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A unique continuation property for linear elliptic
systems and nonresonance problems *

A. Anane, O. Chakrone, Z. El Allali, & I. Hadi

Abstract

The aim of this paper is to study the existence of solutions for a quasi-
linear elliptic system where the nonlinear term is a Caratheodory function
on a bounded domain of RY, by proving the well known unique contin-
uation property for elliptic system in all dimensions: 1, 2, 3, ...and the
strict monotonocity of eigensurfaces. These properties let us to consider
the above problem as a nonresonance problem.

1 Introduction

We study the existence of solutions for the quasilinear elliptic system

n
—Au; = Zaijuj + filz,u, ooy upn, Vug, ..., Vuy)  in )
— 1

Jj=1

u;=0 ond, i=1,...,n,

where O C RY (N > 1) is a bounded domain, and the coefficients a;; (1 <
i,j < n) are constants satisfying a;; = a,;, for all ¢,j. The nonlinearity f; :
Q x RY x R*N — R(1 < i < n) is a Carathéodory function. The case where
n=2and f; (1 <i<n)isindependent of Vu; (1 < i < n) has been studied
by several authors, in particular by Costa and Magalhaes in [8].

This paper is organized as follows. First, we study the unique continuation
property in dimension N > 3 (section 2), for systems of differential inequalities
of the form

|[Au,(x)] < KZ luj(x)| + m(z)|u(x)] ae ze€Q, 1<i<n,
j=1

where m € F*P, 0 < a < 1 and p > 1. Here FF*P denotes the set of functions
of class Fefferman-Phong. In our proof of Theorem 2, we make use of a number
results and techniques developed in [24, 9, 22]. Secondly, we study the unique
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continuation property in dimension N = 2 (section 3), for linear elliptic systems
of the form

n
—Au; = E ajuj +m(z)u; inQi=1,...,n,
j=1

where m satisfies the L,z L integrability condition. There is extensive literature
on unique continuation; we refer the reader to [22, 12, 18, 19, 15]. The purpose
of section 4 is to show that strict monotonicity of eigenvalues for the linear
elliptic system

n
—Au; = Zaijuj + pm(x)u; in Q,
j=1

;=0 ondQ, i=1,...,n

holds if some unique continuation property is satisfied by the corresponding
eigenfunctions. Here a;; = a;; for all i # j, p € Rand m ¢ M = {m €
L>(Q);meas(z € Q/m(z) > 0) # 0}. This result will be used for the appli-
cations in section 6. In section 5, we study the first order spectrum for linear
elliptic systems and strict monotonicity of eigensurfaces. This spectrum is de-
fined as the set of couples (3,a) € RY x R such that

—Au; = Zaijuj +am(z)u; + 5 - Vu; in Q, @
j 2
j=1

;=0 ondQ,i=1,...,n

has a nontrivial solution U = (uy, ..., uy,) € (H}(2))". We denote this spectrum
by 01(—Z — A,m) where A = (a;j)1<ij<n and m € M. This spectrum is
made by an infinite sequence of eigensurfaces Aj, As,... (cf. section 5 and [2]
in the case n = 2). Finally, in section 6 we apply our results to obtain the
existence of solutions to (1) under the condition of nonresonance with respect

N
to o1(—A — A, 1).
We use the notation
U1 —Auyy Vuy f
—
U= : , —AU= : , VU= : , F= :
Up, —Au,, YV, fn

We denote by o(—A) = {1, A2,..., A, ...} the spectrum of —A on H}(2). For
B € RN, we denote
ﬂ~£1 n n
(B€) = : s =D 0sl 1P =D (Gl
8.6, i=1 i=1
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In the space (H}(Q2))™ we use the induced inner product

n

(U, @) =) (ui, i) YU = (u1,...,un),® = (p1,...,0n) € (Hy ()"

i=1
and corresponding norm

n
2 .= /Q VU s = 3 2 0.5

i=1

e

which is equivalent to the original norm.

