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CONCENTRATION PHENOMENA FOR FOURTH-ORDER
ELLIPTIC EQUATIONS WITH CRITICAL EXPONENT

MOKHLESS HAMMAMI

ABSTRACT. We consider the nonlinear equation

9 n+4
A%y =un—-4 —eu

with v > 0in Q and u = Au = 0 on 9Q2. Where Q is a smooth bounded domain
in R", n > 9, and ¢ is a small positive parameter. We study the existence of
solutions which concentrate around one or two points of 2. We show that this
problem has no solutions that concentrate around a point of €2 as € approaches
0. In contrast to this, we construct a domain for which there exists a family
of solutions which blow-up and concentrate in two different points of € as e
approaches 0.

1. INTRODUCTION AND STATEMENT OF RESULTS

This paper concerns the concentration phenomena for the following nonlinear
equation under Navier boundary conditions:

A2u=uP —cu, u>0 inQ

(1.1)
Au=u=0 on 99,

where (2 is a smooth bounded domain in R™, n > 9, ¢ is a small positive parameter
and p+1 = 2n/(n — 4) is the critical Sobolev exponent of the embedding H?(2) N
HY(Q) — LPTL(Q).

In the last decades, there have been many works in the study of concentration
phenomena for second order elliptic equations with critical exponent; see for exam-
ple [1L B} 6, @l 10, [T, 12} 17, 18, 20, 2T, 22, 23], 24, 25| 26] and the references therein.
In sharp contrast to this, very little is known for fourth order elliptic equations.

For £ = 0, the situation is complex, Van Der Vorst showed in [27] that if 2 is
starshaped has no solution whereas Ebobisse and Ould Ahmedou proved in [13]
that has a solution provided that some homology group of €2 is nontrivial. This
topological condition is sufficient, but not necessary, as examples of contractible
domains 2 on which a solution exists show [16]. For —A1(Q) < & < 0, Van der Vost
has shown in [28] that has a solution, generalizing to the famous Brezis-
Nirenberg’s result [8] concerning the corresponding second order elliptic equation,

2000 Mathematics Subject Classification. 35J65, 35J40, 58 E05.

Key words and phrases. Fourth order elliptic equations; critical Sobolev exponent;
blowup solution.

(©2004 Texas State University - San Marcos.

Submitted August 25, 2004. Published October 14, 2004.

1



2 M. HAMMAMI EJDE-2004/121

where A1 (Q) denotes the first eigenvalue of A% under the Navier boundary condition.
Recently, also for ¢ < 0, El Mehdi and Selmi [I5] have constructed a solution of
which concentrates around a critical point of Robin’s function,

However, as far as the author know, the case of € > 0 has not been considered
before and this is precisely the first aim of the present paper. More precisely,
our goal is to study the existence of solutions of which concentrate in one
or two points of 2. The similar problems in the case of Laplacian have been
considered by Musso and Pistoia [22]. Compared with the second order case, further
technical problems arise which are overcome by careful and delicate expansions of
the Euler functional associated to and its gradient near a neighborhood of
highly concentrated functions. Such expansions, which are of self interest, are
highly nontrivial and use the techniques developed by Bahri [2] and Rey [23] in the
framework of the Theory of critical points at infinity.

To state our results, we need to introduce some notations. We denote by G the
Green’s function of AZ, that is, for all x € ,

A?G(x,.) =0, inQ
AG(z,.)=G(z,.) =0 on 09,

where &, denotes the Dirac mass at = and ¢, = (n — 4)(n — 2)|S"71|. We also
denote by H the regular part of G, that is,

H(z,y) = |z —y[* " = G(z,y), for (z,y) €2 x Q.
For A > 0 and x € R", let

n—4

= CnA 7 cn=[(n—4)(n—2)n(n (n=4)/8 .
52a0) = e == = Do+ 2) (12)

It is well known [19] that d, » are the only solutions of

n+4 .
A’y =wu»—1, u>0inR"

with u € LPTH(R") and Au € L?(R™). They are also the only minimizers of the
Sobolev inequality on the whole space; that is,

S = inf{||Au||iz(Rn)||uH_227n CAuE LA ue Lita y 0}. (1.3)
L7 (Rn)

We denote by Pd, y the projection of the d, \’s onto H2(Q) N H}(2), defined by
A?P§, \ =A%, ,in Q and APS, \ = Pé, =0 on 09,

and we set

Y x = g x — Pdg .
The space H(Q) := H?(Q) N H(Q) is equipped with the norm || - || and its corre-
sponding inner product (.,.) defined by

Jul = (/QAu|2)l/2, ue H(Q), (1.4)
(u,v) = /QAuAv, u,v € H(Q). (1.5)

For x € Q, A > 0, let

OPSs, _ . OPdsn

Ey,x={veH(Q): (v,Pdy ) = (v, Y ) = (v, 7z,

)=0,j=1,...,n},
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where the z; is the j-th component of .
Now we state our first result.

Theorem 1.1. There does not exist any solution of (L.1)) of the form
Ue = Oéepfsza})\i + Vg, (16)
where

Ve € By, 2 2. €Q andase — 0, az — 1, ||ve| — 0, Aed(zc, Q) — +00.

(1.7)

e

On the contrary, if €2 is a domain with small “hole”, we prove the existence of a
family of solutions which blow-up and concentrate in two points. Namely, we have
the following result.

Theorem 1.2. Let D be a bounded smooth domain in R™ which contains the origin
0. There exists ro > 0 such that, if 0 < r < rg is fized and 2 is the domain given by
D\w for any smooth domain w C B(0,r), then there exists eg > 0 such that problem
has a solution u. for any 0 < € < €yg. Moreover, the family of solutions .
blows-up and concentrates at two different points of § in the following sense:

2
Ue = Zafpdr?’)\f + ve,
i=1
where A7, A5 > 0, 2§, 25 € Q with lim._o2; = z; € Q, 21 # x2, A] and A\ are of
order e/ (n=8) 4 € Eye e N Eye zs and as e — 0, af — 1, [Jvc|| — 0.

