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The Value of Post‐Extracted Algae Residue 
 
 

Abstract 
 

This paper develops a hedonic pricing model for post‐extracted algae residue 
 

(PEAR), which can be used for assessing the economic feasibility of an algal 
 

production enterprise. Prices and nutritional characteristics of commonly employed 
 

livestock feed ingredients are used to estimate the value of PEAR based on its 
 

composition. We find that PEAR would have a value lower than that of soybean meal 
 

in recent years. The value of PEAR will vary substantially based on its 
 

characteristics. PEAR could have generated algal fuel co‐product credits that in 
 

recent years would have ranged between $0.95 and $2.43 per gallon of fuel 
 

produced. 
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1. Introduction 
 

 The merits of microalgae as a source of biofuel feedstock have been widely 
 

recognized recently [1,2,3,4,5]. Cited benefits, relative to other biofuel feedstocks, 
 

include production employing non‐arable land and brackish water that are not 
 

employed in food production, potential recovery of waste nutrients from water 
 

treatment, and greenhouse gas emission reductions. Non‐biofuel‐related uses of 
 

microalgae have been recognized as well, including use as a livestock or aquaculture 
 

feed ingredient, production of high‐value oils for pharmaceuticals and nutritional 
 

supplements for people and animals, biotech applications, agrochemicals, pigments, 
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and cosmetics [6,7,4]. This potential has sparked a frenzy of research, and over 100 
 

commercial start‐ups worldwide as of 2009 [8]. 
 

However commercial‐scale production of biofuels using algal feedstocks is 
 

currently economically infeasible [8,9,3,10,4,5]. Essentially all current commercial 
 

algae production is motivated by sale of high‐value oils for pharmaceutical and 
 

nutritional uses [5]. Substantial advances in the underlying biology and algal 
 

biomass productivity will be required to achieve economically feasible algal biofuels 
 

production, and this achievement is likely 10 to 15 years away [3,5]. It is generally 
 

agreed that co‐product sales will be critical to achieving economically feasible algal 
 

biofuels production [8,9,10,4,5]. Stephens, et al. [4] argue that the market for high‐ 
 

value oil co‐products would be rapidly saturated if algal biofuels production 
 

increases substantially, and sales of post‐extracted algae residue (PEAR) as a 
 

livestock feed likely represents the most important long‐run component of co‐ 
 

product revenue. 
 

No market for PEAR currently exists, however, and consequently potential 
 

prices for PEAR are not currently known with any reasonable certainty. Thus the 
 

potential PEAR revenue that a prospective algae producer might enjoy is currently 
 

unknown; there thus exists a critical limitation to existing analyses of the economic 
 

feasibility of algae production. In short, there is a pressing need to know the likely 
 

value of PEAR as a livestock feed ingredient, and how this value varies over time. 
 

Hedonic pricing methods model the interdependence of commodity prices 
 

and commodity characteristics to infer the implicit values of the characteristics, 
 

which would be difficult to otherwise determine. In simple terms, a hedonic 
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equation is a regression of the market prices of products or commodities on their 
 

corresponding characteristics. Three aspects of a hedonic price analysis must be 
 

carefully specified to achieve robust results: selecting dependent and independent 
 

variables, specifying a functional form, and defining a submarket—a set of goods to 
 

include as observations for the regression [11]. Given a well‐specified model, the 
 

fitted regression coefficients are interpreted as measurements of the values of the 
 

products’ characteristics in the case of an additive model (wherein the variables 
 

have not been transformed) or as elasticities (the percentage change in product 
 

value given a one percent increase in a continuously measured attribute or the 
 

percentage increase in product value resulting from the inclusion of a discrete 
 

feature) in the case where the natural logarithms of continuous variables are 
 

employed.1 While not a common application of hedonic pricing methods, they can 
 

also be used to estimate the value of a product that is not currently traded (such as 
 

PEAR) based on its characteristics. 
 

The objective of this study is to estimate the value of PEAR using hedonic 
 

pricing techniques. Twenty‐two commonly used livestock feed ingredients are 
 

decomposed into their economically and biologically important constituent 
 

nutrients to estimate the market value of each. Calculated prices of these 
 

characteristics are then used to estimate the value of PEAR. 
 
 
 

1 In a standard regression model, fitted regression coefficients corresponding to a 
continuous independent variable are interpreted as the marginal effect on the 
dependent variable of a unit increase in that independent variable, holding all else 
constant. This same interpretation applies for a hedonic pricing model with non‐ 
transformed variables, but this application admits a more specific interpretation of 
the fitted coefficients as characteristics’ monetary values. 
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The paper proceeds as follows. In the next section we enumerate the 
 

important nutritional characteristics of livestock feed ingredients, which will serve 
 

as candidates for explaining observed ingredient prices. We then describe the 
 

methodology we employ, and proceed to present our results. We conclude with a 
 

 
 

 

discussion of the economic meaning of the results. 

 

2. Common Ration Ingredients and their Constituent Nutrients 
 

We employ in our analysis prices and corresponding nutrient compositions 
 

for each of twenty‐two common feed ration ingredients. From the pool of oilseed 
 

products, animal byproducts, brewers’ and distillers’ grains, whole and milled 
 

grains and other types of feedstuffs, the following ingredients were chosen because 
 

they are all commonly employed in cattle rations, and because price observations 
 

for these commodities are reliably available: soybean meal (high protein), soybean 
 

meal (low protein), soybean hulls, whole cottonseed, cottonseed meal, cottonseed 
 

hulls, linseed meal, poultry byproduct meal, hydrolyzed feather meal, prime tallow, 
 

yellow grease, bleachable fancy tallow, vegetable‐animal blend, suncured pellets 
 

(dehydrated 17%), wheat middlings, rice bran, rice millfeeds, rice hulls, whole corn, 
 

sorghum, ground grain screenings, and feed urea.2 
 
 
 

2 These ingredients were not selected based on the similarity of their nutrient 
contents to PEAR. The purpose of the hedonic analysis is to infer how feed 
commodity value varies as nutrient composition varies. Even if the prices of 
numerous feed commodities with nutrient contents very similar to PEAR were 
available, such commodities could not be used by themselves to reliably infer the 
values of various nutrient characteristics. In any regression model, substantial 
variability in the independent variables (in our application, nutrient contents of the 
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Chemical profiles of the feed ration ingredients constitute independent 
 

variables in the hedonic regression. The National Research Council [12] reports 
 

thirty‐six different characteristics for the selected feed meals, which are classified 
 

under the categories energy, protein, fiber, minerals and vitamins. Many of the 
 

reported components are not expected to substantially influence buying behavior or 
 

animal nutritional status. Candidate independent variables for the regression are 
 

carefully selected based on the potential importance of each characteristic for the 
 

livestock feed ration, as described next. 
 

