V1) such that c /∈ C, c2 ∈ C, and c acts nontrivially on at least

one Xi for some i ∈ {2, . . . , k}, so without loss we may assume that c acts nontriv-

ially on X2. Now there is a 0 ≠ x ∈ V1 such that c centralizes x. Since c /∈ C and

C/CC(X2) is elementary abelian of order 4, this shows that CD(x)/CCD(x)(X2) has

order divisible by 8, and thus CD(x)/CCD(x)(X2) is isomorphic to D8 and therefore

has two orbits of size 4 on X2. This allows us in an obvious way to construct two

different orbits of size M2 = 4k of CD(V1) on V2 = W1 having representatives with x

in their X1-component; in addition to another orbit of size M2 having a representa-

tive in the X1-component from the second orbit of size 4 of CD(V1)/C on X1, givng

us in total three distinct orbits of CD(V1) on V2, contradicting the current fact that

CD(V1) has exactly two orbits of size M2 on V2.

Hence our assumption that k ≥ 2 was wrong, and we now have k = 1. So

W1 = V2 = X1 is of order 9, and CD(V1) ≅ D8 acts irreducibly on it and has
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two orbits of size M2 = 4 on it. Hence D8 × D8 ≅ CD(V2) × CD(V1) is a nor-

mal subgroup of G. Now since D/CD(V1) has exactly one orbit of size M1 on V1

(as we saw above), it follows that M1 = 8 and D/CD(V1) must be at least of or-

der 16, and thus D/CD(V1) is a full Sylow 2-subgroup of GL(2,3), i.e., a semidi-

hedral group of order 16. Moreover, ∣G ∶ G′∣ = M = M1M2 = 8 ⋅ 4 = 25 and

∣G∣ = ∣G/D∣ ∣D/CD(V1)∣ ∣CD(V1)∣ = 2 ⋅ 16 ⋅ 8 = 28. Therefore ∣G′∣ = 23. Now let Z =

CD(V1)′ ×CD(V2)′. Then Z ≤ D′ is a Klein 4-group and G′/Z = (G/Z)′. Working in

G/Z, we notice that (CD(V1) ×CD(V2)′)/Z is elementary abelian of order 24, and if

g ∈ G −D, then gZ interchanges the two subgroups CD(Vi)Z/Z ≅ CD(Vi)/CD(Vi)′

(i = 1,2). Looking at the elements [gZ,xZ] ∈ (G/Z)′ for x ∈ CD(V1) shows us that

∣(G/Z)′∣ ≥ ∣CD(V1)Z/Z ∣ = 4 so that altogether 23 = ∣G′∣ = ∣G′/Z ∣∣Z ∣ ≥ 4 ⋅ 4 = 24, which

is a contradiction. This completes Case 2.4.1.1.

Case 2.4.1.2 CD(V1) is abelian.

Then CD(V1) has regular orbits on W1, and thus M2 = ∣CD(V1)∣, so CD(V1)

has exactly two regular orbits on W1.

Note that M2 = ∣CD(V1)∣ and so

M = M1M2 =M1∣CD(V1)∣ = ∣G/G′∣ = p∣D/D′∣

= p∣D ∶D′CD(V1)∣∣D′CD(V1) ∶D′∣

= M1∣D′CD(V1) ∶D′∣

= M1∣CD(V1) ∶ (D′ ∩CD(V1))∣

This forces D′ ∩ CD(V1) = 1. So if x ∈ D and c ∈ CD(V1), then [x, c] ∈

D′ ∩ CD(V1) = 1. This shows that CD(V1) ≤ Z(D) and hence CD(Vi) ≤ Z(D) for

i = 1, . . . p.

Now we consider the k in (+).

First suppose that k = 1, then W1 = X1, but since W1 = V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vp, we see

23



that X1 = V2 and p = 2. In particular, V2 is an irreducible faithful CD(V1)-module,

so CD(V1) is cyclic and has only regular orbits on V2 − {0}. So there are exactly two

such orbits, which shows that (∣V2∣ − 1)/2 = ∣CD(V1)∣. Since ∣CD(V1)∣ is a power of 2,

by an elementary result from number theory (see [12]) it follows that - if we write q

for the characteristic of V - either V2 is of dimension 1 and ∣V2∣ is a Fermat prime,

or ∣V2∣ = 9 and ∣CD(V1)∣ = 4 . In the former case we get that D/CD(V1) is abelian

and hence D is abelian, and so G is abelian (since G′ = D′), a contradiction. In the

latter case we get that D/CD(V1) must be at least of order 8 (since it has exactly

one maximal orbit (of size M1) on V1, and it must be isomorphic to a subgroup the

the semidehedral group SD16, as Sylow 2-subgroup of GL(2,3). However, all such

subgroups have center of order 2, contradicting the fact that ∣CD(V1)∣ = ∣CD(V2)∣ = 4

and CD(V1) ≤ Z(D). This concludes the case that k = 1.

So let k > 1. Then define X0 = 0 and Li = CCD(V1)(X0⊕ ⋅ ⋅ ⋅ ⊕Xi)/CCD(V1)(X0⊕

⋅ ⋅ ⋅ ⊕ Xi+1) for i = 0, . . . , k − 1. As k > 1, we see that L0 has exactly one regular

orbit on X1, because otherwise also L1 would have at least two regular orbits on

X2 which ultimately would lead to CD(V1) having at least four regular orbits on

W1, a contradiction. Since all orbits of L0 on X1 must be regular, we thus con-

clude that ∣L0∣ = ∣X1∣ − 1. Since CD(V1) has exactly two regular orbits on W1, it

follows that there is exaclty one l ∈ {1, . . . , k} such that Ll−1 has exactly two regu-

lar orbits on Xl, whereas all the other Li’s have exactly one regular orbit on Xi+1.

However, since Ll−1 only has regular orbits on Xl − {0}, it is clear that the sin-

gle regular orbit of size ∣Xl∣ − 1 of CD(V1)/CCD(V1)(Xl) on Xl splits into at least

p regular orbits for Ll−1 on XL. This shows that p = 2. Hence CD(V1)CD(V2) =

CD(V1) × CD(V2) ≤ Z(G), and since D/CD(V1) acts faithfully and irreducibly on

V1, we see that CD(V1) ≅ CD(V1)CD(V2)/CD(V2) is cyclic and thus has only regular

orbits on V2 − {0}. So there are exactly two such orbits and we now can arrive at a

contradiction just as in the case that k = 1
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This concludes Case 2.4.1.2 and thus Case 2.4.1 is completed.

Case 2.4.2 CD(V1) has exactly one orbit of size M2 on W1.

Then by Theorem 1.1 CD(V1) is abelian and hence has regular orbits on W1,

so M2 = ∣CD(V1)∣ and the same argument as at the beginning of Case 2.4.1.2 shows

that CD(V1) ≤ Z(D) and hence CD(Vi) ≤ Z(D) for i = 1, . . . p.

Assume that X1 < V2 (where X1 is as in (+)). Since CD(V1) has exactly one

regular orbit on W1, it also has exactly one regular orbit on V2, and since V2 is not

irreducible as CD(V1)-module, by Lemma 2.2 it is clear that CD(V1)/CCD(V1)(V2) is

not cyclic. But since CD(V1) ≤ Z(D), we see that

CD(V1)/CCD(V1)(V2) = CD(V1)/CD(V1 ⊕ V2) = CD(V1)/(CD(V1) ∩CD(V2))

≅ CD(V1)CD(V2)/CD(V2)

is a noncyclic central subgroup of D/CD(V2). But on the other hand, D/CD(V2)

acts faithfully and irreducibly on V2 and hence has a cyclic center, and we have a

contradiction. This shows that X1 = V2, so V2 is an irreducible CD(V1)-module and

CD(V1) has exactly two orbits (one of them being the trivial orbit) on V2. There-

fore again by [12]) it follows that - if we write q for the characteristic of V - either

- p = 2, V2 is of dimension 1 and ∣V2∣ is a Fermat prime; or

- q = 2 and ∣CD(V1)/CD(V1 ⊕ V2)∣ = p is a Mersenne prime; or

- p = 2, q = 3, ∣V2∣ = 9 and ∣CD(V1)∣ = 8.

In the first case we get (as earlier) that D/CD(V1) is abelian and thus D

is abelian, a contradiction. In the second case, since D is a p-group, with [12] we

see that D/CD(V1) cyclic of order p and thus abelian, making D abelian, a con-

tradiction. So we are left with the third case. Here we have that D/CD(V1) is a

subgroup of the semidihedral group of order 16, so ∣G∣ ≤ 29, and ∣G∣ ≤ 28 unless

D ≅ SD16 × SD16. Moreover, since any g ∈ G −D interchanges CD(V1) and CD(V2),
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by taking commutators of elements in CD(V1) with g we easily see that ∣D′∣ ≥ 8

and so ∣G′∣ ≥ 8. Now D has an orbit of size ≥ 26 on V (from the regular orbit of

CD(V1) × CD(V2). So if ∣G∣ ≤ 28, we get 25 < 26 ≤ M = ∣G/G′∣ ≤ 28/23 = 25, a

contradiction. This leaves us with ∣G∣ = 29, and D ≅ SD16 × SD16, but in this case

for similar reasons as above we see that ∣D′∣ ≥ 24 and thus get the contradiction

25 < 26 ≤M = ∣G/G′∣ ≤ 29/24 = 25.

This final contradiction concludes the proof of the theorem. ◇
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V. PROOF OF MAIN RESULT

The goal of this section is to prove the main result of this paper. First, we

restate the result,

Theorem 3. Let G be a finite nonabelian solvable group and V a finite faithful ir-

reducible G-module. Suppose that M = ∣G/G′∣ is the largest orbit size of G on V

and that there are exactly three orbits of size M on V . Then G = D8 ○ C4, the cen-

tral product of the dihedral group of order 8 and the cyclic group of order 4, and

V = V (2,5).

Proof. Assume that the result is not true and let G,V be a counterexample such

that ∣GV ∣ is minimal. We will note that since ∣G/G′∣ = M , then by Theorem 1 we

know that G is nilpotent. A proof of this can be found in both [9] and [7]. We will

start by making the reduction to p-groups.

Step 1: A Reduction to p-groups

Assume that G is not a p−group, then ∣G∣ is divisible by at least two distinct

primes, call them p and q. Let P ∈Sylp(G) and H ∈ Hallq(G). Since G is nilpotent,

we know that P ⊲ G [3]. Furthermore, we know that G = P ×H [3]. By the hypoth-

esis we know V is a finite G−module over a field, call it K. By [14], there exists a

field extension L of K such that if U is an irreducible summand of V viewed as an

LG −module, then the permutation actions of G on V and U are permutation iso-

morphic. This allows us to consider the action of G on U instead of V . Through

relabeling we can assume V is absolutely irreducible. Using [1] we may assume that

V = X1 ⊗X2 where X1 is a faithfully irreducible P−module and X2 is a faithfully

irreducible H−module. We can pick an x1 ∈ X1 and a x2 ∈ X2 such that ∣xP1 ∣ is the

largest orbit size of P on X1, ∣xH2 ∣ is the largest orbit size of H on X2, and we have

∣P /P ′∣ ≤ ∣xP1 ∣,
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∣H/H ′∣ ≤ ∣xH2 ∣.

If g ∈ P and g ∈ H such that gh ∈ CG(x1 ⊗ x2) then x1g = αx1 and x2h = βx2

where α,β are scalars in the field with αβ = 1 [11]. Now g and h have coprime

orders so we have that α = β = 1 which gives

CG(x1 ⊗ x2) = CP (x1) ×CH(x2).

We now have the following

∣G/G′∣ =M ≥ ∣(x1 ⊗ x2)G∣ = ∣G ∶ Cp(x1) ×CH(x2)∣ (1)

= ∣P ∶ CP (x1)∣∣H ∶ CH(x2)∣

= ∣xP1 ∣∣xH2 ∣ ≥ ∣P /P ′∣∣H/H ′∣ = ∣G/G′∣.

