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CHAPTER I 

INTRODUCTION 

 

Wildfire behavior modeling is located at the intersection of many diverse 

scientific disciplines (Arroyo, Pascual and Manzanera 2008) including but not limited to 

ecology, forestry, meteorology, urban planning, economics, agronomy, and geography.  

These models simulate real-world physical and atmospheric conditions to predict possible 

location and severity of wildfire for such applications as forest health, soils management 

and natural hazard assessment.  Many models apply a spatial component to the process 

and function within a geographic information system (GIS).  The wildland urban 

interface (WUI), the zone where expansive tracts of undeveloped and sometimes densely 

vegetated land abuts human development (Theobald and Romme 2007), is a key target 

for wildfire behavior modeling due to the high potential for hazard to human lives and 

property.  WUI areas in the United States have increased over the past few decades 

(Shafran 2008), mostly due to booming low-density residential and recreational 

development outside of the urban core and adjacent to wildlands (Lein and Stump 2009; 

Theobald and Romme 2007).   

Wildfire within these WUI areas creates a situation riddled with social and 

environmental complexities in which the need to protect people, structures, watershed 

health, timber resources, scenic beauty, recreation facilities, and atmospheric clarity (Lein 

and Stump 2009) are at odds with the natural progression of wildfire which has 
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historically maintained ecosystem balance (Garcia et al. 2011; Su et al. 2003).  For this 

reason, it is imperative that effective environmental management, urban planning and 

hazard mitigation are employed to ensure harmony between the natural and human 

agendas.  Crucial to this effort is wildfire behavior modeling. 

The accuracy (and therefore usefulness) of information output from wildfire 

models is contingent upon the accuracy of the data inputs (Garcia et al. 2011).  As Mutlu 

et al. (2008, 274) states, “Improving the accuracy of mapping fuel models is essential for 

fuel management decisions and explicit fire behavior prediction for real-time support of 

suppression tactics and logistics decisions.”  Common inputs for GIS-based wildfire 

models include elevation, slope, aspect, weather, and vegetative fuel calculations such as 

canopy cover, crown bulk density, and crown base height (Mutlu et al. 2008; Popescu 

and Zhao 2008). These data inputs can be found or created from a variety of sources and 

at varying temporal and spatial scales (Arroyo, Pascual and Manzanera 2008).  The 

appropriate combination of variables and parameters is often unique to the modeling 

application at hand and can depend on timeframe, funding, hardware or software 

resources, and geographic considerations.  Perhaps the most critical inputs for wildfire 

behavior modeling are the fuel calculations, which are also very difficult to quantify and 

describe (Arroyo, Pascual and Manzanera 2008).   

“Remote sensing can support many aspects of fire management and it can be used 

to decrease fire risk and to reduce fire damage” (Mutlu et al. 2008, 275). Since it came 

about in the 1960’s, passive remote sensing has provided a means for mapping fuel types 

and extent through aerial photo interpretation (Popescu and Zhao 2008).  Multispectral 

satellite and aerial imagery is often readily available for any given location due to regular 
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satellite coverage and the occasional state, local or regional airborne orthoimagery 

acquisition (Riano et al. 2003). Due to its pervasiveness and usefulness for extracting 

relevant fuel characteristics such as tree height and biomass (Zheng et al. 2007), imagery 

has become one of the most common methods to map fuels for wildfire modeling 

(Arroyo, Pascual and Manzanera 2008; Avitabile et al. 2012; Popescu and Zhao 2008).  

However, there are disadvantages, such as spatial resolution being too coarse to 

distinguish vegetation type and inability to see below dense foliage or structures (Garcia 

et al. 2011; Riano et al. 2003). 

One geospatial data product derived from satellite Landsat TM data is called 

LANDFIRE, or Landscape Fire and Resource Management Planning Tools.  LANDFIRE 

is a joint project by the U.S. Department of Agriculture (USDA) and Department of the 

Interior that was initiated in 2004 to produce a comprehensive, consistent and 

scientifically credible suite of data layers spanning the entire U.S. for wildland fire 

management and land conservation (U.S. Department of Agriculture 2011b).    

LANDFIRE data products include more than fifty spatial data layers which are developed 

using peer-reviewed, consistent and repeatable scientific methods including satellite 

remote sensing, systems ecology, landscape modeling, relational databases, and 

vegetation and disturbance dynamics (U.S. Department of Agriculture 2011b).  These 

datasets were created to be analyzed “at a landscape scale in support of strategic 

vegetation, fire, and fuels management planning to evaluate management alternatives 

across boundaries” (U.S. Department of Agriculture 2011b). 

Another method for mapping fuel types is airborne light detection and ranging, or 

lidar (Andersen, McGaughey and Reutebuch 2005; Popescu and Zhao 2008).  This 
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method is a key active remote sensing technology in which a sensor emits near-infrared 

light pulses from an airborne platform toward the ground and then records the signal 

return.  The result is a three dimensional cloud of points which contains horizontal x and 

y-values along with the vertical z-value.  Through computer algorithms, points can then 

be filtered into relevant classifications such as ground, buildings, and vegetation.  This 

technique is a powerful tool for estimation of surface fuels since the laser pulses can 

penetrate gaps in vegetation canopy to access a wider range of fuel attributes including 

vegetation understory (Garcia et al. 2011; Mutlu et al. 2008; Popescu and Zhao 2008).  

Within the past decade there has been a marked increase in demand for lidar from 

the geospatial community (Avitabile et al. 2012; Koch 2010; Maune 2007).  Though 

expensive relative to imagery (Popescu et al. 2011), lidar acquisition and processing costs 

have decreased as the hardware and software to produce these data have become more 

affordable.  Although lidar is still more costly than orthoimagery, public and private 

entities alike are becoming enlightened to the broad scope of benefits from lidar data.  

Some agencies, such as The Railroad Commission of Texas (RRC), have realized the cost 

benefit from acquiring highly accurate remotely sensed data in lieu of expensive field 

collections combined with human error-prone aerial interpretation (from personal 

communication with Jon Brandt of the Texas RRC Abandoned Mine & Land 

Reclamation Program).   

Another critical input to GIS-based wildfire behavior models is vegetation fuel 

moisture (Mutlu et al. 2008; Scott and Burgan 2005), which affects the ignitability of 

fuels (Verbesselt et al. 2007).  Traditionally, these models assume a constant value for 

moisture content of all dead vegetation litter (woody duff) throughout the project area, 
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but fail to include moisture content of live vegetation.  This approach was developed by 

the U.S. Forest Service (Missoula Fire Sciences Laboratory 2011) for wildfire modeling 

applications in large forests under normal climate conditions, where moisture content is 

likely to be relatively homogeneous.  However drought conditions in a WUI environment 

present a vastly different scenario in which vegetation moisture content can have a high 

spatial variability (Caccamo et al. 2011).  Trees in landscaped areas or adjacent to rivers 

and lakes have access to considerably more water than trees in open areas, and this 

difference is magnified in a drought.  It is possible to account for live vegetation moisture 

content within the wildfire model inputs (in a fuel class model), even if the wildfire 

model itself does not account for heterogeneous moisture content.  However in this 

instance, the spatial resolution of vegetation moisture is limited to the area of extent for 

each fuel class in a given location and ignores moisture variability within the same fuel 

model. 

1.1 Objective 

 

The objective of this research is to evaluate selected techniques for wildfire 

behavior modeling in a wildland urban environment.  One portion of the study will 

compare the use of state-of-the-art technology against an established methodology for 

producing data inputs from a wildfire model.  The other portion of the study will 

incorporate live vegetation moisture into the same wildfire model, which could contribute 

to wildfire behavior in a drought.  Specifically, this study will address the following 

research questions: 
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I. How do wildfire behavior maps created from high resolution airborne lidar 

compare to those created from Landsat TM-derived LANDFIRE data in terms 

of both scale and method of data acquisition? 

 

II. How do wildfire behavior maps created with constant foliar moisture content 

(FMC) compare to maps with variable FMC measured from Landsat TM 

imagery, and is FMC related to wildfire spread in a drought environment?   

 

These “methods and mapping products have the potential for driving changes in forest 

resource management practices related to mitigating fire hazard that threatens the public, 

human lives, and environmental health in Texas and nationwide” (Mutlu et al. 2008, 

284).  The results of this analysis could prove useful to environmental and land managers 

who must make improved fire behavior predictions by identifying areas in need of fuel 

mitigation efforts (Mutlu et al. 2008; Popescu and Zhao 2008).  Informed decision-

making is aided by an awareness of the best and most relevant sources of data capable of 

meeting the minimum project parameters and budget.   
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CHAPTER II 

LITERATURE REVIEW 

2.1 Wildland Fire 

The area where natural wildlands meet the fringe of urbanization is called the 

wildland urban interface (WUI).  Intermix describes the portion of a WUI where sparse 

housing and development is mixed within dense vegetation, and interface exhibits 

development surrounded by sparse vegetation adjacent to the dense wildland vegetation 

(Zhang, He and Yang 2008).  Approximately 89% of land in the WUI is privately owned 

(Theobald and Romme 2007), demonstrating its popularity as a lifestyle alternative to 

urban living.  However, the scenery and closeness to nature’s bounty comes at a price - 

the potential for fire hazard.  Resource managers must contend with the social and 

technical complications of wildfire near the presence of humans, their homes, and 

development adjacent to the lands they manage (Lein and Stump 2009).  The WUI 

environment also poses a unique challenge to firefighting mitigation and response efforts. 

Response teams must contend with fire behavior as it burns through not only vegetation 

but large fuel loads of highly flammable construction materials and possessions in urban 

structures (Bhandary 2007; Flaxman 2001).  Decentralization in the U.S. is escalating the 

issue even further (Lein and Stump 2009); the current extent of land in the U.S. 

characterized as WUI is about 14% larger than the state of California (Theobald and 

Romme 2007).
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Wildfire in WUI areas is most common in the eastern U.S. due to high population 

density, but fires there are typically low in intensity (Theobald and Romme 2007).  By 

contrast, WUI fires in the western part of the country are less frequent but far more 

severe since this area is where stand-replacing fires dominate both historical and the most 

recent fire regimes (Theobald and Romme 2007).  If the conditions are right, wildfire can 

happen anywhere, unlike geographically restricted hazards such as tsunamis, hurricanes 

and earthquakes.  Elements that influence the propagation of wildfire include the 

presence and quality of fuels to burn, location of ignition, weather patterns, and 

topography (Bar Massada et al. 2009).  Drought can further exacerbate the vulnerability 

of a region to wildfire by tapping the water content in vegetation fuels from lack of 

rainfall and high evapotranspiration, greatly increasing the odds of ignition and fire 

longevity (Caccamo et al. 2011).  The hot and sometimes windy weather patterns that are 

often instigated or escalated by drought also reinforce a high probability of wildfire.  

These contributors to wildfire risk can be modeled using GIS technology (Arroyo, 

Pascual and Manzanera 2008).   

Understanding fire behavior aids in improved land management and allows 

managers and planners to anticipate areas at risk (Arroyo, Pascual and Manzanera 2008; 

Garcia et al. 2011).  According to Bar Massada et al. (2009, 1991)  

Risk is influenced both by changing patterns of the landscape values at risk (i.e. 

homes) and the process generating the risk (ignitions and fire spread).  The large 

and increasing number of lives and structures that are potentially exposed to 

wildfire hazard highlights the need to quantify wildfire risk in the WUI so that 

this risk can be minimized.  
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While wildfire risk and behavior modeling has been around for some time 

(Arroyo, Pascual and Manzanera 2008), updated technology and widespread data 

collection from an amalgam of sources can be used to conduct detailed analysis requiring 

less time and computational resources than ever before.  These technological and data 

resources are crucial to promote awareness in high risk areas, for city planning and 

development, and for wildfire mitigation and response strategies. 

2.2 Wildfire Modeling 

 

Wildfire modeling spans a broad range of functionality including empirical 

models that describe the fundamentals of fire behavior, fire models that produce 

graphical and tabular outputs of perimeter spread distance, spatially-based fire behavior 

analysis programs, specialized systems that focus on specifics like wind fields and tree 

mortality rates, and finally, comprehensive decision support systems encompassing many 

aspects of study (Arroyo, Pascual and Manzanera 2008). 

Many North American wildfire decision support systems are founded on 

Rothermel’s (1972) surface fire spread model which was published as a result of a 1968 

plan for a national fire danger rating system (Flaxman 2001; Missoula Fire Sciences 

Laboratory 2011).  Van Wagner (1977) then introduced the crown fire initiation model, 

and Rothermel (1991) later proposed the crown fire spread model.  In conjunction with 

Rothermel’s 1972 model, the U.S. created the pioneering National Fire Danger Rating 

System (NFDRS), a broad scale seasonal weather system analyzed with nine pre-

classified vegetation fuel types (later expanded to twenty) and moisture content of dead 

fuels (Arroyo, Pascual and Manzanera 2008; Garcia et al. 2011).  This system is the 
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precursor to the modern public domain National Systems, a suite of wildfire behavior and 

fire danger software developed by the U.S. Forest Service and the U.S. Department of the 

Interior (including the National Park Service and Bureau of Land Management) for use 

by federal, state and local fire and land managers (Missoula Fire Sciences Laboratory 

2011).   

National Systems is really two distinct sets of software: three models comprising 

the National Fire Behavior Systems and two models known as the National Fire Danger 

Systems (Missoula Fire Sciences Laboratory 2011).  The National Fire Behavior Systems 

models rely upon the same empirical fire behavior framework originally developed by 

Rothermel (1972) and other existing models for surface fire, crown fire, spotting post-

frontal combustion and fire acceleration including those from Van Wagner (1977), Albini 

(1984) and Nelson (2000).  The tools perform complementary functions to produce 

output information such as flame length, spread rate, perimeter and more.   

One of the most commonly used models (Flaxman 2001) is FARSITE, a fire 

growth simulator developed by Finney and Andrews (2001) that utilizes spatial and 

tabular inputs to predict fire behavior over time. FARSITE can be used for conducting 

“what if” scenarios and comparing results to improve mitigation and response strategies 

(Missoula Fire Sciences Laboratory 2011).  It also distinguishes between surface fires 

and crown fires, utilizing different underlying empirical models from Rothermel (1972) 

and Van Wagner (1977), respectively (Bar Massada et al. 2009).   