2 The unique continuation property for linear
elliptic systems in dimensions N > 3

We will say that a family of functions has the unique continuation property,
if no function, besides possibly the zero function, vanishes on a set of positive
measure.

In this section, we proceed to establish the unique continuation property
when m € F*P, 0 < a < 1 and p > 1 in dimension N > 3. The proof of the
main result is based on the Carleman’s inequality with weight.

Theorem 1 (Carleman’s inequality with weight) Let m € F*P, 0 < a <

~2 and p > 1. Then there exists a constant ¢ = ¢(N,p) such that

N—-1
1/8 ) 1/7‘
([ tersim) s ctmiie, ([ ermamra=) " )

for all 7 € R\{0}, and all f € S(RY) where 1 — 1 = NL_H and L +1=1.

For the proof of this theorem see [22].

Theorem 2 Let X be an open subset in RN and U = (uy, ... u,) € (HET (X))

loc
(r= 2(13[7_:%1)) be a solution of the following differential inequalities:

|Au;(z)] < KZ luj ()] + m(z)|ui(z)] ae ze€X1<i<mn, (4)

where K is a constant and m is a locally positive function in F'*P, with o = =
andp>1, i.e.

}I_I% ||X{m:|m—y|<r}m||F°‘$P < C(N>p) Vy € X.
Then, if U vanishes on an open X C Q, U is identically null in Q.

Lemma 1 Let U = (uy,...,u,) € (H2N(X)" (r = Z(JJJ—J:;)) be a solution of

(4) in a neighborhood of a sphere S. If U vanishes in one side of S, then U is
identically null in the neighborhood of S.
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Proof. We may assume without loss generality that S is centered at —1 =
(0,...,—1) and has radius 1. By the reflection principle (see [24]), we can also
suppose that U = 0 in the exterior neighborhood of S.

Now, let € > 0 small enough such that U(z) = 0 when |(x + 1)| > 1 and
|z] < e. Set fi(z) = n(|z|)u;(x) for each i = 1,...,n where n € C§°([—¢,¢)),
n(|xz]) = 1if |z| < /2. For fixed p such that 0 < p < 5, let B, the ball of radius
p centered at zero. By the Carleman inequality, theorem 1 yields

T s 1/8 2/8 T r,l—r 1/T
([ lemfim) " < clxa,mle, ([ e Afm =)L >0 ()
B, RN
for i =1,...,n. Inequality (5) implies
1/5 s T T -r l/r
([ e=sim)™ < cmmlilen{( [ lemanpmt)
B, RN\B,
1 1/r
+(/ erafimt =) L (6)
BP

(From (4), we have

P j= P

1/r
([ e i) @
B,
for each ¢ = 1,...,n. Using the Holder’s inequality, we obtain

([ termsipm)”

1/r
(/ |eTszi|rmr/smlfr/s)
B,
1

(/B |€T$Nfi|sm)1/s(/B m)%_'. s)

3 3

IN

As m € F2)P(X), it follows that
| m< o™ lxamilres. ©)
BP

Indeed, if m € F2)P(X) then

loc

1/p
Lo = ()
B, B,
_ 1 1/p
< B/t CK/N(|]-L3;J|(X/N(@/B mp) )
P
< pN T xs,ml per.
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It follows from (8) and (9) that

TN £.|T 1/T %_% TN £.|8 l/s
‘6 fl| m |XBpm||Fa,p |€ fZ| m )
B

P By

2(N—a) 1 rIN £ 1S 1/s
o N xg,mllpes ([l filTm) L (10)
B

P

A

(%)
b/\
=

|
L
i~

|
W |-

IN

foreachi=1,...,n.
We may assume without loss generality that m > 1, then

1/r 1/r
(/ |eme¢\Tm17T) < (/ |emei|’"m> Vi<i<n.
B, B,

JFrom (10), we deduce

1 1/r 2(N—a) 1_1 1/s
([ ety <o 85 gmilpnd ([ e fim) )