Since we have inequality everywhere in (1), we have ∣xP1 ∣ = ∣P /P ′∣ and ∣xH2 ∣ =

∣H/H ′∣. Therefore ∣P /P ′∣ is the largest orbit size of P on X1 and similarly ∣H/H ′∣ is

the largest orbit size of H on X2. From now on let M1 = ∣P /P ′∣ and M2 = ∣H/H ′∣.

We can now break this into 7 cases.

Case 1: P and H have exactly one maximal orbit of size M1 and M2 re-

spectively. Then by theorem 1, both P and H are abelian. But if P and H are

both abelian then G = P ×H is abelian. A contradiction to G being nonabelian.

Case 2: P and H have exactly two maximal orbits of size M1 and M2 re-

spectively. Let y1 ∈ X1 be a representative of the second orbit of size M1 on X1 and

y2 ∈X2 be a representative of the second orbit of size M2 on X2. Then using (1),

∣G/G′∣ = ∣(x1 ⊗ x2)G∣ = ∣(x1 ⊗ y2)G∣ = ∣(y1 ⊗ x2)G∣ = ∣(y1 ⊗ y2)G∣ =M

we have four orbits of size M in the action of G on V . A contradiction to having
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exactly three orbits of size M .

Case 3: P and H have exactly three maximal orbits of size M1 and M2 re-

spectively. Let y1, y3 ∈ X1 be the representatives of the other two orbits of size M1

of P on X1 and y2, y4 ∈ X2 be the representatives of the other two orbits of size M2

of H on X2. Then using (1),

∣G/G′∣ = ∣(x1⊗x2)G∣ = ∣(x1⊗y2)G∣ = ∣(x1⊗y4)G∣ = ∣(y1⊗x2)G∣ = ∣(y1⊗y2)G∣ = ∣(y1⊗y4)G∣

= ∣(y3 ⊗ x2)G∣ = ∣(y3 ⊗ y2)G∣ = ∣(y3 ⊗ y4)G∣ =M

we have nine orbits of size M in the action of G on V . A contradiction to having

exactly 3 orbits of size M .

Case 4: one of the following holds, P has more than three orbits of size M1

on X1 or H has more than three orbits of size M2 on X2. First suppose P has four

orbits of maximal size on X1. Let y1, y3, y5 ∈ X1 be the representatives of the re-

maining three orbits. Then using 1,

∣G/G′∣ = ∣(x1 ⊗ x2)G∣ = ∣(y1 ⊗ x2)G∣ = ∣(y3 ⊗ x2)G∣ = ∣(y5 ⊗ x2)G∣ =M

we have four orbits of size M when G acts on V . A contradiction of our hypothesis

having exactly three orbits of size M . Replace P with H to show that H can not

have more than three orbits of size M2. Clearly, P and H can not both have more

than three orbits of size M1 and M2 respectively.

Case 5: P has exactly three orbits of size M1 on X1 and H has exactly two

orbits of size M2 on X2 or the opposite, H has exactly three orbits of size M2 on

X2 and P has exactly two orbits of size M1 on X1. Consider the first option. Let

y1, y3 ∈ X1 be representatives the other two orbits of size M1 on X1 and let y2 ∈ X1
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be representatives the other orbit of size M2 on X2. Then using 1,

∣G/G′∣ = ∣(x1 ⊗ x2)G∣ = ∣(x1 ⊗ y2)G∣ = ∣(y1 ⊗ x2)G∣ = ∣(y1 ⊗ y2)G∣ = ∣(y3 ⊗ x2)G∣

= ∣(y3 ⊗ y2)G∣ =M

we have six orbits of size M in the action of G on V . A contradiction to having

exactly 3 orbits of size M . To see the other option, just recreate this proof with

y1 ∈ X1 as a representative of the other orbit of size M1 on X1 and y2, y4 ∈ X2 as

representatives of the other two orbits of size M2 on X2.

Case 6: P has exactly two orbits of size M1 on X1 and H has exactly one

maximal orbit on X2 or the opposite, H has exactly two orbits of size M2 on X2

and P has exactly one maximal orbit on X1. Consider the first option. Suppose

P has exactly two orbits of size M1 on X1 and H has exactly one maximal orbit

on X2. Let y1 ∈ X1 represent the second orbit of P on X1. Then (x1 ⊗ x2)G and

(y1 ⊗ x2)G are two distinct orbits of size M of G on V . Since H has exactly one

maximal orbit, by Theorem 1 H must be abelian. Therefore ∣H/H ′∣ = ∣H ∣ = ∣xH2 ∣ and

by Lemma 1 H ≅ H/CH(X2) and H is a cyclic group of order ∣X2∣ − 1. We know

P can not be abelian or else G = P ×H would be abelian. Thus we can use [7] to

get P = D8 and X1 = V (2,3). This makes char(X1) = 3 and char(X2) = 3, leaving

us with ∣H ∣ = 3n − 1 for some n ∈ N. This makes ∣H ∣ even and contradicts that

P ∈Syl2(G). Now consider when H has exactly two orbits of size M2 on X2 and

P has exactly one maximal orbit on X1. By Theorem 1 P is an abelian group and

by Lemma 1 P is a cyclic group of order ∣X1∣ − 1. We know H can not be abelian

or else G is, so we may use induction to see that H = D8 and X2 = V (2,3). This

means that ∣H ∣ = 8 and char(X1) =char(X2) = 3 and ∣P ∣ is even, contradicting that

gcd(∣H ∣, ∣G∣) = 1.

Case 7: P has exactly three orbits of size M1 on X1 and H has exactly one
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maximal orbit on X2 or the opposite, H has exactly three orbits of size M2 on X2

and P has exactly one maximal orbit on X1. Consider the first option. Suppose P

has exactly three orbits of size M1 on X1 and H has exactly one maximal orbit on

X2. Let y1, y2 ∈ X1 represent the other two orbits of P on X1. Then (x1 ⊗ x2)G,

(y1⊗x2)G and (y2⊗x2)G are three distinct orbits of size M of G on V . Since H has

exactly one maximal orbit, by Theorem 1 H must be abelian. Therefore ∣H/H ′∣ =

∣H ∣ = ∣xH2 ∣ and by Lemma 1 H ≅H/CH(X2) and H is a cyclic group of order ∣X2∣−1.

We know P can not be abelian or else G = P × H would be abelian. Thus we can

use induction to get P = D8 ○ C4 and X1 = V (2,5). This makes char(X1) = 5 and

char(X2) = 5, leaving us with ∣H ∣ = 5n − 1 for some n ∈ N. This makes ∣H ∣ even

and contradicts that P ∈Syl2(G). Now consider when H has exactly three orbits of

size M2 on X2 and P has exactly one maximal orbit on X1. By Theorem 1 P is an

abelian group and by Lemma 1 P is a cyclic group of order ∣X1∣ − 1. We know H

can not be abelian or else G is, so we may use induction to see that H = D8 ○ C4

and X2 = V (2,5). This means that ∣H ∣ = 16 and char(X1) =char(X2) = 5 and ∣P ∣ is

even, contradicting that gcd(∣H ∣, ∣G∣) = 1.

Step 2: A Reduction to the Case that V is Imprimitive

The next step is to show that V is imprimitive. We will recreate the proof

from [7] for the sake of completeness. Assume that V is quasiprimitive. Using the

proof of Theorem 3.3 in [12] we can write G = S × T where S is a 2-group and T

is a cyclic group of odd order and by Corollary 1.3 in [12] G is cyclic, quaternion,

dihedral, or semi-dihedral and G ≇ D8. It is well-known that the derived subgroup

of the quaternion, dihedral, and semi-dihedral 2-groups have index 4 [IS]. We also

know there exists a U ⊲ G where U is cyclic, ∣G ∶ U ∣ ≤ 2 and U has a regular orbit

on V . This gives the inequality M ≥ ∣U ∣ ≥ ∣G∣/2. Since G is a nonabelian p−group,

we have ∣T ∣ = 1 and G = S, and p = 2. This makes G a nonabelian 2−group so ∣G∣ > 4

31



and 8∣∣G∣. All together we have

∣G/G′∣ = 4 ≤ ∣G∣/2 ≤M

We have equality here so ∣G′∣ = 2 and ∣G∣ = 8 making G the quaternion group. It

is known that the quaternion group has a regular orbit on V [12] contradicting

M = 4. Therefore V can not be quasiprimitive. In fact, V is imprimitive. Thus

completes the recreation of the proof that V is imprimitive in [7].

Step 3: The Case Where V is Imprimitive

Since we know V is imprimitive now, then there exists a D ⊴ G with

∣G ∶D∣ = p where p is prime and VD = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vp for irreducible D−modules Vi of

VD. There are two cases to consider, D′ < G′ and D′ = G′.

Step 3.1: The Case Where D′ < G′

Suppose D′ < G′, that is, p∣D′∣ ≤ ∣G′∣. Then by using Theorem 1 we have the follow-

ing inequality:

M ≥ ∣D ∶D′∣ = ∣D∣
∣D′∣ =

p∣D∣
p∣D′∣ ≥

∣G∣
∣G′∣ =M.

Therefore ∣D ∶ D′∣ = M . Since ∩p
i=1CG(Vi) = 1, we have that D is isomorphic to a

subgroup of D/CD(V1) × . . . ×D/CD(Vp) [9]. From now on we will use the symbol

H ⪅ G to denote the fact that H is isomorphic to a subgroup of G. Therefore

D ⪅D/CD(V1) × . . . ×D/CD(Vp) =
p

i=1D/CD(Vi) =∶ T. (2)

The above equation tells us that if D/CD(V1) is abelian for any i = 1, . . . , p then

D/CD(Vi) is abelian for all i = 1, . . . , p and D will follow. This is an important fact

that we will reference in the following arguments. We know from Theorem 1 that

since ∣D ∶ D′∣ = M then one of the following is true: D is abelian, D has 2 orbits
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of size M on VD or D has 3 orbits of size M on VD. We know that D can not have

more than 3 orbits of size M on VD or else G would have more than three orbits of

size M on V or an orbit larger than size M on V . Recall that VD = V1⊕V2⊕ ⋅ ⋅ ⋅⊕Vp,

with each Vi being irreducible faithful D-modules. Let Wi = ⊕p
j=1,j≠iVj. Write M1 for

the largest orbit size of D on V1 and M2 for the largest orbit size of CD(V1) on W1.

Also let MD be the largest orbit size of D on V . Let x ∈ VD be in a largest orbit of

D on VD. Write x = x1 + x2 for some x1 ∈ V1 and x2 ∈W1. Observe that

MD = ∣D ∶ CD(x)∣ = ∣D ∶ CD(x1) ∩CD(x2)∣ =

∣D ∶ CD(x1)∣∣CD(x1) ∶ CD(x1) ∩CD(x2)∣ = ∣xD1 ∣∣xCD(x1)
2 ∣.

If ∣xD1 ∣ < M1, then the same calculation would show that if y1 ∈ V1 with ∣yD1 ∣ = M1,

then ∣D ∶ CD(y1 + x2)∣ > MD, contradicting the definition of MD. Thus we have

∣xD1 ∣ =M1. Moreover, ∣xCD(x1)
2 ∣ ≥ ∣xCD(V1)

2 ∣. We also can conclude that ∣xCD(x1)
2 ∣ ≥M2,

because if ∣xCD(x1)
2 ∣ <M2, then let y2 ∈W1 such that ∣yCD(V1)

2 ∣ =M2, and then

MD = ∣(x1 + y2)D∣ = ∣D ∶ CD(x1) ∩CD(y2)∣ = ∣D ∶ CD(x1)∣∣CD(x1) ∶ CD(x1) ∩CD(y2)∣

M1∣yCD(x1)
2 ∣ =M1M2 >M1∣xCD(x1)

2 ∣ = ∣D ∶ CD(x)∣ =MD,

a contradiction. Thus altogether we get M ≥MD ≥M1M2.Then

M ≥ ∣xD∣ = ∣D ∶ CD(x)∣ = ∣D ∶ CD(x1) ∩CD(x2)∣

= ∣D ∶ CD(x1)∣∣CD(x1) ∶ CD(x1) ∩CD(x2)∣ =M1∣xCD(x1)
2 ∣ ≥M1∣xCD(W1)

2 ∣ =M1M2.