FARSITE requires an input ‘Landscape’ file comprised of spatial data themes 

including elevation, slope, aspect, canopy cover, fuel model, canopy bulk density, canopy 
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base height, and canopy height (Missoula Fire Sciences Laboratory 2011).  An ‘Initial 

Fuel Moisture’ file estimates the percentage of moisture present in dead woody debris 

after running simulated weather patterns based on user-defined parameters. Additional 

optional files include spatial and temporal weather conditions such as relative humidity, 

rainfall and wind.  FARSITE produces outputs in maps, tables and graphs including 

information such as flame length, rate of spread, heat per unit area and fireline intensity 

(Missoula Fire Sciences Laboratory 2011).  

These same inputs are also required for FlamMap (Finney 2006), a fire mapping 

and analysis system that focuses on the spatial dimension to model potential fire behavior 

across the landscape (Missoula Fire Sciences Laboratory 2011).  Outputs are in a 

geographic format similar to raster maps produced in FARSITE, and include fireline 

intensity, crown fire activity, flame length, and spread rate.  Unlike FARSITE, FlamMap 

does not include a temporal component; conditions are constant in time but vary spatially.  

Similar to its counterparts FARSITE and FlamMap, BehavePlus (Andrews 2007) is 

another fire behavior prediction model and fire environment system which produces 

tabular and graphical data describing conditions after a number of variables have been 

input (Missoula Fire Sciences Laboratory 2011).  For instance, rate of spread can be 

compared relative to percent fuel moisture simultaneously for several different scenarios 

under varying weather or terrain conditions.   

The other component of the National Systems, the National Fire Danger Rating 

System (NFDRS), produces fire indices to indicate the possibility for fire activity 

(Arroyo, Pascual and Manzanera 2008).  FireFamilyPlus (Missoula Fire Sciences 

Laboratory 2011) is an integrated database of weather and fire occurrence.  It can 
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calculate fire danger rating indices and perform analysis for climatological summaries 

used by fire management.  These reports of historical weather conditions relative to 

number of fire outbreaks are critical for tracking seasonal progression of fire danger.  

Analysis of current weather information provides data to estimate continued fire growth 

which is integral for response planning (Missoula Fire Sciences Laboratory 2011).  The 

Wildland Fire Assessment System is the primary component of the NFDRS and uses a 

multitude of indices including those grouped under: ‘Fire Potential & Danger’ (fire 

danger rating, lightning efficiency, the Haines Index for atmospheric stability, and the 

National Digital Forecast Database forecasts); ‘Weather’ (fire weather index); and 

‘Moisture & Drought’ (dead fuel moisture index, Advanced Very High Resolution 

Radiometer (AVHRR) derived normalized difference vegetation index (NDVI), the 

Keetch-Byram Index for evapotranspiration and transportation, the Palmer Drought 

Index, and fuel moisture from the National Fuel Moisture Database)(U.S. Forest Service 

2011). 

2.3 Fuel Estimation 

 

An essential constituent of a wildfire model is the calculation of surface fuel 

parameters, which are the fundamental component of fire risk (Arroyo, Pascual and 

Manzanera 2008; Garcia et al. 2011; Popescu and Zhao 2008; Riano et al. 2003).  

Accordingly, an accurate record of the characterization and distribution of these fuels is 

paramount, although it is particularly difficult to calculate given the complex and 

dynamic nature of vegetative and structural properties at different scales and locations 

(Garcia et al. 2011).  Vegetation biomass is the weight of plant materials across a given 

area, and can be calculated by measuring canopy structure metrics such as percent canopy 
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cover, canopy base height, leaf area index (LAI), canopy bulk density (weight per 

volume), fuel loading (weight per area) and often, particle size (stem diameter) 

(Andersen, McGaughey and Reutebuch 2005; Arroyo, Pascual and Manzanera 2008; 

Chen et al. 2012; Jensen et al. 2006; Popescu and Zhao 2008; Riano et al. 2003). Other 

parameters such as crown bulk density are also important given that fire spreads more 

quickly and is more difficult to extinguish in tree crowns than on the ground (Riano et al. 

2004). 

In addition to wildfire modeling, biomass estimation is performed for many other 

areas of study, including sustainable forest management, deforestation monitoring, timber 

management, carbon sequestration (Avitabile et al. 2012; Chen et al. 2012; Popescu and 

Zhao 2008; Tian et al. 2012; Zhao, Popescu and Nelson 2009), ecosystem productivity 

estimation (Jensen et al. 2006), hydrology (Tian et al. 2012), recreation and wildlife 

habitat monitoring (Shan and Toth 2008).  Measurement of vegetation characteristics for 

biomass estimation can be accomplished using both passive and active remote sensing 

methods (Tian et al. 2012), each with varying degrees of complexity, scale, accuracy and 

cost.  

 2.3.1 Passive Remote Sensing Methods 

Referring to satellite imagery, Avitabile et al. (2012, 366) states “remote sensing 

provides the key source of data for updated, consistent and spatially explicit assessment 

of biomass and its dynamics, especially in large countries with limited accessibility.”  

Regional to country-scale areas can utilize moderate resolution imagery from satellites 

like the Moderate Resolution Imaging Spectroradiometer (MODIS), while local-scale 

areas rely on medium resolution imagery from Landsat TM and ASTER (Avitabile et al. 
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2012; Garcia et al. 2011).  Higher resolution sensors such as SPOT, IKONOS and 

QuickBird have allowed for finer scale mapping (Garcia et al. 2011).  Regular coverage 

from these sources can provide years of historical image scenes, although generating 

cloud-free datasets can be challenging over large areas (Avitabile et al. 2012). 

Optical remote sensing enables biomass estimation by quantifying canopy 

density.  However, the result is not a direct measurement and can produce questionable 

data (Zheng et al. 2007).  Inability to penetrate dense canopy cover is the primary 

limitation of passive remote sensing, and vegetation height does not change reflectance 

patterns, causing some disparate fuel types to exhibit minimal spectral differences in 

imagery (Garcia et al. 2011). 

Due to the highly complex and variable nature of fuel characteristics across the 

landscape, particularly in a WUI environment, estimates of on-the-ground conditions 

must be considered based on project scale and application (Zheng et al. 2007).  Many 

existing studies for wildfire hazard assessment and modeling rely upon satellite imagery 

or high-resolution orthoimagery for extraction of vegetation and/or structures (Baldwin 

2003; Bhandary 2007; Halligan 2007; Hawbaker 2009; Hunter 2005; Lampin-Maillet et 

al. 2010; Lein and Stump 2009; Luo 2004; Xu 2006; Zheng et al. 2007).  The imagery 

used in these studies vary in resolution from 1 km AVHRR and MODIS (Hawbaker 

2009; Hunter 2005), to 30 meter Landsat (Lein and Stump 2009; Xu 2006; Zheng et al. 

2007), 1-4 meter IKONOS (Bhandary 2007), 2.5 meter SPOT (Lampin-Maillet et al. 

2010), and 1 meter orthoimagery (Baldwin 2003).  Coarse data inputs work well for large 

extent mapping pursuits (Hawbaker 2009), but are not sufficient for estimating vegetation 
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or structures as wildfire fuel from a large scale or neighborhood perspective (Halligan 

2007; Hunter 2005; Luo 2004). 

2.3.2 Active Remote Sensing Methods 

 Active remote sensing in the form of light detection and ranging, or lidar, 

provides a state-of-the-art technique for highly accurate biomass estimation (Andersen, 

McGaughey and Reutebuch 2005; Chen et al. 2012; Garcia et al. 2011; Mutlu et al. 2008; 

Popescu et al. 2011; Zhao, Popescu and Nelson 2009).  According to Lefsky et al. (2005, 

555-556), “Predicting aboveground biomass from lidar-measured canopy height has now 

been shown to be (a) straightforward exercise in a variety of forested biomes, and 

physiognomic types.”  The technology measures the time it takes a laser pulse from an 

airborne sensor to reach an object on or above the ground and return to the sensor.  Since 

light travels at a known speed, it is possible to distinguish the distance covered by the 

duration of time it took the pulse to return.  In addition to the lidar sensor, an onboard 

Global Positioning System (GPS) receiver records the sensor’s precise location so that 

distance can be accurately measured.  The GPS is assisted by an internal measurement 

unit (IMU) with an accelerometer to precisely record the aircraft positional information 

such as speed, heading, pitch, yaw and roll (Jensen 2000; Maune 2007).  The resulting 

data collected is a three-dimensional point cloud comprised of millions (or billions) of 

point locations with recorded attributes for positional x, y, and z, 8-bit integer of return 

pulse intensity, GPS timestamps and more.  Additional information about light detection 

and ranging principles can be found in the DEM Users Manual (Maune 2007). 

Although different from current systems, lasers have been used to measure 

vegetative characteristics like stem volume, biomass and tree height for over 30 years 
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(Maune 2007; Maclean 1986; Shan and Toth 2008, 336).  Small-footprint lidar came into 

use in forestry in the late 1990’s (Naesset 1997; Shan and Toth 2008, 336) and within the 

past two decades lidar has steadily gained popularity for a variety of applications 

(Avitabile et al. 2012; Koch 2010; Maune 2007; Zhao, Popescu and Nelson 2009) - 

particularly for deriving elevation data but also for vegetation mapping, both of which are 

necessary for wildfire modeling.   

Unlike optical remote sensing, in which biomass characteristics such as height 

and volume are estimated using photogrammetric techniques (and often confirmed with 

field work), the same parameters can be derived with a high level of accuracy directly 

from the geographically oriented three dimensional point cloud generated from a lidar 

sensor (Arroyo, Pascual and Manzanera 2008; Avitabile et al. 2012; Lefsky et al. 1999; 

Maune 2007; Popescu et al. 2011; Popescu and Zhao 2008; Riano et al. 2003).  A single 

laser pulse from the airborne sensor can make a direct hit on a tree top and produce one 

return, or can be more complex and hit several branches and even the ground before 

returning, producing multiple returns (Shan and Toth 2008).   

Modern lidar sensors are capable of recording multiple discrete returns, anywhere 

from the neighborhood of two or three all the way up to fifteen or more (Maune 2007; 

Shan and Toth 2008).  Full-waveform lidar digitizes the entire return signal and therefore 

allows for many multiple returns with short separation, providing a more complete view 

of the object sensed.  While this is highly useful for vegetation studies, it creates an 

immense amount of data.  Intensive processing and large data storage make this type of 

lidar not only more expensive, but often too cumbersome for projects beyond a very large 

scale.   
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The number of discrete returns detected from a single laser pulse depends on the 

complexity of the vegetation (or other object), the capabilities of the lidar sensor, flying 

altitude and the sensor settings (Shan and Toth 2008).  Flying lower to the ground with 

lower scan angles and a high pulse rate over vegetation with a dense understory will 

produce a higher number of returns (Shan and Toth 2008).  Because of this ability, lidar 

is also capable of producing canopy surface information and vegetation parameters such 

as stem density and crown dimensions (Mutlu et al. 2008). 

According to Flaxman (2001, 82), traditional passive optical remote sensing gives 

no access to vegetation understory: “These surface fuel loads are the most important 

single factor in predicting fire spread and intensity, yet they are not easily correlated with 

the above-canopy view from aircraft and satellites.”  A more complete and accurate 

approach to calculating vegetation and structure fuels is to use a dense, high-resolution 

three-dimensional lidar point cloud (Arroyo, Pascual and Manzanera 2008; Avitabile et 

al. 2012; Popsecu et al. 2011; Popescu and Zhao 2008) in lieu of two-dimensional coarse 

pixel extractions based on image classification (Flaxman 2001). 

Lidar is also successfully utilized to quantify leaf area index and biomass (Lefsky 

et al. 2005).  One study by Jensen et al. (2011) compared a 1-kilometer LAI raster 

provided from MODIS against a 30-meter LAI grid derived from lidar during the same 

timeframe for an evergreen forest in northern Idaho.  They analyzed differences in certain 

variables such as sun/sensor geometry and sub-pixel heterogeneity (for vegetation and 

terrain) to determine the suitability of lidar as a replacement for passive remote sensing 

techniques which do not provide adequate estimates for areas of high LAI.  Jensen et al. 

(2011, 3637) concluded that “lidar data provide better estimates over the entire range of 
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field-measured LAI values since the data respond more directly to the structural 

characteristics of forest canopies and aren’t subject to the same saturation issues 

commonly observed with passive optical sensors”.   

A different study by Jensen et al. (2008) compares three methodologies for LAI 

estimates: lidar only, spectral vegetation indices (SVIs) derived from passive optical 

remote sensing using 10-meter SPOT5 imagery, and lidar data supplemented with the 

SPOT5 SVIs. The authors found that lidar accounted for significant variation in LAI 

relative to the SPOT5 SVIs, even for two ecologically diverse study areas.  The passive 

optical remote sensing method offered little improvement when combined with the lidar-

derived LAI.  These results compare to the previous study (Jensen et al. 2011) in that LAI 

values calculated from lidar were still found to be superior to LAI from passive optical 

remote sensing, even considering a difference in spatial resolution of the two sensors. 

Large-footprint, full waveform satellite lidar data that is sensitive to vegetation 

structure can be obtained from the Geoscience Laser Altimeter System (GLAS) located 

on the Ice Cloud and Land Elevation Satellite (ICESat) (Avitabile et al. 2012; Popescu et 

al. 2011; Riano et al. 2003).  Avitabile et al. (2012) and Popescu et al. (2007) found that 

under favorable topographic conditions GLAS data could produce accurate terrain 

elevation as well as estimate height metrics over large areas. The researchers were also in 

concordance that GLAS data pairs well with airborne lidar data captured for the same 

area.  The GLAS metric Height of Median Energy (HOME) is highly correlated with 

above ground biomass and the large-area footprint supports the use of this satellite-

derived lidar data for biomass estimation at global and country-scale study. 
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As Mutlu et al. (2008, 275) states, “There is a limited number of studies in the 

literature that used airborne scanning laser (lidar) systems to estimate forest fuel 

parameters”, and more recently Garcia et al. (2011, 1370) reiterates, “although lidar has 

been proved suitable to estimate fuel properties, fewer studies have tested the usefulness 

of these data to map fuel types”.  However, a few do exist.  Riano et al. (2003) generated 

automatic extraction methods to calculate spatial forest fuel parameters from airborne 

lidar including tree height, crown base height, tree cover, surface canopy height, 

understory cover, crown bulk density, crown volume and foliage biomass.  The authors 

concluded that lidar “should help accomplish a precise characterization of fuels” (Riano 

et al. 2003, 185) and argue that fusion of lidar with optical remote sensing is an optimal 

solution for identification of tree species and surface canopy types.  Following the 2003 

study, Riano et al. (2004) successfully used lidar to estimate crown bulk density (foliage 

biomass divided by crown volume) for Pinus sylvestris in Spain. 