By B,

Therefore from (10) and (11), we have

TT s 1/s 2/s T r o 1/r
([ 1e=apm)™ < mmlien ([ lemagpmt)

p RN\B,
2(N—a) n 1/s
+cp WD ||XBPmHFa,p Z (/ |eT:cij|sm)
j=1 7B
2(N—a) ) X 1/s
+cp (NFD ||XBpmHF"’P</ |6T1Nfi|5m) 7 (12)
BP
for each ¢ = 1,...,n. Replacing a by % in (12), we obtain
1/s 9 CAN\Ur
([ le=npm)™ < elpmmlin ([ le=anrmi=)
B, RN\B,
2(N—2) n 1/s
+cp =D HXB,JmHF"*” Z (/ ‘6733ij|5m)
j=1 P

2(N-2) 1/s
+cp =D HXBpm”FO‘vP(/ |e'rfoi|sm) :
BF’

for each = 1,...,n. Let us choose p small enough, such that

1

IxB,m||Far < e’
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Sofori=1,...,n,

(/B |emei|5m)l/s = c</]RN\BP |€”NAfi|Tm1J)1/T

P
n

1 T S 1/3
e ([ e piem)

=1 7B
1 1/s

ST
2n B,

Since f;(x) =0 for all 1 < ¢ <n when |(z+1)| > 1 or |z| > €, we deduce that

" S learm) S

i=1 By i=1 N\B,

agrm=)"

So

n

n2—nl Z (/B eT(p.;_IN)fZ_'sm)l/s - Ci (/RN |Afi|rm1_T)1/r' (13)
=1

|
i=1 14

Taking 7 — 400 in (13), we conclude that U =0in B,. 0O

Proof of Theorem 2 We assume that U # 0 on X. Let 2 be a maximal open
set on which U vanishes and 2 # X, then there exists a sphere S which its
interior is contained in €2, such that there exists x € 9Q N S. As U vanishes in
one side of S, it follows that x € , which is absurd. O

3 The unique continuation property for linear
elliptic systems in dimension N = 2

In this section we prove the unique continuation property where m € LiozL in
lower dimension by using the zero of infinite order theory.

Definition 1 Let 2 be an open subset in RY. A function U = (uy,...,u,) €

(L2 .(2))" has a zero of infinite order at xo € €, if for each [ € N
lim R~' \U(x)|?dx = 0.
R—0 |z—20|<R

Let us denote by 3 the N-function
() =(1+t)log(l+t)—t, t>0

and by LY the corresponding Orlicz space (see [20]).
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Theorem 3 Let ) be a bounded open subset in R?> and m € Lﬁ’)c(ﬂ). Let
U= (u,...,u,) € (HL.(Q))" be a solution of the linear elliptic system

loc

n
—Au; = Zaijuj +m(x)u; nQ; i=1,...,n (14)
j=1

where the coefficients a;;(1 < 4,5 < n) are assumed to be constants satisfying
ai; = aj; Vi,j. If U vanishes on a set E C Q of positive measure, then almost
every point of E is a zero of infinite order for U.

The proof of this theorem is done in several lemmas.

Lemma 2 Let w be a bounded open subset in R? and m € LY (w). Then for
any € there exists c. = c.(w,m) such that

/mu2 Se/ \Vu|2—|—cg/u2 (15)

For a proof of this lemma, see [7].

for all u € H} (w).

Lemma 3 Let U be a solution of system (14), B, and Bs, be two concentric
balls contained in Q. Then

C
[owve< S [ (16)
r 2

r

where the constant ¢ does not depend on r.