By applying Theorem 2 ∣D ∶ D′∣ divides ∣D/CD(V1) ∶ D/CD(V1)′∣∣CD(V1)/CD(V1)′∣
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and we have

M ≥M1M2 ≥ ∣D/CD(V1) ∶ (D/CD(V1)′)∣∣CD(V1) ∶ CD(V1)′∣ ≥ ∣D ∶D′∣ =M.

This shows M1M2 =MD =M and it follows that M1 = ∣D/CD(V1) ∶ (D/CD(V1))′∣

and M2 = ∣CD(V1) ∶ CD(V1)′∣. Suppose that there exists y1, z1, a1 ∈ V1 where y1, z1, a1

are representatives of 3 new orbits of size M1 of D/CD(V1) acting on V1. Then as

we have seen previously, x1 + x2, y1 + x2, z1 + x2, and a1 + x2 are four representatives

of orbits of size M of D on VD. This contradicts our hypothesis. So we know

D/CD(V1) has at most 3 orbits of size M1 on V1. We also know that if D/CD(V1)

has exactly one orbit of size M1 on V1 then D/CD(V1) is abelian by Theorem 1 and

by (2) D would also be abelian. Therefore we can split the case into D being

abelian and D being nonabelian. We will look at the case that D is nonabelien

first.

Step 3.1.1: The Case Where D is Nonabelian

When D is nonabelian then we know D/CD(V1) must have either two or three or-

bits of size M1 on V1. We know by (2) that D/CD(V1) is not abelian or else D would

be abelian as a result. We also know that CD(V1) must have exactly one orbit of

size M2 on W1 or else G would have too many orbits of size M as a result, this is

a similar argument as made in the reduction to p−groups section. Thus D/CD(V1)

has either exactly two orbits or exactly three orbits.

Step 3.1.1.1: The Case Where D/CD(V1) has Exactly Two Orbits of

Size M1

When D/CD(V1) has exactly two orbits of size M1, by [7], D/CD(V1) = D8,

V1 = V (2,3), and p = 2 so ∣W1∣ = ∣V1∣ = ∣V2∣. We have D ⪅ D/CD(V1) ×D/CD(V2) ≅

D8 ×D8 making CD(V1) ⪅ D8. If CD(V1) ≅ D8 then CD(V1) has two orbits of size
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M2 on V2, contradicting CD(V1) having exactly one orbit of size M2 on W1 = V2.

Therefore CD(V1) is of order one, two or four. This makes CD(V1) abelian which

gives it at least two regular orbits (i.e, two orbits of size M2 = ∣CD(V1)∣) unless

CD(V1) is the Klein four-group. Since CD(V1) has only one orbit of size M2 on V2,

we conclude that CD(V1) is the Klein four-group. Since CD(V1) and CD(V2) are

conjugate under the action of G, then CD(V2) is also a Klein four-group. Thus C =

CD(V1)CD(V2) is elementary abelian of order 16. Let d ∈ D −C, then [d,CD(V1)] ≤

CD(V1) is cyclic of order 2, [d,CD(V2)] ≤ CD(V2) is cyclic of order 2 and CD(V1) ∩

CD(V1) = 1. It follows that ∣D′∣ ≥ 4, so 16 =M = ∣D/D′∣ ≤ 32/4 = 8, a contradiction.

Step 3.1.1.2: The Case Where D/CD(V1) has Exactly Three Orbits of

Size M1

When D/CD(V1) has exactly three orbits of size M1, by induction, we have

D/CD(V1) = D8 ○ C4, V1 = V (2,5), and p = 2 thus ∣W1∣ = ∣V1∣ = ∣V2∣. We have

D ⪅ D/CD(V1) × D/CD(V2) ≅ (D8 ○ C4) × (D8 ○ C4) making CD(V1) ⪅ D8 ○ C4.

But, if CD(V1) ≅ D8 ○ C4 then CD(V1) has three orbits of size M2 on V2; a con-

tradiction to CD(V1) having exactly one orbit of size M2 on W1 = V2. Therefore

CD(V1) must be isomorphic to a proper subgroup of D8 ○ C4 (i.e. CD(V1) is one of

the following: C2, C4, V4, C2 ×C4, Q8, D8). All proper subgroups of CD(V1) have at

least two regular orbits (an orbit of size M2 = ∣CD(V1)∣), unless CD(V1) is the dihe-

dral group of order 8. Therefore we can conclude CD(V1) is D8. Since CD(V1) and

CD(V2) are conjugate under the action of G, then CD(V2) is also a dihedral group

of order 8. Let v1 ∈ V1 be in an orbit of size M1 = 8 of D/CD(V1) on V1, such that

v1 is in a regular orbit of CD(V2) on V1. We claim that ∣CD(v1)∣ = 16. Note that

D8 ≅ CD(V1) ≤ CD(v1) so ∣CD(v1)∣ ≥ 8. Assume ∣CD(v1)∣ = ∣CD(V1)∣ = 8.Then

∣vD1 ∣ = ∣D ∶ CD(v1)∣ = 16 and vD1 ≤ V1 so D has an orbit of size 16 on V1, a contradic-

tion to M1 = 8. Thus ∣C(v1)∣ must be greater than 8 and as a p-group, it must be of

order at least 16. Since ∣CD(v1) ∩ CD(V2)∣ = 1, then ∣CD(v1)CD(V2)∣ ≥ 16 ⋅ 8 = ∣D∣.
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Combined with C(v1)CD(V2) ≤ D and ∣DD(v1)CD(V2)∣ = ∣CD(v1)∣∣CD(V2)∣, gives us

∣CD(v1)∣ = 16. Now ∣CD(v1)∣ = 16 and CD(v1) ∩CD(V2) = 1, therefore

CD(v1) ≅ CD(v1)/(CD(v1) ∩CD(V2)) ≅ CD(v1)CD(V2)/CD(V2) ≅D/CD(V2) ≅D8 ○C4

where the third isomorphism comes from the isomorphism theorems. Hence we

have CD(v1) ≅D8 ○C4. Therefore CD(v1) acts faithfully on V2 and if z1, z2, z3 ∈ V2

are representatives of the three orbits of size eight in the action of CD(v1) on V2,

then v1 + z1, v1 + z2, and v1 + z3 are representatives of three orbits of size

64 =MD =M of D on VD. Now let w1 ∈ V1 be in an orbit of D of size M1 = 8 such

that w1 is not in a regular orbit of CD(V2) on V1. Let z4 ∈ V2 be in the (unique)

regular orbit of CD(V1) on V2 (so it is of size M2 = 8). Then clearly w1 + z4 is a

representative of an orbit of size 64 =M of D on V that is different from the orbits

containing v1 + z1, v1 + z2, and v1 + z3. Thus we have found four orbits of size

64 =M of D on V which contradicts our hypothesis. This concludes the case where

D is nonabelian.

Step 3.1.2 The Case Where D is Abelian

When D is abelian, there are three possibilities; D has exactly one orbit of size M

on V , D has exactly two orbits of size M on V , and D has exactly three orbits of

size M on V . Clearly D can not have four orbits of size M or else G has four orbits

of size M on V or an orbit larger than M on V . Recall that

∣G/G′∣ =M =MD = ∣D∣ = ∣G∣/p, thus ∣G′∣ = p. We may use Theorem 3.2 from [5] to

state that p = 2 and there exists a v ∈ V such that ∣CG(v)∣ ≤ 2, in particular

∣CG(v)∣ = 2 in our case or else G would have a regular orbit making ∣G∣ =M = ∣D∣

which contradicts p∣D∣ = ∣G∣. This allows us to improve on the proof given by [7].
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Step 3.1.2.1: The Case Where D has Exactly One Orbit of Size M

Since D is abelian, D has regular orbits, so M = ∣D∣. Therefore D must have

exactly one regular orbit. Then by Lemma 1, we have D =
p

i=1CD(Wi). We can

note that G/D cycles these direct factors around, therefore ∣G ∶ G′∣ = p∣CD(W1)∣ (see

[7]). Additionally, ∣G/G′∣ = ∣D∣ = ∣CD(W1)∣p which implies that ∣CD(W1)∣p−1 = p.

Since p = 2, then ∣CD(W1)∣ = 2. It follows that ∣D∣ = ∣CD(W1)∣p = 4, D is elementary

abelian, ∣G∣ = 8, and G is nonabelian. Since M = ∣D∣ = 4 and ∣G∣ = 8, G does not

have a regular orbit on V making G the dihedral group of order 8. Since D is

elementary abelian and has exactly one regular orbit on V , we can conclude that

∣V ∣ = 9. We know by [7] that G =D8 has exactly 2 orbits of size M on V = V (2,3).

This contradicts that G has exactly three orbits of size M on V in the hypothesis.

This concludes the case where D has exactly one orbit of size M on V .

Step 3.1.2.2: The Case Where D has Exactly Two Orbits of Size M

Assume that D has exactly two orbits of size M on V , we know that these are

regular orbits as D is abelian. To keep consistent, we will denote the largest orbit

size of the action of D/CD(V1) on V1 as M1, and M2 will denote the largest orbit

size of CD(V1) acting on W1 = V2. Recall that D/CD(V1) has at most two orbits of

size M1 on V1 if D has only 2 orbits. So for i = 1,2, D/CD(Vi) are isomorphic and

D/CD(Vi) has either one or two orbits of size M1 acting on Vi. Suppose we have

two orbits of size M1 in the action of D/CD(V1) on V1, then as argued previously

CD(V1) must have exactly one orbit of size M2 on V2 or else G would have too

many orbits of size M on V . Since D/CD(V1) has two regular orbits on V1, then

D/CD(V2) will have at least two regular orbits on V2, which immediately implies

that CD(V1) has two regular orbits on V2, contradiction. Therefore we know that

D/CD(V1) has only one orbit of size M1 in the action on V1 and CD(V1) has exactly

two orbits of size M2 on V2. Thus we have ∣D/CD(V1)∣ = ∣V1∣ − 1, and D/CD(V1) is
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cyclic. Now we have D ⪅D/CD(Vi) =∶ T and T has exactly one regular orbit on V .

Every regular orbit of T on V splits into ∣T ∣
∣D∣ regular orbits of D. Since D has no

more than two orbits of size M =MD = ∣D∣, we see that ∣T ∣
∣D∣ ≤ 2. If ∣T ∣

∣D∣ = 1, then

T =D and so CD(V1) ≅
p

i=2D/CD(Vi) has only one regular orbit on W1, a

contradiction.Therefore we know that ∣T ∣
∣D∣ = 2. Then from Lemma 1 we have that

∣T ∣ = (∣Vi∣ − 1)p, thus

(∣V1∣ − 1)p = 2∣D∣ = 2pk (3)

for appropriate k. We wish to show that ∣CD(V1)∣ = 2. Observe that

CD(V1) ∩CD(V2) = 1 and so CD(V1) ×CD(V2) = CD(V1)CD(V2) ≤D. Let g ∈ G −D

and (1, a) ∈ CD(V1) ×CD(V2), then G′ contains the element

[(1, a), g] = (1, a)−1g−1(1, a)g = (1, a)−1(1, a)g = (1, a−1)(a∗,1) = (a∗, a−1)

for suitable a∗ ∈ CD(V1). If there are more than two choices for a ∈ CD(V2) then

∣G′∣ ≥ 3. On the other hand, ∣G∣
∣G′∣ = ∣D∣ and ∣G∣

∣D∣ = 2 so ∣G′∣ = ∣G∣/∣D∣ = 2. We conclude

that ∣CD(V1)∣ ≤ 2. If ∣CD(V1)∣ = 1 then D =D/CD(V1), but we know that D has

exactly two orbits of size M1 on V1 while D/CD(V1) has only one orbit of size M1

on V1. Therefore we can say ∣CD(V1)∣ = 2. Therefore we can say ∣CD(V1)∣ = 2. We

can now determine ∣D∣ using ∣T ∣
∣D∣ =

∣D/CD(V1)∣∣D/CD(V2)∣
∣D∣ = 2. So 2∣D∣ = ∣D∣

2
∣D∣
2 = ∣D∣2

4 , or

∣D∣ = 8 and ∣G∣ = 16. From Lemma 1 ∣D/CD(V1)∣ = 4 = ∣V1∣ − 1 giving us

∣V1∣ = 5, i = 1,2, and thus V = GF(5)2. Then {(1,0), (2,0), (3,0), (4,0)} and

{(0,1), (0,2), (0,3), (0,4)} are both orbits of D on V (as D/CD(V1) has an orbit of

size 4 on Vi), and their union is an orbit of size 8 of G on V . Moreover, if

a, b ∈ GF(5) − {0}, then (a, b)D will contain (a,−b) as CD(V1) acts as x→ −x on V2.