Total digestible nutrients (TDN), digestible energy (DE), metabolizable 
 

energy (ME), net energy for maintenance (NEm) and net energy for growth (NEg) 
 

are all measurements of the energy content of feed ingredients. Given that all of 
 

these factors are measuring energy, they closely correspond to one another. For 
 

example, the relationship between ME and DE is given by: 
 

ME (Mcal/kg of DM) = 0.82 x DE (Mcal/kg of DM) (1) 
 

where DM represents dry matter and the components of DE and ME are presented 
 

on a mega calories per kilogram basis. Since the energy measures are closely 
 

related, including more than one of these would likely introduce a multicolinearity 
 

problem. The NRC reports TDN as the most frequently used measurement of energy 
 

content. Therefore, TDN was selected for inclusion in our list of candidate variables 
 

from the pool of available energy measurements.3 
 
 

feed ingredients in our sample) is absolutely required to reliably infer the influence 
of those variables on the dependent variable (commodity prices in this application). 
3 While NRC reports that TDN is the most widely used measurement of energy 
content, Vasconcelos and Galyean [13] report that NEg is most widely used by 
feedlot nutritionists. However, since NEg is calculated from TDN using the NRC 
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 Protein is a vital nutrient for livestock maintenance, growth and 
 

reproduction. Protein is often reported as Crude Protein (CP), which represents 
 

total nitrogen content of a sample multiplied by 6.25. Given that protein is 
 

universally acknowledged as a critical component of livestock diets, this estimate of 
 

the percentage of protein in each ingredient is included in our list of candidate 
 

 variables. 
 

There are two important characteristics associated with Crude Protein: 
 

Degradable Intake Protein (DIP) and Undegradable Intake Protein (UIP). DIP is the 
 

portion of CP which can be degraded in the rumen, while UIP represents the portion 
 

of CP that is not degraded in the rumen. However, UIP is not an indicator of lost 
 

protein, as it may be digested post ruminally and represents a significant source of 
 

metabolized protein. Since DIP and UIP sum to 100%, we only include UIP among 
 

our candidate variables. 
 

Ether Extract (EE) is an estimate of total fat or oil content, which is a dense 
 

source of calories. Fat is a necessary ingredient for livestock body growth as well. It 
 

is expected to have a significant influence on the value of the feed and is included in 
 

our list of potential explanatory variables. 
 

Fiber is a relatively important component of the livestock diet and can have a 
 

significant effect on the buying behavior of feed customers. Acid detergent fiber 
 

(ADF) is representative of the fiber content, which is negatively related to digestible 
 

energy. Higher ADF concentrations indicate reduced digestibility. Additionally, 
 

sufficient intake of effective neutral detergent fiber (eNDF) is required to ensure 
 

model, both of these measures embody the same fundamental information. We 
employ TDN without loss of generality. 
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proper rumination, which is essential for long‐term animal health and performance. 
 

As both of the fiber representatives measure different aspects of the livestock feed 
 

ration, ADF and eNDF are both included as possible variables.4 
 

Minerals that are important for animals are divided into two groups: 
 

macrominerals and trace minerals. Macrominerals are calcium, phosphorus, sodium, 
 

chlorine, potassium, magnesium, and sulfur. Trace minerals include cobalt, copper, 
 

iodine, iron, manganese, molybdenum, selenium, and zinc. From this pool of 
 

minerals, four main macrominerals are identified as most likely to influence feed 
 

meal value. The first is calcium (Ca), which is important for bone and teeth 
 

formation, cardiac regulation, muscle excitability, and normal growth. The second 
 

mineral is phosphorus (P), which is also used for bone growth, enzymatic reactions, 
 

and energetic transfers. The third mineral is potassium (K), which is important for 
 

blood pressure regulation, oxygen and carbon transport, acid‐base balance, and 
 

muscle contraction. The fourth mineral is sulfur (S), which is essential for disease 
 

resistance, blood sugar regulation, and maintenance of body tissue. Sulfur is of 
 

particular interest because of its relation to polioencephalomalacia and its relatively 
 

high concentrations in distillers’ grains. Any of these four macrominerals may 
 

potentially have negative value, as they can be toxic for the livestock if given in high 
 

volumes. However, they are not expected to be found in toxic volumes in the feed 
 

ingredients listed above or in PEAR. 
 

4 The feasibility of including these variables in a final hedonic pricing model for 
PEAR is limited. Due to PEAR’s small particle size, it is impossible to determine ADF 
by currently available methods, and eNDF is, in part, dependent on particle size. As 
it happens, the specification search procedure (described later in this paper) did not 
identify ADF or eNDF as necessary components of our hedonic pricing model, 
rendering this limitation moot. 
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Trace minerals are expected to be present in PEAR. Existing data suggests 
 

that trace minerals of potential concern, particularly those used in upstream 
 

processes, are copper (pond management) and aluminum (flocculation). However, 
 

inclusion of PEAR in livestock diets will likely be limited by the high ash content, salt 
 

content, and (or) the protein content. Therefore, we do not expect inclusion of 
 

PEAR in commercially fed diets to result in complete diets that exceed maximum 
 

tolerable concentrations for trace minerals. We also observe that the trace mineral 
 

contents of primary feed ration ingredients are clearly not an important 
 

determinant of buyer decision‐making or those ingredients’ market prices. 
 

