

 A WEB-BASED KNOWLEDGE MANAGEMENT SYSTEM FOR
INFORMATION TECHNOLOGY EDUCATION

 HONORS THESIS

 Presented to the Honors Committee of

 Texas State University-San Marcos

 In Partial Fulfillment of

 The Requirements

 For Graduation in the Mitte Honors Program

 By

 Pamela Gayle Kernstock

 San Marcos, Texas

December 2006

(Intentionally blank)

 ii

ACKNOWLEDGEMENTS

 iii

I’d like to thank Dr. Sam Lee for being such a patient, caring thesis supervisor; one who is

dedicated to student success. Live long and prosper.

I also want to thank Dr. Mayur Mehta, Dr. Ju Long, Dr. John Plummer, Dr. Jaymeen Shah,

Dr. Vivek Shah, and Dr. Marcos Sivitanides for being such great customers.

Special thanks go to my husband, Chris for being incredibly supportive in every way. Hugs

and thanks go to my son, Charles, for his magnanimous help around the house.

CONTENTS

Abstract……………………………………………………………………………………......1

Introduction……………………………………………………………………………….…...1

Contents…………………………………………………………………………….……….....3

Conclusion…………………………………………………………………………………....18

Bibliography……………………………………………………………………………….....20

Appendix A…………………………………………………………………………………..22

Appendix B……………………………………………………………………...…………...26

 1

ABSTRACT

 This paper describes a dynamic knowledge management system for use in an

educational setting. It is an attempt to transform tacit knowledge into explicit knowledge in

order to benefit students in an academic program. The goal of this Web-based system is to

focus on providing help for the most common issues, relevant points and frequently asked

questions in specific CIS courses and projects at Texas State University, San Marcos.

INTRODUCTION

 Students entering information technology classes possess a range of computer skills.

The Internet is more popular than television or radio for 13 to 24 year olds (Harris Interactive

2003). Although the majority use the Internet (Lenhart, Madden, and Hitlin 2005), not all

students know how to use Microsoft Office application software, or read and write

programming code. When students study information technology, they usually take an

introductory programming course. As they progress through the program, they encounter

typical problems any new information technology student might experience. This includes

troubleshooting software problems and reading code, grasping concepts and various other

technical skills issues.

 Time and money pressures for the undergraduate students are increasing. Tuition has

increased at a faster rate than the resources to pay for it (Ryu and Doyle 2004). Currently

almost 30 percent of full time students work more than 20 hours a week (Shireman 2005).

Students increasingly want answers to questions after hours, when an instructor may not be

available. Immediately available answers are more efficient for the student, and create value

for an educational institution.

 2

 Possessing computer skills can make the learning experience more gratifying and can

help the student focus on the concepts taught in the classroom. These skills include software

installation, basic computer problem resolution, reading and troubleshooting programming

code, general programming concepts, debugging skills, and software installation. Learning

how to use a debugging tool is a separate skill. Debugging can be a time sink for the

beginning programmer. Downloading and installing the developer software tools introduces

another hurdle for students. The software development environment can contain

idiosyncrasies that require a steep learning curve. An experienced software developer knows

the difference between tool issues versus “buggy” code, while an inexperienced student can

spend hours solving one problem.

 Since educational institutions foster knowledge and learning, it seems natural to use a

knowledge management system (KMS) to leverage competitive advantage (Rowley 2000)

and enhance learning. Since students have less time to complete assignments, a knowledge

management (KM) system can help them succeed. An instructor-centered Web portal is

proposed. For student users of the KMS, access to fresh, relevant information is important.

As courses and projects change every semester, some of the knowledge gathered becomes

outdated. An updated online knowledge base for an educational institution can give students

access to the most current help information.

 3

CONTENTS

Knowledge Management

 Mack and Byrd (2001) refer to KM as: “the methods and tools for capturing, storing,

organizing and making accessible knowledge and expertise within and across communities.

Communities may be scientific, academic, and business oriented, or government based.”