Andersen, McGaughey and Reutebuch (2005) calculated forest canopy fuel 

parameters (canopy bulk density, canopy height, canopy fuel weight and canopy base 

height) using lidar data at a point density of 3.5 points per square meter.  These fuel 

parameters were then measured in the field and added to residual plots for a multiple 

regression analysis. Each fuel parameter exhibited a strong relationship between 

predicted lidar metrics and field-based estimates, leading the authors to conclude that 

lidar data provides a very reliable model of forest canopy fuel parameters. 

One of the earlier studies was conducted by the Norwegian scientist Naesset 

(1997), who measured the mean tree height of forest stands using airborne laser scanning 

data (lidar).  Naesset found that the mean heights estimated from the lidar seriously 
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underestimated the ground truth mean height of the forest by 4.1 – 5.5 meters, however 

concluded that this method still obtained forest stand heights with an accuracy greater 

than or equal to current aerial interpretation methods.   

In addition to Naesset (1997), other studies (Riano et al. 2003; Zhao, Popescu and 

Nelson 2009) suggest that stand heights are underestimated due to a large probability of 

missing treetops, even with a high sampling density.  It would be folly to attempt a 

universal correction factor, since such an algorithm would be dependent on highly 

variable project parameters such as flight altitude, forest type, sensor system and 

coverage.  As such, a higher pulse density still provides the best odds of sampling 

treetops (Shan and Toth 2008) thus increasing accuracy of vegetation height and biomass 

calculation. 

Due to its large file size as well as project-specific standards for positional and 

classification accuracy, airborne lidar can be expensive to acquire and process (Popescu 

et al. 2011; Jensen et al. 2006).  The cost has dropped over the past few years (Maune 

2007) resulting in the technology becoming more accessible, but due to lidar’s higher 

price tag relative to satellite or aerial imagery, geographic coverage of airborne lidar 

across the U.S. is relatively sparse.  Most medium-sized acquisitions (spanning a handful 

of counties to an entire state) are for the purpose of floodplain mapping or hydraulic 

studies and in many instances only the bare earth ground points are extracted.  When only 

ground points are classified, point returns representing vegetation are grouped with all 

other unidentified point returns, which means additional processing is necessary for fuels 

estimation.  In addition to cost as a factor, multiple lidar collections of the same area are 

somewhat rare since the bare earth surface derived for many projects can remain static for 
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several years.  Despite the current deficit, the U.S. Geological Survey (USGS) is 

coordinating with all levels of government to expand the national database of lidar 

coverage in an effort to increase the quality of GIScience and engineering nationwide 

(Claire DeVaughan, USGS State Liaison for Texas, March 16, 2011, email message to 

author).   

2.4 Fuel Classification Models 

In wildfire modeling, biomass metrics are often combined with fuel 

classifications, or vegetation types, to marry the physical and structural measurements 

with qualitative properties relevant to fire behavior and flammability (Arroyo, Pascual 

and Manzanera 2008; Chen et al. 2012; Garcia et al. 2011; Riano et al. 2003).  Fuel 

classification is convenient for categorizing vegetation into groups and subgroups of 

common characteristics which are based on similar potential fire behavior (Mutlu et al. 

2008).  The NFDRS created their own set of twenty classifications while FARSITE, 

FlamMap and BehavePlus employ the thirteen Northern Forest Fire Laboratory (NFFL) 

fuel models (Arroyo, Pascual and Manzanera 2008; Mutlu et al. 2008; Riano et al. 2003).  

The NFFL fuel classes vary in terms of amount, size and arrangement (Mutlu et al. 

2008); some examples include Grasses (including sawgrass and pine-grass savannah) and 

Forest (including Western pines and Hardwoods)(Arroyo, Pascual and Manzanera 2008).    

FARSITE, FlamMap and BehavePlus also allow for inclusion of custom categories which 

could be derived by classifying remotely sensed satellite imagery or by taking in situ 

records.  According to the U.S. Forest Service (2011b), fuel models are used within 

wildfire models to “compute shading, wind reduction factors, spotting distances, crown 
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fuel volume, spread characteristics of crown fires and to incorporate the effects of ladder 

fuels for transitions from a surface (fire) to a crown fire.” 

Modeling fuels based on classification renders the modeling process simple and 

cost effective (for pre-determined classes), but assumes spatial homogeneity which does 

not often accurately reflect real-world conditions at a large scale (Arroyo, Pascual and 

Manzanera 2008).  Similarity between alternate sets of classifications can make selection 

for a particular application confusing.  Also, vegetation classes can be broad in scope to 

accommodate more regions, but at the expense of excluding diversity.  The alternative 

situation finds classifications that meet the needs of one study but are not applicable 

anywhere else (Arroyo, Pascual and Manzanera 2008).   

Scott and Burgan (2005) created a new fuel model designed specifically for 

wildfire modeling that classifies vegetation based on fire-carrying fuel type instead of 

vegetation type.  Within the seven fuel types (for example Grass, Timber Litter, Timber-

Understory), fuel models are given a number which reflects an increasing heat per unit 

area based on live fuel moisture content.  Scott and Burgan (2005) designed the new 

system such that a user familiar with the NFFL set of thirteen classes can easily port their 

existing model into the new configuration. Like the NFFL fuel classes, this fuel model set 

was created for wildfire modeling programs that use Rothermel’s (1972) surface fire 

spread model, such as FARSITE, FlamMap and BehavePlus.  Also similar to the NFFL 

model, spatial homogeneity and continuity are assumed.  Due to differences in the way 

fuel types are calculated to respond to fire, Scott and Burgan’s fuel model is not 

appropriate for the NFDRS, even though the NFDRS also uses Rothermel’s fundamental 

principles. According to Scott and Burgan (2005, 2), the purpose of their fuel model was 
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to provide an alternative to the NFFL classes that performs better in situations of 

“prescribed fire, wildland fire use, simulating the effects of fuel treatments on potential 

fire behavior and simulating transition to crown fire using crown fire initiation models.”  

Scott and Burgan’s system is unique in that fuel models are considered dynamic, meaning 

that live herbaceous fuel types can shift between live and dead, depending on a specified 

live herbaceous moisture content. 

2.5 Role of Vegetation Moisture Content 

 

2.5.1 Vegetation Moisture Content in Wildfire Models 

Verbesselt et al. (2007, 357) states, “The moisture content of fuels is one of the 

most important variables in fire ignition and behavior modeling and is included in most 

fire risk models worldwide.” Indeed, Rothermel (1972) acknowledges the major 

influence of fuel moisture on fire behavior: the drier the fuel, the hotter it will burn, while 

wetter fuels are less likely to burn. Dead wood with little moisture will retain about 10% 

water content while photosynthetically productive green vegetation can contain close to 

300%.  A saturation point or “moisture of extinction” hovers around 20-30% at which 

point vegetation will not burn (Flaxman 2001, 78).  Dead fuel moisture is entirely 

contingent upon surrounding conditions whereas live vegetation is influenced by roots 

and shoots as well as soil moisture (Verbesselt et al. 2007).  These environmental effects 

are accounted for within wildfire models by separate weather tables that include 

information such as air temperature, relative humidity, solar radiation (cloud cover), 

rainfall amount and duration, as well as by topographic factors like elevation, slope, 

aspect and canopy cover (Missoula Fire Sciences Laboratory 2011).  
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The NFDRS, FARSITE and FlamMap incorporate vegetation moisture content as 

percent moisture absorbed by dead forest litter from rain and humidity as compared to 

their dry weight (Flaxman 2001).  FARSITE and FlamMap both use Nelson’s (2000) 

model to determine dead fuel moisture, which calculates the amount of water absorbed or 

transpired from the surface of woody aboveground debris (assuming round wooden 

sticks)(Missoula Fire Sciences Laboratory 2011).  Fuel moisture changes at a pace 

relative to fuel particle size; small twigs can absorb or transpire moisture within hours 

while large felled tree trunks can take hundreds or thousands of hours to reach 

equilibrium with the surrounding conditions.   

For this reason, these models categorize the moisture state of fuel particles into 

fine fuels and 1, 10, 100 and 1000-hour fuels, which is the amount of time necessary to 

absorb or transpire 63.2% of its moisture content (Flaxman 2001; Missoula Fire Sciences 

Laboratory 2011).  These fuel classifications correspond to round sticks ranging in sizes 

of 0-0.25 inches, 0.25-1 inch, 1-3 inches, and 3-8 inches respectively (Missoula Fire 

Sciences Laboratory 2011).  Live vegetation with fuel moistures which have dropped 

below 30% are then categorized as dead fuels (Verbesselt et al. 2007), but it is important 

to remember that these live “dead” fuels will not exhibit the same behavior under 

modeled weather conditions as truly dead vegetation.   

One drawback to these models is that moisture content of live vegetation, while 

accounted for, is assumed to remain spatially consistent (Verbesselt et al. 2007).  

Beginning a model run, downed woody debris also has homogeneous moisture content.  

Then after a “conditioning” period, weather patterns from the weather input files begin to 

influence the amount of water held by the dead woody matter until there is a more 
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realistic distribution of moisture content, if only for the dead vegetation.  However, the 

programs ignore the spatio-temporal variability of moisture content across the live 

vegetation.  Moisture content is not directly related to fire ignition, however it “is critical 

in fire propagation modeling because the amount of water in live vegetation is directly 

related to the rate of fire spread” (Verbesselt et al. 2007, 358).  A recurrent climate 

scenario such as a drought can dramatically reduce the moisture content of the live 

vegetation as well as the dead woody debris (Gao, Gao and Chang 2011) through 

excessive evapotranspiration.  However, crops and trees which may be irrigated or 

adjacent to streams will have much higher foliar moisture content and will be less likely 

to burn.  The result is a dynamic range of moisture content across a wide variety of 

vegetation types.   

Although the wildfire models themselves do not address live vegetation moisture, 

it is possible to include this information in the fuel model, such as in the Scott and 

Burgan (2005) fuel model.  Vegetation moisture content is accounted for by assigning a 

level of curing in terms of percent to the fuel model based on the percentage of live 

herbaceous moisture content present.  But before these values can be assigned, they must 

first be measured. 

2.5.2 Remote Sensing of Vegetation Moisture Content 

Vegetation moisture content, also known as vegetation water content (VWC) is 

the total amount of water in stems and leaves, measured in kilograms per square meter 

(Yilmaz et al. 2008).  A fractional component of VWC that represents leaves and 

canopies only is equivalent water thickness (EWT), which measures foliar water volume 

(cubic meters) per leaf area (square meters) (Yilmaz et al. 2008).  EWT can be remotely 
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sensed due to high reflectivity in the near-infrared (NIR) and shortwave infrared (SWIR) 

portions of the electromagnetic spectrum (Ceccato, Flasse and Gregoire 2002; Cheng et 

al. 2006; Clevers, Kooistra and Schaepman 2010; Danson and Bowyer 2004; Davidson, 

Wang and Wilmshurst 2006; Gao 1996; Yilmaz et al. 2008).  The Normalized Difference 

Infrared Index (NDII) approximates levels of EWT by taking advantage of the inverse 

relationship between SWIR and water content, and contrasting it with NIR (Ceccato, 

Flasse and Gregoire 2001; Yilmaz et al. 2008):     

     
           

           
  

Where: 

       = reflectance at 0.85  m 

       = reflectance at 1.65  m 

These estimates have been validated against in situ canopy water content 

measurement and were found to be reliable (Cheng et al. 2006; Rhee, Im and Carbone 

2010).  The VWC can then be derived from an allometric relationship with EWT (Sims 

and Gamon 2003), which has a linear relationship to NDII (Yilmaz et al. 2008).  NDII 

was originally proposed by Hunt, Rock and Nobel (1987), and then redefined as the 

Normalized Difference Water Index (NDWI) by Gao (1996) who appreciated its 

similarity to the popular and simple Normalized Difference Vegetation Index (NDVI) 

(Rouse et al. 1974).   

One challenge to estimating EWT using NDII is the need to calculate leaf area 

index (LAI) in the field (Verbesselt et al. 2007).  Instead, foliar moisture content (FMC, 

also known as ‘fuel moisture content’ in terms of wildfire modeling), which also has a 

linear relationship to NDII, can be used to calculate water mass per mass of dry matter 
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(Danson and Bowyer 2004; Verbesselt et al. 2007).  FMC as a variable is far more 

important for estimating fire risk than EWT or VWC because it affects fire ignition and 

propagation (Danson and Bowyer 2004; Verbesselt et al. 2007).  Historically, FMC 

measurements were collected in the field or based on meteorological fire risk indices, but 

now can be estimated from satellite imagery which has been atmospherically, 

geometrically and radiometrically corrected (Danson and Bowyer 2004; Verbesselt et al. 

2007).  Verbesselt et al. (2006; 2007) utilized the French SPOT VEGETATION sensor to 

calculate NDII, and Davidson, Wang and Wilmshurst utilized the Landsat TM sensor.  

Both used the 1.58 – 1.75 μm SWIR band (along with Landsat ETM+).  Gao (1996) and 

Zarco-Tejada, Rueda and Ustin (2003) used the 1.24 μm SWIR band found on MODIS 

while Cheng et al. (2006) conducted studies using both MODIS and AVIRIS.  Landsat 

TM sensors produce imagery of a higher spatial resolution (30-meter) than MODIS 

(250/500/1000-meter) but the infrequent 16-day temporal coverage can be a limiting 

factor for some.  Comparatively, MODIS is carried on two satellites, Aqua and Terra, 

allowing for twice-daily coverage for most locales. 