3. Methodology and Data 
 
 

3.1 General Hedonic Pricing Model and Functional Form 
 

The earliest uses of hedonic pricing were investigations of the influences of 
 

vegetable quality attributes on their market prices [14,15]. Hedonic pricing 
 

methods gathered momentum beginning with the work of Griliches [16], who 
 

analyzed quality‐adjusted measures of automobile prices. Lancaster [17] developed 
 

underlying theory, arguing that the characteristics of goods are part of the 
 

consumers’ utility function and preferences depend on the measure of each desired 
 

characteristic. Rosen [18] applied Lancaster’s preference theory to the broader 
 

concept of supply and demand analysis based on product characteristics, which then 
 

became the foundation of many further studies. 
 

 There have been various applications of hedonic pricing methods to 
 

agricultural commodities in recent years. Jordan, Shewfelt, Prussia, and Hurst [19] 
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studied the effects of quality characteristics on the prices of fresh tomatoes and the 
 

economic feasibility of different tomato handling techniques by using hedonic price 
 

analysis. They found that damage had a significant influence on tomato value, and 
 

that the coefficients for quality characteristics that varied from period to period. 
 

Hyberg and Uri [20] examined the implicit prices of soybeans exported by the 
 

United States to Japan. This study was designed to determine how intrinsic and 
 

physical characteristics of soybeans were valued differently for two different 
 

markets: soybean meal and soybean oil markets. Ethridge and Davis [21] described 
 

the application of hedonic pricing techniques to estimate the quality characteristics 
 

of semi‐processed cotton lint. A hedonic price model for cotton was specified as a 
 

function of trash content, color characteristics of the lint, staple length code, 
 

micronaire reading, and lot size in number of bales. The model was designed for the 
 

period of 1976‐77 and 1977‐78. The prices were estimated separately for these 
 

years and then combined since cotton quality appeared to be different in each year. 
 

A general hedonic pricing model specifies that the observed market price for 
 

commodity n (pn) is a function of a vector of corresponding quality characteristics 
 

for commodity n (xn): 
 

 pn = f(xn). (2) 
 

There is, however, no specific functional form suggested by theory for such models. 
 

Halvorsen and Pollakowski [22] and Cropper, et al. [23] suggest nested non‐linear 
 

transformations per Box and Cox [24], using a parameter y: 
 

p 
y‐1 for y ‐= 0 

 (3) 
ln(   ) for y   0 
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We apply this transformation to pn creating a transformed variable , and to each 

of the variables in xn, creating a vector of transformed quality characteristic 
 

variables, ....... The transformed variables can be linearly related given a conformable 
 

vector of coefficients, p and a stochastic error term un: 
 

 ∙ p  un. (4) 

For         ( 1 ,…,     )′,          ( 1 ,…,     )′, where each      is a row vector of transformed 

quality characteristics, and u (u1,…, u )r, the relationship across all observations 

can be written as 
 

 p  u. (5) 
 

A value of y    1 yields no non‐linear transformation, y    0 yields a 
 

logarithmic transformation, and y    1 implies a reciprocal transformation. 
 

Cropper, et al. [22] suggest that accommodating Box‐Cox transformations improves 
 

the reliability of hedonic model results. A likelihood ratio test can be used to test 
 

the nested alternative transformations (H0: y     1, H0: y     0, H0: y     1)5. The 
 

likelihood ratio test statistic for a Box‐Cox transformation (LRBC), given that LR is 

the log‐likelihood of a restricted model (i.e., y is restricted to a specific 
 

hypothesized value) and LU is the log‐likelihood of the unrestricted model (i.e., the 

value of y is unrestricted, and is fitted via maximum likelihood) is 
 

 2(LR     LU) . (6) 

LRBC is distributed chi‐squared with one degree of freedom corresponding to the 
 

single restriction on y [25]. 
 
 

5 By “nested”, we mean that the single model presented as equation (5) can 
accommodate all of the three data transformations simply through specification of 
appropriate values of the nesting parameter y. 
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Malpezzi [11] reviews the theoretical basis of hedonic pricing models and 
 

their practical application. He describes how various standard econometric results 
 

apply to these models. He identifies three most important components of the 
 

hedonic price equation: choice of dependent and independent variables, 
 

specification of the functional form, and the definition of the market or submarket 
 

(i.e., price observations to employ in the estimation). He observes that sufficient 
 

variability is needed in the dependent and independent variables. Also, he shows 
 

that coefficient estimates will be biased if important variables are omitted. Malpezzi 
 

[11] illustrates that the log‐linear form can have several advantages over the linear 
 

form, such as heteroscedasticity mitigation and simplification of results 
 

interpretation. He also endorses the Box‐Cox transformation. 
 

3.2 Approximate Bayesian Model Specification Search 
 

Theory also provides little guidance for specifying the specific independent 
 

variables to use in a hedonic pricing model. Domain‐specific expert knowledge and 
 

experience provide some guidance. However such knowledge may not produce a 
 

sufficiently small set of commodity characteristics relative to numbers of available 
 

price observations. One approach to resolving this issue is a specification search 
 

with the objective of finding an individual model (i.e., a model employing a specific 
 

subset of available explanatory variables) that is “best” by some measure. Suppose 
 

the set of all possible explanatory variables has cardinality K. For our purposes, we 
 

define a model Mi as a functional form embodied by equation (5) for some non‐ 
 

empty subset (with cardinality 0 < Ki � K) of the set of all possible explanatory 

variables. 
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In a Bayesian model averaging framework, a posterior probability is assigned 
 

to each model in a set of candidate models. This is an evaluation of how likely a 
 

specific model is to appropriately reflect underlying relationships, given the data 
 

that are observed. Given data Y, if (Mi) is the prior probability assigned to model i, 

and (Y|Mi) is the integrated likelihood for model Mi (see [26] for details), the 

posterior probability assigned to a specific model Mi given the data is 
 

  (M |Y)       p(Mi)p(Y|Mi)  
∑j p(Mj)p(Y|Mj) 