Proof. Let ¢, with suppp C Ba,,@(z) =1 forx € B, and |Ve| < %
Using p?U as test function in (14), we get

/fZU.(QQQU):/AU.(goQU)Jr/mU.(chU).
Q Q Q
So
/ VU |2 :/(AU.U)<p2—2/(<pVU, Ve U) +/ me*U?  (17)
Q Q Q Q
On the other hand, we have
AU (2).U(z) < p(A)U(2).U(z) ae z €€,

where p(A) is the largest eigenvalue of the matrix A. Using Schwartz and
Young’s inequalities, we have

2
2/(pVU, VU)| < e|pVU|* + % for € > 0. (18)
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Thus, by lemma 2, we have for any £ > 0, there exists c. = ¢.(§2, m) such that

/ mleUP? < ¢ / V(U + e / oUP. (19)
Q Q Q

It follows from (17), (18) and (19) that

1
/ SIVUP < p<A>/ |¢U|2+e/ \VUW%/ Vel
Boy 2 2 € 2

" Bar Bar

‘e / V(U + e / QUP,
Bzr 2

"

and therefore

(1—(52+2g))/

1
O*VU|? < (5+1+—)/
B27‘ €

(Ve D)+ (p(A) +c.) / U
Ba,

Bs,

c

Using the fact that [Vg| < 2, || < € and ¢ = 1 in B,, we have immediately
(16). O

Remark 1 If U has a zero of infinite order at zg € €2, then VU has also a zero
of infinite order at xg.

Lemma 4 ([21]) Letu € WYY(B,), where B, is the ball of radius r in RY and
let E={x € B, : u(x) =0}. Then there exists a constant 3 depending only on

N such that
N

u| < Dl/N/ Vu
[ <810 [l

for all B, u as above and all measurable sets D C B,..

Proof of Theorem 3. Let U = (ui,...,u,) € (HL_(2))" be a solution of
(14) which vanishes on a set E of positive measure. We know that almost every
point of E is a point of density of E. Let xy be such a point, i.e.

|E°N B,| \ENB,|

— =0 and Er——
| B, | | B, |

—1 asr—0, (20)

where B, is the ball of radius r centered at xq. So, for a given € > 0 there exists
ro = ro(e) > 0 such that for r < rg

E°nN B, ENB,
| | .4 EOB

€ >1—¢,
| Br| | Br|

where E¢ denotes the complement of E in (2. Taking 7o smaller if necessary, we
may assume that Ba,, C §). By lemma 4 we have

2
2 2 r c 1/2 2
w;|* = u; < B——E°NB, / V(u;
/BT | /BTOEC| | |EﬁBr|| | BT| (i)’

2
|EN BT\1/2/ i || Vg

r
'r

2 P
SEn B,
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for each ¢ = 1,...,n. The Holder and Youngs’s inequalities lead to
2 1/2 1/2
[P < sl an ([ ) ([ vup)
B, |EN B, B, B,
5 _|EenB \1/2(1/ u2+r/ Vuil?) (21)
- |E N B, " r g, " B, vy
for each i = 1,...,n. We take the sum for i = 1 to n, we obtain

U <p E°N B,|*/? /U2 /VUZ.
[ wp <ot pteen s e (L [ weer [ o)

It follows from (16) and (20) that
2| By| |E°N B, Y2 (1 ¢
U2 < s s (_/ U2 _/ U2
/B v < ﬁ|Br|1/2|EmBr‘ B, |1/ r B%‘ I+ v, U )

cr gl/?
< g _ ' U2
— 5|BT|1/21_8/B2T |

c1/2 ,
< ¢ / |U|%,  for r <. (22)
1—¢ Bo,
Set f(r fB |U|?. Let us fix n € N, we have ¢ > 0 such that CE =2""
Observe that now rog depend on n. jFrom (22), we deduce that
f(r)y<27"f(2r), forr <m. (23)

Tterating (23), we get
F(o) < 2R p(2kp) i 21p <, (24)
Thus, given 0 < r < rg(n) and choosing k € N such that
27Frg < <27y,
JFrom (24), we conclude that
Fr) <27 f(2hr) < 277 f(2r0),
and since 2% < -, we get
r n
CH D!
To