2.5.3 Vegetation Moisture Content in Drought Conditions 

 

Drought is a normally occurring, complex climatological event (Gao, Gao and 

Chang 2011) that causes characteristic change in vegetation from unusually low 

precipitation and sometimes excessive heat (McVicar and Jupp 1998).  It is recognized as 

an environmental disaster since drought leads to reduced water supply, deteriorated water 

quality, crop failure, altered riparian ecosystems, reduced rangeland, diminished power 

generation, and other detrimental social and economic repercussions (Mishra and Singh 

2010).  Droughts have the ability to affect more people than any other natural hazard, but 
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onset and conclusion occur gradually (Mishra and Singh 2010).  In high biomass 

environments drought can increase wildland fire potential by creating highly combustible 

fuels.  Lack of rainfall reduces the moisture content of both live and dead fuels, “thereby 

contributing to an increase in the overall availability and spatial connectivity of fuel that 

is sufficiently dry to burn” (Caccamo et al. 2011, 2626).  Drought has historically been 

correlated with large fires in global forested/woodland regions, particularly in areas such 

as Africa (Mishra and Singh 2011) and Australia (Caccamo et al. 2011; McVicar and 

Jupp 1998).  “Mapping the dynamic patterns of drought in high biomass ecosystems at 

medium spatial resolution (i.e. 500 m) provide the basis for: (i) monitoring the state, 

extent and connectivity of flammable fuels; and (ii) prediction of the potential for 

propagation of fires” (Caccamo et al. 2011, 2626). 

The NFDRS’s Wildland Fire Assessment System relies on meteorological indices 

from weather data to address wildfire risk relative to drought conditions (U.S. Forest 

Service 2011).  However, weather station networks are often sparse, particularly in the 

densely forested areas commonly under wildfire threat, and continuity is sometimes 

lacking.  Remote sensing is a key method for providing near real-time monitoring of 

drought-related changes to vegetation with continuous coverage worldwide.  The 

Advanced Very High Resolution Radiometer (AVHRR) sensor is the most frequently 

used for drought monitoring (Caccamo et al. 2011; McVicar and Jupp 1998) but 

Caccamo et al. (2011) argues that MODIS is superior due to a finer radiometric 

resolution in the SWIR bands.  
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CHAPTER III 

METHODOLOGY 

 

This study explores two key methodological aspects of wildfire behavior 

modeling in the wildland urban interface.  The first section of the methodology chapter 

describes two distinct areas of study.  The second section identifies all existing data 

sources as well as the measures taken to prepare the remaining required data.  The third 

section defines the required steps and parameters to generate wildfire behavior maps 

produced from both satellite imagery-derived inputs and lidar-derived inputs.  

Additionally, steps are given for the spatial analysis of the resulting model raster outputs 

from both methods.   

The third section also outlines how the same wildfire model was used again but 

this time under drought conditions, so vegetation moisture content is considered as an 

input.  Wildfire behavior maps generated to address the first research question (created 

with the default setting of homogeneous vegetation fuel moisture) were compared against 

maps of the same area showing variable vegetation fuel moisture as measured from 

satellite imagery.  Finally, the process is described for comparing pre-fire vegetation 

moisture patterns relative to burned and unburned areas within the burn scar perimeter of 

a particular wildfire to see if moisture content was significantly higher in the unburned 

areas.
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3.1 Area of Study 

 

In 2011, the Texas State Climatologist, John Nielsen-Gammon, declared the worst 

one-year drought on record for Texas with over 85% of the state listed in the Exceptional 

Drought category of the U.S. Drought Monitor (National Drought Mitigation Center 

2011), as of the end of September 2011 (Figure 1). 

 

The state also experienced the hottest summer on record with an average 

temperature of 86.8°F (NOAA 2011). Dry vegetation coupled with exceptionally hot and 

windy weather patterns created an environment in Texas ripe for wildfire.  During an 

Figure 1. Texas Drought Map (The National Drought Mitigation Center 2011). 
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eleven month period from November 2010 to September 2011, the Texas Forest Service 

responded to 23,519 fires (Figure 2) that burned 3.8 million acres and destroyed 2,742 

homes, although 34,756 homes were fortunately saved (Texas Forest Service 2011). 

Increasing population in Texas (Texas State Data Center 2011) has spurred development 

within the wildland urban interface, thus increasing risk of ignition and putting life and 

property in the direct path of wildfires. According to the Texas Forest Service (2011), in 

the two years preceding their report, 85% of the wildfires in Texas occurred within two 

miles of a community. 

 

Figure 2. 2011 Wildfire Perimeters in Texas.  Fire perimeter data obtained from the Texas Natural 

Resources Information System (2011).  



32 

 

 
 

3
2

 

Kerr County, Texas is an ideal area of study (Figure 3) to compare wildfire 

behavior maps from different source data due to a combination of factors: it exhibits the 

interface and intermix WUI pattern of development mixed with large, uninterrupted tracts 

of brush and forest; it is located in the Texas hill country where steeper topography can 

encourage fire spread (Lein and Stump 2009); the many parks and recreation facilities 

create opportunity for human sources of ignition; and finally, the area of study is covered 

by a 2011 lidar acquisition.  

 

Figure 3. Study Area in Kerr County. Nine green tiles represent blocks of lidar data; each tile is 

approximately one square mile. 
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The study boundary was designed based on the tiling scheme of the source lidar, 

where each tile represents 1/16
th

 of a USGS 7.5 minute map quadrangle.  The study area 

does not extend to the whole county but includes 9 tiles adjacent to the City of Kerrville, 

covering the surrounding WUI (Figure 4) as defined by the University of Wisconsin 

SILVIS Lab (Radeloff et al. 2005).  The Kerr study area spans approximately 30 square 

miles of Texas Hill country and includes the small towns of Hunt and Ingram settled 

along the Guadalupe River (Figure 5).  Johnson Creek cuts across the northern bounds of 

the study area to join the Guadalupe River on the eastern side and evergreen-covered hills 

fill the space in between.  More vegetated hilltops can be found in the study area south of 

the river, though tracts of forest here are fragmented by grassland and deciduous patches. 

Figure 4. Land Cover and Wildland Urban Interface in Kerr Study Area. Land cover data from USGS 

National Land Cover Database (U.S. Geological Survey 2012) and WUI from the University of 

Wisconsin SILVIS Lab (Radeloff et al. 2005). 
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Figure 5. Kerr Study Area Landsat 5 TM. Enhanced image shown in color infrared (band combination 

4,3,2).  Image obtained from U.S. Geological Survey (2011). 
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This portion of central Texas lies on the elevated boundary of the Balcones 

Escarpment and according to the USGS National Land Cover Database (NLCD) is 

vegetated by an evergreen/deciduous forest mix (primarily evergreen) and shrubland (Fry 

et al. 2011).  The evergreen mix is composed primarily of hardy Texas live oak (Quercus 

fusiformis) (Natural Resources Conservation Service 2012) and the scrubby Ashe juniper 

(Juniperus ashei), also known as Mountain Cedar (U.S. Forest Service 2012). 

The second research question requires a WUI area in Texas that experienced a 

significant wildfire during the 2011 drought to compare pre-fire vegetation moisture 

patterns with post-fire burned areas.  For the purposes of this study, a significant fire is 

defined as creating a burn scar area extending to at least 10,000 acres (4047 hectares), 

which is a sufficiently large extent to compare burned and remnant areas with 30-meter 

resolution Landsat imagery.  Ideally this study site would be the same as that used for 

both research questions, however the wildfires in Kerr County (and those in surrounding 

areas with lidar coverage) were either not large enough to meet the project requirement, 

or were not in close proximity to a WUI.   
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Instead, a site near Possum Kingdom Lake (Figure 6) with similar land cover 

(Figure 7) to the Kerr AOI was selected for its large burn scar encompassing an interface 

WUI (Figure 8). 

 

 

Four fires began near the lake on April 13, 2011 and rapidly merged into one massive fire 

due to high winds and dry vegetation (Texas Forest Service 2011).  The large fire was 

officially named the PK Complex Fire by the U.S. Forest Service and proceeded to 

destroy dozens of homes and force the evacuation of many more.  The fire was 100% 

Figure 6. Possum Kingdom Wildfire Perimeter. Fire perimeter data obtained from the Texas Natural 

Resources Information System (2011). 
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contained by April 29, 2011, after burning through almost 150,000 acres (Figure 9) 

(Texas Forest Service 2011). 

 

Figure 7. Land Cover in Texas. Data from USGS National Land Cover Database (U.S. Geological 

Survey 2012). 
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Figure 8. Possum Kingdom Complex Wildfire Burn Perimeter. Land cover data from USGS National 

Land Cover Database (U.S. Geological Survey 2012) and WUI from the University of Wisconsin SILVIS 

Lab (Radeloff et al. 2005).  Fire perimeter data obtained from the Texas Natural Resources Information 

System (2011). 
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 Figure 9. Landsat 5 TM Scene of Possum Kingdom Complex Burn Perimeter. Image captured May 2011 

and acquired from U.S. Geological Survey (2011).  Enhanced image shown in 7, 4, 2 band combination in 

which burned areas appear red and vegetation green.  White outline with no fill delineates the burn scar 

and was obtained from the Texas Natural Resources Information System (2011). 
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3.2 Data Collection 

All maps and data for this project were projected into Universal Transverse 

Mercator (UTM) Zone 14N using the horizontal North American Datum of 1983 

(NAD83) with the vertical North American Vertical Datum of 1988 (NAVD88) 

referencing Geoid09.  The primary reason for choosing UTM was to utilize a common 

projection for both study areas in north and central Texas but that would also minimize 

distortion for each and maintain units in metric (meters).  Additionally, the lidar data 

were delivered in this projection. 

3.2.1 Existing Data Resources 

 

Much of the data used for this study were generated by external sources and were 

therefore already in existence.  The data listed below are all freely available in the public 

domain via download from their respective websites or data order through TNRIS (Texas 

Natural Resources Information System 2011).  The following datasets were necessary to 

gather for both study areas: WUI types and areas, land cover data, and Landsat TM 

satellite imagery.  Data for the Kerr County area only includes: lidar point cloud, lidar-

derived digital elevation model (DEM) and LANDFIRE raster data sets.  Burn scar 

delineation for the PK Complex Fire was needed for the Possum Kingdom study area 

only and was created by the Texas Forest Service and provided by TNRIS (Texas Natural 

Resources Information System 2011).   

The wildland urban interface areas in the U.S. are available online for download 

in an Esri (Esri 2012) polygon shapefile format from the University of Wisconsin 

SILVAS Lab (Radeloff et al. 2005).  WUI areas were delineated by the SILVIS Lab into 
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four areas:  High Density Intermix, Medium Density Intermix, High Density Interface 

and Medium Density Interface.  The 2006 U.S. Geological Survey (USGS) National 

Land Cover Dataset (NLCD) covering the conterminous U.S. is available online for 

download from the Multi-Resolution Land Characteristics Consortium (Fry et al. 2011). 

There are 16 land cover classes which were generated from an unsupervised classification 

of Landsat Enhanced Thematic Mapper + (ETM+) satellite imagery from 2006 (Fry et al. 

2011).  The data are in a raster format at a 30-meter spatial resolution.  Both the WUI 

areas and the NLCD were used to help define appropriate areas of study for this research. 

Landsat 5 Thematic Mapper (TM) satellite imagery is available for free download 

via the USGS Global Visualization Viewer (GLOVIS) website from the Earth Resources 

Observation and Science Center (U.S. Geological Survey 2012).  Landsat 5 TM scenes 

may be obtained as a Level 1T (terrain corrected) product including disaggregated TIF 

images for each of the seven bands recorded by the TM sensor.  These Level 1T products 

were needed for the Possum Kingdom study area of the last cloud-free scene before the 

April 2011 PK Complex fire (hereafter called Before Fire), and the first cloud-free scene 

after the fire (hereafter called After Fire) was extinguished.  The Before Fire image was 

captured two days before the fire on 11 April 2011 and the After Fire image was captured 

on 13 May 2011, approximately two weeks after the fire was contained.  No rain was 

recorded for the area during this time period. 

Another cloud-free set of Landsat 5 TM Level 1T products was required to cover 

the Kerr County study area for a late summer or early fall date coincident with the 2011 

Texas drought.  The image chosen to meet these requirements was captured on 17 August 
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2011 and was also obtained from the USGS GLOVIS website (U.S. Geological Survey 

2012). 

Small footprint high resolution discrete return airborne lidar in LAS 1.2 format 

was obtained from the Texas Natural Resources Information System (TNRIS), where the 

author is employed as the lidar project manager.  The data were collected and post-

processed by the engineering and geospatial firm Merrick & Company and third-party 

quality assurance and quality control (QA/QC) was conducted by URS Corporation to 

ensure the data met project specifications.  The lidar was acquired between January and 

March 2011 during the leaf-off season and covers portions of Blanco, Caldwell, DeWitt, 

Gonzales, Kendall and Kerr Counties in central Texas, although only the data in the study 

area shown in Figure 2 will be studied.  Merrick & Company deployed a Leica ALS-50II 

lidar sensor on a fixed wing aircraft and achieved an average point density of 

approximately six points per square meter, which equates to a ground sampling distance 

(GSD) of 0.4 meters.   

Vertical accuracy was tested by URS Corporation according to standards from the 

National Standard for Spatial Data Accuracy and the RMSEz (vertical Root Mean Square 

Error) was reported at 0.06 meters.  The data were classified into the following American 

Society for Photogrammetry and Remote Sensing (ASPRS) class schema: Class 1 

Unclassified; Class 2 Ground; Class 4 Vegetation; Class 6 Buildings; Class 7 Low Point 

(noise); Class 9 Water; and Class 13 Bridges and Culverts (Figure 10) (American Society 

for Photogrammetry and Remote Sensing 2012).  Data units are in meters and reference 

orthometric height above sea level.   
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The 2011 lidar data are ideal for this application since the data are recent, were 

collected in leaf-off conditions allowing for greater canopy penetration and understory 

representation (Mutlu et al. 2008), are relatively dense for discrete-return lidar giving 

better estimation of canopy height (Shan and Toth 2008), include a vegetation class 

(ASPRS Class 4) for deriving vegetation metrics, and include a high resolution DEM for 

use in measuring topography. 

The DEM for the first research question is an ancillary data product derived from 

the lidar and was included in the quality assurance and quality control (QA/QC) process.  

It was generated by Merrick & Company from a triangular irregular network (TIN) of the 

bare-earth lidar and then hydrologically-enforced for accurate hydraulic modeling.  The 

DEM raster has a 1-meter pixel resolution with 32-bit floating point elevation values and 

is in ERDAS Imagine IMG format.   

Figure 10. Lidar Sample in Kerr County. Point classifications shown with Ground in brown, 

Vegetation in green and Buildings in red.  Data obtained from the Texas Natural Resources 

Information System (2011). 
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To generate a Landscape .LCP File, FlamMap requires a fuel model, 

canopy/crown base height (CBH), canopy/stand height (CH), canopy/crown bulk density 

(CBD), canopy/crown cover (CC), elevation, slope and aspect (Table 1).   