Note that the construction of solutions which concentrate around k different
points of ©, with & > 2 is related to suitable critical points of the function Wy :
Rﬁ x QF — R defined by

k
1 1 _8
Wi(h,2) = S(M(@)AA) + 5 Y AT,
=1

where A =7 (Aq,...,Ay) and M(z) = (my; (2))1<; j<p 18 the matrix defined by
mi; = H(.Tz, ‘Z‘Z‘), mij = 7G(f£1‘,f£j) fOI‘ 7 7£ ] (18)

Let p(z) be the least eigenvalue of M (x) and e(x) the eigenvector corresponding to
p(z) whose norm is 1 and whose components are all strictly positive (see Appendix
A of [3]). Now, we define the following subset of H(2)

M. ={m = (a,\,z,v) € RF x (R})* x ija X H(Q) : |a; — 1| < vy,
1 by .,
N > — Vi, = <co, |z —xj| >dy Vi# G, vEE, v <wl
1%} /\j
where vy, ¢, do, dj, are some suitable positive constants, Qq4, = {z €  : d(z, 0Q) >

do} and E = ﬂle Ey, »,- Then, we have the following necessary condition.

Theorem 1.3. Assume that u. is a solution of (1.1 of the form

k
Ue = Y05 Py pe + 07, (1.9)
i=1
where (o, A%, 2°,v°) € M., then, whene — 0, o — 1, a5 — x; fori=1,...,k

and we have either p(z) =0 and p'(x) =0 or p(z) < 0 and (A, z) is a critical point
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of Uy, where A; = cuy;, with p; = limg_q 6";—18)\f >0 fori=1,....,k and c is a
positive constant.

The proof of our results is inspired by the methods of [2] Bl [ [14], 22]. In Section
2, we develop the technical framework needed in the proofs of ours results. Section
3 is devoted to the proof of Theorems [[.I] and while Theorem [I.2]is proved in
Section 4.

2. THE TECHNICAL FRAMEWORK

First of all, let us introduce the general setting. For ¢ > 0, we define on H(Q)

the functional
1 1
:7/ |Au\2—7/ \u|p+1+f/u2. (2.1)
2 Jo p+1Ja 2 Jo

If w is a positive critical point of J;, u satisfies on 2 the equation (|1.1). Conversely,
we see that any solution of (L.1) is a critical point of J.
Let us define the functional

k
K.: M. - R, K. (a,\,2,0) Zazpéz“)\ + ). (2.2)

i=1

Note that («, A\, z,v) is a critical point of K. if and only if u = Zle i Py, \, +v
is a critical point of J;, i.e. if and only if there exist A;, B;, C;; € R, 1 <¢ < k and
1 < j < n, such that

0K,
go; 07 (2.3)
3K5 82P5Ii,)\1 n 8 P(S )
o\ B"( oN? v ZCw W v) Vi, (2.4)
0K, 0?Péy; a, n 8%P6, . », .
o(zi)r Bi(mW) +;Cij(m,ﬂ) vr, Vi, (2.5)
aK k 8 611“ L n ap(sw“ 1
g™ ; (A Poy, \; + Bi ZC” ), )7 (2.6)

where the (z;), is the r-th component of x;. As usual in this type of problems, we
first deal with the v-part of u, in order to show that it is negligible with respect to
the concentration phenomenon. Namely, we prove the following.

Proposition 2.1. There exists €1 > 0 such that, for 0 < € < &1, there exists a
C-map which to any (a, \, x) with (a, \, z,0) € M., associates v. = Vie,anz) € F,
lvell < vo, such that is satisfied for some (A, B,C) € RF x R¥ x (R™)*. Such
a ve s unique, minimizes K(a, A\, x,v) with respect to v in E and we have the
estimate

n+4 n+4

ool =0 (Z(loglf" Hifn > 12) BT <1 +50))
i=1 ? 2
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Proof. As in [2] (see also [23]) we write

Ks(a7)‘axav)
k
=J.()_aiPdy, 5, +v)
=1
1< 1 b
= - @;Pdy. ». + 0] — —— a;Pdy. 5. +v|[PH!
2H; | P QI; ] (2.7)

k
c 2
+ 5/9 (;aiP&%)\i +v)
1 ,
= K.(a, A\, x,0) — (fe,v) + ng(v,v) + O(||v||mm(3’p+1) + €Hv||2),

where

k
fsa :/ ZOQP(SZE“ |U_E/ (ZO@'P(SMAJU,
QE(U,U)z||vH2—p/Q(Z“iP5% O pz/%“’ + ol
i=1

According to [4], there exists a positive constant ¢ such that
| v]? —pZ/ vt > clv)?, WweE. (2.8)
Now, we will estimate (f;,v). Using the fact that (Pd,, ,,v) = 0, we obtain
k
/ | ZaiP(Smi)\i Py
Q =
-1
- O(Z/ . 5lp‘i7>\z‘<’0mi7 Ai
i BiUB- G#i
- O<Z (Am 4)/2/ Aol +/ Y \”|

where B; = {y : |y — x;| < dp/2}. Then using the Holder’s inequality we have
n+4)/2n

/|Za2P5xl N (||v||Z( log)\n+4)/2 (ifn<12)>\n174)). (2.10)

For the second integral, using the Holder’s inequality we have

/Péxl)\ v=0 HUH /52n/(n+4) (n+4)/2n)

[vll (log Ag) /2
A

XP5J‘§P57:P5§;LP5%JJ|”|) (2.9)

B;

o]l (2.11)
A(n—4)/2

:O((ifn212) +(if n < 12)
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It follows from (2.10) and (2.11]) that
n+4

(log Ai) : e(log \;) 55
(for0) = [n ||Z(T (£ n > 12 LB

(3

(2.12)