Explicit knowledge is precise, defined knowledge. Tacit knowledge is experiential, and not

easily communicated, especially to a distributed student population. Michael Polanyi (1961)

uses several anecdotes to describe tacit knowledge in his essay Knowing and Being. One

anecdote is the allegory of perspective and tacit knowledge. Airplane pilots first discovered

the outline of an ancient settlement in the early 20th century. Even after knowledge existed of

this settlement, the outline could not be discerned from standing on the settlement; it could

only be seen from the perspective of altitude. It is this perspective that makes tacit

knowledge valuable to a student. The ability to access information and knowledge from the

perspective of experience can be a valuable benefit in education programs.

 Treating knowledge as an asset is not a new concept. Intellectual capital consists of the

skills, tacit knowledge and experience a company possesses through the virtue of its

employees (Coakes and Bradburn 2005). An experienced employee is worth more than a

new employee because of the experience he or she possesses. Job experience has historically

been an intangible asset. In the past twenty years, corporations worldwide have begun to see

the potential competitive advantage in managing their intellectual capital (Mitchell 2000).

The ability to leverage intellectual capital and human experience drives funding of many

organizations’ KM programs (Rowley 2000).

 4

There are many issues to consider in KM, from the core question of the nature or type of

knowledge, to managing this elusive asset. Philosophers, economists, computer scientists

and other scholars regularly delve into KM.

 Knowledge based web sites abound for computer users and programmers alike. Many

small web sites are language-version-specific, down-level versions that are not helpful.

Other sites promise more than can be delivered. It is the nature of technology to evolve. As

it does, the web sites dedicated to various aspects are not necessarily kept up to date, yet are

first to come up in a web search. On the other end of the spectrum are large, high visibility

online knowledge bases that can be tremendously large and difficult for a beginner to

navigate. These online knowledge bases are necessarily vast, meeting many customers’

needs. Microsoft’s Knowledge Base (Microsoft 2006), which is available at

http://support.microsoft.com/search, is an example of a huge online repository where users

can search by a product or keyword. A search on Microsoft’s knowledge base performed in

September 2006 using the keywords “pivot table” and “Excel 2003” returned 28 responses.

Selecting one relevant answer from the many responses returned by such a search is daunting

for beginners who are up against due dates on their assignments. Sifting through so much

information uses a student’s valuable time. Finding specific, up to date information on the

internet can be time consuming. To ensure that the knowledge-based system is useful to

students, the focus is kept small. Keeping the scope to a particular course or curriculum will

keep the knowledge base manageable and easier for students to navigate and for

administrators to update. It should focus on their specific needs, which will reduce the time

spent by students wading through irrelevant information.

 5

Knowledge Transformation

 The acronym KMS stands for Knowledge Management System. It is an information

technology system that stores information and makes it available as knowledge (Alavi and

Leidner 2001). When the need to store information arises in an organization, a KMS is the

solution many companies deploy.

 Knowledge takes on different forms. When knowledge is considered explicit, it is often

in the form of facts and figures. Tacit knowledge is the realm of experiences and unique

observations resulting from possessing explicit knowledge and acting upon it in a given

situation. Explicit knowledge could be the fact that a particular development tool is used for

developing an application. The tacit knowledge would be the “feel” of the tool; the

idiosyncrasies that are not documented but are very important to efficiently using that tool.

Information technology systems can perform in specific ways, well within specifications, but

consistently idiosyncratic nonetheless. Two machines may be entirely within specifications,

yet the response time may vary. If system A, for example, is always slow to boot, that

might be considered normal for that machine. Machine B may speed through the boot

process. If an engineer knows this, when machine B is slow to boot, the engineer

possessing tacit knowledge can diagnose the problem quickly. In the CIS program,

WebSphere software will throw a certain type of error when a particular type of

programming error is made. The tacit dimension to this error is that it is not obviously

related to the mistake made. It is not documented, but it happens with consistency

nonetheless. Experienced users know that this error really holds another meaning, and use

that tacit knowledge to quickly fix the real error.

 6

Sharing this type of knowledge may have a positive impact on students. It is hoped that the

shared knowledge in this KMS can be a timesaver for CIS students.

 Knowledge sharing, in general, involves transforming the tacit knowledge and explicit

knowledge three ways. Marwick (2001) categorizes the ways in which knowledge

transformation takes place in a business setting. Tacit knowledge transforms into explicit

knowledge through a process called externalization. Socialization spreads tacit knowledge.