(7) 
 

This latter value can be quite difficult to evaluate precisely, but Schwarz [27] gives 
 

an easily computed approximation. If Li is the log‐likelihood of model i, Ki is the 

number of fitted parameters in model i, and N is the number of observations, then 
 

 
  

 
 

   the approximation is  
 

ln( (Y|Mi)) � SBCi ≡ Li     0.5Kiln(N). (8) 

 

If the set of considered models are all assigned equal prior probability, then the 
 

individual model with the greatest SBCi will also be assigned the greatest posterior 
 

probability (Mi|Y). This motivates SBC as a criterion for selecting a specific model 

from among many possibilities given minimal prior assumptions. Alternatively, a 
 

common casual explanation of SBC is that it rewards model fit (Li) while penalizing 

model complexity ( 0.5Kiln(N)), and a desirable model will balance these two 

considerations. 
 

The space of models that employ all possible subsets of a collection of K 
 

possible explanatory variables will have dimension 2K. Rather than exhaustively 
 

estimate all of these possible models, a search procedure can be used. We employ a 
 

search procedure wherein we start with an empty model (no explanatory variables), 
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compute the SBC for all possible models with exactly one explanatory variable, and 
 

add the single explanatory variables that results in the greatest increase in SBC 
 

relative to the empty model. We then repeat these steps for the modified model, 
 

adding the variable that next increases SBC most, repeating until adding additional 
 

variables cannot increase SBC. In a second phase, improvements in SBC due to 
 

removing variables are sought, with single variables providing maximal 
 

improvement being removed first. This type of search is known to identify a model 
 

at or near the global optimum SBC [28]. 
 

3.3 Detection of Influential Observations 
 

Influential observations are individual data points employed in a regression that 
 

have a large influence on the resulting parameter estimates. Such observations may 
 

simply be particularly informative, or they may reflect a problem wherein the 
 

influential observation inappropriately distorts the regression results to 
 

misrepresent the relationships that exist among the remaining data. Cook [29] 
 

provides a convenient method for detection of influential observations. Cook’s 
 

“distance” essentially measures the extent to which removal of an individual datum 
 

changes a regression model’s predicted values. If Ki is the number of fitted 
 

parameters, MSE is the mean squared error of the regression residuals when all data 
 

are used, N is the total number of observations,   ̂   is the predicted value of the 

dependent variable for observation n when all data are used for fitting, and    ,(̂ m) is 
 

the predicted value of the dependent variable for observation n when the 
 

parameters have been fitted without using observation m, then Cook’s distance is 
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∑      (p n‐p n,(m))2
 

 Dm    n=1 

KixMSE 
. (9) 

 

It is generally accepted that observations with Dm > 1 merit scrutiny for validity. 
 

3.4 Data 
 

Nutrient compositions of the twenty‐two feed meals for the ten nutrients 
 

described earlier are obtained from Preston [30]. Weekly prices from January 2005 
 

through September 2010 for twenty‐two feed meals in Fort Worth, Texas, are 
 

obtained from the Miller Publishing Company publication Feedstuffs [31]. Fort 
 

Worth was chosen due to the consistent availability of prices for a relatively large 
 

number of feed ingredients, because the southwest region has favorable conditions 
 

for algae growth [10], and because the southwest region has a large number of 
 

concentrated animal feeding operations (CAFOs)6. The weekly price data are 
 

aggregated to a quarterly basis for a total of twenty‐three time periods from the first 
 

quarter of 2005 through the third quarter of 2010. 
 

The nutrient compositions of various PEAR samples are the authors’ original 
 

measurements, and are presented in Table 1. The eleven PEAR samples are based 
 

on two different algae species grown in open ponds in two separate locations in 
 

Texas. PEAR was prepared using various treatments, as indicated in Table 1. TDN 
 

values in these data are calculated based on the organic matter content. For 
 

instance, suppose a particular sample contains 70% organic matter. We assume 
 
 

6 The Texas panhandle and southern plains is the largest cattle feeding area in the 
world. Texas feedlots marketed 5.8 million fed steers and heifers in 2011, 25.6 
percent of fed cattle produced in the U.S. The Texas panhandle and eastern New 
Mexico are also a growing area for milk production, currently the third largest such 
area in the country. 
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that the digestibility of algae will be approximately 80%.7 Therefore, we multiply 
 

70% by 80% to arrive at a TDN value of 56% of dry matter. 
 
 

4. Results 
 

The prices of twenty‐two feed meals represent the set of dependent 
 

variables, while ten selected characteristics of feed ingredients are used as potential 
 

independent variables in the model. Our general approach is to specify a final 
 

hedonic regression equation by testing restrictions on a preliminary model, and 
 

imposing those restrictions that are deemed appropriate. The preliminary, 
 

unrestricted hedonic pricing model is given by (5) with all ten possible explanatory 
 

variables included: Total Digestible Nutrients (TDN), Ether Extract (EE), Crude 
 

Protein (CP), Undegradable Intake Protein (UIP), Acid Detergent Fiber (ADF), 
 

Effective Neutral Detergent Fiber (eNDF), calcium (Ca), phosphorus (P), potassium 
 

(K), sulfur (S). 
 