+ (ifn < 12)(/\ c T+ )\nl 4))}

K2

Using (2.8) and the implicit function theorem, we derive the existence of C'-map
which to (a, A\, z) associates v. € E, such that v, minimizes K.(a, A, z,v) with
respect to v € E and

[[vell = Ol £=1)-
Thus the estimate of Proposition follows from (2.12)). O

Next, we prove a useful expansion of the derivative of the function K. associated
to (1.1), with respect to oy, A;, ;. For sake of simplicity, we will write J; instead
of 6$i,>\i'

Lemma 2.2. Assume that (o, A\, z,v) € M. and let v := v, be the function obtained
in Proposition[2.d. Then the following expansions hold

(1)

0K, 8/(n—4) € 1
e )= S (1) 0 + )
(2)
0K,
)\i a/\Z (Oé,/\,fE,U)

204?/(”’4)) ca(n —;i)n{fixi, x)

n—4 _ _ Gz, x;
—e Y (1 o/ _ 8/ 4>) (A,-A(j)w]‘*))/?

€
= —20@04)\—;l + a; (1 —

J#i
5 1 _ £2(log )\i)ni g2
(3)
1 0K,
X oz, (o, N\ z,v)
o ca  OH(zi, )
= ai(207" — 1 :
@ ( @i )2)\'@73 8331
8/ n—4) _ 8/(n—4) 1 0G (x4, x4)
T e Z a;(1 & ) )\(n—z)/z)\(n,—4)/2 oz,
J#i
1 _ e2(log \) "% , g2
+ O(A'IL 3 + A?L—Q + (an 2 12) )\8 + (Zfﬂ < 12) )\7}—4)7

where

_ 2n/(n—4) _ 2n/(n—4 ; _ 2
Sn == /l%n 60,1 d(% Coy = Cn /l\{n (1 T |y|2)(n+4)/2 dy, Cq = ) (5071dy,
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Proof. To prove Claim 1, we write

Do “(a, N\, ,v)

:Zaj (P6;, P6;) / ZajPé +v)" 4P6 +5/(ZajP6j+v)P6

n+4 L 4 _8 n+4
_al(P(SZ,Pé) /P(S" - el 4/P(5"’4v

/6("+4 n=g, +Z /55 —|—HU||2+8/(52+8/6|U|
J#i

Using [7, Proposition 2.1], we have ¢; = ¢, (n(z;;/)z + O( 2). A computation

i

similar to the one performed in [2] and [23] shows that

(P6i, P6;) = Sp — ¢ H(;ff_’fi) + O()\nl_z), (2.13)
% _ _ 2n H(J,‘“Z‘l) 1
/Q PO = Sy = e T 0<A?_2), (2.14)
_ H(z;, z;) 1 .
(P6i7P6j) = C2 (Eij - W) + O(k;] )\272) for ¢ 7é 7y (215)
nt
/QP(SZ.P(S;—AL (Ps;, P5;) + O(kz = 2) for i # j, (2.16)
i.5

where g;; = ()\i/)\j + X/ + A la — xj\2)(4_n)/2. Using the fact that n > 9
then

1
/52 3 T +0( A” —), (2.17)
1 .,
iAj

From (2.10), (2.11), (2.13)-(2.18) and Proposition 2.1} Claim 1 follows.
Now, we prove Claim 2. As in Claim 1 we have

0K,
O\

_Zaj P5 SN —— P5 / ZaJPé —1—11)" 4)\ 88];5
/Za]Pé +v)A 3];5

=> a;(Ps; 222 / (> ayPs;)" a(;;a
~n+4 8 5 or
p— /Z%Pé /Z%m +0)A m S+ O(lvl?).

(2.19)

Ai———(a, A\, 2, 0)
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Note that

£ ({9F)(5Z _8 8]35Z
/Q(ZCYJP(SJ) /\7. a)\l v:/ﬂ(alp&) Za)\l v

5;%45,6\@0.

(2.20)

kit ? Ok S0
Using the fact that v € E, we have

7ts, 0P 57 o 1vll(og i) = = [[v ||
P& U:O/ n4v = 7* ifn <12)=—=7 ),
(2.21)

and for n > 8, we have % < 2, then we obtain

5T 64 o] of 57 o2 5L62)
AN ) +/ n—d
‘/(;lc<6j I g / J JRS(;] / ¥
—o(IlP + [ (5,607 (222
Q
— 1 2
- O((AjAk)mfl)/z +lel’)

=0 (52’3%4 log 52-_]-1>. Observe that

where we have used [,(8;9;) wed

n+4

n—1 ntd 4
(Z OéjP(Sj) = Z(O&jP(Sj) "il + 271—4 Z(OQP(S ) ) OJJP(S
J#i
+ O(Z P87 Poixps,<y. . s, (2.23)
J#i
+ 3PS PRxps<ps + Y. POT PG,
J#i k#j,k,j#i
Using [7, Proposition 2.1], we have \; g‘” = —c, 252 ;{L(m;)/z + O( 5). A compu-
tation similar to the one performed in [2] and [23] shows that
oP 5i _Tl—4 H(x,-,x,-) 1
(P67” )\ a)\ ) 2 €2 AZL—4 + O(A;L—Z)’ (224)
/ PoI A, 8P5 = (n— 4)@% + O(An{z). (2.25)
For i # j, we have
_ _8P6i B Oeij n—4 H(x;,zxj) 1
(Poj 250 = 2yl + 5 1 ) +O(kz;j = ;). (226)
ntd  JPY; OPé; 1
| PTG = (P )+0(§:J e =), (2.27)
o(Ps) T oPs; 1

k=i,j
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We compute now the other integrals

OPé;
P\ =t
/Q Oii 0N

=L/(&—%wﬂ( Y

/5/\ +0</%5 +/5A|5“”|) (2.29)
2z&(éﬁﬂ+05¢n+0«4h)@%mm+w5%MQ)