Since D/CD(V1) has an orbit of size 4 on V1, we also see that (a, b)D will contain

elements of the form (1,∗), (2,∗), (3,∗), and (4,∗). Altogether we see that

∣(a, b)D∣ = 8 =M . Putting this together shows that, since 8 =M , G has three orbits

38



of size 8 on V . We know that G must be a subset of the Sylow 2-group of GL(2,5).

There are three subgroups the the Sylow 2-group of GL(2,5) that G can possibly

be: C4 ×C4, M4(2) (the maximum modular cyclic group Mn(2),a semidirect

product Cn−1
2 ⋊C2 where C2 acts on Cn−1

2 by x↦ x2
n−2+1), and our group D8 ○C4.

We know that G ≠ C4 ×C4 as C4 ×C4 is abelian and G is not. By calculating the

orbits of M4(2) on V (2,5) by matrix multiplication, we receive one orbit of size 8

and one orbit of size 16. But we know that our group has 3 orbits of size M = 8.

This leaves only G =D8 ○C4, a second verification that D8 ○C4 satisfies our

hypothesis. This concludes the case that D has exactly two orbits of size M .

Step 3.1.2.3: The Case Where D has Exactly Three Orbits of Size M

Assume that D has exactly three orbits of size M on V , we know that these are

regular orbits as D is abelian. We will denote the largest orbit size of the action of

D/CD(V1) on V1 as M1, and M2 will denote the largest orbit size of CD(V1) acting

on W1. Recall that D/CD(V1) has at most three orbits of size M1 on V1. So the

D/CD(Vi) for i = 1, . . . , p are all isomorphic and D/CD(Vi) has either one, two, or

three orbits of size M1 acting on Vi. Suppose we have three orbits of size M1 in the

action of D/CD(V1) on V1, then as argued previously CD(V1) must have exactly one

orbit of size M2 on W1 or else we have too many orbits as they do not combine.

Suppose we have two orbits of size M1 in the action of D/CD(V1) on V1, then if

CD(V1) has two or three orbits of maximal size M2 then we have too many orbits

and if CD(V1) has one orbit of maximal size then we do not have enough. Therefore

we know that D/CD(V1) has only one orbit of size M1 in the action of D/CD(V1)

on V1 and CD(V1) has exactly three orbits of size M2 on W1. Thus we have

∣D/CD(V1)∣ = ∣V1∣ − 1, and D/CD(V1) is cyclic. Now we have D ⪅
p

i=1D/CD(Vi) =∶ T

and T has exactly one regular orbit on V . Every regular orbit of T on V splits into

∣T ∣
∣D∣ regular orbits of D. Since D has no more than three orbits of size
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M =MD = ∣D∣, we see that ∣T ∣
∣D∣ ≤ 3. If ∣T ∣

∣D∣ = 1, then T =D and so

CD(V1) ≅
p

i=1D/CD(Vi) has only one regular orbit on W1, a contradiction.

Suppose ∣T ∣
∣D∣ = 2. Then from Lemma 1 we have that ∣T ∣ = (∣Vi∣ − 1)p, thus

(∣V1∣ − 1)p = 2∣D∣ = 2pk (4)

for appropriate k. Since p = 2, we have V = V1 ⊕ V2 and W2 = V2 ⊕ ..⊕ Vp = V2. We

know that ∣CD(V1)∣ < ∣D/CD(V2)∣ and that CD(V1) <D/CD(V2). So the regular

orbit of D/CD(V2) would split into ∣D/CD(V2)∣
∣CD(V1)∣ regular orbits. This is impossible as

CD(V1) has 3 regular orbits. Therefore we are left with ∣T ∣
∣D∣ = 3, then p = 3. But as

stated previously in step 3.1.2, by Theorem 3.2 in [5], p = 2, a contradiction. This

concludes the case where D has exactly three orbits and in turn concludes the

broader cases where D is abelian and D′ < G′.

Step 3.2: The Case Where D′ = G′

We will consider the action of D/CD(V1) on V1 and CD(V1) acting on W1.

Using Theorem 1, we have the following inequalities

∣D ∶D′CD(V1)∣ ≤M1 (5)

∣CD(V1) ∶ CD(V1)′∣ ≤M2 (6)

where M1 is the largest orbit size of D/CD(V1) on V1 and M2 is the largest orbit

size of CD(V1) on W1. There are now four cases to consider; strict inequality in (5)

and (6), equality in (5) and strict inequality in (6), equality in both (5) and (6),
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and equality in (6) and strict inequality in (5).

Step 3.2.1: The Case Where We have Strict Inequality in (5) and (6)

First we consider the case where we have strict inequality in (5) and (6). Be-

cause G is a p-group we know that p∣D ∶ D′CD(V1)∣ ≤M1 and p∣CD(V1) ∶ CD(V1)′∣ ≤

M2. Therefore

M ≥M1M2 ≥ p2∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣.

Recall ∣G ∶D∣ = p and notice that ∣D ∶D′∣ ≤MD ≤ pM1M2 so

p2∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣ ≥ p∣G ∶D∣∣D ∶D′∣ = p∣G ∶D′∣ = p∣G ∶ G′∣ > ∣G ∶ G′∣.

Putting the above equations together we have ∣G ∶ G′∣ < M . This contradicts our

hypothesis that ∣G ∶ G′∣ =M , and therefore either (5) or (6) must be an equality.

Step 3.2.2: The Case Where We have Equality in (5) and Strict

Inequality in (6)

Consider the case of equality in (5), that is ∣D ∶D′CD(V1)∣ =M1. If D/CD(V1)

is abelian then by (2) we have D is abelian. If D is abelian then 1 = D′ = G′ and G

is abelian, a contradiction. Therefore, we note that D/CD(V1) cannot be abelian for

the rest of the paper. By Theorem 1 we have that D/CD(V1) has at least two orbits

of size M1 on V1. Let v1, v2 ∈ V1 be representatives of two different orbits of size M1

in the action of D/CD(V1) on V1. Let w ∈W1 be in an orbit of size M2 in the action

fo CD(V1) on W1. Because (6) is strict, we have p∣CD(V1) ∶ CD(V1)′∣ ≤ M2. This

gives us the following,

M ≥ ∣(vi +w)G∣ ≥ ∣vD/CD(V1)
i ∣∣wCD(V1)∣ =M1M2
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≥ p∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣ ≥ ∣G ∶ G′∣ =M

for i = 1,2. This gives equality everywhere. Since G has exactly three orbits of

size M on V , D/CD(V1) has either two or three orbits of size M1 on V1. Suppose

D/CD(V1) has two orbits of size M1 on V1, then by [7] D/CD(V1) ≅ D8, ∣V1∣ = 9

and p = 2. Thus M1 = 4 and M2 ≤ 4. This gives us CD(V1) ≤ D8. If CD(V1) ≅ D8

then ∣CD(V1) ∶ CD(V1)′∣ = 4 contradicting (6) is strict. Therefore CD(V1) is size one,

two, or four. This makes CD(V1) abelian. That means M2 = ∣CD(V1)∣ = ∣CD(V1) ∶

CD(V1)′∣ which contradicts (6) is strict. Thus D/CD(V1) must have three orbits of

size M1 on V1 and by induction D/CD(V1) ≅ D8 ○ C4, ∣V1∣ = 25 and p = 2. Thus

M1 = 8 and M2 ≤ 8. This gives us CD(V1) ≤ D8 ○ C4. If CD(V1) ≅ D8 ○ C4 then

∣CD(V1) ∶ CD(V1)′∣ = 8 contradicting (6) is strict. Therefore CD(V1) is size one,

two, four, or eight. If CD(V1) is of size one, two, or four then CD(V1) is abelain and

that means M2 = ∣CD(V1)∣ = ∣CD(V1) ∶ CD(V1)′∣ which contradicts (6) is strict. So,

CD(V1) must be of size eight and thus be D8, C2 × C4, or Q8 as it is a subgroup

of D8 ○ C4. If CD(V1) is C2 × C4 or Q8, then (6) can not be strict because each

have more than one maximal orbit. Which leaves CD(V1) to be D8. Then the ac-

tion D/CD(V1) on V1 has three orbits of order eight and the action CD(V1) on W1

has one orbit of order 8 and four orbits of order four. Following the argument from

Step 3.1.1.2. Let v1 ∈ V1 be in an orbit of size M1 = 8 of D/CD(V1) on V1, such that

v1 is in a regular orbit of CD(V2) on V1. We claim that ∣CD(v1)∣ = 16. Note that

D8 ≅ CD(V1) ≤ CD(v1) so ∣CD(v1)∣ ≥ 8. Assume ∣CD(v1)∣ = ∣CD(V1)∣ = 8.Then

∣vD1 ∣ = ∣D ∶ CD(v1)∣ = 16 and vD1 ≤ V1 so D has an orbit of size 16 on V1, a contradic-

tion to M1 = 8. Thus ∣C(v1)∣ must be greater than 8 and as a p-group, it must be of

order at least 16. Since ∣CD(v1) ∩ CD(V2)∣ = 1, then ∣CD(v1)CD(V2)∣ ≥ 16 ⋅ 8 = ∣D∣.

Combined with C(v1)CD(V2) ≤ D and ∣DD(v1)CD(V2)∣ = ∣CD(v1)∣∣CD(V2)∣, gives us
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∣CD(v1)∣ = 16. Now ∣CD(v1)∣ = 16 and CD(v1) ∩CD(V2) = 1, therefore

CD(v1) ≅ CD(v1)/(CD(v1) ∩CD(V2)) ≅ CD(v1)CD(V2)/CD(V2) ≅D/CD(V2) ≅D8 ○C4

where the third isomorphism comes from the isomorphism theorems. Hence we

have CD(v1) ≅ D8 ○ C4. Therefore CD(v1) acts faithfully on V2 and if z1, z2, z3 ∈ V2

are representatives of the three orbits of size eight in the action of CD(v1) on V2,

then v1+z1, v1+z2, and v1+z3 are representatives of three orbits of size 64 =MD =M

of D on VD. Now let w1 ∈ V1 be in an orbit of D of size M1 = 8 such that w1 is not

in a regular orbit of CD(V2) on V1. Let z4 ∈ V2 be in the (unique) regular orbit of

CD(V1) on V2 (so it is of size M2 = 8). Then clearly w1 + z4 is a representative of an

orbit of size 64 = M of D on V that is different from the orbits containing v1 + z1,

v1 + z2, and v1 + z3. Thus we have found four orbits of size 64 =M of D on V which

contradicts our hypothesis.

Step 3.2.3: The Case Where We have Equality in (5) and (6)

We now consider the case that (5) and (6) are equalities. That is

∣D ∶D′CD(V1)∣ =M1 and ∣CD(V1) ∶ CD(V1)′∣ =M2. Then

M = ∣G ∶ G′∣ = p∣D∣/∣D′∣ = p∣CD(V1) ∶D′CD(V1)∣CD(V1) ∶ CD(V1) ∩D′∣ ≤ pM1M2

also, M ≥MD ≥M1M2 so

(†) M1M2 ≤MD ≤M ≤ pM1M2.

We know that exactly one of these inequalities is strict because ∣D∣/∣D′∣ < p∣D∣/∣D′∣ =

∣G∣/∣G′∣ =M . We now have three cases to consider.

In all of these cases we know that D/CD(V1) has at least two orbits of size

M1 on V1, otherwise D/CD(V1) would be abelian, making D′ ≤ (
p

i=1D/CD(Vi))′ =
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1. Then we would have D′ = G′ = 1, contradicting that G is nonabelian. Through-

out the following arguments we will let v1, v2 ∈ V1 be representatives of two orbits of

size M1 on V1.