This shows that f(r) = 0(r™) asr — 0. Consequently ¢ is a zero of infinite
order for U. 0O

Theorem 4 Let Q be an open subset in R%. Assume that U = (uq,...,u,) €
(HZ.(Q))™ has a zero of infinite order at xo € Q and satisfies

loc

| Au;(z \<KZ\UJ )+ m()|ui(z)] ae zeQ, 1<i<n, (25)

where m is a posztwe function belong to a class of LiogLioc(2). Then U is
identically null in Q.
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Proof. The technique used here is due to S. Chanillo and E. Sawyer (see [9]),
we may assume that m > 1. Since m + 1 also satisfy the hypotheses of theorem
4 when m € Llongoc(]RN), we have

[ nsm <cml [ 2 v e o), (20
]RQ RZ

(cf. [13, 25]), where I, f denotes the Riesz potential of order 0 < a < n, defined
by

@)= [ o=l )y

where one posed to simplify |[m|| = [|m/||,,,r. The inequality (26) is equivalent
to the dual inequality

/ Lo 2m < cljm]? / FPmt Y € O (RY). (27)
R2 R2

(cf. [14]) where Iof = ¢2 % f denotes the Newton Potential with ¢ is the
elementary solution of —A. On the other hand, from the result of E.Sawyer (cf.
(23]), if

1
Ga(w) = 5 loglal,

then

-1

o)~ 34 (2 eator ol < () ) wem 29

Jj=0 J

The constant ¢ does not depend on [, z and y. Let U = (uq, ..., u,) be a solution
of (25) and has a zero of infinite order at xg € 2. We may suppose without loss
generality that 0 € Q and xp = 0. Let also n and @ be two functions such that
n € C(Bar),n=1on B.and ¢ =0o0n By, =1 outside By and 0 < ¢ < 1.
Set r(x) = Y(kx),k > 0. We also assume that k > 4/r and r < 1/2. Then by
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(27, 28) and [16, Theoremm 4.3], for [ > 1 we have

vk (z)us ()]
/ —————m(z)dr (29)
B, ||
= [l [ éale - )M dyfPma)s
B,
—21 1 9 2
= |37| | [ (p2(z —y) — j,( )’ ¢2( — Y)|s=0) A(ru;)dy|“mdx
—y)|A ;
< c/ (f@ * |l (¢k77u)|> m(x)dx
B, lyl
A i
< c/ \IQ(LT‘))Pm(x)dx
B, ly
A DI
< el [ BRI
Ba, ||
A 202 2|¥y,|2
< CHXBTm”Q(/ | kaIUZ mfl(x)d:c+/ \V¢k| leu| m’l(x)dx
By, |7 Ba, ||
2IA 2 2|A N2
B, ‘x| lz|>r |$|
= c|xpm|*(IL + II} + I1I} + IV}}), (30)
for each i = 1,...,n. Choosing c|[xp,m|?> < 5 (this is possible since the
measure Lo L is absolutely continuous) it follows that
‘ 1 N i AN
I < — ERALL Ll d
b 2n /1<r |z|2l " (x) !
1 ¢ [nllwl? w1
< —( / I T () de + 7m(:c)d:£).
2n ; loj<r | lol<r  |T[?
We have

2 20,12
/ [ ‘uj| (x)dx < / Mm(x)dm whenever m > 1.
|z|<r |z|<r

|.’E|2l

So

oLy Wl U l?[uil®
111, < 2—<Z/ | rglcgf (x)dx—&—/'zG | kLqu | (ac)dx) (31)

n =1 |z|<r

As U = (uq,...,uy) is a solution of (25), from (29) and (31), we conclude that

1 Y| wi]? Y| |uy [? i i
(1_%)/3 | ]“|L|2[| x)dx ——Z/ | k||x2lj| m(z)dr < I, +I1I;. (32)
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On the other hand, we have