Table 1. Eight Data Layers for FlamMap Listed by Source. 

 

The LANDFIRE raster data sets were obtained from the U.S. Department of 

Agriculture (2011b) and they were developed using satellite imagery from the Landsat 5 

TM sensor.  These LANDFIRE input rasters include: fuel model (NFFL fuel model 

inventory), forest canopy cover (CC), forest canopy height (CH), forest canopy bulk 

density (CBD), forest canopy base height (CBH), slope, elevation (DEM) and aspect.  

Temporal resolution falls along a spectrum between 2001 and 2011 and is dependent 

upon the selected area and data type.  Like Landsat scenes, these data are delivered at a 

30-meter spatial resolution.   

LANDFIRE canopy cover was calculated from the Existing Vegetation Cover 

(EVC) dataset with the LANDFIRE Total Fuel Change toolbar created for ArcMap.  

Forested vegetation derived from EVC values was translated into canopy cover values 

using increments of 10 percent from 15-95 (U.S. Department of Agriculture 2011b).  

Canopy height was also calculated with the LANDFIRE Total Fuel Change toolbar. 
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The U.S. Department of Agriculture (2011b) estimated CBD values from 45,000 

field plots spread throughout the U.S.  They were able to model the surrounding CBD 

using the plot-level values within canopy fuel estimation software.  Non-vegetated areas 

were coded as zero and certain hardwood stands resistant to crown fire were given 

extremely low values.  Finally, canopy base height was computed using datasets for 

Existing Vegetation Height, Existing Vegetation Type, and Existing Vegetation Cover to 

determine the most logical CBH value for a given area.   

Additional detail for all LANDFIRE data creation methods can be found in U.S. 

Department of Agriculture (2011b) LANDFIRE metadata.  It should be noted that 

LANDFIRE layers will not include canopy characteristics in fuel types where the tree 

canopy is considered a part of the surface fuel and the surface fire behavior fuel model is 

chosen to reflect these conditions. This is because LANDFIRE assumes that the potential 

burnable biomass in the shorter tree canopies has been accounted for in the surface fuel 

model parameters. For example, “maps of areas dominated by young or short conifer 

stands where the trees are represented by a shrub type fuel model will not include canopy 

characteristics” (U.S. Department of Agriculture 2011b). 

3.2.2 Data Preparation for FlamMap 

Whereas the data listed in section 3.2.1 were already in existence and obtained 

from external sources, other datasets had to be generated from the raw data using various 

techniques and software packages.  The vegetation metrics outlined in this section were 

all generated from the lidar data (LAS format) or data products (DEM raster) and then 

converted to rasters (ASC format) to run in FlamMap. Since the point density of the lidar 

was able to support a 1-meter DEM, it would have been possible to generate the 
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vegetation rasters at the same resolution.  However, a 5-meter resolution was chosen 

instead to provide a cell size large enough to aggregate the information of one tree.  It is 

possible that a smaller 1-meter window would produce a noisy output with many 

intermittent null or erroneous values between cells with actual measured values. 

The 1-meter DEM was re-sampled to 5-meters in ERDAS Imagine using the 

nearest neighbor technique to match the 5-meter spatial resolution of the other lidar-based 

model inputs.  Nearest neighbor was chosen to preserve the actual elevation values 

derived from the lidar as opposed to the smoothing effect of a higher order interpolation 

method. 

The U.S. Department of Agriculture (2011a) developed publicly available 

software called Canopy Fuel Estimator (CFE) to calculate vegetation canopy 

characteristics from a three dimensional lidar point cloud.  The tool separates the ground 

points from all other points to generate a surface model (Figure 11) and then computes 

metrics on the lidar point cloud.  These vegetation metrics are based on the methodology 

proposed by Naesset (1997) and they include point count, point density (D), point density 

above 2.0 meters, minimum height, maximum height, mean height, standard deviation of 

height, coefficient of variation (hcv) and finally, height at the 5
th

, 10
th

, 25
th

, 50
th

, 75
th

, 90
th

, 

and 95
th

 percentile of maximum height (h5, h10, h25, h50, h75, h90, and h95).   

These metrics can then be plugged into a set of predetermined model equations in 

the CFE software which references the Andersen, McGaughey and Reutebuch (2005) 

predictive models for calculating canopy bulk density and canopy base height. The 

models were intended for forests in western and eastern Washington which are 
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characteristically very different than the live oak and ashe juniper land cover in central 

Texas.  However, due to a dearth of options for deriving these metrics from lidar, this 

study relies upon the same models for an alternate land cover. 

The Andersen, McGaughey and Reutebuch (2005) model for canopy bulk density is:  

ln(canopy bulk density) = -4.3 + (3.2)hcv + (0.02)h10 + (0.13)h25 + (-0.12)h90 + (2.4)D 

Where: 

 hcv  = coefficient of variation 

 h10 = height at the 10
th

 percentile 

h25 = height at the 25
th

 percentile 

h90 = height at the 90
th

 percentile 

D = point density 

 

 

Figure 11. Canopy Fuel Estimator Surface Model (U.S. Department of Agriculture 

2011a). 
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and the model for canopy base height is: 

canopy base height = 3.2 + (19.3)hcv + (0.7)h25 + (2.0)h50 + (-1.8)h75 + (-8.8)D 

Where: 

 hcv  = coefficient of variation 

h25 = height at the 25
th

 percentile 

h50 = height at the 50
th

 percentile 

h75 = height at the 75
th

 percentile 

D = point density 

 The authors collected field measurements to test the predictive lidar models and 

found that the CBD model had a coefficient of determination of 0.84 and the CBH model 

had a coefficient of determination of 0.77. 

The spatial resolution of the outputs is user-defined and can be set in the CFE tool 

before running the models (Figure 12).  When a model is run, the output is a comma 

delineated text file in .csv format which includes the metric calculated, row number, 

column number, X-coordinate and Y-coordinate in UTM meters (set by user). 
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Although the CFE tool is capable of calculating CBH, CH, CBD and canopy fuel 

weight, FlamMap does not require canopy fuel weight and so it was not calculated for 

this project.  The NFFL fuel model used for Flam Map (Table 2) is only available at a 30-

meter resolution and so the NFFL file downloaded with the LANDFIRE data (Figure 13) 

was also used for the lidar portion but resampled to 5-meter using ERDAS Imagine.  

Additionally, CH was not calculated from CFE, but was created via another means to be 

discussed below and canopy cover (CC) is not available from CFE and so was also 

created separately.  The remaining two input variables, CBH and CBD, were calculated 

from the lidar using the CFE tool for input into FlamMap. 

Figure 12. Canopy Fuel Estimator Configuration (U.S. Department of 

Agriculture 2011a). 
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The first step was to strip the lidar covering the Kerr study area of all classes 

except for Class 2 Ground and Class 4 Vegetation in an effort to eliminate potential 

sources of error during calculation of the vegetation metrics. The CFE does not 

distinguish between the ASPRS lidar classifications and would have treated such things 

as buildings, light poles and noise points as vegetation, leading to many erroneous raster 

cell values during processing.  This data manipulation process to reduce the classes was 

conducted using the Export tool in Merrick’s MARS lidar software.   

To prevent the CFE tool from maxing out computer RAM during calculations (it 

can access only one processing core at once), the lidar data was tiled and split into 108 

smaller files so as not to exceed a file size of approximately 500 megabytes (MB).  This 

is the approximate threshold before the CFE tool is overwhelmed and crashes. 

For the CFE parameters, the spatial reference information was set to UTM with 

units in meters and an output spatial resolution of five meters was selected to compromise 

between long processing time for a higher resolution and loss of detail for a lower 

resolution.  Each of these 108 LAS files were run through the CFE individually to create  

108 output .csv text files which include fields for both CBH and CBD values.  The 108 

text files were aggregated to 11 Microsoft Excel files (.xlsx) in Microsoft Access for ease 

of manipulation but also to avoid surpassing the total number of records per spreadsheet 

allowed in Microsoft Excel (~1 million).   
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Table 2. NFFL Fuel Model Data Dictionary (U.S. Department of Agriculture 2011b) 
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Figure 13. LANDFIRE NFFL Fuel Model. Pixel resolution is 30 meters. See Table 2 for data dictionary. 
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The 11 Excel files were then converted into points using the Add XY Data tool in 

ArcMap.  The points were projected but not defined, so after a UTM projection definition 

was applied to each file they were merged into one large point file covering the entire 

Kerr study area.  Since the CBD measurements exported from the CFE tool are actually 

the natural log of the CBD, expressed as ln(x), the values were converted using the 

formula: 

Canopy Bulk Density = e^
x 

The float values converted from the natural log format represent kilograms per cubic 

meter, which matches the unit designation for the LANDFIRE dataset. 

At this point, both the CBH and CBD values are still in the master point attribute 

table.  This master point file was then converted first into a CBH raster in ERDAS .img 

format using the ArcMap Point to Raster tool and then to a CBD raster in ERDAS .img 

format.  Each point represents the center of a raster cell and the raster resolution for each 

file was set at five meters. 

Due to the complications from reducing file size to use the CFE tool, 

canopy/stand height was generated via another means.  Canopy height can be calculated 

from the difference of the digital surface model (DSM) and the bare earth DEM (Zhao, 

Popescu and Nelson 2009).  This was accomplished using MARS to generate a 5-meter 

DSM from all last-return lidar points in Class 2 Ground or Class 4 Vegetation.  The 5-

meter bare-earth DEM was already available.  Using ArcMap’s Raster Calculator, the 

DEM was subtracted from the DSM to create a difference raster representing canopy 

height. 
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Since canopy cover is not computed by the CFE tool but is required in FlamMap, 

it was necessary to create a custom methodology.  Canopy cover derived from lidar is the 

ratio of vegetation points relative to all point returns expressed in percent (Lefsky et al. 

1999). To achieve this ratio as percent canopy cover in raster form, it is necessary to 

generate a raster showing a count of vegetation points and another raster showing a count 

of all points for a given cell size (in this case 5-meter).  ArcMap includes a tool to 

produce a raster from a point dataset with cell values showing point count, however 

ArcMap 10 does not recognize the LAS format.   

To work around this limitation, all of the lidar was first converted into multipoint 

before the point count rasters were generated in Erdas IMG format.  Although technically 

irrelevant as the final product is a ratio, each multipoint represented 100 lidar returns.  To 

achieve the percent canopy cover as a ratio, the final output must be in floating point.  

Since it includes floating point as an output parameter, the ERDAS Imagine function 

Two Input Operators was used to divide the Vegetation Points raster by the All Points 

raster.  The resulting product was canopy cover in IMG raster format. 

Next, Esri’s (2012) Spatial Analyst tool was used to calculate a 5-meter slope 

raster and a 5-meter aspect raster from the lidar-derived 1-meter DEM (Figure 14).  The 

very last hurdle to prepare the data for input into FlamMap was to align all  
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 Figure 14. Kerr Study Area 1-meter DEM.  Data obtained from Texas Natural Resources Information 

System (2011). 
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input rasters so that each pixel of each file was exactly coincident with the corresponding 

pixel in all other files.  The rasters must also have the exact same spatial extent including 

an identical number of rows and columns.  The elevation-based datasets – DEM, slope 

and aspect – already had a perfectly aligned extent because slope and aspect were both 

generated from the DEM file which had been clipped by the shapefile of the study area.  

However, the other files – NFFL fuel model, CBH, CBD, CH and CC – had pixels which 

were slightly shifted from the elevation files (Figure 15), usually only a few centimeters 

in any direction, and also may have had an extra row or two in either the X or Y 

direction. 

The ArcMap Environment setting to snap rasters to a selected file did not work as 

anticipated, so another method was employed.  The 5-meter slope file was chosen 

(randomly of the three elevation files) to generate a reference point file which would 

provide a means to spatially “correct” the other shifted rasters with the slope values being 

irrelevant.  Using ArcMap’s Raster to Point tool, a point was generated representing the 

centerpoint of each slope raster pixel.  This reference point file was then used in the 

ArcMap Extract Multi-Values to Point tool with each of the shifted rasters.  The result is 

five new fields in the reference point file that contains values for NFFL, CBH, CBD, CH 

and CC.  From the reference point shapefile, new rasters for each of these inputs were 

generated using ArcMap’s Point to Raster tool.  The very last step to prepare the files for 

modeling was to convert all files from the interoperable IMG format into ASCII, the 

native format of FlamMap.
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Figure 15. Rasters Aligned to Points. Left, Before alignment; right, After alignment. 
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3.3 Wildfire Modeling 

3.3.1 Model Setup for Research Question I 

To address the first research question, it is necessary to compare diverse wildfire 

modeling techniques in a wildland urban interface to determine differences in output 

from using lidar-derived input data compared to satellite imagery-derived data 

(LANDFIRE).  These techniques are respectively referred to as the lidar method and the 

LANDFIRE method (Figure 16).  To perform an accurate comparison of outputs derived 

from dissimilar inputs, the same software model was employed for both simulations.  

FARSITE and FlamMap are wildfire models which both produce data in a spatial raster 

output, compared to other modeling systems which export tables, graphs and charts 

(Missoula Fire Sciences Laboratory 2011).  FARSITE and FlamMap have the exact same 

input parameter files, but FARSITE includes a temporal component so that conditions 

vary in both time and space.  Since analysis of temporal changes in addition to spatial 

variation between iterations with different inputs is outside the scope of this project, 

FlamMap was used for the analysis.  Each data input (from the lidar method and the 

LANDFIRE method) was inserted into the model along with other key model variables as 

listed in Table 1.   
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Figure 16. Work Process Diagram for Research Question I. 
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FlamMap natively refers to the thirteen Northern Forest Fire Laboratory (NFFL) 

fuel classifications as its fuel model and also requires two base input files (Table 3): a 

Landscape file (.LCP) which is in a GIS format, and an Initial Fuel Moisture file (.FMS), 

which is an ASCII text file.  Optional tabular and spatial files include a Weather file 

(.WTR), Custom Fuel Model file (.FMD), Conversion file (.CNV), Wind file (.WND) 

and more.  The Landscape file is a collection of several rasters, including the required 

fuel model, slope, aspect, DEM and canopy cover along with the optional crown bulk 

density (CBD), crown base height (CBH), stand/canopy height (CH), duff loading, and 

coarse woody themes.  Even though LANDFIRE data can include fully-compiled 

Landscape files as required by FlamMap, only available component rasters were 

considered as individual inputs to maintain consistency with data inputs for the lidar 

simulation. 