We first apply the approximate Bayesian specification search procedure 
 

described in the previous section to determine an appropriate subset of explanatory 
 

variables. We employ the variables without any Box‐Cox transformation for this 
 

initial step. Equations representing each quarter of the data sample are stacked to 
 

create a single system and therefore a single SBC value for each subset of 
 
 
 

7 The small particle size of PEAR compromises our ability to determine digestibility 
in the laboratory using routine analysis. We assume 80% digestibility based on the 
small particle size (more specifically, particle size will not limit enzymatic access to 
nutrients), high protein content, and low levels of structural and chemical limiters of 
digestions. We expect to refine this number as additional data becomes available for 
in vivo and in vitro digestibility. 
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explanatory variables considered.8 The approximate Bayesian specification search 
 

procedure described above in subsection 3.2 suggests a model with the variables 
 

TDN, CP, EE, eNDF, Ca, and S has a higher posterior probability than most or all 
 

competing alternatives. Accordingly, we test the null hypothesis that the 
 

coefficients on the variables UIP, ADF, P, and K are all zero. We compute a 
 

likelihood ratio test statistic of 3.68 for the joint restriction that these four 
 

coefficients are all zero, with an associated p‐value 0.451. We therefore do not 
 

reject these restrictions, and proceed without the variables UIP, ADF, P, and K in all 
 

analysis that follows. 
 

We next estimate period‐wise regressions that accommodate Box‐Cox 
 

transformations, and test restrictions on y corresponding to specific 
 

transformations in each period. We calculate p‐values associated with the 
 

likelihood ratio tests for each hypothesis for each time period. The arithmetic mean 
 

across time periods of the p‐values associated with each of the three null 
 

hypotheses regarding y, as well as the number of time periods for which we reject 
 

each hypothesis, are reported in Table 2. The reciprocal and log transformations 
 

are rejected for almost all time periods, and these transformations have very low 
 

average p‐values. We do not reject the null hypothesis of no transformation for 
 

fewer time periods than the log and reciprocal transformations, and the null 
 

8 By “stacked”, we mean that for a given subset of explanatory variables, the   for 
each of the T time periods are vertically concatenated to form a single NT‐ 
dimensional column vector, the T individual p parameter vectors are vertically 
concatenated to form a single KiT‐dimensional column vector, and the T individual 
are arranged block diagonally in an NT x KiT matrix. We then use these stacked 
data and parameters in a single system (across all time periods) analog to equation 
(5) to estimate a single SBC score for the model that employs the given subset of 
explanatory variables. 
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hypothesis of no transformation has an average p‐value greater than 0.10. We 
 

therefore proceed without nonlinear transformations. 
 

A preliminary analysis of the results emanating from the non‐transformed 
 

data using the six explanatory variables identified above suggests problems caused 
 

by influential observations: We therefore calculate Cook’s distance measures using 
 

this preliminary model for each of our observations for each of our twenty‐three 
 

time periods. The average (over time periods) Cook’s distance measures are 
 

presented in Table 3. Poultry byproduct meal, hydrolyzed feather meal, and feed 
 

urea all have average Cook’s distance measures greater than unity. Further 
 

investigation reveals that poultry byproduct meal has a far greater calcium content 
 

than any of the other twenty‐one feed ingredients included in the analysis, and that 
 

its price increased dramatically during our sample period. Observed nutritionist 
 

behavior strongly suggests that this ingredient is not valued based on its calcium 
 

content, and we therefore conclude that this observation is having a substantial and 
 

misleading influence on the implicit calcium values emanating from our hedonic 
 

regressions. We identify a similar situation regarding hydrolyzed feather meal and 
 

sulfur content. We additionally find that the while we have an appropriate indirect 
 

measure of CP content for most feed ingredients, this measure is misleading in the 
 

case of feed urea, suggesting that 288% of the dry matter content of feed urea is 
 

crude protein.9 In the analysis that follows, we omit these three feed ingredients, 
 

bringing our total number of observations for each time period down to nineteen. 
 
 
 

9 CP is estimated by quantifying the percent of nitrogen in a sample and multiplying 
that percentage by 6.25. Urea contains no actual protein, but is nonetheless 
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We recognize that the three inappropriately influential observations 
 

identified above may have influenced the outcome of the approximate Bayesian 
 

specification search procedure. We therefore re‐apply this procedure using only the 
 

remaining nineteen observations. This results in further pruning from our initial set 
 

of potential explanatory variables – we now remove the constant, Ca, and S from the 
 

model. The final hedonic pricing model is therefore: 
 

 f]1TDN       f]2EE       f]3CP       u (10) 

where we again suppress time subscripts even though we apply the model 
 

repeatedly across time periods in our data sample. In the analysis that follows, 
 

fitted values for f]1, f]2, and f]3 for each individual time period are employed in 

calculating corresponding hedonic values. 
 

The evolution of the final values for each of these three characteristics is 
 

presented in Figure 1. The fitted values plus and minus one standard error (where 
 

standard errors are recovered from each period’s hedonic regression) are plotted as 
 

dotted lines to give as indication of the uncertainty associated with each value. The 
 

monetary values of each percent of dry matter content for EE and CP vary 
 

substantially over our sample, and some correspondence between these two 
 

monetary values is evident. The monetary value of TDN appears relatively stable 
 

from period to period, and its movements exhibit little correspondence with those 
 

of EE and CP. Each of these constituent values will be multiplied by the 
 

corresponding nutrient contents of feed ingredients, and these nutrient content 
 

levels have different average magnitudes in our PEAR samples. Therefore the final 
 

approximately 46% nitrogen. The available CP measurement therefore 
misrepresents the actual protein content of feed urea. 
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contribution of each nutrient’s monetary value to overall PEAR monetary value will 
 

be modulated by these nutrient content levels. Uncertainty surrounding individual 
 

constituent monetary values will also propagate through to final PEAR value 
 

uncertainty (as discussed below) based on the relative magnitudes of PEAR nutrient 
 

content levels as well. 
 

 4.1 Model Validation Using Soybean Meal 
 

Before projecting PEAR prices using the final hedonic pricing model, we 
 

conduct a simple validation exercise in which we project the in‐sample value of 
 

high‐protein soybean meal. We select soybean meal as it is the commodity with 
 

which PEAR will most closely substitute. While the values of two soybean meals 
 

(high and low protein) were used in fitting hedonic models for each period, they are 
 

only two of nineteen feed ingredients so used. The observations are not weighted in 
 

any way. The soybean meal observations therefore should not dominate the results; 
 

if the general approach of estimating feed ingredient values using time‐varying 
 

constituent values has merit, the projected values of soybean meals should not 
 

deviate dramatically from their observed market prices. 
 