2
I; < / ¢k| ||21;7| “(z)dx < ck21+4/ lug | dz,
<|z| <2 xr

|| <

k

:r\w

for each i = 1,...,n. Hence limy_, 4 o I,i =0 V1 <1i<n,since U has a zero
of infinite order at 0 by hypothesis. On the other side

IT < ck*H2 / V| ?da.
|| <%
By Remark 1, it follows that limg_, 400 II,i =0 V1 <4i¢<n. The sum from
i =1 to n in the inequality (32), yields

n

n—1 1/%% 2
Z/ | o™ (z)dz <Y (I} + I + IV)).

i=1

So that

UupR 2 i , ,
/| ‘¢kU‘2m§T2l/B U] < ”1r212(1,1+11,g+zv,;). (33)
zj<r v i=1

BE n—

Taking the limit as k& and I — 400 in (33), we conclude that U =0 on B,.. O

Remark 2 In the following sections we take m in M which is obviously a
subspace of F*P and Li,gL. Also for those bounded potential we can use the
Carleman inequality of N. Arnsajn [5].

4 Strict monotonicity of eigenvalues for linear
elliptic systems

In this section we study the strict monotonicity of eigenvalues for the linear
elliptic system

—Au; = Zaijuj + pm(x)u; in Q,
j=1
uy=0 ondQ,i=1,...,n

(34)

We will assume that
A1 > p(A), (35)

where p(A) is the largest eigenvalue of the matrix A and A; the smallest eigen-
value of —A .

As it is well Known [1, 17, 10, 2], that the eigenvalues in (34) form a sequence
of positive eigenvalues, which can be written as

pi(m) < po(m) < ....

Here we use the symbol 3 to indicate inequality a.e. with strict inequality
on a set of positive measure.
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Proposition 1 Let my and me be two weights of M with m1 3 mq and let
j € N. If the eigenfunctions associated to p;(m1) enjoy the unique continuation
property, then p;(mq) > pj(ms).

Proof. We proceed by the similar arguments which has been developed by
D.G. de Figueiredo and J.P. Gossez [12]. p;(my) is given by the variational
characterization

1
g (ma)

where L(U,U) = [, |VU]* — [, AU.Udx and F} varies over all j-dimensional
subspace of (H}(Q))"™ (cf. [1, 17, 10]). Since the extrema in (36) are achieved
[11], there exists F; C (H}(S2))™ of dimension j such that
1

7:inf/m1U2dw;UeF‘ and L(U,U) =1}. 37

o) {Q U j (U, U) =1} (37)
Pick U € F; with L(U,U) = 1. Either U achieves tits infimum in (37) or not.
In the first case, U is an eigenfunction associated to p;(mq) (cf. [11]), and so,
by the unique continuation property

1
:/m1|U|2</m2\U|2.
pi(ma)  Ja Q

- supinf{/ mi|UPdz;U € F; and LU,U) =1}, (36)
F Q

In the second case

1
</m1|U|2§/m2\U|2.
Mj(ml) Q Q

1
< / m2|U\2.
g (ma) Q

It follows, by a simple compactness argument that

Thus, in any case

1
—<inf/m Ul>,U € F; and L(U,U) = 1}.
oy < f{ | mefUI*5U € Fy and £(U,U) = 1}

This yields the desired inequality
1 < 1
pmi(ma) — pg(ma)

5 Spectrum for linear elliptic systems

First order spectrum

Theorem 5 a) A,(.,4,m): RN — R is the positive function characterized
in a variational form by

1 3 / B.x 2
AN (B A sup min e’ *m(x)|U|*dz, U € F,NSg(A
Aa(B,AM) e @) { . (2)|U] 5(A)}
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for all 3 € RN, with

Sp(A) = {U € (Hy(Q)" : |U|I7 2.5 — / PTAUUdr = 1},
Q

and Fp,((H}(Q))™) is the set of n-dimensional subspaces of (Hg(£2))".
b) For allU € (H}(Q))",

Al(ﬂ,A,m)/ P em(x)|UPdx < U1 2.5 —/ P TAUU dx.
Q Q

c) For all f € RN, limp, o0 An (3, A, m) = Fo00.