   

 

 

Table 3. Input Data Layers for Use in FlamMap. 
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For both the lidar and LANDFIRE techniques, the mandatory Landscape file was 

compiled and stored separately, one for each (Figure 17).  The other required file, Initial 

Fuel Moisture (Figure 18), accounts for dead fuel moisture by size class and live fuel 

moisture by type and is measured as a dry weight in terms of percent for each of the 

thirteen classes within the NFFL fuel model. The size classes for dead fuel moisture are 

considered in terms of time required for woody debris of different diameters to reach 

63.2% equilibrium moisture content, measured in intervals of 1 hour, 10 hours, 100 hours 

and 1000 hours. The two types of live fuels are live herbaceous (LH) and live woody 

(LW).

 

Figure 17. FlamMap Landscape File Parameters (U.S. Department of Agriculture 2011a). 
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Figure 18. FlamMap Fuel Moisture File Parameters (U.S. Department of Agriculture 2011a). 
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FlamMap’s sister model, FARSITE, also uses an Initial Fuel Moisture file but the 

moisture values change as the model runs through a set period of time.    Both models can 

be set to run a pre-simulation “conditioning” period which incorporates local weather 

conditions with the terrain and vegetation variables to produce a realistic distribution of 

dead vegetation moisture content (live vegetation moisture content remains static).  This 

time period can be set for any duration of time, but several days will allow for the dead 

fuel moistures to more accurately reflect local site conditions (Missoula Fire Sciences 

Laboratory 2011). 

For FARSITE, this gives a more realistic moisture distribution platform on which 

the model can begin running. Since FlamMap does not incorporate time, there is no 

change in fuel moisture after the model runs.  As such it is normally important to run a 

conditioning period when using FlamMap to get more realistic results which consider 

variability of dead vegetation fuel moisture.  However, to effectively compare the 

FlamMap model results for the two different Landscape files for this study, it is crucial to 

hold all other variables constant.  Instead, a conditioning period was not considered and 

the Initial Fuel Moisture file was identical for both the lidar and the remote sensing-based 

model runs.  A value of 5% was input for each dead fuel size (1-hr, 10-hr, 10-hr and 

1000-hr) and each fuel class (1-13) and a value of 50% was input for both LH and LW in 

all fuel classes.  No other project files were included in the analysis.  The FlamMap 

model was run one time with 100 randomly placed, simulated fires to produce output 

raster maps of fireline intensity, crown fire activity, flame length, and spread rate. 

   After a set of four output raster pairs (fireline intensity, crown fire activity, flame 

length and spread rate) from each of the two methodologies were processed (for example, 
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crown bulk density from remote sensing and crown bulk density from lidar), change 

detection was conducted to show discrepancies in output values between the two 

methods. However, before this could be accomplished, it was necessary that each file set 

being compared was of an identical spatial resolution and extent. Using the same 

methodology to spatially align the lidar-based inputs computed previously, a master point 

file was generated from lidar fireline intensity raster output with the ArcMap Raster to 

Point tool.  As before, this particular file was chosen randomly since any of the lidar-

based FlamMap outputs would have achieved the same end.  The MultiValues to Point 

tool was again used for each of the LANDFIRE 30-meter output files to generate 5-meter 

rasters that align perfectly with the lidar FlamMap outputs yet retain the spatial patterns 

of the 30-meter products.   

The raster-based Change Detection feature in ERDAS Imagine was used to 

generate two types of outputs: an image difference raster and a highlight change raster.  

Image differencing (subtracting one raster from the other) produces an output raster that 

shows a continuum of change with exact values in the units of the input rasters. For this 

study, it is not the output values that are of interest, it is the amount of change 

demonstrated by a range of values: higher values mean greater difference and low values 

or zero represent little or no change.  The highlight change outputs are determined by 

values inserted by the user which represent significant inflection points – or values at a 

particular threshold considered to be critical.  For this project, ten percent change in the 

positive or negative direction was considered significant.  The output highlight change 

maps show values that have crossed the threshold in either direction (as “decreased” or 
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“increased”) or are close to the threshold (“some decrease” or “some increase”), or pixels 

that have not changed at all. 

3.3.2 Model Setup for Research Question II   

The second research question visits the same Kerr County study area as the first, 

but now the focus is on vegetation moisture content, or foliar moisture content (FMC).  

When running the FlamMap model for the lidar and LANDFIRE methods, the Initial Fuel 

Moisture input to the FlamMap model was homogeneous across the study area because 

there was no conditioning period to allow for absorption of water by the dead vegetation.  

This time the LANDFIRE method was run in FlamMap again, but there was a 

conditioning period to allow for variable FMC of dead fuels across the landscape (Figure 

19).  To begin, the same homogeneous Initial Fuel Moisture input file was used as before, 

along with a Weather file and a Wind file for fuel moisture conditioning.  The 

conditioning period lasted for seven days and the Weather and Wind files were created 

from weather data covering the week before the cloud-free Landsat 5 TM scene for the 

Kerr County study area, which was 17 August 2011.   
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Figure 19. Work Process Diagram for First Component of Research Question II. 
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FlamMap requires that the Weather and Wind files follow a very specific template 

of numbers in columns stored in text files with .wtr and .wnd as the file extensions 

respectively.  The columns in the Weather file are: month, day, total daily precipitation 

amount (hundredths of an inch), time of minimum temperature (GMT), time of maximum 

temperature (GMT), minimum daily temperature (F), maximum daily temperature (F), 

maximum daily relative humidity (%), minimum daily relative humidity (%), and 

elevation (feet) (Figure 20).  The Wind file is comprised of: month, day, hour (GMT), 

wind speed (mph), wind direction (degrees from north), and cloud cover (%). The word 

‘ENGLISH’ is included on the first line of each file to denote unit format. 

 

 

 

Next, FMC was estimated from the 17 August 2011 30-meter Landsat 5 TM scene 

covering the Kerr County study area using the normalized difference infrared index 

(NDII) (Figure 21).  A model was be created in Intergraph’s ERDAS Imagine (Figure 22) 

Figure 20. Left, FlamMap Weather File; right, FlamMap Wind File. 
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software to calculate NDII from Bands 4 and 5 of the Landsat 5 TM image (for Landsat 5 

TM products, Band 4 is near-infrared and Band 5 is shortwave infrared) (Figure 23). 

 

Change detection with the ERDAS Imagine Change Detection tool (described 

previously) was conducted between the four output rasters derived by the LANDFIRE 

method using homogeneous dead fuel moisture and the four output rasters created with 

the conditioning period to examine the effect of including dead fuel moisture in the 

model.  Then, the NDII image of all vegetation moisture (live and dead combined) will 

be compared in the Results section of this document with each of the four output rasters 

using homogeneous moisture.  

 

Figure 21. NDII Formula for Landsat 5 TM (Jensen 2000). 
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Figure 22. ERDAS Imagine NDII Model Layout. 



70 

 

 
 

7
0

 

 

The other aspect of the second research question focuses on Possum Kingdom to 

investigate whether there is a significant relationship between FMC and extent of area 

burned (Figure 24).  Fuel moisture content was estimated for the Possum Kingdom study 

area (PK Complex fire perimeter) from a Landsat 5 TM scene (Figure 25) captured 

before the April 2011 wildfire on 11 April 2011 using NDII.  Then the NDII values for 

the scorched area (Figure 9) were compared to NDII values for the unburned remnant 

area in a test of statistical significance.   

Figure 23. ERDAS Imagine NDII Model Parameters. 
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Figure 24. Work Process Diagram for Second Component of Research Question II. 
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Figure 25. Possum Kingdom Before Fire Image. Landsat 5 TM False color composite shown in 7,4,3 band 

combination. Image captured 11 April 2011 and obtained from U.S. Geological Survey (2011). 
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The null hypothesis states there is not a difference between the mean fuel moisture 

content (FMC), as measured by NDII, in the burned area compared to the mean fuel 

moisture content in the remnant area. The research hypothesis states there is a difference 

between fuel moisture content in the burned area compared to the mean fuel moisture 

content (FMC) in the remnant area. 

H0: FMCburned = FMCremnant 

H1: FMCburned ≠ FMCremnant 

 = 0.05 

After obtaining the fire perimeter, the next step is to determine if the fire patterns 

were influenced by fuel moisture content.  NDII was calculated for the Before Fire image 

only.  Once again, ERDAS Imagine was utilized to generate and run the NDII model for 

the study area.  To distinguish the burned area from the unburned remnant area of the 

After Fire image, an NDVI (normalized difference vegetation index) calculation was 

performed to isolate pixels likely to have been burned (which would have exceptionally 

low NDVI) from the remnant areas (Figure 26).  The results were polarizing enough that 

an unsupervised classification (ISODATA algorithm) (Figure 27) with only two classes 

produced reliable results: pixels in one class cover areas that had burned (orange pixels) 

while pixels in the other class were cover areas that had not (blue pixels).   
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Figure 26. Possum Kingdom NDVI Map.  Map generated by author from image captured 11 April 2011 

and obtained from U.S. Geological Survey (2011). 
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Figure 27. Possum Kingdom Unsupervised Classification Map. Class 1 represents area burned; Class 2 

represents remnant unburned area. 
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When the burned and unburned areas were clearly defined, the NDII values from 

the Before Fire image were extracted from each section and exported as a table using the 

Extract Multi-Values to Point tool in ArcMap.  Before choosing a statistical testing 

method, the variance for the burned area was compared against the variance for the 

unburned area in Microsoft Excel using an F test to determine whether equal variances 

are to be assumed.  Then resulting mean NDII values for burned and remnant areas were 

tested for statistical significance at a 95% confidence interval using the statistical 

software package SPSS.   
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CHAPTER IV 

RESULTS 

4.1 Research Question I 

The first research question explores the use of high resolution lidar for wildfire 

modeling as compared to Landsat-based LANDFIRE data.  The wildfire model FlamMap 

was selected to produce map outputs that when compared for each methodology can 

highlight the impacts of using one method or the other.   

The LANDFIRE data collected for model input was pre-compiled by the U.S. 

Department of Agriculture (2011b) and will be discussed first.  Next, the same type of 

inputs generated from the lidar data will be described and compared relative to their 

LANDFIRE counterparts.  The results of the LANDFIRE model run and the lidar model 

run can then be introduced along with maps displaying the results of change detection 

analysis.  When all of the results have been showcased, then finally a section for notes 

and discussion will add context and meaning to the analysis portion of this study. 

4.1.1 LANDFIRE Inputs 

 Three fundamental tenants of elevation are considered in the FlamMap model: 

slope, aspect and orthometric height above sea level (referred to as the generic 

“elevation”).  The digital elevation model, or DEM, clearly defines the river and stream 

patterns cutting through the hilly terrain (Figure 28).  The gradient peaks around 700 
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meters ASL in the highest hills to the northwest of the study area and slopes down to 

about 400 meters ASL alongside the Guadalupe River and Johnson Creek.  The 30-meter 

resolution gives a sufficient amount of detail to describe the terrain features; however the 

DEM image does not provide sharp definition.  

The slope map (Figure 29) highlights the steepest hillsides which will be a 

contributing factor to the model results since fire catches quickly along steep terrain 

(Lein and Stump 2009).  The aspect map displays the direction a particular hillside is 

facing, which is of course determined on a pixel-by-pixel level analysis (Figure 30).  For 

example, in the 30-meter LANDFIRE map hillsides appear blocky and there is some 

definition, but the result here is more abstract.  FlamMap will use this information to help 

determine which direction fire will spread – similar values present less of a barrier than a 

peak or a cliff. 

In addition to the elevation-based inputs are the vegetation metrics which include 

canopy height (CH), canopy base height (CBH), canopy cover (CC) and canopy bulk 

density (CBD).  Canopy height, which measures the total height of the vegetation from 

base to canopy, is shown to be mostly 5-15 meters with a few trees reaching closer to 20 

or 25 meters high (Figure 31).  The middle shade of green denotes areas where there is no 

canopy present such as urban, water, grass and bare ground and the lightest shade of 

green is likely capturing some bushland or scrubby trees. 
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Figure 28. LANDFIRE 30-meter DEM in Kerr Study Area. 
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Figure 29. LANDFIRE Slope in Kerr Study Area. 
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Figure 30. LANDFIRE Aspect in Kerr Study Area. 
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Figure 31. LANDFIRE Canopy Height in Kerr Study Area. 
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Canopy base height, or the average height from the ground to the base of the canopy, 

shows a completely different story than CH from the LANDFIRE maps (Figure 32).  

Here, CBH values are highest in the northwestern portion of the study area between the 

river and the creek and are coincident with the uninterrupted evergreen forests covered in 

Texas live oak and Ashe juniper (mountain cedar).  Most CBH values are about 1-5 

meters high. 

 Canopy cover is measured in percent and shows where the thickest tree stands are 

found (Figure 33).  The highest values from LANDFIRE approach 90% with most of the 

range being somewhere between 50% and 90%.  From this map it is possible to see 

interruptions in stand continuity such as right of way (ROW) cleared for utilities.   

The last vegetation metric, canopy bulk density, measures available canopy mass 

per unit of canopy volume that would burn in a crown fire and the units are kilograms per 

cubic meter (Figure 34).  The LANDFIRE CBD map multiplies the units by 100 

converted to integer notation.  The CBD map follows the same patterns seen in the CC 

map since a denser canopy volume covering the sky would logically result in more 

canopy mass. 
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Figure 32. LANDFIRE Canopy Base Height in Kerr Study Area. 
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Figure 33. LANDFIRE Canopy Cover in Kerr Study Area. 
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Figure 34. LANDFIRE Canopy Bulk Density in Kerr Study Area. 
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4.1.2 Lidar Inputs 

 The elevation-based datasets derived from lidar refine the landscape from a 30-

meter perspective (Figure 28) to a 5-meter resolution (Figure 35).  The 5-meter DEM 

reveals much more detail in the river and stream channels and defines the hillsides with a 

sharper focus.  Overall the patterns displayed in each are consistent and while the lidar 

does add more context in some areas, it is unlikely these minor differences would 

significantly impact the wildfire model.   