Step 3.2.3.1: The Case Where the Last Inequality in † is Strict

That is, M1M2 = MD = M < pM1M2. Assume that v3, v4 ∈ V1 are a third

and fourth orbit of size M1 in the action of D/CD(V1) on V1. Then let w1 ∈ W1 be

a representative of an orbit of size M2 in the action of CD(V1) on W1. This gives us

(v1 +w1)D, (v2 +w1)D, (v3 +w1)D, and (v4 +w1)D, four orbits of size MD =M on V .

Thus we have four orbits of size M in the action of G on V , a contradiction. There-

fore D/CD(V1) can only have two or three orbits of size M1 on V1. Let w1,w2 ∈ W1

be representatives of two distinct orbits of size M2 in the action of CD(V1) on W1.

We see that (v1 +w1)D, (v1 +w2)D, (v2 +w1)D, and (v2 +w2)D are four orbits of size

MD = M on V , a contradiction. Therefore we know that CD(V1) has exactly one

orbit of size M2 on W1 and by Theorem 1 we see that CD(V1) is abelian.

Suppose D/CD(V1) has two orbits of size M1 on V1. By [7] we have that

D/CD(V1) ≅ D8, p = 2, and V1 = V2 = V (2,3). Therefore we have CD(V1) ×CD(V2) ⪅

D ⪅ D/CD(V1) ×D/CD(V2) and CD(V1) ≤ D/CD(V1) ≅ D8. If ∣CD(V1)∣ = 8, then

CD(V1) ≅ D8, contradicting CD(V1) is abelian. If ∣CD(V1)∣ = 4, then CD(V1) must be

the Klein-4, since it has only one orbit of size 4 on V2, which is shown to be a con-

tradiction in [7] corresponding case. If ∣CD(V1)∣ = 2, then CD(V1) is Z2, the cyclic

group of order two. If we calculate the orbits, we see that all subgroups of D8 of or-

der two have at least three orbits of size two in the action on V2, a contradiction. If

∣CD(V1)∣ = 1, then D/CD(V1) has two orbits of size four in the action of D/CD(V1)

on V1 and D/CD(V2) has two orbits of size four in the action of D/CD(V2) on V2.

Therefore D has either four orbits of size four or an orbit of size eight. This contra-

dicts that G has exactly three orbits of size M = M1M2 = 4 in the action of G on

V .
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Suppose D/CD(V1) has three orbits of size M1 on V1. By induction we have

that D/CD(V1) ≅ D8 ○ C4, p = 2, and V1 = V2 = V (2,5). Therefore we have

CD(V1) × CD(V2) ⪅ D ⪅ D/CD(V1) ×D/CD(V2) and CD(V1) ≤ D/CD(V1) ≅ D8 ○ C4.

If ∣CD(V1)∣ = 16, then CD(V1) ≅ D8 ○ C4, contradicting CD(V1) is abelian. If

∣CD(V1)∣ = 8, then CD(V1) is either D8, Q8, or C2 × C4. If CD(V1) ≅ D8 or Q8 then

we contradict CD(V1) is abelian. If CD(V1) = C2 × C4 then CD(V1) has two orbits

of size M2 on W1 contradicting the statement above that CD(V1) has exactly one

orbit of size M2 on W1. If ∣CD(V1)∣ = 4, by calculating the orbits of all subgroup of

D8 ○C4 that are of order 4, we see that they all ahve at least four orbits of size four,

a contradiction. If ∣CD(V1)∣ = 2, then CD(V1) is Z2, the cyclic group of order two.

We know that all subgroups of D8 ○ C4 of order two have at least ten orbits of size

two in the action on V2, a contradiction. If ∣CD(V1)∣ = 1, then D/CD(V1) has three

orbits of size eight in the action of D/CD(V1) on V1 and D/CD(V2) has three orbits

of size eight in the action of D/CD(V2) on V2. Therefore D has either six orbits of

size eight or at least one orbit of size sixteen. This contradicts that G has exactly

three orbits of size M =M1M2 = 8 in the action of G on V . This concludes the case

where M1M2 =MD =M .

Step 3.2.3.2: The Case Where the First Inequality in † is Strict

That is, M1M2 <MD =M = pM1M2. We know ∣D∣/∣D′∣ <MD and D/CD(V1)

has at least two orbits of size M1 on V1. We claim that D/CD(V1) has either two

or three orbits of size M1 on V1 and that CD(V1) has at least two orbits of size M2

on W1. This proof can be found in the corresponding argument in [7]; however, the

argument has a few gaps and assumptions that have been corrected here. Assume

CD(V1) has exactly one orbit of size M2 on W1. Since we have inequality in (6) , by

[9] we know that CD(V1) must be abelian and thus the largest orbit of CD(V1) on

W1 is a regular orbit of size M2 = ∣CD(V1)∣. It follows by [9] that M2 =
p

∏
i=2

(∣Vi∣ − 1).

But then M1 = ∣V1∣ − 1 and thus the largest orbit of size MD on V is M1M2 as the
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corresponding orbit is {x1+⋅ ⋅ ⋅+xp∣xi ∈ Vi−{0} for i = 1, . . . , p} and there cannot be a

larger orbit. So MD = M1M2, a contradiction to the fact that MD = pM1M2 in this

case. Therefore CD(V1) has at least two orbits of size M2 on W1.Now, let w1,w2 be

representatives of two different orbits of size M1 of CD(V1) on W1. We now aim to

show D/CD(V1) can not have more than three orbits. Let vi ∈ V1 where i = 1,2,3,4

be representative of four different orbits of size M1 on V1. Fix i ∈ {1,2,3,4}. Con-

sider zj = vi + wj for j = 1,2. We can see that ∣(zj)D∣ ≥ M1M2 for j = 1,2. Since

M = pM1M2, we have ∣(Zj)D∣ ∈ {M1M2,M} for j = 1,2. If ∣(z1)D∣ = M1M2 then

∣(z2)M ∣ > M1M2 since any g ∈ G −D cannot fix both orbits. So, ∣(z2)D∣ = M . Since

this is true for all i ∈ {1,2,3,4}, G has four orbits of size M on V a contradiction to

our hypothesis. Thus D/CD(V1) has either two or three orbits of size M1 on V1.

If there are exactly two orbits of size M1 on V1 then by [7] and we have

D/CD(V1) ≅D8, p = 2, V1 = V2 = V (2,3).

We also know CD(V1) × CD(V2) ⪅ D ⪅ D/CD(V1) × D/CD(V1) ≅ D8 × D8, and

CD(V1) ≤ D8. This tells us ∣CD(V1)∣ ∈ {1,2,4,8}. In order to have the complete

proof, the following cases have been taken from [7].

If ∣CD(V1)∣ = 8, then CD(V1) ≅ D8. This means D ≅ D8 ×D8, ∣D∣ = 64, and

∣G∣ = 128. By Lemma 2.8 [12] we have G ≤ D8 ≀ Z2. Because ∣D8 ≀ Z2∣ = 128 we have

that G = D8 ≀ Z2, which is known to not be metabelian by Satz 3.15.3 [2], that is

G′′ ≠ 1. However we have that G′ = D′ = (D8 ×D8)′ which is size four. This makes

G′ abelian and G′′ = 1, a contradiction.

If ∣CD(V1)∣ = 4 we have that ∣D∣ < ∣D/CD(V1) ×D/CD(V1)∣ = ∣D∣2/16 = 64.

That is ∣D∣ = 32. We also have D′ ≤ (D8 ×D8)′ so ∣D′∣ ≤ 4. Suppose ∣D′∣ = 4 then

∣D∣
∣D′∣ = 32

4 = 8, so MD = 16 = M1M2 a contradiction. Suppose that ∣D′∣ = 2. Notice

CD(V1)∩CD(V2) = 1 so CD(V1)×CD(V2) = 1 and CD(V1)×CD(V2) = CD(V1)CD(V2).
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Let g ∈ G −D and (1, a) ∈ CD(V1) ×CD(V2). Then

[(1, a), g] = (1, a)−1g−1(1, a)g = (1, a)−1(1, a)g = (1, a−1)(a∗,1) = (a∗, a−1)

for some a∗ ∈ CD(V1), and we have four choices for a ∈ CD(V1). Thus 2 = ∣D′∣ = ∣G′∣ ≥

4, a contradiction.

If ∣CD(V1)∣ = 2, then ∣D∣2
4 = 64 or ∣D∣ = 16. As before, we know that ∣D′∣ ∈

{2,4}. Suppose ∣D′∣ = 4, then ∣D∣
∣D′∣ = 16

4 = 4, and MD = 8. We know (v1,0) and

(v2,0) are both in D-orbits of size four on V . Let w ∈ V2 be a regular orbit. Then

(v1 +w) would be in an orbit of size eight, contradicting M1M2 <MD. Suppose that

∣D′∣ = 2, then ∣D∣
∣D′∣ = 8 and MD = 16. Thus CD(V1) must have four orbits of size

two on V2. Let wi ∈ V2 for i = 1,2,3,4 be representatives of these four orbits. Then

we know that CD(V1) = {1, r} as all other subgroups of D8 of size two have only

three orbits of size two on V2. We also know there must exist a di ∈ D, i = 1,2,3,4

where wd1
1 = w2,w

d2
2 = w3,w

d3
3 = w4,w

d4
4 = w1. Without loss let w1 = (1,0) and

w2 = (1,−1). Then there exists a d ∈ D with (1,0)d = (1,−1) in the action of D on

V2, a contradiction.

If ∣CD(V1)∣ = 1 then D ≅ D8, but D8/D′
8 = 4 = MD, a contradiction. This

concludes the case from [7].

Therefore there are exactly three orbits of size M1 on V1 thus by induction,

we have D/CD(V1) ≅ D8 ○ C4, p = 2, V1 = V2 = V (2,5). We also know CD(V1) ×

CD(V2) ⪅ D ⪅ D/CD(V1) ×D/CD(V1) ≅ (D8 ○C4) × (D8 ○C4), and CD(V1) ≤ D8 ○C4.

This tells us ∣CD(V1)∣ ∈ {1,2,4,8,16}.

If ∣CD(V1)∣ = 16, then CD(V1) ≅D8 ○C4. This means D ≅ (D8 ○C4)×(D8 ○C4),

∣D∣ = 256, and ∣G∣ = 512. By Lemma 2.8 [12] we have G ≤ (D8 ○ C4) ≀ Z2. Because

∣(D8 ○ C4) ≀ Z2∣ = 512 we have that G = (D8 ○ C4) ≀ Z2, which is not metabelian.

However we have that G′ =D′ = ((D8 ○C4) × (D8 ○C4))′ which is of order four. This
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makes G′ abelian and G′′ = 1, a contradiction.

If ∣CD(V1)∣ = 8, then CD(V1) is isomorphic to one of the following: D8,Q8 or

C4 × C2. The case where CD(V1) ≅ D8 can be seen in the case that D/CD(V1) has

exactly two orbits. Suppose CD(V1) ≅ Q8. Since CD(V1) acts faithfully on V2 there

exists a regular orbit of size 8. Therefore M2 = 8, but M2 = ∣CD(V1) ∶ CD(V1)′∣ =

8/2 = 4, a contradiction. Suppose CD(V1) ≅ C4 × C2. We know that CD(V2) is

also isomorphic to C4 × C2 and therefore has 2 regular orbits. Let v1, v2 ∈ V1 be

representatives of regular orbits of CD(V2) acting on V1 and in orbits of size M1 in

the action of D/CD(V1) on V1. Consider CD(v1), ∣CD/CD(V1)(v1)∣ = 2 thus ∣CD(v1)∣ =

16. Let w1,w2,w3 ∈ V2 be representatives of the three maximal orbits of D/CD(V1)

on V2. Now consider the action of G on V = V1 ⊕ V2 of the form (vi + wj)G where

i ∈ 1,2 and j ∈ 1,2,3. Since elements in G −D swap the orbits from V1 to V2, there

exists a g ∈ G − D such that in the action of CD(V2) on V1 the orbit is (v1)D and

in the action of CD(V1) on V2 the orbit is (vg1)D. We have chose g such that vD1 has

to be exactly one of the following, w1,w2,w3. Without loss of generality we may

assume vg1 = w1. The orbit (v1 + w1)G = (v1 + vg1)G is fixed and will be of order

M2 = 64, but we have two orbits (v1 +w2)G and (v1 +w3)G of maximal size M = 128.