7264 1
=5 " O(—/\?_4),
8 0; 1 .,
and as in
9P 5(4 [[v]| (log Ai)(”“)/% [[v]l
— o((lf n>12) . +(ifn < 12)W>' (2.31)

Using the fact that |z; — x;| > dj then

0g;; n—4 1 1
PV o( ) 2.32
O\ 2 (NAjlz — z]2) (=972 * kzw A 2 ( )
The Claim 2 follows from Proposition and ([2.19)—(2.32).
Regarding Claim 3, its proof is similar to Claim 2, so we will omit it. O

Lemma 2.3. Assume that (a, A, z,v) € M and let v := v, be the function obtained
in Proposition |2.1. Then the following expansion holds

K (a, A\, z,0)
_ Sn a 2 n—4g 1 0 & 2 (901 IH(sz’,sz’)
=5 (el = et + 5 20t (207 1) T
k
2N o (19071 _C@nT) e o
+2;aza3(1 20 )(’\in)("_4)/2+21_ v
k n+4
5 1 ) e2(log \;) = g2
O(3 (s <yt ipn = )0 ) €9
+ ; )\?74+)\?72+(zfn7 ) % + (ifn )/\”4

Proof. Using (2.7) and Proposition this lemma follows from ([2.13])—(2.18]).
Let

1 Ai .,
ML ={(\ )€ (RY)F x Q’;O SA > - Vi, <o lw; — xj] > dfy, Vi # j}.
0 J

For (A, z) € ML, our aim is to study the a-part of u. Namely, we prove the following
result.
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Proposition 2.4. There exists 1 > 0 such that, for 0 < € < &1, there exists a
Cl-map which to any (\,z) € ML, associates a := Qe na), Which satisfies (2.3)
for each i and we have the following estimate

€ 1
|Oéi— 1| ZO(F—FW)
Proof. Let 3; =1 — ;. By Lemma [2.2] we have

8 o € 1
mﬁisn"‘O(ﬁi) —O(g‘f‘w)’

then 3; = O(% + o 4) On the other hand, we have

02K .
< =(1-— 7 +o(1
dardar; (o, A, z,v) = (1 — p)Spd] + o(1),

with 5{ the Kronecker symbol and o(1) tends to zero when ¢ — 0, where we have
used (2.13)), (2.14), Proposition[2.1] the fact that dv/da; € E and ||0v/da;|| = o(1).

Using the implicit function theorem the proposition follows. O

3. PROOF OF THEOREMS [I.1] AND [[.3]

Proof of Theorem[1.3. Assume that u. is a family of solutions of which has
the form where (af,\¢,2%,0v%) € M,.. The result of the theorem will be
obtained through a careful analysis of (2.3), (2.4), and (2.6). From Propo-
sition there exists v° satisfying (2.6). We estimate now the corresponding
numbers A;, B;, C;; by taking the scalar product of with Pd;, OPd;/0\; and
OP6;/0(x;)y for i = 1,...,k and r = 1,...,n. Thus from the right side we get a
quasi-diagonal system whose coefficients are given by

: PGS, 1
) N — J J _
(P&, P§j) = S,6! +O(>\i <) (aA , Pé;) = ( E_ijkz_g),

aps; 1 aPs; OPs;. n+4C, 1
(a(m]—)]ﬁpéi) :O<k;j )\Z“‘)’( aAj]’ IN; )= —4?5“0( > A 2)

k=i,j

oPs;, 0P, 1 \ ,0Ps; OPS, ) o
( 5/\3‘]’3(%%) :O( 2 Ve 3) ( 9z; 81:;) :O< > N J) for i # 7,

k=i,j kzg

8P(52 8P5Z _n+4 1 \2 55
(6(931%’6(%)3‘) n—4 CnAléT—'—O()\ 5):

0

where (53 is the Kronecker symbol, S,, is defined in Lemma

(n —4)2 / (1—JyP)? , (n—4)? / ly|?
C, = d d C = dy .
4 Je P2 T T e (e

The left side is given by

(aK ) = IK. (6K6 8P6i) _ 10K, (6K5 dP3; ) = 1 K.
ov 604@7 ov ’ 6)\, n (07 8)\z ’ ov 73(1‘1% o (67} 8(xz)r
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Let 5; =1 — «;. By Lemma [2.2] we have

0K, 1
8a: (a, 2, \,v°) = <|ﬂ1\+ /\" 4)
0K, o € 1
8)\1 (OZ,J?,)\,’U ) - O(Yf + )\?—3>a
0K,
)\ £
a(xi)r(a,$7 ,’U)
c2 log \; (n+4)/n ) &2
1 (3
The solution of the bybtem in A;, B;, C;; shows that
1
Ai=0 (|ﬂl|+ )\4 + Ve 4)
€ 1
1 € . log)\ e . 62

This allows us to evaluate the right hand 51de in the equations and .,
namely

0% Pé; 8 Pé;
ay ar N\ Cl k) ¢
(5, a(z:), Z i A(x:);0(z:), " )
. 9 . cns € 1 1 g2
= O(|Bi[l[v ||+Z>‘i|cij”‘v ) = Olv*ll(55 + - —=5)) *O(W+ﬁ)~
j=1 A, i i
(3.1)
In the same manner, we obtain
0% P§; (9 PJ; 1 g2
B )\2 7,08 Z CZ] 8/\ 5) — O(F + )\—?) (32)
From Proposition n , there exists o satisfying (2.3)) for each i, and we have
€ 1
1—af =3 =0(—— . 3.3
o =91 =5y * Gpee) .
Using (3.1)), (3.2), (3.3) and Lemma we deduce that (2.4)) and (2.5) are equiv-
alent to
€ co(n —4)H (x5, x5) G(a5,25)
—2¢q (xe) - 2(A5)n—4 +e Z )\a)\a n—4)/2
) (3.4)
€ 1 €
= (g * <Az>n—2 * o)
ca(n —4) 0H (25, z5) —4)  O0G(xf,75)
- 2(\e)n—1 o, +CQZ )\s)\s (n—4)/2 o,
(3.5)