However, the lidar-based slope map (Figure 36) is significantly different than the 

30-meter product (Figure 29). Initially the two maps may appear quite similar since the 

same patterns are evident in each, yet the value ranges tell a different story.  The 

LANDFIRE slope map indicates that areas of maximum slope here are 41 degrees, yet 

the lidar slope map shows terrain with up to 85 degrees of slope.  This is most likely due 

to the fact that as pixel size gets larger, more and more features are normalized into 

abstraction.  Each pixel represents the average slope across a 900 square meter area and 

the terrain can vary greatly in that amount of space.  There may be a few steeper slopes, 

but many times this is being averaged by the flat ground around it.   
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Figure 35. Lidar 5-meter DEM in Kerr Study Area. 
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Figure 36. Lidar Slope in Kerr Study Area. 
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The result is a much lower average slope across the study area than is actually 

present.  The lidar slope map reduces each pixel area to only 25 square meters (5 m
2
), and 

within this threshold slope will be less undulating and will capture finer-scale variation.  

As such, it is possible that a given pixel will show a much higher slope value than would 

be found for the exact same spot on the 30-meter map.  The identification of steeper 

slopes is important because as mentioned in the LANDFIRE section above, fire 

propagates much more quickly over steep terrain.  Modeling with information that is not 

only accurate but also precise will stand to improve the results, although it should be 

noted that these are differences at a highly localized scale which could be easily 

irrelevant when considering the broader picture.   

Similar to the differences in slope maps, there is a marked increase in resolution 

between the LANDFIRE aspect map (Figure 30) and the lidar aspect map (Figure 37).  

The general trends are similar, but the 5-meter map appears quite pixelated.  Within the 

lidar-based aspect map, the steeper hillsides show much more consistency than in the 

riparian corridors where the effect is noisy.  This indicates that perhaps five meters is too 

fine a resolution for aspect since the general trends are being diluted by the noisy pixels. 
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Figure 37. Lidar Aspect in Kerr Study Area. 

 



92 

 

 
 

9
2

 

The lidar-based canopy height model gives a highly detailed picture of the 

vegetation patterns found within the study area (Figure 38).  While the 30-meter product 

captures the broad strokes of vegetation height (Figure 31), the 5-meter version displays 

an ornate landscape with ribbons of taller trees twisting around the hills and (as in the 

LANDFIRE CC map) utility ROW’s  cutting through the terrain.  One anomaly is the 

presence of erroneously large height values in the river bed.  These values are an artifact 

from the CH calculation methodology and though it is possible this will negatively affect 

the model results, the impact is unlikely to be severe since other inputs (such as NFFL) 

will identify those pixels as water. 
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Figure 38. Lidar Canopy Height in Kerr Study Area. 
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Similar to the relationship between the LANDFIRE and lidar-based CH models, 

the CBH model becomes significantly more detailed in the 5-meter iteration but the range 

in values is shifted slightly higher (Figure 39).  This likely resolves the effect of higher 

CBH values being averaged down due to large 30-meter pixels (which could include a 

dozen trees) (Figure 32).  Also, it is more likely that gaps between trees are captured, 

which is the likely explanation for the peppered effect seen in the heavily vegetated 

portions of the lidar CBH map. By rescaling the LANDFIRE CBH map to match the lidar 

map it is easier to see the increase in CBH (Figure 40). 
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Figure 39. Lidar Canopy Base Height in Kerr Study Area. 
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Figure 40. LANDFIRE Canopy Base Height Scaled to Lidar Data Range. 
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The canopy cover map generated from lidar (Figure 41) appears to show 

substantially more canopy cover than in the LANDFIRE counterpart (Figure 33).  Also 

there is a notable horizontal striping effect throughout the study area.  Both anomalies are 

the result of a particular characteristic of the parent lidar data that has been propagated 

through the data creation process.  In lidar collection, overlapping flight lines cause 

double the amount of point returns than areas with only one flight line.  Since canopy 

cover was generated from the lidar by recording the ratio of vegetation points relative to 

all collected points, the variation in point density persisted to the final product, albeit 

slightly.  Also, the parent lidar did not distinguish between low, medium, and high 

vegetation and so all vegetation was considered for calculation of canopy cover, 

including some areas that were likely just tall grass.  This result should not significantly 

impact the wildfire model since the extra “erroneous” canopy cover is technically still 

vegetation. 
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Figure 41. Lidar Canopy Cover in Kerr Study Area. 



99 

 

 
 

9
9

 

The canopy bulk density map produced from the CFE tool (Figure 42) is 

remarkably different than its LANDFIRE counterpart (Figure 34).  The lidar CBD map 

shows a faint scattering of higher CBD values with one concentration of high values in a 

plot of land to the northwest of the study area.  While the location of the highest values 

matches the general pattern found in the LANDFIRE map, the latter shows much more 

continuous coverage.  Using the Kerrville study area Landsat 5 imagery for comparison, 

it is apparent that the LANDFIRE CBD representation more closely matches the 

distribution and density of vegetation than the lidar. 
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Figure 42. Lidar Canopy Bulk Density in Kerr Study Area. 
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4.1.3 FlamMap Output 

 The following fire behavior characteristic maps were selected to be generated by 

FlamMap: Flame Length, Spread Rate, Fireline Intensity and Crown Fire Activity.  This 

study was developed on the premise that high-resolution, high-precision inputs to a 

wildfire model based on lidar data would result in fire behavior maps that are also of a 

higher resolution and exhibit a finer degree of precision compared to lower-resolution 

satellite imagery-derived LANDFIRE data.  The change detection maps (including both 

Image Difference maps and Highlight Change maps) were created on the basis that the 

LANDFIRE method maps represent “before” and the lidar method maps represent 

“after”.  For example, an increase in values from one map to the other indicates that the 

LANDFIRE values were lower than the lidar values.  The image difference maps show 

gradation of change from the LANDFIRE method to the lidar method while the highlight 

change maps identify pixels which have experienced at least a 10% change in value 

(increase or decrease).  Pixels that have changed slightly (less than 10%) are denoted by 

“some increase” or “some decrease”. 

 The first map, Flame Length, is a measure of fire intensity and can estimate the 

level of challenge to extinguish.  Technically speaking, flame length is the distance from 

the fuel surface to the point on the flame axis where the carbon monoxide concentration 

is 5000 parts per million (Long 2012) (Figure 43).   
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Both flame length output maps show similar patterns, although the lidar map 

(Figure 44) shows a wider range of values than the LANDFIRE map (Figure 45), 

particularly in the grass/shrubland areas.  The Image Difference map (Figure 46) 

highlights these discrepancies as dark patches distributed across these lower-lying areas.  

The Highlight Change map in the same figure shows a widespread amount of subtle 

increase and decrease.  Most of the areas denoted as “some decrease” are located in the 

higher elevations where the densest vegetation is located while “some increase” values 

are stronger in the northern portion of the study area, where grassland or bare earth is 

more prevalent.   

  

Figure 43. Flame Length Diagram (Long 2012). 
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Figure 44. Lidar Flame Length Output. 
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Figure 45. LANDFIRE Flame Length Output. 
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Figure 46. Flame Length Change Detection. 
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Fireline intensity can be used to compare fires, assess the effects of prescribed 

burns, or to assess the difficulty of wildfire containment (Long 2012). The metric “is the 

rate of heat energy released per unit time per unit length of fire front, regardless of the 

depth of the flame zone” and “is calculated as the product of available fuel energy and the 

fire’s rate of advance” (Long 2012):  

I = Hwr 

Where: 

I = Byrams fireline intensity (kW/m) 

H = fuel low heat of combustion (kJ/kg) 

w = weight of fuel consumed per unit area in the active flaming zone (kg/m2) 

r = rate of spread (m/s) 

  

Fireline intensity can be highly variant with low intensity fires being less than 550 

kW/m and high intensity fires exceeding 4000 kW/m.  The results from FlamMap show a 

somewhat similar set of outputs from the LANDFIRE and lidar inputs.  The LANDFIRE 

fireline intensity values range from zero to a high just shy of 1000 kW/m (Figure 47).  

The spatial pattern predicts a higher intensity fire would take place where there is open 

grassland vegetation interspersed with a few trees, as opposed to the heavily vegetated 

areas where values are lowest.   
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Figure 47. LANDFIRE Fireline Intensity Output. 
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By comparison, the lidar fireline intensity map shows very similar patterns, but 

with values that have shifted higher where there is grassland vegetation (Figure 48).  The 

spatial pattern here also appears to be correlated with the lidar method canopy bulk 

density map (Figure 42) which as mentioned above is sparsely populated with CBD 

values.  The Image Difference map shows very little severe change and the Highlight 

Change map is quite similar to that above for flame length – lots of moderately increased 

values in the grassy areas with moderately decreased values in the forested areas (Figure 

49). 
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Figure 48. Lidar Fireline Intensity Output. 
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Figure 49. Fireline Intensity Change Detection. 
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Crown fire activity is a more discrete description with values representing one of 

three scenarios: No Fire, Surface Fire, and Crown Fire.  The FlamMap results for crown 

fire activity gave no values for Crown Fire from either LANDFIRE (Figure 50) or lidar 

results (Figure 51).  Instead, almost the entire study area is shown as Surface Fire with 

the water, urban and bare earth features shown as No Data.   

The Image difference output between the two methods only picks up on a few 

pixels along the riparian corridors which were significantly different from the 30-meter 

iteration to the 5-meter version (Figure 52).  Almost all of these pixels are shown in the 

Highlight Change map to have experienced an increase.  This is very likely due to the 

fact that larger 30-meter mixed pixels along the water features were better defined in the 

lidar input and so the crown fire activity output pixels moved from a No Data value to a 

Surface Fire value. 
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Figure 50. LANDFIRE Crown Fire Activity Output. 
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Figure 51. Lidar Crown Fire Activity Output. 
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Figure 52. Crown Fire Activity Change Detection. 
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The last FlamMap output map is spread rate.  Rate of spread is closely related to 

fireline intensity and according to Long (2012): 

“Rate of spread is the horizontal distance that the flame zone moves per unit of 

time and usually refers to the head fire segment of the fire perimeter… (it) can be 

measured from any point on the fire perimeter in a direction that is perpendicular 

to the perimeter.  Because rate of spread can vary significantly over the area of the 

fire, it is generally taken to be an average value over some given period of time. 

The fastest rate of spread is along the forward moving perimeter located at the 

head of the fire. The slowest rate of spread will be found on the windward (back) 

side of the perimeter. The rate of spread along the flanks will be intermediate 

between the head and backing rates of spread.  Rates of spread can easily be 

estimated by timing the passage of the flaming front between two landmarks of 

known distance apart. To determine rate of spread within the interior of a fire, 

firecrackers placed at known intervals along a transect perpendicular to the flame front 

have also been used. More technical techniques of measuring rates of spread involve 

videography or the use of thermocouples to record the passage of the flaming front.” 

The two spread rate outputs from FlamMap are remarkably similar, with the lidar-

based map (Figure 53) showing the same spatial patterns as the LANDFIRE version 

(Figure 54) but with the extra resolution from being 5-meter.  The only major difference 

appears to be the treatment of hydrologic features, which are NoData values in the 

LANDFIRE map (white) and are displayed as zero in the lidar map (yellow).  The Image 

Difference map follows the same patterns as in the fireline intensity and flame length 
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maps, although there are many more pixels showing “more change” than in either of 

those two (Figure 55).  Likewise, the Highlight Change map shows the majority of the 

decreased values to be located in the forested areas and the grasslands show some 

increase from the LANDFIRE model run relative to the lidar run. 
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Figure 53. Lidar Spread Rate Output. 
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Figure 54. LANDFIRE Spread Rate Output. 
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Figure 55. Spread Rate Change Detection. 
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4.2 Research Question II 

The second research question focuses on the role of foliar moisture content 

(FMC) in wildfire modeling.  Wildfire models such as Farsite and FlamMap incorporate 

homogeneously distributed moisture content for dead vegetation litter as well as 

homogeneous FMC of live vegetation.  They do not allow for spatially variant moisture 

content (for live and dead vegetation) which is a more accurate scenario in a wildland 

urban interface, especially in drought conditions and/or in areas with anthropogenically 

induced watering schemes such as landscaped neighborhoods or farmland.   

Moisture conditioning tables which include rainfall, wind and other weather data 

can simulate the absorption of water by forest litter but the amount of moisture present in 

the live vegetation is assumed by the model to remain constant.  To exhibit the 

heterogeneous landscape of vegetation moisture, FMC was calculated for the Kerr study 

area and the Possum Kingdom study area using the normalized difference infrared index 

(NDII) from Landsat 5 TM satellite imagery for the purposes of comparison with the 

Moisture Conditioning technique and to draw a parallel between FMC and wildfire 

spread. 

There are two components to Research Question II.  The first uses the same Kerr 

study area from Research Question I and compares FlamMap outputs that have been pre-

conditioned with moisture content for dead vegetation against maps of the same area with 

no moisture conditioning.  Then these results are compared against an NDII map showing 

FMC of all vegetation, whether live or dead.  The second component is set at Possum 

Kingdom Lake in Palo Pinto County and seeks to investigate whether FMC has an effect 

on where fire spreads under drought conditions in a wildland urban interface in Texas.  
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4.2.1 Moisture Conditioning 

LANDFIRE data was used to create model outputs from FlamMap with and 

without moisture conditioning to compare the effect on model output maps.  These output 

maps include the same information chosen for Research Question I: fireline intensity, 

crown fire activity, flame length, and spread rate.  Since LANDFIRE data were used in 

Research Question I as an input to FlamMap and there was no moisture conditioning, the 

output maps were re-purposed for Research Question II to act as a control for comparison 

with the pre-conditioned results. These results are also evaluated with the added context 

of the Landsat 5 TM image in Figure 5. 

The results for fireline intensity show a widespread decrease in values for nearly 

all of the study area when comparing the map with no moisture conditioning against the 

map including moisture conditioning (Figure 56).  Locations that decreased the most are 

concentrated in patches of agriculture and grasslands, while the majority of forested areas 

experienced some decrease.  The change detection maps (Figure 57) include the same 

techniques used for the first research question: image differencing and highlight change.  

The image difference map shows minor change for roughly half of the study area with the 

rest showing more change.  In the highlight change map, urban and bare-earth terrain did 

not experience increase or decrease and are displayed as unchanged.  Interestingly, a few 

isolated patches increased in fireline intensity when moisture conditioning was applied.  