Meetings, classes, and impromptu discussions all provide an opportunity for people to share

their experiences. Before and after meetings are prime times to exchange information

informally with peers. The golf course or other social encounters are additional classic

venues for sharing tacit knowledge in addition to forming business relationships. Tacit

knowledge transforms to externalized explicit knowledge through written documents.

Internalization of explicit knowledge to tacit knowledge occurs during the critical reading of

a document, and application of the explicit knowledge to unique situations in life. Reading

and using the explicit knowledge creates more tacit knowledge, which is communicated yet

again to others; to be documented and used to generate more tacit knowledge.

 These avenues of transformation exist in the educational setting as well. Instructors use

tacit knowledge to create explicit knowledge. Students share this explicit knowledge, where

it transforms again into tacit knowledge upon application in assignments. Instructors and

students share tacit knowledge during class, and in discussions. Knowledge changes its

form, flowing through the educational community, from instructor to student and back

again. This transformation process is illustrated in figure 1 (see figure 1).

 7

Socialization

Internalization

Externalization

Figure 1. Knowledge transformation flow

Web-Based Knowledge Portal

 This project is an attempt to quantify the collective experiences of students and

instructors for the benefit of students in the Computer Information Systems and Quantitative

Methods (CIS) classes at Texas State University – San Marcos. The aim is to provide help,

direction, and answers to the most common and perplexing issues facing CIS students. Tacit

knowledge becomes explicit when captured and made available to another student.

Transforming tacit knowledge to explicit is at the heart of this project.

 Jones, Provost, and Pascale (2006) explore a similar concept, which is the basis for this

research. They describe a KMS portal designed for use by university researchers. This

system focuses on the needs of a small group of students, resulting in a sharper focus on

relevant knowledge. Personally interviewing the users (in this case, the students) gives the

designer a higher level of interaction. During personal interviews, capturing nuances and

reactions can give the designer greater guidance in developing the knowledge-based system.

 8

Requirements Analysis

 During the analysis phase of the prototype, six CIS faculty members and three students

were interviewed to discover their needs in a KMS. Speaking directly to them gave them a

chance to share their wants, wishes, and opinions. A discovery was made that a small

database (MS Access) is being used for problems encountered with online test software in the

Introduction to Computers (1323) course. A faculty member communicated the fact that the

database is near capacity. This system design would be ideal for that application, if a more

robust database is used. However, integrating the database with this prototype is beyond the

scope of this project. The faculty interviewed communicated a desire for the application to

cover generic concepts, main issues, and particular sticking points in the CIS program.

General parameters include keeping topics relevant to current courses and projects and

accessibility of this KMS to everyone enrolled in a course. One faculty member expressed a

desire to communicate the importance of time management skills in regard to developing

software programs for class projects. The KMS should encourage reading the textbook, not

be a substitute for a textbook. Often the textbook material compliments the lectures,

containing a substantial amount of course material. Reading a textbook for a technical class

is a good habit that serves as a foundation for reading technical manuals, an essential skill

for any IT professional. Other suggestions include multimedia clips instructing students on

software image installation and configuration. The students should have the opportunity to

collaborate on input; this will increase acceptance and use of the KMS.

 9

 Every semester, several issues repeatedly arise while students first learn to program.

Students have trouble reconciling the code execution versus the intention of the code

execution. Reading and following code through its logical path is a useful skill, yet many

students don’t realize the importance of this skill. Understanding object oriented concepts is

another stumbling block for new programming students. The skill of stepping through an

array or loop is a rough spot for inexperienced programmers. The ability to use the

development environment and the accompanying debug tool adds another burden on top of

learning to write and troubleshoot code. Above all, the KMS should not compromise the

university honor code.

 The students interviewed asked for tutorials on loading development tools onto their

personal computer, as well as a deeper understanding of those development environments.

They also expressed a desire to understand concepts more thoroughly. Students expressed a

desire for a smaller and more focused knowledge base than MSDN. They also want an FAQ

section. Students want to learn how to troubleshoot programming code methodically.