We can repeat this method with v2 in place of v1 to receive two more orbits of size

M = 128, a contradiction to our hypothesis.

The cases ∣CD(V1)∣ = 4 and ∣CD(v1)∣ = 2 are the same as when D/CD(V1) has

exactly two orbits. If ∣CD(V1)∣ = 1, then D ≅ D8 ○C4, but (D8 ○C4)/(D8 ○C4)′ = 8 =

MD, a contradiction.

Step 3.2.3.3: The Case Where the Second Inequality in † is Strict

That is, M1M2 = MD < M = pM1M2. Since by Theorem 1 ∣D/D′∣ ≤ MD,

and since M1M2 = MD < M = pM1M2 and p∣D/D′∣ = ∣G/G′∣ = M we see that

∣D/D′∣ = M1M2 = MD < M = pM1M2. We know that D/CD(V1) has at least two

orbits of size M1 in the action of V1. We now must find how many orbits CD(V1)
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has of size M2 on W1.

Step 3.2.3.3.1: The Case Where CD(V1) has Exactly One Orbit of Size

M2 on W1

We note that this case can be handled by following word for word the corre-

sponding argument in the proof of Theorem 1 in [9]; however, there was a small er-

ror in the argument presented there. A corrected version of this case, that replaces

the corresponding argument in [9], can be found in [7] and has been recreated here

for completeness.

Let us first assume that CD(V1) has exactly one orbit of size M2 on W1. By

Theorem 1, CD(V1) is abelian. Therefore CD(Vi) is abelian for all i = 1, . . . , p, and

it follows that for each i that CD(Wi) is abelian. We further claim that for each i,

CD(Wi) has exactly one regular orbit of Vi. To see this, observe that CD(V1) has

exactly one regular orbit on W1. Hence CD(V1)/(CD(V1) ∩CD(V2)) has exactly one

regular orbit on V2, and (CD(V1)∩CD(V2))/(CD(V1)∩CD(V2)∩CD(V3)) has exactly

one regular orbit on V3. We can repeat this until we finally get

(
p−1
⋂
j=1
CD(Vj))/(

p

⋂
j=1
CD(Vi)) ≅ CD(Wp)

has exactly one regular orbit on Vp. Since the actions of CD(Wi) on Vi are equiva-

lent for all i, the claim is true. Let A ∶= ∏p
i=1CD(Wi). We see that A ⊴ G, and A =

p

i=1CD(Wi) is an internal direct product because CD(Wi)∩∏j∈{1,...,p}−{i}CD(Wj)) =

1, for i = 1, . . . , p (all elements in ∏j∈{1,...,p}−{i}CD(Wj)) act trivially on Vi). Apply-

ing Lemma 2.2 to the action of CD(Wi) on Vi for all i. Putting this together thus

shows that if we write VA =X1⊕ . . .⊕Xm for some M ∈ N and irreducible A-modules

such that V1 =X1 ⊕ . . .⊕Xk for some k ∈ N, then m = kp and

∣A∣ =
m

∏
i=1

(∣Xi∣ − 1) = (∣X1∣ − 1)m ≤M
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and

M1 ≥
k

∏
i=1

(∣Xi∣ − 1) = (∣X1∣ − 1)k.

Now recall that v1, v2 ∈ V1 are representatives of two orbits of size M1 of D/CD(V1)

on V1. Write vi = xi1 + . . . + xik with xij ∈Xj for j = 1, . . . , k, i = 1,2. We may assume

that v1 is in a regular orbit of A/CA(V1), and thus x1j /= 0 for j = 1, . . . , k. But then

vD1 = vA1 = {y1 + . . . + yk∣0 /= yi ∈ Xi for i = 1, . . . , k}, and this forces that x2j = 0 for at

least one j ∈ {1, . . . , k}. If we let g ∈ G −D and put zi = vi +
p−1
∑
j=1
vg

j

1 for i = 1,2, then

it is clear that both z1 and z2 are in different orbits of size greater than or equal to

∣A∣ of G. Hence ∣G/G′∣ ≥ ∣A∣.

Now let q be the characteristic of V and write ∣X1∣ = qs. Write ∣A/CA(X1)∣ =

pt. Then pt = qs − 1 and hence with [12] we know that either s = 1, p = 2, and q is

a Fermat prime; or t = 1, q = 2, and p is a Mersenne prime; or s = 2, t = 3, p = 2,

and q = 3. Moreover, by [12] we know that NG(X1)/CG(X1)Γ(X1) and since G is a

p-group, altogether we conclude that

NG(X1)/CG(X1) ≅ A/CA(X1)

unless possibly in the third case, when ∣V1∣ = 9 and NG(X1)/CG(X1) ≅ Γ(32) is

possible (in the first case this is clear, in the second it follows by Fermat’s Little

Theorem). For the moment suppose that NG(X1)/CG(X1) ≅ A/CA(X1). Because

of the size of A with [12] we conclude that G ≅ A/CA(X1) ≀G/A where G/A transi-

tively and faithfully permutes the Xi (i = 1, . . . ,m). Now with arguments similar to

the one in the proof of [4] we see that

∣[A,G]∣ ≥ ∣A/CA(X1)∣m−1 = (∣X1∣ − 1)m−1.

Moreover, by [1] we have ∣G ∶ G′A∣ = ∣G/A ∶ (G/A)′∣ ≤ pm/p. Hence altogether we
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have

(∣X1∣ − 1)m = ∣A∣ ≤ ∣G/G′∣ = ∣G ∶ G′A∣∣G′A ∶ G′∣

≤ pm/p∣A ∶ A ∩G′∣

≤ pm/p∣A ∶ [A,G]∣

= pm/p(∣X1∣ − 1)

Now clearly ∣X1∣ − 1 ≥ p, and so it follows that

pm−1 ≤ (∣X1∣ − 1)m−1 ≤ p
m
p .

So m − 1 ≤ m/p, and since m ≥ p, we get that p = m = 2, ∣X1∣ = 3, k = 1, V1 =

X1, ∣V ∣ = 9, M = ∣G/G′∣ = 4 and thus G is dihedral of order 8 acting on the nine

elements of V . But then D is abelian, and since G′ = D′, G is also abelian. This is

a contradiction.

In the exceptional case s = 2, t = 3, p = 2, q = 3 above we have that the kernel

K/A of the permutation action of G/A on the Xi is of order at most 2m. So we see

that G/Ω2(A) has A as an abelian normal subgroup, and so similarly as above

∣G/G′∣ ≤ ∣G ∶ G′K ∣∣G′K ∶ G′∣

≤ 2
m
2 ∣K ∶K ∩G′∣

≤ 2
m
2 ∣K/Ω1(A) ∶ (K ∩G′)Ω1(A)/Ω1(A)∣ ⋅ ∣Ω1(A)∣

Now ∣[K/Ω1(A),G/Ω1(A)]∣ ≥ 4m−1, and thus altogether

23m = 8m = (∣X1∣ − 1)m = ∣A∣

≤ ∣G/G′∣
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≤ 2
m
2 ∣K/Ω1(A) ∶ [K/Ω1(A),G/Ω1(A)]∣ ⋅ 2m

≤ 2
m
2 ⋅ 8m

4m−1 ⋅ 2
m

= 2
3
2
m+m−1 ⋅ 8 = 2

5
2
m+2

Hence 3m ≤ 5
2m + 2 or, equivalently, m ≤ 4. Since m = kp = 2k, we have that m = 2 or

m = 4.

If m = 2, then k = 1 and thus Xi = Vi for i = 1,2. But then M1 = 8 = ∣V1∣ − 1,

and D/CD(V1) has exactly one orbit of size M1 on V1, contradicting our observation

above that D/CD(V1) has at least two orbits of size M1 on V1.

If m = 4, then k = 2 and ∣V1∣ = 34. Hence G is isomorphic to a subgroup of

GL(8,3) and thus ∣G∣ ≤ 219. As above, we know that ∣G′∣ ≥ ∣[A,G]∣ ≥ (∣X1∣ − 1)m−1 =

83 = 29, and hence ∣G/G′∣ ≤ 210 < 212 = ∣A∣ ≤M , contradicting ∣G/G′∣ =M.

Therefore we now know that CD(V1) has at least two orbits of size M2 on

W1.

Step 3.2.3.3.2: The Case Where CD(V1) has at Least Two Orbits of

Size M2 on W1

The set up for this argument is the same as in [7] and deviates in the sub-

cases that follow. Let w1 and w2 be representatives of such orbits. If there exists a

d ∈ CD(v1) such that wd
1 = w2 we see that

M ≥MD ≥M1pM2 ≥ p∣D ∶D′∣ = ∣G/G′]

contradicting that MD <M . Therefore, no such d exists. This tells us that (v1 +w1)

and (v1 + w2) lie in different D-orbits on V . Similarly v2 + w1 and v2 + w1 are in

different D-orbits on V .

Now identify D with a subgroup of
p

i=1D/CD(Vi). Also let g ∈ G −D and
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put

Li =
p−1
∑
j=0

(vgji )D ∶= {
p−1
∑
j=0
xj ∣xj ∈ (vgji )D for j = 0, . . . , p − 1} ⊂ V

for i = 1,2. The Li are clearly G-invariant subsets, and L1 ∩ L2 = ∅. For any x ∈

V2 ⊕ . . .⊕ Vp it follows that if the orbit (vi + x)D ⊂ Li (i ∈ {1,2}).

We now have four cases to consider. The D-orbits (v1 +w1)D and (v1 +w2)D

are both G−invariant. The D-orbits (v2 +w1)D and (v2 +w2)D are both G-invariant.

Lastly, one of the D-orbits (v1 +w1)D or (v1 +w2)D is not G-invariant, and at least

one of the orbits D-orbits (v2 +w1)D or (v2 +w2)D is not G-invariant.

Step 3.2.3.3.2.1: The Case Where the D−orbits (v1 +w1)D and (v1 +w1)D

are Both G−invariant

Then v1+w1 ∈ L1 and v1+w2 ∈ L1, and thus v2+w1 ∉ L2 and v2+w2 ∉ L2, that

is (v2 +w1)D and (v2 +w2)D are not G-invariant, so that

M ≥ ∣(v2 +wi)G∣ ≥ p∣(v2 +wi)D∣ ≥ pM1M2 ≥ p∣D/D′∣ = ∣G/G′∣ =M

for i = 1,2. This tells us that CD(V1) has either two or three orbits of size M2 in the

action on W1, because otherwise the above argument shows that we would get more

than three orbits of size M .

The following argument is a corrected version of the corresponding part in

[7] and should serve as a replacement proof. Suppose that D/CD(V1) has three or-

bits of size M1 on V1, let v3 be a representative of a third such orbit. Arguing just

as for v2, we know that (v3 + w1)D and (v3 + w2)D are not G−invariant, and (also

as above for v2) we get ∣(v3 + wi)G∣ = M for i = 1,2. But this gives us four orbits

of size MD and we can only have two or three, therefore at least two must be the

same. There are six possible combinations as order does not matter.

Suppose (v2+w1)D and (v3+w1)D are G−conjugate, then there exists a x ∈ G

such that (v3 + w1) = (v2 + w1)x = vx2 + wx
1 . If x ∈ D then vx2 ∈ V1 and vx2 = v3, but
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then vD2 = vD3 a contradiction to them being representatives of different orbits. Thus

x ∈ G −D. Since w1 ∈ ∑p−1
i=1 (v

gi

1 )D, wx
1 has a component in V1 and that component

is in vD1 so v3 ∈ vD1 and thus vD3 = vD1 a contradiction to them being representatives

of different orbits. Therefore (v2 + w1)D and (v3 + w1)D are not G−conjugate. The

same contradiction can be found for (v2 + w2)D and (v3 + w2)D being G−conjugate

by changing the index as they also have the same element in W .

Suppose (v2+w1)D and (v3+w2)D are G−conjugate, then there exists a x ∈ G

such that (v3 + w2) = (v1 + w1)x = vx2 + wx
1 . If x ∈ D then vx2 = v3 and vD2 = vD3

a contradiction to them being representatives of different orbits. Thus x ∈ G − D.