For the proof of this theorem see [2].

Strict monotonicity of eigensurfaces for linear elliptic sys-
tems

By theorem 5 it seems that the following result may be proved by arguments
similar to those in proposition 1 (see section 4).

Proposition 2 Let mi,my € M, if my 2 mgo then Aj(3, A,m1) > Aj(8, A, m2)
for all j € N*.

6 Nonresonance between consecutives eigensur-
faces

In this section, we study the existence of solutions for the quasilinear elliptic
System .
—AU =AU + F(z,U,VU) in Q,
U=0 on 0.

Let us consider the situation where the nonlinearity F' is asymptotically between
two consecutive eigensurfaces in the following sense: we assume that there exists
a; < az €R, f € RN and for all § > 0 there exist as € L?(£2) such that

(38)

ails]* + (B).s — 0(|E* + as(@)|s] < s.F(x,5,€) (39)
< anls? + (88).s + 0([¢€]* + as(2))]s]

a.e. € Q and for all (£,s) € RN x R2,

A function U in (H{(2))" is said to be a solution of (38) if U satisfies (38)
in the sense of distributions. With this definition, we state the main result of
this section.

Theorem 6 Let (39) be satisfied with Ap(6,A,1) < a1 < as < Ap1(6,A,1)
for some k > 1, then (38) admits a solution.
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Remark 3 It is clear that by (39) there exist b; > 0 such that for all 6 > 0
there exists as € L?(2) such that

[F'(,5,6) = (BE)] < bals| + 0bi (€] + as(x)) (40)
a.e. € Q and for all (£,s) € R?Y x R2,

Proof of Theorem 6 Let (T})¢c[o,1) be a family of operators from (Hg(£2))"
to (H=1(Q))™:
T,(U) = —AP(U) — P2 (4(F (2, U, VU) + (1 — t)al — t{BVU))

where a; < o < ag. Since F verifies (39), the operator T is of the type (Sy).
Now, we show the a priori estimate:

Jr > 0 such that Vt € [0,1],VYU € (0B(0,r))", we have T;(U) # 0.
We proceed by contradiction, if the a priori estimate is not true, then
Vn eN, 3t, €[0,1], 30, € (0B(0,n))" (||Unll1,2 = n),such that T} (U,) =0,
so that

AP, = P (4, Fx, Uy, VUn) + (1 — tn)alUy, — ta(BVU)). (41)

Set V,, = HUE{%’ the sequence (V;,) is bounded in (H}(€))™. Therefore, there
exists a subsequence of (V,,) (also noted (V;,)) such that: V,, — Vin (H(Q))",
Vo, =V in (L9(Q))" for all ¢ € [1,2*[, with 2* = 22 Then we proceed in
several steps.

Step 1: The sequence of functions defined a.e. x € 2 by
F(z,U,,VU,)

Gp(z) =
AT

— (BVVa)

is bounded in (L2(Q2))™.
To prove this statement we divide (40) by [|Up]|1,2. Then

Ga(e)] < BlVal + 0y (VY] + 2

and

a
IGnll < b1l[Vall2 4+ 001 (| Vall1,2 + | 6”2)

n
by llas 2
- 1 4 1=ofe
()\1)1/2+6b1( +— ),

which proves step 1.
Since (L?(£2))" is a reflexive space, there exists a subsequence of (G,), also
denoted by (Gy,), and F' € (L*(Q))" such that

G, — F in (L*(Q))". (42)
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Step 2. F(z)=0ae in A:={zecQ:V(z)= 0a.e.}
To prove this statement, we define ¢(x) = sgn(F(x))x4. By (40), we have

(@) (@) < b (Val + 809V + D)) 4w

and

a
[Groll2 < a(||Vaxallz +6(1+ w))

Since V,, — V in (L?(2))", we have V,x4 — 0 in (L*(Q))". Passing to the
limit, we obtain
limsup [|Groll2 < 0b;.