2

€ 1 €
=g s <Af>4)'
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Let us perform the change of variables

X = (M%) ens ()T

o . (3.6)
Note that A
- e
Afs2<"—48> —0 ase—0, A—z < ¢p, (3.7
J
and that (3.4), (3.5 read
—4 ey i2=n €
n_4(Ai)n7 7, zAJrZG Tis ]
J#i (3.8)
-0 (sAf F(AS) T AS 4 £(A) ) ,
3G IL’ , T 2 1 —n
_psOH ) “ )yl n) J) = O (245 + (M) TTeTS AT +2(A5) 7+ ) .
Jj#i
(3.9)
From (3.8)), we deduce that
_4 T 12—n 12—n
A = ... (AL) % ) — M(2)A®
— (A (D)) - M) 510)
12—n
= O (2Af + () 77T AL +2(AF) 7 ),
where A® =T (A§,...,AS).

Taking the scalar product of (3.10) with e(z®), we
obtain

—4 k 12-n
AS) =1 e;(x®) — p(x®)e(x®).A°
0 )~ pla)ete) -

:O(aAf (AS) 7538 AS 4 (AS) A )
We distinguish three cases:

(1) A5 — 0, as € — 0 for all 4.

(2) A5 - A, eR%,ase— 0 foralli

(3) A5 — +oo, as € — 0 for all 7.

Multiplying (3.8) by (A$)~! and using the fact that n > 9, we see that case (1)
cannot occur. Let us consider the second case. Denoting by = € Qk the limit of

z® (up to a subsequence), from and -, we obtain

4 j
AT H(zs ) A - ZG(%’%’)AJ‘ =0,
J#
4 = te
S 0 a0 + ploea)d o
i=1

This means that p(z) < 0 and (A, z) satisfied Mj\’“ (A,z) = 0. On the other hand,
from (3.5) and (3.6) we deduce that

OG (x5,
_(Aa) z’ z ZAEAE xl :CJ)

=0(e7),
J#
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then, as ¢ — 0, we derive

OH (z;,x;) 0G (x4, )
2 AL i)
—A 71 JE i AJAZ 7%' =0.

This implies that 88‘1; L(A,z) =0 i.e. exactly what we want to prove.
Let us now consider the last case. From (3.11)) we have

pla®)e(a) AT = O (AT +eAf + () 77T A; +2(A7)

12—n
n—4

and therefore, since Af /A5 < ¢ for each i # j, we obtain

pla®) = O (AN 42+ (Af)7ae7s).

Thus, using (3.7) we get p(z) = 0. It remains to prove that p/'(x) = 0. First, we
claim that the vector A® is close to e(2). In fact A may be written under the form

A = Ee(z®) + €' (29), (3.12)
with e(z€).¢/(z) = 0. Tt is easy to get &¢ = O(]A®]). Now, using the fact that
TASM (z°)A® = o(|A%[?) (by (B.8) ), p(z°) — 0 and the fact that zero is a simple

eigenvalue of the matrix M (x) then e ( ) = 0(¢°) and our claim follows. From

(13.9) we obtain

OM (x¢)
———2A° =0 (JA°
]
using (3.12), we obtain
COM(@f) oy OM(E®) o e
e o)+ B @) o (69). (3.13)
The matrix 2 (w ) being bounded on the set {z € QF |z — x50 > dy}, we get
P e w) = (@) = of€).
The scalar product of (3.13)) with e(z®) gives
Te(:cg)a]\ga(j ) e(@®) = o(1). (3.14)
Since |e(z¢)|> = 1 and e(xe).aea%s) = 0, therefore
OM (z°) op
T € €
o) P o) = .0). (3.15)

Passing to the limit in and (| - we obtain

dp
oz, (z) =

This concludes the proof of Theorem O
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Proof of Theorem[I1. Arguing by contradiction, suppose that (1.1]) has a solution
of the form (1.6)) and satisfying (1.7)). Multiplying (1.1) by v. and integrating over
Q, we obtain

HUE||2 = /Q |ae Pég, A, + ve|Pve — E/Q (e Pdy, A, + ve) Ve (3.16)
=z [ ot v por [ PSL 2k ol )+ O(: [ dnfue).
Q Q Q
(3.17)

From Proposition 3.4 of [4] and the fact that a. — 1, there exists a positive constant
¢, such that

o2 — paz~! / P& 02 = [juc|® — p / 578 02 4o (Juel?) > elloc2. (3.18)
On the other hand, using the fact that v. € E;_ »_, we obtain

/Péﬁw\svs :o(/ [ro |05 0]
Q BUB¢

where B = {y : |y — z| < d.}. Then using the Holder’s inequality we need to
estimate

2n/(n+4) 1
N </ o =0 3.19
/C ( T, e Pz, a) — Be Te,Ae (()\Eds)n) ( )
and
8(p+1) | ntd
IsﬁmE,AJLW(/ 52(:3?) i
b (3.20)
, (log \od.)5n . 1 '
= fn >12)—2——~—— f 12)——— ).
O((l nz ) )\Eda)ng—zl (1 n < )()\gdg)n_4>

Combining (2.11)), (3.16)—(3.20) we get

log \d.) 5w e(log A\)Fn 1
||UEII=O((Og J o o) m e <oy S )).