Stepping through a multiple array and other complex functions seems to be a perennial rough

spot for novice programmers. Another suggestion involved a way for the instructor to push

clarifications and announcements to the class using the site during lab exams. This was

suggested as an alternative to verbally making an announcement during the exam, thus

breaking students’ concentration. Table 1 lists the common issues that are particular to each

of the courses covered in this project.

 10

Table 1. -- Difficulties in particular CIS courses
Course Name Students Common issues
1323 Introduction to Microcomputer

Applications
TXState • Circular reference errors

2324 Visual Programming I CIS • Value statements

• Development Environment
Software download and
installation

• Reading and interpreting code
3325 Visual Programming II CIS • Object oriented concepts and

approaches.
• Development Environment

Software download and
installation

3360 E-Business Application
Design and Development

CIS • Development Environment
Software download and
installation

3389 Business Application
Programming III

CIS • Java error message
interpretation and trace stack
interpretation

• Logic errors, debug techniques
& tips general and tool
specific

• Loops and Array combinations
4318 Advanced Business

Application Development
CIS • Advanced Object concepts

4360 Web Server Application
Development

CIS • File and permission
management

 11

System Capability

 To obtain the anticipated benefits, the KMS shall include these capabilities:

• Knowledge DBMS contains bug issues both general and specific to projects and

development environments

• Dynamic in nature to respond to new critical issues

• Supports queries through a website

• Website is straightforward and simple to use

• Maintains history of sessions

• Data is relatively secure

 In addition to the Java classes in the KMS, Java testing modules will be used. Software

testing serves several purposes. First, to ensure code execution results are appropriate.

Second, regression testing helps detect bugs introduced during code iterations. JUnit is used

to test the Java classes in this project. JUnit tests use assertions to set up the test, and if the

test is successful, WebSphere displays a green bar.

Architecture

The Model-View-Controller architecture design pattern is used in this project. It was first

described by Trygve M. H. Reenskaug while he was a visiting scientist at the Xerox Palo

Alto Research Center in 1979 (Reenskaug 1979). The View layer is the website with which

the user interacts. The Model layer encapsulates database access. One of the advantages to

the MVC is that the data can be reorganized without impacting the user interface, and vice-

versa. The Controller handles the events fired by the view, executing the model layer (Java

Beans) which retrieves data from the database, returning the result to the user through the

View (see figure 6).

 12

System Development

 Object oriented development processes will be used to design the prototype. The

development process for the proposed knowledge-based system involves gathering

requirements from the customers, in this case, instructors and students. Personal interviews

are the type of “requirements gathering” activity used in this project. Other types involve

group meetings, surveys and observing business processes. A relational database will be

designed for storing transformed knowledge. Components developed using Java

programming language will comprise the middleware. MS FrontPage will be used to

develop the web site for the portal (see figure 5). The portal will have a keyword search

function to find documented bugs and any workarounds needed to deal with them. The

keywords will be based on project names, course numbers, class sections, and general

keywords unique to course concepts. There are links to other relevant sites as well. A

“frequently asked questions” page (FAQ) is included. The course textbook companion sites,

the tutoring department, the CIS department home page, and a site map round out the

choices for the web site user. The potential user (student) will use the Internet to access the

portal hosted on a web server, which will access the database server (see figure 5). The

prototype knowledge-base system will contain couple of examples of each type of knowledge

made available: tutorials, video clips, project specific knowledge, and frequently asked

questions. Instructors and CIS tutors will provide the prototype content. The database will

hold information that the CIS student can access and use to help them learn new concepts.

 13

The application will support lecture material and concepts for each of these courses:

• Introduction to Microcomputer Applications CIS 1323
• Visual Programming I CIS 2324

• Visual Programming II CIS 3325
• E-Business Application Design and Development CIS 3360

• Business Application Programming III CIS 3389
• Advanced Java Programming CIS 4318

• Web Server Application Development CIS 4360

Object Oriented System Development

 Object oriented system development is the process of finding logical solutions to a

problem and applying the solution in the form of objects. OOD is the system design that

results from the analysis of user requirements, and is used to write the programming code

that makes the system function.