For each time period in our sample, we multiply the fitted constituent values 
 

for that time period for TDN, EE, and CP by the corresponding quantities of those 
 

constituents contained in high‐protein soybean meal. The sum of these products 
 

then constitutes a point estimate of the hedonic value of high‐protein soybean meal 
 

for each period. We additionally employ two simulation procedures to characterize 
 

the uncertainty surrounding these estimates. First, we stochastically simulate the 
 

error term (un in equation 10), assuming that it is normally distributed with a zero 
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mean and a variance equal to that of the recovered regression residuals in each time 
 

period. We employ 1,000 random draws for un for each time period, thereby 
 

generating 1,000 realizations for the price of high‐protein soybean meal (and other 
 

feed commodities below). For the second simulation approach, we draw random 
 

values for un and for f]1, f]2, and f]3. The betas are drawn jointly normal, based on the 

recovered coefficient covariance matrix from each time period. The error term is 
 

assumed to be independent of the betas, and is randomly drawn as before. We 
 

employ 1,000 random draws for the four stochastic components in this second 
 

simulation approach, again creating 1,000 realizations of the relevant feed 
 

ingredient price. 
 

The projected hedonic values for high protein soybean meal, and two sets of 
 

50% confidence intervals for these values corresponding to our two simulation 
 

procedures, are plotted against the observed market price for high‐protein soybean 
 

meal in Figure 2. The average value of the actual price less the projected hedonic 
 

price over all time periods is $8.23 per ton. That is, the model tends to slightly 
 

undervalue high protein soybean meal, and analyses that follow for PEAR may be 
 

somewhat conservative. However as Figure 2 shows, there is a high degree of 
 

correspondence between the actual and projected prices. The correlation between 
 

the two series is 0.986. 
 

The actual observed high‐protein soybean prices fall within the 50% 
 

confidence interval for our first simulation approach (stochastic un only) for 19 out 
 

of 23 time periods. For the second simulation approach, all actual price 
 

observations are inside of the 50% confidence interval. For well‐calibrated 
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probabilistic forecasts, we would expect observed prices to fall outside of the 50% 
 

confidence interval for approximately half of all observations. We hypothesized that 
 

the soybean meal results indicate that there is some heteroskedasticity in the data, 
 

and that soybean meal and corn prices are more reliably projected by our approach 
 

than the prices of other, less popular feed ingredients. To test this hypothesis, we 
 

randomly selected three non‐soybean and non‐corn feed ingredients (suncured 
 

pellets, rice hulls, and rice bran), computed the two forms of 50% confidence 
 

intervals for price projections for those commodities, and tallied the occurrences of 
 

actual observations falling outside those intervals. This occurred 23, 11, and 19 
 

times for the confidence intervals that do not reflect beta uncertainty, and 16, 8, and 
 

12 times for the confidence intervals that do reflect beta uncertainty. Given these 
 

results, we accept that the simulation procedure accommodating beta uncertainty 
 

produces reasonable confidence intervals for non‐staple feed ingredients. Given our 
 

very limited number of observations in each time period (prices of only nineteen 
 

feed ingredients), and given that we apply to the model to a currently unpopular 
 

feed ingredient below, we do not pursue a more complex econometric specification 
 

to accommodate heteroskedacticity. Below, we simply report PEAR value 
 

uncertainty based on the simulation procedure accommodating parametric 
 

uncertainty. 
 

Given the high degree of correspondence and minimal differences between 
 

 projected point values and observed prices for soybean meal, we are very 
 

comfortable applying the overall hedonic approach to valuing PEAR. Since PEAR is a 
 

protein‐rich meal that will be more similar to soybean meal than most of the other 
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feed ingredients in our data sample, we acknowledge, based on the performance of 
 

the high‐protein soybean meal confidence intervals, that our PEAR value analysis 
 

below may reflect overly wide (i.e., conservative) confidence intervals. 
 

4.2 Hedonic Value of PEAR 
 

For each time period in our sample, we multiply the fitted constituent values 
 

for that time period for TDN, EE, and CP by the corresponding quantities of those 
 

constituents contained in each of our eleven PEAR samples (see Table 1). For 
 

brevity, we present the hedonic values of the PEAR samples in two groups based on 
 

their observed qualitative differences. A high‐protein group consists of the first 
 

three samples of nannochloris oculata, while the second group consists of all other 
 

PEAR samples. All samples in the first group have crude protein content that is 
 

greater than 34 percent of dry matter, while all samples in the second group are less 
 

than 24 percent crude protein. The average characteristics of high‐protein soybean 
 

meal and the two PEAR groups are presented in Table 4. 
 

The evolution of the average hedonic values for the two PEAR groups is 
 

depicted in Figure 3. Both PEAR groups are valued below the soybean meal price 
 

for all dates in our sample. The high‐protein PEAR group is almost always valued 
 

higher than the corn price, while the other PEAR group is valued similarly to or 
 

lower than corn. PEAR is valued lower than soybean meal due to generally lower 
 

nutrient content. Relative to soybean meal, PEAR samples have less CP, lower TDN, 
 

and similar or lower EE (Table 4). The values of the two PEAR groups relative to 
 

soybean meal and relative to one another are commensurate with the varying 
 

protein and ash content. Due to the higher protein content of the first PEAR group, 
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these varieties are more valuable than those of the other PEAR group. There is a 
 

very high correspondence between PEAR value changes and soybean meal price 
 

changes, and noticeably less correspondence with corn price changes. 
 