As 9 is arbitrary, it follows that
Gnd— 0 in (L*(Q))".
On the other hand, (42) implies

[ Guo— [ Fo= [ 1@t

So fA |F(x)| = 0, which completes the proof of step 2.
Now, we define the function

F(z).V(z)
Da)={ War & TE\A
o a.e. r €A

Step 3. a3 < D(z) < g ae. x €.

First, we prove that a; < % a.e. x € O\ A then analogously we

prove that % <agae zeQ\A).
Set B={zc Q\ A: ay|V(2)]> > F(z).V(z) a.e.}. Tt is sufficient to show
that meas B = 0. Indeed, the assumption (39) yields

a1|Un|? = §(|VU,| 4 as(x)|Un| < U,.F(z,U,, VU,) — (BVU,).Up,,  (43)
dividing by ||U,||? 5, we obtain

A D) ) <V, G,

Multiplying (43) by x5 and integrating over €2, we have

aq / |Vrl|2XB
Q

[ vVl + LA [ ViGutares

[ v+ s(([ vy [ e+ Ll )
Q Q n

llas|l2
/Qvn.G (z )XB+5( 1/QJFM}/Q).

IA

IN

IN
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Passing to the limit (Knowing that G,, — F and V,, — V in (L%(2))"), we get

- 0
o [ V@Pxe < [ VP + o
Q Q A

for all 6 > 0. Then
/ (V@) F(x) ~ aalV () ) x> 0.
Q

Finally, by the definition of B, we deduce that meas B = 0, and the proof of
step 3 concludes.
It is clear that we can suppose that ¢, — ¢. Set m(z) =tD(x) + (1 —t)a.

Step 4. 1) The function V is a solution of

—ABU = eATAU + P Tm(z)U  in Q,
U=0 on oS

2) o <m(z) <azae xe
To prove 1), we dividing (41) by n = ||Uyn||1,2. Then

— APV, = PTAV, + P (1, G () + (1 — tn)aVs). (44)

Since V,, = V in (H}(Q))",
/ PV, VO — / PTYV.VE  for all ® € (HE(Q)".
Q Q

On the other hand, multiplying (44) by ® € (HE(Q))", as n — 400 we obtain

EEAvATS = g P (tF (x —t)aV(x)).
/Q VY.V /QAV<I>+/Q (tF( ):l—(l HaV (z)).0,
= /Qe’G‘IAV@wL/gze’@‘I(tWJr(It)a)V(:c)ﬁI)
= /e’g‘IAV.<I>+/6’6'I tD(z)+ (1 —t)a) V(z).®
Q Q

From the second step and the definition of D(x) it follows that
APV = PTAV + Brm(z)V in (HH(Q)™

Then assertion 1) follows.
To prove 2), we combine the result of step 3 and the fact that a; < o < as.
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Step 5. V #0.
To prove this statement, we multiplying (44) by V,,. Then

/eﬁ'x(tnGn(x).Vn+(1—tn)a\Vn|2)+/ eﬁ-mvn.vn:/eﬁ-ﬂf|vvn|2 > M,
Q Q Q

where M = min ¢’ > 0. Passing to the limit, we get
Q

/ AP (2) + (1 HalV (@)2) +/ PTAVY > M > 0.
Q Q

This which completes the proof of step 5.
Finally, from the step 4 and step 5, we conclude that (3, 1) is a first order
eigenvalue of the problem, with

Ap(B,A4,1) <an <m(x) < g < Apia1(B,4,1).
By the strict monotonicity with respect to weight (see proposition 2.), we have
Ak(57A, m) <1I< Ak+1(57 Avm)a

which is absurd, and present proof is complete. [
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