 Objects can be defined in several ways, but objects generally act upon each other,

having roles and responsibilities. Objects are units of computer memory that contain the

characteristics of a real object. An object has a state (attribute) and a behavior (method).

Object reuse is a hallmark of object oriented programming. Once the execution has

completed, objects can be cleared out of memory and used again in another routine. Java

relies on reuse to streamline operations by assigning a value to an object until it is released

by memory, then using the object to contain another value. This cuts down on the amount of

code that needs to be maintained by programmers. Reuse also increases quality, as proven

code is being repurposed. The modular nature of classes makes it possible to make changes

to parts of the design without having to re-design the whole application.

 14

 A characteristic of OOD is the use of an iterative design process. After the first round of

business requirements are gathered, the designer moves through the design inception,

elaboration, construction, and transition. As more requirements are gathered or discovered,

a new iteration of design is undertaken. This is a change from the traditional design

approach. Programming routines are updated to support the requirements. This process of

iterative development can be repeated as often as necessary, and some aspects of the design

can be more iterative than others. This is where the modular design of Java classes is

practical. If a Java class needs to be either added or removed, it does not substantially

change the entire design. An analogy of this modularity can be expressed as Lego® building

blocks, where each block is a Java class. OOD uses the Unified Modeling Language (UML)

is a result of a collaborative effort by James Rumbaugh, Grady Booch, and Ivar Jacobson;

three pioneers in the world of object oriented design methodologies. UML is used to model

objects throughout the design cycle as well as describe the various components, views and

functions of a system. In UML, there are functional, static, and dynamic views of the

system. Use cases, class diagrams and state charts all communicate different views of the

system. Two use cases are detailed in this project (see tables 2 and 3). A use case models

the behavior of one task.

 Why choose Java over another language, like .NET? A Java application can be used in

any operating system. The modular nature of a Java application means functionality can be

expanded in the future by adding libraries of specialized code. Third party libraries can be

imported into the Java application when a new feature needs to be added. Some examples of

third party libraries are those written to enable portable devices such as personal digital

assistants using Bluetooth® technology (Spinellis 2006).

 15

As Sun® Microsystems moves toward an open source paradigm for Java, more developers

will have access to the language, and more companies will adopt it to save money.

A disadvantage to using Java is that excessive hiding can affect bug discovery. Heavy

reliance on inheritance can cause problems with maintenance, as inheritance can sometimes

be misapplied in the absence of sound design principles (Goth 2002).

Software Used

Database

 Although Microsoft Access is used for this prototype, it is not recommended for a fully

deployed version of this KMS. Microsoft SQL Server is recommended for a deployed KMS

application. The differences between the two databases can explain why SQL Server is a

better choice. MS Access is best used in a Windows desktop environment, not a live web

environment. It is made for situations where the lifecycle of the project is short, the use is

local, and is geared toward a small, limited database solution. This makes it ideal for a

small prototype. Although it can also be developed to a certain extent by professional

developers, it is oriented toward end users (see figure 2). The Access JET database engine is

prone to corruption, especially when stretched to its limits of 2 Gigabytes of data. MS

Access is not as secure as SQL Server. On the other hand, SQL Server is a better choice for

a distributed architecture such as a web application. It must be developed by IT

professionals, and costs more, but offers more capacity and functionality. The primary

language used in Access and SQL Server is Structured Query Language, or SQL.

 16

Application Development Tool

 WebSphere Studio Application Developer 5.1.2 (WSAD) is the Java application

development environment used. Java 1.3 is used, with some XML and HTML. Of the Java

solutions available, Servlets, Java Server Pages (JSP), and Java Beans are the types used in

this project. Each has a distinctive set of tasks in the MVC architecture. XML, Extensible

Markup Language, is a framework to define a standard way of adding markup to documents.

XML is used to share data and its format across heterogeneous information systems using the

HTTP protocol. It is generated automatically with dynamic web pages designed in

WebSphere.