(/\ d )n+4 )\g /\gn74)/2 ()\sds)n%
(3.21)
Multiplying by OPd,, ./0\: and integrating over 2, we derive that
8P(5m A apém A
€ Pém 7# - 5P5I € p———==
ae (Pés. . DA ) /Q|Oé e e oA
0P¢,
+€/Q(QEP6%7>\E + UE)T)\?/\E =0,
which implies
8P6Z 8P6w 5P5m
oze(Péwi,)\E, £1he /P6 A o Zede /P(S T Zede
BP z Ve
+6a€/P5% A e /5% |v5|—|— vl )—0

(3.22)



EJDE-2004/121 CONCENTRATION PHENOMENA 15

According to [7], we have

OPd,_ » n—4 H(xe, xe) 1
Pg, ., 2 Ore. ) - 0 : 3.23
( AN R Ve B (AE(Agds)“*z) (3:28)
ntd GPS, A\ H(z.,xe) 1
Py ——=2% = (n—4 . O 3.24
/ L A Ve Swiwar=2) (324
and as in (2.29)
(‘3P(5I by Cy4 1
P, \ 2lTede o L o~ ) 3.25
e i = 25+ Ol ) 2
Taking (2.11)), (2.21)), (3.21)), (3.23)—(3.25) in (3.22) we obtain the following relation
[ n—4 H(xe, xe) € 1
9t Dere) () =0
S N +0(/\§ + )\g()\gdg)”*‘*)
which is a contradiction. This completes the proof of Theorem [1.1 [

4. PROOF OF THEOREM

In this section, we construct a domain €2 for which (1.1)) has a solution which
blows-up and concentrates in two points of 2. More precisely, we will find a solution

u. of the form
2

Ue =)0 (e o) Poa g + Var xe 0 (4.1)
i=1
where af/\a’xg), vfas’ka_’za) are ({eQﬁne_d} in Pr(zpl)ositions x5 € Qqy, |25 — 25| >
dy and A7 satisfies \; = (A§)7—1e7=5(22)7=5. For the rest of this article, we will
consider the set
1
M2 ={(A,z) € (R})? x Q?io te< A < EW, |z — 22| > dj}.
Let us define the functional
K2(A,x) = J-(ue).

Lemma 4.1. We have the expansion
n—4 —4

n—4

4S8 1 1
K2(Ax) = Tn +ensel Cey [gH(l‘hxl)A% + QH(@,J&)A%

1 =t £ n—4
o + SAFT + A7) +o(e )

in the C'-norm with respect to (A, x) € M2, where caand c4 are defined in Lemma

22

The proof of this lemma follows from Propositions and Lemmas (2.2)),
E3).

To find a solution of (|1.1) with two blow-up points in 2, it is enough to find
“sufficiently stable” critical point of the function ¥ defined by

v .= \112(A7 .17)
1 2 2 =
= 5 (H(l‘l,ml)A1+H(IQ,I2)A2 72G(I1,SE2)A1A2) +§(Al +A2 )
Here we follow the ideas of [22], [I1]. Let D be a bounded domain in R™ with smooth
boundary which contains the origin 0. The following result holds (see Corollary 2.1
of [I1] which is analogue corollary for the Laplacian).
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Corollary 4.2. For any sufficiently small o > 0 there exists ro > 0 such that
if 0 <1 < rgis fized and Q is a domain given by D\w for any smooth domain
w C B(0,r), then

p(z) <0 VresS?,
where the manifold S is defined by S = {z1 € Q : |z1| = 0}.

Here p(z) denotes the least eigenvalue of the matrix M (x) defined in (p(x) =
—o0 if 1 = xq). Let e(x) be the eigenvector corresponding to p(z) whose norm is
1 and whose all components are strictly positive.

In the following we will construct a critical point of the “min-max” type of the
function W. Let us introduce for § > 0 and p > 0 the following manifold

W;f ={z€Q}:p(x) < —p}.
Let po = —maxges2 p(z) and dp = dist(S,09). It holds for any 0 < p < py and
0 < § < 6y that S C Wl‘f. Since -2 < 2, there exist Ry > 0 such that

b= U(Re(x),z) >0 d U(Re(z),z) =0. (4.2
pesii®%_p, V(Re(@), ) and  max o U(Re(z),z) (4.2)

Next we let I be the class of continuous function v : [0, Ro] x §? x [0,1] — R3 x W,
such that
(1) 7(0,2,t) = (0,z) and y(Ro, x,t) = (Roe(z),z) for all z € S2,t € [0, 1].
(2) v(R,z,0) = (Re(x), ) for all (R,z) € [0, Rg] x S2.
For every (R, z,t) € [0, Ro] x 8% x [0, 1] we denote y(R, z,t) = (A(R,z,t), #(R, x,1))
and, for 7 > 0, we define the set
I, = {(R,z) € [0,Ro] x 8% : Ay(R, 2, 1)Ay(R,x,1) = 7}.

In the following we prove that ¥ has a critical level between a and b where b is
defined in (4.2)) and a will be defined in Corollary The first step in this direction
is the following topological result which is similar to [I1, Lemma 7.1].

Lemma 4.3. For every open neighborhood U of I, in Ri x 82, the projection
g :U — 82 induces a monomorphism in cohomology, that is g* : H*(S8?) — H*(U)
is a monomorphism.

Corollary 4.4. For 7 > 0 small, there exist a = a(1) > 0, such that

sup U(y(R,x,1)) > a for all vy € T.
©€82,0<R<Ro

Proof. Since ) is smooth, there is ¢y > 0 such that if z1, 25 € Qs and |21 — 22| < ¢
then the line segment [z1,22] C Q. Then we let K > 0 so that G(z1,22) > K
implies |x1 — xa| < ¢g. Assume, by contradiction, for each a > 0, there exists v € T’
such that
U(y(R,z,1)) <a forall (R,z) € [0, Rg] x S2.
This implies that, for a small neighborhood U of Z, in [0, Ry] x 82, we have
—G(#(R,z, 1)) + 141 < g,

and therefore 1

G(#(R.x,1) 2 577 2 K (4.3)

if we choose 2a < 74/("=%) and 7 small. Let Dy = R2 x Q x Q and v = (., 1).
Consider the inclusion iy : 71 () — Do and the maps p : 1 (U) — R% x Q and
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f:RY xQ — Dg defined as p(A, z1,22) = (A, 1) and f(A,2z1) = (A, z1,21). From
we find that the function h : 41 () x [0,1] — Dg defined as h(A, x1, z2,t) =
(A,z1,29 + t(x1 — x2)) is a homotopy between i and fop. We consider the com-
mutative diagram