Since w2 ∈ ∑p−1
i=1 (v

gi

1 )D, wx
2 has a component in V1 and that component is in vD1 .

Therefore v3 ∈ vD1 and thus vD3 = vD1 a contradiction to them being representatives of

different orbits. Therefore (v2 + w1)D and (v3 + w2)D can not be G−conjugate. The

same contradiction can be found for (v2 +w2)D and (v2 +w1)D being G−conjugate.

If (v2 + w1)D and (v2 + w2)D are G−conjugate then they are D−conjugate,

otherwise if x ∈ G −D then v2 +w2 = (v2 +w1)x = vx2 +wx
1 then since w2 ∈ ∑p−1

i=1 (v
gi

1 )D,

wx
1 has a component in V1 and that component is in vD1 so v2 ∈ vD1 thus vD2 = vD1

a contradiction to them representing different orbits. Thus if (v2 + w1)D and (v2 +

w2)D are G−conjugate then they are D−conjugate. Since they are D−conjugate,

there exists a d ∈ D such that vd2 = v2 and wd
1 = w2. We know d ∈ CD(v2) but

d /∈ CD(V1) and thus w1,w2 are in some CD(v2)−orbits. So the largest orbit size of

CD(v2) on W1 is greater than or equal to pM1. Then ∣(v2 + w1)D∣ = M1pM2 = MD a

contradiction to MD being strictly less than pM1M2.

Thus there can not be a third orbit of D/CD(V1) on W1 of size M2 and by

[7] D/CD(V1) ≅ D8, p = 2, and V1 = V (2,3). We know that CD(V1) × CD(V2) ≤

D ≤ D/CD(V1) × D/CD(V2) ≅ D8 × D8 and CD(V1) ≤ D/CD(V1) ≅ D8. Then

∣CD(V1)∣ ∈ {2,4,8}.

If ∣CD(V1)∣ = 8 then D = D8 ×D8, so ∣D∣ = 64, ∣D′∣ = 4 = ∣G′∣ and ∣G∣ = 128.
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By [12] we have G ≤ D8 ≀ Z2, so since ∣G∣ = 128, we have G = D8 ≀ Z2 contradicting

∣G′∣ = 4.

If ∣CD(V1)∣ = 4, then CD(V1) ≅ Z4 (because CD(V1) has two orbits of size

M2 on V2, therefore it is not the Klein-4). Thus Z4 × Z4 ≤ D ≤ D8 × D8, ∣D∣ =

∣D/CD(V1)∣ ∣CD(V1)∣ = 8 ⋅ 4 = 32.Because D′ ≤ (D8 ×D8)′ we have that ∣D′∣ ∈ {2,4}.

If ∣D′∣ = 4 then MD = ∣D∣
∣D′∣ = 32

4 = 8, contradicting that Z4 ×Z4 has a regular orbit (size

16) on V . Therefore ∣D′∣ = ∣G′∣ = 2; but CD(V1) = 4 which - using again [5] as we did

before -makes ∣G′∣ ≥ 4, a contradiction.

If ∣CD(V1)∣ = 2, then CD(V1) ≅ Z2. This means that CD(V1) has at least three

orbits of size M2 = 2 on V2, a contradiction.

Step 3.2.3.3.2.2: The Case Where the D−orbits (v2 +w1)D and (v2 +w2)D

are Both G−invariant

This case will follow the same proof as in Step 3.2.3.3.2.1 if we replace v1

with v2.

Step 3.2.3.3.2.3: The Case Where the at Least One of the D-orbits

(v1 +w1)D or (v1 +w2)D is Not G-invariant, and at Least One of the

Orbits D-orbits (v2 +w1)D or (v2 +w2)D is Not G-invariant.

Without loss of generality, we may assume that (v1+w1)D is not G−invariant.

If (v2 +w1)D is also not G−invariant, we see that (v1 +w1)G and (v1 +w1)G are two

distinct orbits of size M , because

M ≥ (vi +w1)G ≥ pM1M2 = ∣G/G′∣ =M

for i = 1,2 and if we write w1 = (x2, . . . , xp) ∈ V2⊕ ⋅ ⋅ ⋅⊕Vp then v1 +w1 = (v1, x2, . . . , xp

and v2 + w2 = (v2, x2, . . . , xp) have a different number of components in the corre-

sponding component of L1 and cannot be conjugate in G.

Now we show that D/CD(V1) cannot have a fourth orbit of size M1 on V1.
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Let v3, v4 ∈ V1 be a third and fourth such orbit. If (v3+w1)D and (v3+w2)D are both

G−invariant then we can follow the proof in Step 3.2.3.2.1 by replacing v1 with v3

to find a contradiction. Similarly, we can replace v1 with v4 in the same argument

to show (v4 + w1)D and (v4 + w2)D cannot both be G−invariant. If (v3 + w1)D and

(v4 + w1)D are not G−invariant then (v3 + w1)G and (v4 + w1)G are a third and

fourth orbit of size M on V , a contradiction. If both (v3 + w1)D and (v4 + w1)D

are G−invariant then (v3 + w2)D and (v4 + w2)D must not be G−invariant. Thus

∣(v2 + w2)G∣ = ∣(v4 + w2)G∣ = M and since there are only three orbits of size M , at

least two orbits must be equal. Without loss, assume (v4 + w2)G = (vj + w1)G for

some j ∈ {1,2,3}. Then there exists a g ∈ G − D with (v4 + w2)g = vj + w1. Then

(v4 + w2)G ⊆ L4 and (vj + w1)G ⊆ Lj, a contradiction to L4 ∩ Lj = ∅. If one of

(v3 +w1)D and (v4 +w1)D is not G−invariant then we have three orbits and can use

induction to tell us D/CD(V1) ≅ D8 ○C4, V1 ≅ V (2,5), p = 2 and V = V1 ⊕ V2, which

is known to be a contradiction as seen in Step 3.2.3.2.1. Therefore there can not be

a fourth orbit of size M1 when D/CD(V1) acts on V1.

If there is exactly three orbits of size M1 of D/CD(V1) then we can use in-

duction to find D/CD(V1) ≅ D8 ○ C4, V1 = V (2,5), p = 2 and V = V1 ⊕ V2, a contra-

diction. If there is exactly two orbits of size M1 of D/CD(V1) then we can use [7] to

find D/CD(V1) ≅ D8, V1 = V (2,3), p = 2 and V = V1 ⊕ V2, a contradiction by step

3.2.3.2.1.

Therefore (v2 + w1)D is G-invariant and thus (v2 + w2)D is not G-invariant.

A similar argument to the one above follows and we can again use induction and [7]

to find D/CD(V1) ≅D8 ○C4 and D/CD(V1) ≅D8, respectively, a contradiction.

Thus (v1 + w1)D and (v2 + w2)D are both G-invariant. If (v1 + w2)D and

(v2 + w2)D are G-conjugate, then v2 + w1 ∈ L2 and v1 + w2 ∈ L1. This means that

v1 +w1 and v2 +w2 can only be conjugate in G if p = 2. We can now let p = 2.

Suppose there are four orbits of size M2 in the action CD(V1) on V2. Let
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w3,w4 ∈ W1 = V2 be representative of such orbits. As above it follows that v1 + w1,

v1+w2, v1+w3 and v1+w4 all lie in different D−orbits on V and so do v2+w1, v2+w2,

v2+w3 and v2+w4, and as above, with w3 and w4 in place of w2 we see the following

must be true.

At least one of the orbits (v1 +w1)D or (v1 +w3)D is not G−invariant, and at

least one of the orbits (v2 +w1)D or (v2 +w3)D is not G−invariant. We already know

that (v2 + w1)D is G−invariant, it follows that (v2 + w3)D is not G−invariant. The

argument from earlier shows that (v2 + w2)G and (v2 + w3)G are different G−orbits.

Assume there is a third orbit of size M1 in the action of D/CD(V1) on V1, let v3

be a representative of this orbit. Then, at least two of the three orbits (v3 + w1)D,

(v3 + w2)D and (v3 + w3)D are not G−invariant. If (v3 + w1)D is G−invariant, then

(v3 + w2)G, (v1 + w1)G, (v3 + w3)G and (v2 + w1)G are four G−orbits of size M , a

contradiction. If (v3 + w2)D is G−invariant, then (v3 + w1)G, (v1 + w2)G, (v3 + w3)G

and (v2 + w2)G are four G−orbits of size M , a contradiction. Lastly, if (v3 + w3)D

is G−invariant, then (v3 + w1)G, (v1 + w3)G, (v3 + w2)G and (v2 + w3)G are four

G−orbits of size M , a contradiction. Thus we see that D/CD(V1) has exactly two

orbits of size M1 on V1. By [7], we have that D/CD(V1) ≅ D8, a contradiction as

proven above. This concludes section 2.3 entirely.

Step 3.2.4: The Case Where We Have Strict Inequality in (5) and

Equality in (6)

Suppose we have equality in (4) and strict inequality in (3). That is

M ≥M1M2 ≥ p∣D ∶D′CD(V1)∣∣CD(V1) ∶ CD(V1)′∣ ≥ p∣D/D′∣ = ∣G ∶ G′∣.

Because ∣G ∶ G′∣ = M we have equality everywhere, and M = M1M2,M1 = p∣D ∶

D′CD(V1)∣ > ∣D ∶ D′CD(V1)∣,M2 = ∣CD(V1) ∶ CD(V1)′∣. Again let MD denote

the largest orbit size of D on V , then MD ≥ M1M2 so MD = M . By Theorem 1.1
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CD(V1) is abelian or has at least two orbits of size M2 on W1. We consider again

some subcases.

Step 3.2.4.1: The Case Where CD(V1) has at Least Two Orbits of Size

M2 on W1

Let w1,w2 ∈W1 be representatives of such orbits.

Assume that D/CD(V1) has at least two orbits of size M1 on V1. Because

M = M1M2 we have that (v1 + w1)D, (v1 + w2)D, (v2 + w2)D and (v2 + w1)D are all

distinct orbits of size MD = M , contradicting there being only three orbits of size

M . Therefore D/CD(V1) has exactly one orbit of size M1 on V1. Let v1 ∈ V1 be a

representative of this orbit.

Now let w1,w2 be representatives of two distinct orbits of size M2 of CD(V1)

on W1, then (v1 + w1)D and (v1 + w2)D are two distinct D−orbits of size M , and

if CD(V1) had a third and fourth orbit of size M2 on W1, similarly we would get a

third and fourth orbit on G of size M , a contradiction. Thus CD(V1) has two or

three orbits of size M2 on W1.

Now write W1 =
k

⊕
i=1
Xi for a suitable k ∈ {1, . . . , n} and irreducible CD(V1)-

modules Xi (i = 1, . . . , k). We may assume that X1 ≤ V2. Then the intersection of all

the CCD(V1)(Xi) is trivial, and hence

CD(V1) ⪅ CD(V1)/CCD(V1)(X1) × ⋅ ⋅ ⋅ ×CD(V1)/CCD(V1)(Xk) (+)

Moreover, if we put N0 = CD(V1), Z0 = W1 and recursively for i ≥ 1 let Yi ≤

Zi−1 be an irreducible Ni−1-module, Ni = CNi−1
(Yi), and Zi be a CD(V1)-invariant

complement of Yi in Zi−1, and put t = i − 1 and stop the process as soon as Zi = 0

and Ni = 1, then we have that ⋂t
i=0Ni = 1 and W1 = ⊕t

i=0 Yi. Also, Ri−1 ∶= Ni−1/Ni

acts faithfully and irreducibly on Yi−1 for i = 1, . . . , t. Write M∗
i−1 for the largest

orbit size of Ni−1/Ni on Yi−1 for i = 1, . . . , t. Then by repeated use of Lemma 2.1 we
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see that

M2 = ∣CD(V1) ∶ CD(V1)′∣ ≤
t

∏
i=1

∣Ri ∶ Ri
′∣ ≤

t

∏
i=1
M∗

i ≤M2, (++)

the last inequality easily follows by considering the sum of representatives of orbits

of size M∗
i−1 of Ni−1/Ni on Yi−1. Thus we have equality everywhere, and it follows

that ∣Ri ∶ Ri
′∣ = M∗

i for i = 1, . . . , t. It also follows that the elements of every orbit

of CD(V1) on W1 of size M2 have the form y1 + . . . , yt for some yi ∈ Yi (i = 1, . . . , t)

which lies in an orbit of size M∗
i of Ni/Ni+1 on Yi (+ + +). We now split into two

cases CD(V1) is not abelian and CD(V1) is abelian.