User Interface Development Tool

 Front Page 2003 was used in the initial development of the user interface. Cascading

Style Sheets were used for the layout design. The template choice was originally designed

by Andreas Viklund. The primary language of FrontPage is HTML. Cascading style sheets

are also used. CSS is a way to apply a design to all the site pages. If a design change is

needed, one text file can be changed and it will cascade throughout the document. It can be

over-ridden and changed in particular places when the situation warrants (see figure 3).

Tutorial Software

 Camtasia Studio is a software package for recording, editing and sharing high-quality

screen video over a range of media. It was used in creating the multimedia tutorial for this

prototype.

 17

Challenges

 One of the hardest aspects of the design phase was the database design. Being an

average database student, this afforded an opportunity to work on design skills. The

database design was too complex at the beginning of the project. Although a bug tracking

tool was the original project idea, a knowledge base is a better solution to the customer

requirements. It also became apparent that the scope of the project could only include a

knowledge management system and not a bug tracking system. Through the first iteration,

many tables were discarded and the design was revised. Database normalization was a

challenge; clarifying each table’s function in the context of the business rules helped

normalization. Numerous design decisions were made. Knowing why a table had a one-to-

many relationship with another table, when to use association tables and other database

design are two examples. After the database was functional, adjustments to the design were

still being made. In the Java code development, data retrieval using Java Beans presented an

exercise in detailed work. Setting the values of the input parameters for the result set object

must match the prepared statement object exactly. This is an easy concept, yet one minor

error results in a malfunction of the entire method. Using the CSS template in the FrontPage

software worked well; however, porting it to WebSphere posed another challenge. The file

path to the style sheet defaulted to a relative file path in WebSphere, yet CSS would not

cascade in WebSphere without an absolute file path. Also, WebSphere threw an error on the

upper case HTML tags used in FrontPage so all the tags had to be changed to lower case, a

time consuming endeavor.

 18

 CONCLUSION

 Instructors and students share knowledge. New tacit knowledge is formed in the

process of sharing and applying explicit knowledge. Students come from varied

backgrounds; needing quick help in subjects in which they may not have prior experience.

 Education can leverage the power of internet applications to share tacit knowledge

between instructors and students, helping the students and creating competitive advantage

for the institution. If a student is struggling with a particular topic in a course, a focused

knowledge base may be of great help. This model can be applied in many academic settings;

the small scale of such a knowledge base is ideal for a department or a program.

 Future studies related to the use of a focused knowledge base should include the

following:

• Comparisons of course completion rates using a KMS against no KMS.

• Studies focused on the effects of the knowledge base upon student grades.

• Impact of the knowledge base on teaching effectiveness of concepts and skills.

• Ease of use of the web interface used in the knowledge-base system.

• Measurements of the impact the knowledge-base system on instructors.

 An area for future development could involve integrating other modules with the KMS.

An example if a module is the database for the online test program being used in the

Introduction to Computers (1323) class mentioned previously. In addition to expanding the

size, future knowledge bases could be based on collaborative software; where students also

contribute to the knowledge base. Instructors should still be the only ones authorized to edit

and add the content to the knowledge base.

 19

This will keep the student’s focus on the course content instead of learning to use another

software tool. A benefit of a collaborative effort could include increased student use of the

knowledge base and provide a venue for students to articulate their knowledge. No matter

who contributes, the instructors will be responsible for approving the content. This ensures

the knowledge contained is accurate and relevant to the program. Sharing this knowledge

could help struggling students succeed.

 20

BIBLIOGRAPHY

Alavi, Maryam, and Dorothy Leidner. "Review: Knowledge Management and Knowledge
Management Systems: Conceptual Foundations and Research Issues." MIS Quarterly 25,
no. 1 (2001): 107.

Coakes, Elayne, and Anton Bradburn. "What is the Value of Intellectual Capital?"
Knowledge Management Research & Practice 3, no. 2 (May 2005 2005): 60. Proquest.

"Teens and Young Adults Now Spend More Time Online than Watching Television." in
Carat North America [database online]. Sunnyvale, CA May 2003 [cited 2006]. Available
from http://docs.yahoo.com/docs/pr/release1107.html.

Jones, Nory B., Darylyne Provost, and David Pascale. "Developing a University Research
Web-Based Knowledge Portal." (2001).