H*([0, Ro] x §?) <"1 H*(Dy)

Ly Ly

H*(U) «"2 H*(n(U))
where 4; is the inclusion map and v5 = 71 /U. Let w € H"71(S) and v € H" ()
nontrivial elements such that i(v) = u. If o x 0 € H2"=1(Dy) is the corresponding
element, then by homotopy axiom and Lemma we have i{0v] (0 x 0) # 0. On
the other hand we see that f*(9 x ©) =9 — 0 € H*"~D(R2 x Q) is zero, because
H?>™=1(Q) = 0. Then we have v 0i}(9 x ©) = 0, providing a contradiction. O

Let Ts = {z € 8% : |r1 — 22| < §}. We can choose § small such that
U(Re(z), ) < g for each z € Ts and 0 < R < Ry. (4.4)
Let us introduce the manifold
Vs ={xcQ2:|xy —x2| > 6}

To prove that the function ¥ constrained to R? x (VV};S N Vs) has a critical level
between a and b we need to care about the fact that the domain R% x (Wg NVs) is
not necessarily closed for the gradient flow of ¥. The following lemma, is the first
step in this direction.

Lemma 4.5. There exists 6, > 0 such that for any § € (0,0() and for any (A, z) €
RZ x (Wg NVs) with U(A,z) € [a,b], VAP(A,2) = 0 and © = (z1,22) € OV,
then there exists a vector T tangent to R x OVj at the point (A,x) such that
V(A z).T #0.

Proof. The proof will be given in two steps.

Step1. We argue by contradiction. Let (As, z5) € RZ x Q2 be such that ¥(As, z5) €

[ava VA\IJ(A&J:(S) =0, p(x(S) < =ps diSt(‘xlé’aQ) =4, diSt(x25’aQ) >0, |Z‘15 -

T2, > & and for any vector T tangent to RZ x 9V at the point (As, z5) it holds
V\IJ(A(;, :L‘5).T =0.

~ Q-7 _ A —(n—4)2 B .
Set 05 = —5%, y = 2= and ps = 6 209 Ag, where iy, € 0N satisfies |z1, —

Z15] = 0. Then dist(y1578(~25) =1, dist(y25,8§~25) > 1 and |y1, — ye2,| > 1.

After a rotation and translation we may assume without loss of generality that
y1;, — (0,1) € R"! x R as § tends to 0 and the domain Qs becomes the half-space
m={(y,y") €ER* T xR :y" >0}. We observe that if G5 and Hs are the Green’s
function and its regular part associated to the domain Qs then

Gs(y1,y2) = 6" *G(Sy1,0y2), Hs(y1,y2) = 8" 2 H (y1, 0y0).
Recall that

~ 1
lign Hs(y1,y2) = Hyr(y1,y2) = ——————— C'-uniformly on compact sets of 72,

I
(4.5)
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and

1 1
[y —gel"™* |y — gemY
Cl-uniformly on compact sets of {(y1,%2) € 7% : y1 # y2}. Here for y = (v/,y"),

we denote § = (y', —y™). Moreover, U5 denotes by

\i/(;(,u, y) =
then

ligﬂéa(yhyz) =Gr(y1,92) = (4.6)

1
(Hé(ylayl)/h + Hs(yo, yo )13 — 2G5(y1,y2)u1,u2) + 2( o + py 4)7

DN | =

4(n—4)

Us(p,y) =6 n-=s WA, z).
From [22, appendix A], we have
VU (A, x) =0 if and only if V¥s(u,y) = 0.

First of all, we claim that
0<61§A1[5,A25§62 as d — 0. (47)

It is easy to check that 0 < ¢; < |As| < co. In fact, since VAU (As, z5) = 0, we have
that
n—38

2(n —4)
and so if |As] — 400 or |[As| — 0, a contradiction arises.

Let lims A, = Ay € Ry and lims Ao, = Ay € Ry, Since p(z5) < 0, there exists
a positive constant C' such that |z1, — z2,;] < CJ. We obtain |yz,| < C and then
lims yo; = §2. Using the fact that VAU (As, 25) = 0, we have

0= 5”74A15VA1\IJ(A57 Zs)

= ‘Hts(yl&vyl(s)Ai; (
0= 5“74A25VA2 (Ag,l‘g)
Gs(

U(As,z5) = (A{7T+ A5 ") €a, 0],

4 ne
’y15,y25)[\151\25 + jén—élA?i( 4)

4 4, 8/(n—4)

= Hs(yas, y2,)A3, — Gs(y1,,y2,) A1y Aoy +

Passing to the limit we deduce that
hgn é5(y157y25)A15A25 = HW((()? 1)7 (07 1))A% = Hﬁ(g% ﬂg)A% (4‘8)
Since |As| does not tend to 0 then Ay, Ay € R%, and (4.7) follows. Second we prove

that
There exist § = ((0,1); (5, 8)) with (0,1) # (g5,08), 0,95 €
R (1,8) € R? and fi = (ji1,/i2) € (R";)2 : ML(9)i = 0, (4.9)
TV, (fi,9) =0 for all T € R" x {0} x R™.
Let limsya, = 92 = (95,0) and limsy;; = 91 = (0,1). Moreover, from (4.7)
it follows that limg |us| = 400, then up to a subsequence we can assume that

1)(n
= limg £ T | It holds |fi] = 1. Now, since (5 e VA\I/(A5,$5) =0, we have

(12—n)/(n—4) (12—n)/(n—4)
~ s 4 n—4 Ay, AZ
M;s(ys)— + J ( +—= ) =0,
] Iy Iy
and by passing to the limit we get M, (9)ii = 0. Therefore 0 is the first eigenvalue of
the matrix M, () and [ is the eigenvector associated to 0 and by [3] it follows that
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fi1, 1o € R%.. From and we get V, U (i1, §) = lims va\ll(;(,u(;,ya) and
then follows.