Step 3.2.4.1.1: The Case Where CD(V1) is not Abelian

Put C = CD(V1) ∩CD(X1) = CCD(V1)(X1). Then by (+) we may assume that

CD(V1)/C is nonabelian, and it also acts faithfully and irreducibly on X1. We also

clearly may assume that Y1 = X1 and hence with (++) and (+ + +) conclude that

CD(V1)/C has either two or three orbits of size of its abelian quotient on X1. Hence

we may apply induction and, in particular, get p = 2, ∣X1∣ = 25 and CD(V1)/C ≅

D8 ○ C4. Moreover, since CD(V1) has either two or three orbits of size M2 on W1,

then from (+ + +) it follows that Ri−1 has exactly one orbit of size M∗
i−1 on Yi−1 for

i = 2, . . . , t. This forces, for i = 2, . . . , t, that Ri−1 is cyclic of order 2, ∣Yi−1∣ = 3, and

hence CCD(V1)(X1) is elementary abelian of order pdimW1−2. Note that W1 = V2 since

p = 2.

Assume that k ≥ 2, so t ≥ 3 (since the Xi all have dimension 2). Then we

may assume that X2 = Y1 ⊕ Y2, and from the above we know that C/CC(X2) is the

dihedral group of order eight, since it is a subgroup of D8 ○ C4 that has only one

regular orbit.

Now consider the action of CD(V1) on X1. We know that CD(V1) is isomor-

phic to a subgroup of a direct product of k copies of D8 ○ C4, and CD(V1)/C is iso-

morphic to D8 ○ C4 and has six noncentral involutions. If all of them have inverse
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images in CD(V1) which act trivially on X2 ⊕ ⋅ ⋅ ⋅ ⊕Xk, then CD(V1) has a D8 ○ C4

as a subgroup which acts trivially on X2 ⊕ ⋅ ⋅ ⋅ ⊕ Xk, and since the Xi are transi-

tively permuted by D, it follows that CD(V1) is isomorphic to a direct product of k

copies of D8 ○ C4; in particular, then C/CC(X2) ≅ CD(V1)/CCD(V1)(X2) ≅ D8 ○ C4,

contradicting the above observation that C/CC(X2) is the dihedral group of order

eight. Hence there exists an element c ∈ CD(V1) such that c /∈ C, c2 ∈ C, and c

acts nontrivially on at least one Xi for some i ∈ {2, . . . , k}, so without loss we may

assume that c acts nontrivially on X2. Now there is a 0 ≠ x ∈ V1 such that c cen-

tralizes x. Since c /∈ C and C/CC(X2) is dihedral of order eight, this shows that

CD(x)/CCD(x)(X2) has order divisible by 16,and thus CD(x)/CCD(x)(X2) is isomor-

phic to D8 ○ C4 and therefore has three orbits of size 8 on X2. This allows us in an

obvious way to construct three different orbits of size M2 = 8k of CD(V1) on V2 =W1

having representatives with x in their X1-component; in addition to another orbit

of size M2 having a representative in the X1-component from the second orbit of

size 8 of CD(V1)/C on X1, giving us in total four distinct orbits of CD(V1) on V2,

contradicting the current fact that CD(V1) has exactly three orbits of size M2 on

V2.

Hence our assumption that k ≥ 2 was wrong, and we now have k = 1. So

W1 = V2 = X1 is of order 25, and CD(V1) ≅ D8 ○ C4 acts irreducibly on it and

has three orbits of size M2 = 8 on it. Hence (D8 ○ C4) × (D8 ○ C4) ≅ CD(V2) ×

CD(V1) is a normal subgroup of G. Now since D/CD(V1) has exactly one orbit of

size M1 on V1 (as we saw above), it follows that M1 = 16 and D/CD(V1) must be at

least of order 32, and thus D/CD(V1) is a full Sylow 2-subgroup of GL(2,5), i.e., a

semidihedral group of order 32. Moreover, ∣G ∶ G′∣ = M = M1M2 = 16 ⋅ 8 = 27 and

∣G∣ = ∣G/D∣ ∣D/CD(V1)∣ ∣CD(V1)∣ = 2 ⋅ 32 ⋅ 16 = 210. Therefore ∣G′∣ = 23. Now let Z =

CD(V1)′ ×CD(V2)′. Then Z ≤ D′ is a Klein 4-group and G′/Z = (G/Z)′. Working in

G/Z, we notice that (CD(V1) ×CD(V2)′)/Z is elementary abelian of order 24, and if
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g ∈ G −D, then gZ interchanges the two subgroups CD(Vi)Z/Z ≅ CD(Vi)/CD(Vi)′

(i = 1,2). Looking at the elements [gZ,xZ] ∈ (G/Z)′ for x ∈ CD(V1) shows us that

∣(G/Z)′∣ ≥ ∣CD(V1)Z/Z ∣ = 4 so that altogether 23 = ∣G′∣ = ∣G′/Z ∣∣Z ∣ ≥ 4 ⋅ 4 = 24, which

is a contradiction. This completes Case 2.4.1.1 where CD(V1) is not abelian.

Step 3.2.4.1.2: The Case Where CD(V1) is Abelian

Then CD(V1) has regular orbits on W1, and thus M2 = ∣CD(V1)∣, so CD(V1)

has either two or three regular orbits on W1.

Note that M2 = ∣CD(V1)∣ and so

M = M1M2 =M1∣CD(V1)∣ = ∣G/G′∣ = p∣D/D′∣

= p∣D ∶D′CD(V1)∣∣D′CD(V1) ∶D′∣

= M1∣D′CD(V1) ∶D′∣

= M1∣CD(V1) ∶ (D′ ∩CD(V1))∣

This forces D′ ∩ CD(V1) = 1. So if x ∈ D and c ∈ CD(V1), then [x, c] ∈

D′ ∩ CD(V1) = 1. This shows that CD(V1) ≤ Z(D) and hence CD(Vi) ≤ Z(D) for

i = 1, . . . p.

Now we consider the k in (+).

First suppose that k = 1, then W1 = X1, but since W1 = V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vp, we see

that X1 = V2 and p = 2. In particular, V2 is an irreducible faithful CD(V1)-module,

so CD(V1) is cyclic and has only regular orbits on V2 − {0}. So there are exactly two

such orbits, which shows that (∣V2∣ − 1)/2 = ∣CD(V1)∣. Since ∣CD(V1)∣ is a power of 2,

by an elementary result from number theory (see [12]) it follows that - if we write q

for the characteristic of V - either V2 is of dimension 1 and ∣V2∣ is a Fermat prime,

or ∣V2∣ = 9 and ∣CD(V1)∣ = 4.

In the former case we get that D/CD(V1) is abelian and hence D is abelian,

and so G is abelian (since G′ = D′), a contradiction. In the latter case we get that

61



D/CD(V1) must be at least of order 8 (since it has exactly one maximal orbit (of

size M1) on V1, and it must be isomorphic to a subgroup of the semidihedral group

SD16, as Sylow 2-subgroup of GL(2,3). However, all such subgroups have center of

order 2, contradicting the fact that ∣CD(V1)∣ = ∣CD(V2)∣ = 4 and CD(V1) ≤ Z(D).

This concludes the case that k = 1.

So let k > 1. Then define X0 = 0 and Li = CCD(V1)(X0⊕ ⋅ ⋅ ⋅ ⊕Xi)/CCD(V1)(X0⊕

⋅ ⋅ ⋅ ⊕ Xi+1) for i = 0, . . . , k − 1. As k > 1, we see that L0 has exactly one regular

orbit on X1, because otherwise also L1 would have at least two regular orbits on

X2 which ultimately would lead to CD(V1) having at least four regular orbits on

W1, a contradiction. Since all orbits of L0 on X1 must be regular, we thus con-

clude that ∣L0∣ = ∣X1∣ − 1. Since CD(V1) has exactly two regular orbits on W1, it

follows that there is exactly one l ∈ {1, . . . , k} such that Ll−1 has exactly two regu-

lar orbits on Xl, whereas all the other Li’s have exactly one regular orbit on Xi+1.

However, since Ll−1 only has regular orbits on Xl − {0}, it is clear that the sin-

gle regular orbit of size ∣Xl∣ − 1 of CD(V1)/CCD(V1)(Xl) on Xl splits into at least

p regular orbits for Ll−1 on XL. This shows that p = 2. Hence CD(V1)CD(V2) =

CD(V1) × CD(V2) ≤ Z(G), and since D/CD(V1) acts faithfully and irreducibly on

V1, we see that CD(V1) ≅ CD(V1)CD(V2)/CD(V2) is cyclic and thus has only regular

orbits on V2 − {0}. So there are exactly two such orbits and we now can arrive at a

contradiction just as in the case that k = 1

This concludes Case 2.4.1.2 and thus Case 2.4.1 is completed and it is left to

show that CD(V1) can not have exactly one orbit of size M2 on W1.

Step 3.2.4.2: The Case Where CD(V1) has exactly one orbit of size M2

on W1

Then by Theorem 1.1 CD(V1) is abelian and hence has regular orbits on W1,

so M2 = ∣CD(V1)∣ and the same argument as at the beginning of Case 2.4.1.2 shows

that CD(V1) ≤ Z(D) and hence CD(Vi) ≤ Z(D) for i = 1, . . . p.
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Assume that X1 < V2 (where X1 is as in (+)). Since CD(V1) has exactly one

regular orbit on W1, it also has exactly one regular orbit on V2, and since V2 is not

irreducible as CD(V1)-module, by Lemma 2.2 it is clear that CD(V1)/CCD(V1)(V2) is

not cyclic. But since CD(V1) ≤ Z(D), we see that

CD(V1)/CCD(V1)(V2) = CD(V1)/CD(V1 ⊕ V2) = CD(V1)/(CD(V1) ∩CD(V2))

≅ CD(V1)CD(V2)/CD(V2)

is a non-cyclic central subgroup of D/CD(V2). But on the other hand, D/CD(V2)

acts faithfully and irreducibly on V2 and hence has a cyclic center, and we have a

contradiction. This shows that X1 = V2, so V2 is an irreducible CD(V1)-module and

CD(V1) has either two or three (one of them being the trivial orbit) on V2. There-

fore again by [12]) it follows that - if we write q for the characteristic of V - either

- p = 2, V2 is of dimension 1 and ∣V2∣ is a Fermat prime; or

- q = 2 and ∣CD(V1)/CD(V1 ⊕ V2)∣ = p is a Mersenne prime; or

- p = 2, q = 3, ∣V2∣ = 9 and ∣CD(V1)∣ = 8.

In the first case we get (as earlier) that D/CD(V1) is abelian and thus D

is abelian, a contradiction. In the second case, since D is a p-group, with [12] we

see that D/CD(V1) cyclic of order p and thus abelian, making D abelian, a con-

tradiction. So we are left with the third case. Here we have that D/CD(V1) is a

subgroup of the semidihedral group of order 16, so ∣G∣ ≤ 29, and ∣G∣ ≤ 28 unless

D ≅ SD16 × SD16. Moreover, since any g ∈ G −D interchanges CD(V1) and CD(V2),

by taking commutators of elements in CD(V1) with g we easily see that ∣D′∣ ≥ 8

and so ∣G′∣ ≥ 8. Now D has an orbit of size ≥ 26 on V (from the regular orbit of

CD(V1) × CD(V2). So if ∣G∣ ≤ 28, we get 25 < 26 ≤ M = ∣G/G′∣ ≤ 28/23 = 25, a

contradiction. This leaves us with ∣G∣ = 29, and D ≅ SD16 × SD16, but in this case

for similar reasons as above we see that ∣D′∣ ≥ 24 and thus get the contradiction
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25 < 26 ≤M = ∣G/G′∣ ≤ 29/24 = 25.

This final contradiction concludes the proof of the theorem.
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