Mack, R., Y. Ravin, and R. J. Byrd. "Knowledge Portals and the Emerging Digital
Knowledge Workplace." IBM Systems Journal 40, no. 4 (2001).

Marwick, Alan D. "Knowledge Management Technology." IBM Systems Journal 40, no. 4
(2001).

Mitchell, K. D. "Knowledge Management: The Next Big Thing." Public Manager, Summer
2000. Database on-line. Available from Proquest document ID: 62029833.

Polanyi, Michael. "Knowing and being." Mind, New Series (1961).

Rowley, Jennifer. "Is Higher Education Ready for Knowledge Management?" The
International Journal of Educational Management 14, no. 7 (2000): 325. Available from
Proquest Document ID: 115923838.

Rumbaugh, Jacobson, Booch. The Unified Software Development Process. 1st ed. Boston,
Mass.: Addison-Wesley Pearson Education, 1999.

Ryu, Mikyung, and William Doyle. Measuring Up 2004: The National Report Card on
Higher Education. National Center for Public Policy and Higher Education, 2004.

Satzinger, Jackson, Burd. Systems Analysis and Design in a Changing World. 3rd ed. Boston,
Mass.: Thompson Learning, Inc., 2004.

 21

Shireman, Robert. Reducing the Dangers of Debt - Student Loans could be a More Positive
Tool in College Access Efforts. National Center for Public Policy and Higher Education,
2005.

Viklund, Andreas. "Cascading Style Sheet, andreas08." (2006) Database on-line. Available
from OSWD.org.

 22

 APPENDIX A

 Figure 2. Database Class Diagram showing database schema

-tutID {key}
-tutName
-courseID
-tutSubject
-tutType

Tutorial

-courseID
-courseName
-courseNumber
-courseSection
-semester
-catsIndex

Course

-announceID {key}
-announceName
-announce
-courseID

Announcements

-projID {key}
-projectName
-dueDate

Project

-projectBugID {key}
-projectID
-bugID

ProjectBug

1..1

0..*

1..*

0..*

0..1

0..*

-courseProjectID {key}
-courseID
-projectID

CourseProject

0..1

0..*

0..1
0..*

-keyID {key}
-keyword1
-keyword2
-keyword3
-keyword4
-keyword5
-keyword6

Keyword
-refLinkID {key}
-tutID
-link1
-link2
-link3
-link4

RefLinks

1..1

0..*

-bugKeyID {key}
-keyID

bugKeyword

-bugID
-platform
-referenceBug
-summary
-userID
-componentName
-componentRev

bug

-userCourseID {key}
-userID
-courseID

userCourse

0..1 1..*

0..1

1..*

1..1 0..*

-courseTutID {key}
-courseID
-tutID

courseTutorial

0..*

0..1

0..1 1..*

 23

Use Case Name: 1. Look up a bug
Scenario: User looks up a bug on the web portal
Triggering Event: User navigates internet browser to portal
Brief Description: User navigates onto bug site and initiates a query. The user chooses a query filter

if desired, and performs a search by keyword
Actors Users
Related Use Cases:
Stakeholders: Students, who look up bugs

Instructors, who make bugs available for viewing.
Preconditions: Access to portal

DB server up
DB populated with bug data

Postconditions: Search must be performed.
Bug record must be related to keyword.
Result displayed on web site
 Actor System Flow of Events:
1. Navigates to web site
2. Chooses filter option from drop
down box, Enters keyword (s) into
search bar, Selects enter (go)
button
3. Chooses one result

1.1 Home page presents search choices
2.1 Filters by option choice

 2.2 Form accepts input and requests a
filtered query through controller, to the DB
2.3 Controller retrieves keyword result from
DB, sends to browser through JSP view.
3.1 Displays results to user on web site

Exception Conditions: If bug is not listed, student will contact instructor to communicate a possible bug
and gain assistance. Student can seek help at SLAC.