There is no obvious correspondence between algae harvesting method and 
 

meal extraction method, and resulting meal protein content and value. However 
 

there are relatively few samples compared to the number of possible combinations 
 

of species, harvesting methods, and extraction methods, so these data do not allow 
 

conclusions in this regard. While none of the chlorella sp samples had a higher 
 

protein content, the available observations do not include identically treated algae 
 

samples for the two different species, so the effect of species on PEAR value also is 
 

unclear from these data. The general impression is that PEAR protein content and 
 

value will vary substantially due to algae harvesting method, meal extraction 
 

method, and perhaps due to species, and the interactions among these factors. 
 

Uncertainty surrounding hedonic PEAR values for two individual PEAR 
 

samples is depicted in Figure 4. One high‐protein PEAR variety and one other PEAR 
 

variety are presented (Nannochlor oculata flakes, drum‐dried, hexane‐extracted 
 

meal and chlorella sp, flocculated, spray‐dried, pentane extracted meal, 
 

respectively). Confidence intervals are calculated using the simulation procedure 
 

that incorporates parametric uncertainty as described in subsection 4.1. The 
 

average magnitude of the 50% confidence interval for each PEAR variety is slightly 
 

greater than $50 per ton. The confidence intervals for the two PEAR samples 
 

presented in Figure 4 overlap for most of the earlier time periods. In the later 
 

periods, however, the higher protein values (Figure 1) result in higher values for the 
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higher‐protein PEAR, and the confidence intervals do not overlap for many of these 
 

periods. We do not, however, assert any statistical differences in these values or 
 

formally test for any such differences. 
 

The volumes of algal oil generated per unit of volume of PEAR generated for 
 

our samples were not available. We therefore use assumptions in this regard to 
 

calculate approximate co‐product credits that might be generated per gallon of 
 

diesel‐like, algae‐based fuel produced. Specifically, we use the relative volumes of 
 

oil and PEAR jointly produced in the open‐pond model of [10]. That work assumed 
 

that algae was harvested by centrifuge, and the oil and meal separated using the 
 

proprietary solvent process of Solution Recovery Services. This process is reported 
 

to yield from total biomass approximately 28% oil (by weight) and 72% meal. We 
 

assume that algae oil is used to produce either fatty acid methyl ester (FAME) 
 

biodiesel produced by trans‐esterification of algal oil, or non‐esterified renewable 
 

diesel (NERD) produced by hydrotreating algal oil. We assume 7.4 pounds of oil are 
 

needed to produce one gallon of FAME biodiesel and 8.4 pounds are needed to 
 

produce one gallon of NERD.10 Using all of these assumptions, and high and low 
 

values of PEAR of $100 and $225 per ton (based on the hedonic PEAR values for 
 

2008 onward presented in Figure 3), we calculate that PEAR should generate co‐ 
 

product credits in the ranges of $0.95 to $2.14 (FAME) and $1.08 to $2.43 (NERD) 
 

per gallon of diesel‐like fuel.11 
 
 

10 These values are inferred from Marker, et al. [32]. 
11 The co‐product credit calculations presented here assume that the algae producer 
chooses to market PEAR as a livestock feed ingredient. We acknowledge that the 
producer could instead choose to recover nutrients from the algae residue and 
reuse them in the algal production process. However, the market value of PEAR as a 
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5. Conclusions 
 

We used the prices of common livestock feed ration ingredients to infer the 
 

values of constituent nutrients: total digestible nutrients, crude protein, and ether 
 

extract (a measure of approximate fat content). We then used the values of these 
 

nutrients in conjunction with the nutrient content of various PEAR samples to infer 
 

the potential value that PEAR would have had as a livestock ration ingredient from 
 

 2005 through 2010. 
 

We found that PEAR would have had considerable value as a feed ration 
 

ingredient, although it is less valuable than soybean meal owing to lower protein 
 

content and higher ash content. Changes in PEAR value would correspond closely, 
 

but not perfectly, to changes in soybean meal value. We found that for most of the 
 

2006 through 2010 period, PEAR would have been valued between $100 and $225 
 

per ton. Using some assumptions about relative yields of oil and meal extracted 
 

from algae, we calculated that PEAR sales could have yielded co‐product credits 
 

ranging between $0.95 and $2.43 per gallon of diesel‐type fuel produced for most of 
 

this period. 
 

Relative to the size of livestock feed markets, quantities of PEAR produced 
 

would likely be fairly small even if large quantities of algae‐based fuel were 
 
 
 

livestock feed ingredient would not be determined by its cost of production, or by 
the value of recovering nutrients from algal residue for further algae production, but 
rather by PEAR’s potential contribution to the production of livestock or dairy 
commodities (in economic terminology, the value of the marginal product of PEAR). 
The market value of PEAR as a livestock feed ingredient may be below its cost of 
production, and may be below the value of using recovered nutrients in further 
algae production. Optimal management of an algae production enterprise is beyond 
the scope of this paper. 
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produced. In the U.S. alone, the estimated combined feed use of only corn and 
 

soybean meal in the 2011/12 marketing year is about 158 million short tons. Using 
 

the average of the FAME and NERD fuel yields from above, and the assumed 
 

proportions of oil and meal yield from algae from above, we calculate that 
 

approximately 20.3 pounds of PEAR would be produced per gallon of algae‐based, 
 

diesel‐type fuel. Production of one billion gallons of algae‐based fuel (which would 
 

fully satisfy the annual requirement for biodiesel use under the U.S. Renewable Fuel 
 

Standard) would result in production of approximately 10.1 million short tons of 
 

PEAR, which is slightly more than 6% of U.S. feed use of corn and soybean meal in 
 

the 2011/12 marketing year. 
 

As with any research, various caveats apply. We used the prices of feed 
 

ingredients observed at a single geographic location (Fort Worth, Texas) in inferring 
 

the values of constituent nutrients. We ignored the possibility that PEAR may yet be 
 

discovered to contain substances toxic to livestock, and that such toxic content may 
 

obviously vary by algae processing methods. For some PEAR samples, calcium and 
 

sulfur contents are fairly high, which may limit the proportion of a total livestock 
 

ration that can consist of PEAR. Our results should be interpreted with these 
 

limitations in mind. 
 