Finally we prove that by we get a contradiction. We write now the function
U explicitly:

1 1 1 1
U y) = 7( 2 2 _9G(y1, ) .
(m9) = 3 TR (Y1, p2)mpz ) + 5 (m tug 5 ")

‘We have two cases:
If g5 # 0 then

J2-Viyy U (i1, 9) = =15V, Gr (?J J2) i1 ﬂ
1

_ 7+ 17 O7
@5, 8- )2 |@;,ﬁ+1>|n—2>“1“27é

and a contradiction arises.
If g5 =0 then 8 > 1 and

0=V, ¥ (7.9) = (n = Do (Cus (9)in = f57m5):

where ) )
tnsl0) = =3 ~ g ons 70

We deduce that
fiz = (28)" T p—3(B)fur. (4.10)
On the other hand, by the condition M, (g)i = 0, we get

. ’ (4.11)

where
1 1

(B-1D=  Gro

1_\71—4(/6)) =

Equations (4.10) and (4.11) imply

(25Fn—3(ﬁ) —Tya(B) 11 =0
and a contradiction arises since 20I',_3(3) — I';,—4(8) > 0.
Step2. as in step 1, we prove the following: for any (A, z) € R2 x Q2 with W(A,z) €
[a,b], VAP(A,z) = 0, p(z) < —p, dist(zy,08) > 0, dist(x2,002) > 6 and |z —
z3| = 6, then there exist a vector 7' tangent to R x 9V at the point (A,z) such
that

V(A z).T #0.

The lemma follows. ]

Lemma 4.6. There exist 65 > 0 and p{, > 0 such that for any ¢ € (0,0;) and p €
(0, pp) the function U satisfies the following property: For any sequence (Ay,xy) €
2 X (WJNVs) such that limy, (A, z,) = (A, 2) € ORI x(WINV5)) and ¥ (A, x,) €
[a,b] there exists a vector T tangent to O(R%L x (VV};S NVs)) at the point (A, x) such
that
VU (A, z).T #0.
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Proof. First, it is easy to check that 0 < ¢ < |A,| < ¢. In fact we have that |A,| —
+oo and |A,| — 0 yield respectively to |¥ (A, z,)| — 400 and |V (A,,z,)| — 0,

which is impossible.
Let A = lim, A, and z = lim, z,. If VAU(A,z) # 0, then T can be chosen
parallel to VAW(A,z). In the other case we have A € (R%)?. In fact if Ay =0, by
4 12

0= VAI\I/(A,(E) = H(xl,xl)Al + mAln::7

we get a contradiction. Analogously A; # 0. Thus z € 8(Wg N Vs). Now we claim
that there exists p{ > 0 such that

p(z) < —pg. (4.12)
In fact, since VAP (A, z) = 0, we have
n—_8 & 23y 8—n
\I/(A,.T) - m(Al + A2 ) - 4 (M(x)AvA)a
and since U(A, x) € [a,b] we deduce that
2n —4)\ n=4 4 4
2 (B—2) T b <
A2 < ( — ) T b and (M(x)A,A)_S_na,

which implies (#.12)) because (M (x)A, A) > p(z)|A|?. Therefore we have that z €
OV (if we choose p < pj ) and we can apply Lemma [4.5|to conclude the proof. O

Lemma 4.7. The function ¥ constrained to R x (VV;s N Vs) satisfies the Palais-
Smal condition in [a,b)].

Proof. Let (An,z,) € RE x (WS N Vj) be such that lim, ¥(A,,z,) = ¢ and
lim,, V¥(A,,z,) = 0. Arguing as in the proof of Lemma it can be shown

that A,, remains bounded component-wise from above and below by a positive
constant. As in Lemma A € (R%)? and by Lemma x € (Wg NVs). O

Proposition 4.8. There exists a critical level for ¥ between a and b.

Proof. Assume by contradiction that there are no critical levels in the interval
[a,b]. By Lemmas and We can define an appropriate negative flow that will
remain in A :=R% x (I/V;)S N Vs) at any level ¢ € [a,b]. Moreover the Palais-Smale
condition holds for ¥4 in [a, b] (see Lemma ). Hence there exists a continuous
deformation

7 [0,1] x WPy — W)y,
such that for some a’ € (0,a)
n(0,u) =u Yu€ \I/l"A
n(t,u) =u Yu € \Il“l;‘
Then there exist a continuous function v € I' such that
V710, Ro] % (S2\Ts) = 1/[0,Ro] x (S*\T5)

and using (4.4), we obtain ¥(y(R,z,1)) < a for all (R,z) € [0, Ro] x S?, this
condition provides a contradiction with Corollary O



EJDE-2004/121 CONCENTRATION PHENOMENA 21

Proof of Theorem[I.4 Arguing as in [22] and using Proposition and Lemma
it is possible to construct a critical point (A%, 2) of the function K? for ¢ small
enough. We only need to prove that (afxz,me)v )\E,xe,vfaw\a,za)) satisfies ([2.5) and
(2.4). Indeed, we have by easy computation

o= OKe | (0K, vy 0K Oay
o Bxl ov ’ 8.’E1 8Cki ’ sz
0K, k 0P8y », N ., OPSy, a0\ Ov
= B, + (; (AiPém“,\l + 3278)\1 + J;Cmia(l‘zb ), 67.1‘1)

Using the fact that v € E, then ([2.5) is satisfied, in the same way we proof that

([2.4) is satisfied. -
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