 Table 2. UML Use case 1, modeling a “Look up a Bug” task

 23

Use Case Name: 2. Look up a tutorial or multimedia tutorial
Scenario: User looks up a tutorial on the web portal
Triggering Event: Student navigates internet browser to portal
Brief Description: Student navigates internet browser to portal and chooses the tutorial button. Student

selects appropriate tutorial, or a multimedia tutorial
Actors Students
Related Use Cases: Look up Multimedia Tutorial

Link to textbook companion website
Stakeholders: Students, who look up tutorials

Instructors, who may update tutorials
Preconditions: Access to portal

DB server up
DB populated with tutorial data

Postconditions: Button links to tutorial page.
Tutorial page displayed in browser window
 Actor System Flow of Events:
1. Navigates to web site
2. Selects tutorial or multimedia
tutorial page.
3. Chooses a tutorial or a
multimedia tutorial.

1.1 Home page presents tutorial link
2.1 Hyperlink to tutorial pages
3.1 Retrieves tutorial from DB and Displays
tutorial to user in browser window

Exception Conditions: If tutorial not found, student can seek assistance from SLAC or instructor, or choose
the link to the textbook website.

 Table 3. UML Use case 2, Look up a tutorial or multimedia tutorial

 24

Figure 4. Web-Based Knowledge Portal Home Page
Cascading Style Sheet Courtesy of Andreas Viklund

 25

Figure 5. System Architecture of the Web-Based Knowledge Repository, Showing Major
Components

View

Web
Application

Server

Database
 Server

Model

Controller

Servlets

JSP

Java Beans

MVC Architecture

Query Forms

Input Forms

Announcements

Group

Multimedia

Tutorials

Browser

Red: Flows both
ways

Blue: Request

Green: Response

Figure 6. Model-View-Controller Architecture Shows Data Flow Between Components

 26

APPENDIX B

The complete source code is on the accompanying CD.

SQL
SELECT project.projectName, bug.bugId, bug.referenceBug, bug.componentName,
bug.componentRev, bug.platform, bug.summary
FROM (bug INNER JOIN projBug ON bug.bugId=projBug.bugId) INNER JOIN project ON
projBug.projectId=project.projectId
WHERE project.projectName='Soundstream';

CSS
/**************** Body and tag styles ****************/

*{margin:0; padding:0;}

body{
font:76% Verdana,Tahoma,Arial,sans-serif;
line-height:1.4em;
text-align:center;
color:#303030;
background:#e8eaec;
}

a{
color:#467aa7;
font-weight:bold;
text-decoration:none;
background-color:inherit;
}

a:hover{color:#2a5a8a; text-decoration:none; background-color:inherit;}
a img{border:none;}

p{padding:0 0 1.6em 0;}
p form{margin-top:0; margin-bottom:20px;}

img.left,img.center,img.right{padding:4px; border:1px solid #a0a0a0;}
img.left{float:left; margin:0 12px 5px 0;}
img.center{display:block; margin:0 auto 5px auto;}
img.right{float:right; margin:0 0 5px 12px;}

 27

Java Bean

public ArrayList findByProjectName(String argProjectName){

 Connection con = null;
 ArrayList list = new ArrayList();
 boolean ok = false;

 try {
 //register the JDBC driver
 DriverManager.registerDriver(
 new com.inzoom.jdbcado.Driver());
 //connect to a database
 con =
DriverManager.getConnection("jdbc:izmado:Bug;IzmDllPath=C:\\jadozoom\\izmjniado.dll");

PreparedStatement stmtProjectN = con.prepareStatement("SELECT
project.projectName, bug.componentName, bug.componentRev, bug.platform,
projBug.summary FROM project INNER JOIN (bug INNER JOIN projBug ON bug.bugId =
projBug.bugId) ON project.projectID = projBug.projectId WHERE
(((project.projectName)=?))");

 stmtProjectN.setString(1, argProjectName);
 ResultSet rsProjectName = stmtProjectN.executeQuery();

 while (rsProjectName.next()){
 Bug object = new Bug();
 object.setProjectName(argProjectName);
 object.setComponentName(rsProjectName.getString(2));
 object.setComponentRev(rsProjectName.getString(3));
 object.setPlatform(rsProjectName.getString(4));
 object.setSummary(rsProjectName.getString(5));
 list.add(object);

 }

 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 try {
 con.close();
 } catch (Exception ex){}
 }
 return list; }