This information should prove useful in evaluating the economic feasibility of 
 

different algal production systems. While a formal, complete analysis would 
 

obviously be required to draw definitive conclusions, our results imply that systems 
 

which do not generate a PEAR co‐product (e.g., where algae is anaerobically 
 

digested to generate fuel) may be less economically attractive than systems that do 
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generate a PEAR co‐product. Among systems that do generate PEAR, the algal 
 

species, harvesting and extraction details and their simultaneous effects on both 
 

 
 

 

PEAR value and oil value will need to be carefully considered. 
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 Table 1: Composition of PEAR Samples (selected characteristics)* 
 
 

   As a Percent of Dry Matter: 
Species 

and 
Sample 

 
Treatment % Dry 

Matter 
Organic 
Matter 

 
Ash 

 
TDN 

 
CP 

 
EE 

 
Chlorella sp 

1 

Flocculated, 
spray dried, 
pentane‐ 

extracted meal 

 
93.78 

 
58.99 

 
41.01 

 
47.19 

 
21.33 

 
0.76 

 
Chlorella sp 

2 

Flocculated, 
spray dried, 
pentane‐ 

extracted meal 

 
95.78 

 
56.79 

 
43.21 

 
45.43 

 
20.16 

 
1.56 

 
Chlorella sp 

3 

Flocculated, 
spray dried, 
pentane‐ 

extracted meal 

 
91.40 

 
51.47 

 
48.53 

 
41.18 

 
19.8 

 
2.37 

 
Chlorella sp 

4 

Flocculated, 
spray dried, 
pentane‐ 

extracted meal 

 
91.64 

 
48.70 

 
51.3 

 
38.96 

 
20.40 

 
1.93 

Nannochlori 
s oculata 1 

Flakes drum‐ 
dried, ethanol‐ 
extracted meal 

 
90.13 

 
75.76 

 
24.24 

 
60.61 

 
34.20 

 
<0.20 

Nannochlori 
s oculata 2 

Flakes drum‐ 
dried, hexane‐ 
extracted meal 

 
88.82 

 
50.34 

 
49.66 

 
40.27 

 
35.50 

 
0.66 

 
Nannochlori 
s oculata 3 

Flocculated 
expanded 

collets, hexane‐ 
extracted meal 

 
92.82 

 
52.16 

 
47.84 

 
41.73 

 
38.06 

 
1.90 

 
Nannochlori 
s oculata 4 

Spray dried‐ 
expanded 

collets, ethanol‐ 
extracted meal 

 
90.08 

 
56.06 

 
43.94 

 
44.85 

 
23.58 

 
2.96 

 
Nannochlori 
s oculata 5 

Spray dried‐ 
expanded 

collets, hexane‐ 
extracted meal 

 
90.81 

 
53.32 

 
46.68 

 
42.66 

 
23.24 

 
2.93 

Nannochlori 
s oculata 6 

Flocculated, 
ethanol‐ 

extracted meal 

 
94.29 

 
50.96 

 
49.04 

 
40.77 

 
21.90 

 
0.31 

Nannochlori 
s oculata 7 

Flocculated, 
hexane‐ 

extracted meal 

 
92.66 

 
42.41 

 
57.59 

 
33.93 

 
18.76 

 
0.68 

 
* PEAR sample quantities varied, but were each greater than 5kg. In the context of 

 

animal feed processing, a “collet” is a nozzle through which a meal is extruded, or 
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the product that results from this process. We use this latter usage here. TDN = 
 

total digestible nutrients, CP = crude protein, EE = ether extract. 
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Table 2: Average P‐values for Period‐wise Box‐Cox Parameter Restrictions 
 

 

Null Average Number of Rejections 
 

Hypothesis Transformation p‐value (alpha = 0.10) 

H0: y      1 Reciprocal 0.036 20 

H0: y      0 Log 0.000 23 

H0: y      1 None 0.120 15 
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Table 3: Average Cook’s Distance for Period‐wise Hedonic Regressions 
    

Price Observation Cook’s Distance 
 

Soybean meal (high protein) 0.044 

Soybean meal (low protein) 0.037 

Soybean hulls 0.031 

Whole Cottonseed 0.227 

Cottonseed meal 0.005 

Linseed meal 0.007 

Poultry byproduct meal 3.224 

Hydrolized feather meal 1.378 

Prime tallow 0.009 

Yellow grease 0.051 

Bleachable fancy tallow 0.073 

Vegetable‐animal blend 0.007 

Suncured pellets (dehydrated 17%) 0.057 

Middlings 0.016 

Rice bran 0.021 

Rice millfeeds 0.010 

Rice hulls 0.152 

Corn 0.015 

Milo 0.009 

Ground grain screenings 0.020 
 

Feed urea 41.060 
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 Table 4: Average Composition of PEAR Samples and High‐Protein Soybean Meal* 
    

Percent of Dry Matter 
  TDN CP EE 

High‐protein soybean meal 87 54 1.1 

High–protein PEAR** 47.5 35.9 0.9 

Other PEAR*** 41.9 21.1 1.7 
     
 * PEAR = post extraction algae residue, TDN = total digestible nutrients, CP = crude 
 protein, EE = ether extract. 
 ** Average characteristics of Nannochloris oculata, flakes, drum‐dried, ethanol‐ 
 extracted meal; Nannochloris oculata, flakes, drum‐dried, hexane‐extracted meal 
 and Nannochloris oculata, flocculated expanded collets. 
 *** Average characteristics of all other PEAR samples, consisting of two different 
 species and various harvesting and extraction methods. 
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 Figure 1: Evolution of the Values of Feed Meal Characteristics* 

 

  

 * Dotted lines represent values plus or minus one standard error. 



39  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Projected versus Actual High‐protein Soybean Meal Values 
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Figure 3: Hedonic PEAR Values 
 



41  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Hedonic Values of Specific PEAR Samples with Confidence Intervals 
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