The cause for this increase is not obviously apparent since there appears to be no 

distinguishing terrain features unique to the areas of increase.  Many of these spots are in 

locations of transition between forest and grassland, so could be influenced by mixed 

pixels which could more easily fall into one category or another.  However, many other 
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areas fit such a description yet showed results that were consistent with more 

homogeneously forested areas.
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Figure 56. Fireline Intensity Output Comparison. 
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Figure 57. Fireline Intensity Change Detection for Moisture Conditioning. 



125 

 

 

1
2

5 

The crown fire activity map with moisture conditioning appears to be identical 

when compared to the control map: all areas that are not urban or bare earth show the 

potential for surface fire (Figure 58).  The change detection maps (Figure 59) support this 

observation by displaying no change for the entire study area. 

At a glance, the comparison maps for flame length also appear to be identical 

(Figure 60).  The values across the study area are all very low, hovering near one meter.  

However, the change detection maps tell a dramatically different story (Figure 61).  The 

image difference map shows a wide range in degrees of change and the highlight change 

map indicates that nearly all of this change is decreased values.  As in the fireline 

intensity maps, there are a few locations in Figure 61 showing increased values and the 

locations appear to be coincident with those from fireline intensity. 

The final map output is spread rate and yet again the results from moisture 

conditioning appear to match the control map with no moisture conditioning (Figure 62).  

The spread rate is slow in heavily forested areas but increases to about seven minutes in 

terrain uninterrupted by vegetation.  Also similar to fireline intensity and crown fire 

activity, the change detection maps uncover a slightly negative shift in values for much of 

the study area (Figure 63).  The spatial patterns are also consistent with the others and 

include the very same locations of increased values present in this map. 

The similar spatial patterns found in the change detection maps for fireline 

intensity, flame length and spread rate show the degree to which advance moisture 

conditioning can have an effect on wildfire maps produced from FlamMap.  Almost 
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100% of the area in each of the three categories showed some change; predictably, they 

are mostly decreasing values after the injection of moisture into the simulation.  
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Figure 58. Crown Fire Activity Output Comparison. 
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Figure 59. Crown Fire Activity Change Detection for Moisture Conditioning. 
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Figure 60. Flame Length Output Comparison. 
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Figure 61. Flame Length Change Detection for Moisture Conditioning. 



 
 

 

1
3

1 

 

  Figure 62. Fireline Intensity Output Comparison. 
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 Figure 63. Fireline Intensity Change Detection for Moisture Conditioning.
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Crown fire activity showed absolutely no change, but this type of information is 

categorical and the surface fire designation was still relevant to the terrain regardless of 

the additional moisture introduced.  Therefore these seemingly divergent results bear no 

effect on the observation that the addition of moisture conditioning to the modeling 

process does indeed have an effect on map outputs.  Another goal of the first part of 

Research Question II is to compare these spatial patterns with those produced from the 

measurement of foliar moisture content through the normalized difference infrared index.  

If the patterns are quite different, then this indicates that the presence of live vegetation 

moisture content has contributed to the total vegetation moisture content, or rather FMC. 

The NDII values were calculated for the Kerr study area (Figure 64) and the 

results range from -0.40 to 0.38 out of a possible gamut of -2 (low moisture) to 2 (high 

moisture).  Comparison with the satellite imagery (Figure 65) and land cover map (Figure 

4) reveals that higher moisture values occur in grass/shrubland while the low moisture 

values are found in forested tracts.  Most of the values near zero occur in transition areas 

with few trees or in the small urban section in the eastern side of the study area. 

Comparing the patterns from the change detection analysis above with the NDII 

distribution reveals that while some patterns are identifiable in each (human influences 

such as the ROW cut, land parceling as well as the natural waterbodies), the NDII map 

uncovers subtle gradations of water content present (or missing, as the case may be) in 

the forested areas.  These patterns are not immediately apparent in the change detection 

maps where the forested areas appear as large tracts of land that did not respond much 

(<10%) to moisture conditioning.  The grassland adjacent to the Guadalupe River and 

Johnson Creek show the highest moisture values (relative to the scene) yet the same areas 
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in the change detection analysis yield mixed results with various levels of change along 

the banks. 
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Figure 64. NDII of Kerr Study Area.  Map generated by author from image captured 11 April 2011 and 

obtained from U.S. Geological Survey (2011). 
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Figure 65. Left, NDII Map of Kerr Study Area.  NDII generated from image at right. Right, Natural Color Image of Kerr Study Area. 

Landsat 5 TM image captured 11 April 2011 and obtained from U.S. Geological Survey (2011). 
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4.2.2 Effect of Foliar Moisture Content on Fire Spread 

 The first portion of Research Question II altered the moisture content found in 

dead vegetation to observe the impact on the FlamMap outputs, and then these results 

were compared with an NDII map of the study area showing moisture content of all 

vegetation, live and dead.  The second portion of Research Question II takes this analysis 

a step further to investigate if NDII values (as a measure of foliar moisture content) might 

determine where a wildfire is going to spread. 

 To test this proposition, Possum Kingdom Lake was selected as a study area since 

a large portion of the land surrounding the lake was burned in a May 2011 wildfire and 

the local geography fits the WUI characteristic, making this fire a significant threat to 

humans and settlement.  Additionally, the wildfire occurred during a drought so there was 

a strong possibility that the moisture content for the live vegetation would have high 

spatial variability.   

 The analysis produced two image classifications demonstrating areas that had 

been burned by the wildfire and those that had not (Figure 27).  Each of the two areas 

was intersected with the corresponding NDII values calculated from before the fire to 

produce a table listing burned NDII values and unburned NDII values (Figure 66).  The 

null hypothesis states that there is no difference in FMC values for the pixels in the 

burned areas compared to those in the unburned areas, while the research hypothesis 

asserts that there is a difference.  The data were tested at a 5% significance level.   
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Figure 66. NDII and Burn Scar in Possum Kingdom Study Area. NDII generated by author from image 

captured 11 April 2011 and obtained from U.S. Geological Survey (2011). 
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A Kolmogorov-Smirnov test for normality was conducted in SPSS and neither the 

burned nor remnant NDII values are normally distributed  (Table 4, Figures 68 and 69). 

 

  

Table 4. Result of Kolmogorov-Smirnov Test for Normality. 

Figure 67. Histogram of Burned NDII Values. 
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 Figure 68. Histogram of Remnant NDII Values. 

 

Since the data are not normal, the non-parametric Mann-Whitney U test for independent 

samples was conducted to compare the distribution of the burned areas with the 

distribution of the remnant areas.  The result was significant at least at the .001 level 

allowing the research hypothesis to be accepted.
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CHAPTER V 

DISCUSSION 

5.1 Research Question I 

In terms of practicality, the ease of use for obtaining and utilizing LANDFIRE 

data was exponentially superior to the lidar. LANDFIRE data download is available via 

two methods: direct download from an interactive map or through one of several access 

tools available as ArcGIS toolbars.  On the main LANDFIRE website 

(www.LANDFIRE.gov) data product categories include topographic data, fuel, 

vegetation, fire regimes and disturbance with a handy reference list of historical data 

versions and coverage.  A bounty of information and metadata are listed under each data 

product such as links to detailed product descriptions, application and common usage, 

along with references to studies utilizing that particular data product. 

 Extensive documentation can be found from the LANDFIRE website on the 

program’s founding, history, maintenance, organization, product updates, and more.  

Metadata included with data download includes meticulously outlined mapping 

procedures as well as accuracy and/or quality assessments.  Proper data usage is defined 

along with limitations or possible discrepancies.  Another advantage of LANDFIRE data 

is that when possible, standards and classifications are imported from external 

authoritative sources to maintain interoperability.  For example, instead of 

commissioning a new set of vegetation fuel classes, the established Andersen Northern 
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Forest Fire Laboratory (NFFL) was used for this research.  In another application not 

utilized in this study, vegetation products reference NatureServe’s Ecological Systems 

classification (NatureServe 2012), “meeting the requirement that map units be 

identifiable, scalable, and model-able” (U.S. Department of Agriculture 2011b). 

Conversely, there is not a data clearinghouse for nationwide lidar-derived 

vegetation products, much less fuels or other datasets tailored to wildfire modeling.  

Extracting meaningful information from the lidar was time-consuming, monotonous, 

complicated, and possibly error-prone.  The CFE tool was able to produce two of the 

required inputs to FlamMap (CBD, CBH), but the remaining datasets had to be derived 

from a custom methodology (CH, CC) or manipulated from external sources (DEM, 

slope, aspect, NFFL).  Then the bounding coordinates had to be exactly aligned, down to 

the pixel. 

While the CFE tool was useful for extracting some vegetation information from 

the point cloud, several limitations of the software resulted in a frustrating user 

experience.  To list a few: DOS-based restrictions on filepaths/filenames, processing on 

only one processor core, RAM-limited file sizes and abbreviated help documents.  

Additionally, the tool cannot interpret any existing ASPRS point classifications but 

instead separates the ground points from all remaining points which are assumed to be 

vegetation.  Since many other structures and objects are bound to be included in the non-

ground points, it is necessary to first extract the ASPRS classes for ground and vegetation 

prior to processing in the CFE tool (if they exist). 
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The scope of this study did not allow for conducting an accuracy assessment of 

the lidar-derived data and this severely weakens the authority of the model inputs 

themselves, and by default the output information as well.  Additionally, two of the lidar-

based metrics were derived from the Canopy Fuel Estimator tool intended for use in a 

vastly different land cover (Pacific Northwest) than that in the Kerr study area. Perhaps a 

future study using the CFE tool could make the same comparison of lidar against 

LANDFIRE data in its intended environment.  An alternative could be to develop custom 

lidar tools to calculate canopy bulk density and canopy base height for the cedar (ashe 

juniper) and live oak trees in the Texas hill country.  One study could test the accuracy 

and another could conduct the lidar and LANDFIRE method comparison.  

 The results of the comparison between the lidar method and the LANDFIRE 

method indeed shows an added level of detail detectable in the lidar-based outputs.  With 

the exception of crown fire activity, for which there was no difference, the output maps 

exhibited similar variety, scope and pattern of change from one method to the other.  

Much of the difference highlighted in the change detection maps occurs at the fringes of 

clusters or larger tracts of homogeneous land cover types as a result of the 5-meter data 

identifying discrete clumps of vegetation which were previously unidentifiable or else 

amalgamated when grouped within a 30-meter pixel. 

 While these differences are notable, they are not exceptional.  One point of 

investigation for this study was to determine if using lidar for wildfire modeling in a 

wildland urban interface would provide an additional level of detail which could have an 

effect on wildfire response or land management in a WUI.  The change detection maps 

show primarily subtle change (less than ten percent increase or decrease), with a few of 
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the fringe areas described above as exhibiting greater than ten percent decrease.  The 

maps showing the input vegetation datasets are dramatically different when comparing 

lidar to LANDFIRE, which led to an expectation of equally polarizing results.  However, 

the output maps appear remarkably similar, considering the sources.  

Considering this unexpected outcome and due to the LANDFIRE program’s 

distinction as an easily accessible, standards-based source of well-tested remote sensing 

data with a spectrum of data products covering the entire country, it becomes clear that 

the LANDFIRE method is a more practical and equally or possibly more accurate option 

than lidar for wildfire modeling in a WUI environment.   Lidar data are still inherently 

more precise of a measurement than the LANDFIRE technique, but the dearth of modern 

lidar tools means that vegetation and fuel data extraction is left to the researcher to find 

their own procedure, an arduous and daunting task for those lacking programming skills 

and/or an extensive background in GIS. 

5.2 Research Question II 

The results show that homogeneous moisture conditioning does have a profound 

effect on the resulting FlamMap outputs demonstrated in most areas as a greater than ten 

percent decline in wildfire risk variables (in terms of fireline intensity, flame length and 

spread rate).  In fact, modifying the initial homogeneous moisture content proved to have 

a greater effect on the output maps than using two dissimilar data inputs (lidar and 

LANDFIRE). 

FlamMap accepts data inputs for duff loading and coarse woody fuel which are 

defined by stem diameter and can be saturated to varying degrees during simulated 
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weather events.  One limitation of this study is that timely data for this variable were not 

available and so the dataset was left out of the simulation.  Instead, FlamMap uses 

information from the remaining vegetation variables such as NFFL and canopy cover to 

estimate the amount of moisture retained from a simulated rainfall event.  It is through 

this mechanism that a variable distribution of risk parameters results instead of a 

consistent output where every cell is lowered uniformly to some degree.  This method 

means the tool recognizes that the same blanket moisture parameter will affect a stand of 

vegetation differently than an adjacent patch of bare earth rock; it is not the same as a 

heterogeneous moisture parameter which will produce variable results within the same 

stand. 

Since it is clear that moisture content is a robust variable in FlamMap, it is even 

more crucial that vegetation moisture content be represented accurately across the 

landscape.  Comparison of the projected moisture outputs from a consistent moisture 

input with the heterogeneous, NDII-measured vegetation moisture map reveals a great 

deal of variability that cannot be accounted for in the FlamMap model.  Furthermore, 

evidence is presented that supports FlamMap’s predilection toward moisture content as 

an influential variable since it was clearly shown that the wildfire spread where the FMC 

values were lowest.  
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CHAPTER VI 

CONCLUSION 

 

Mutlu et al. (2008, 284) stated, “A future study will analyze the influence of a 

more accurate fuel map on modeling fire behavior and assessing fire risk.  Resulting 

remote sensing methods and mapping products have the potential for driving changes in 

forest resources management practices related to mitigating fire hazard that threatens the 

public, human lives, and environmental health in Texas and nationwide.”  This research 

was conducted with the view that utilizing lidar data as an input to a wildfire behavior 

model would result in wildfire maps with increased detail and resolution compared with 

those produced from 30-meter Landsat imagery, which in turn could contribute to our 

understanding of wildfire risk assessment.  This research focused on a site covering the 

wildland urban interface because an area of diverse spatial heterogeneity was predicted to 

experience greater benefit from higher resolution inputs and outputs than a large, 

homogeneous expanse of wildland forest.  It is the latter scenario for which FlamMap and 

the nationwide LANDFIRE landscape datasets were created.  As the U.S. Department of 

Agriculture (2011b) warns, “the most effective use of the products is at the landscape 

scale.  Thus, applying LANDFIRE data at an individual pixel level or in small groups of 

pixels is not recommended.  Use of LANDFIRE products to support analysis in smaller 
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areas can result in outcomes that will vary in quality by product, location, and specific 

use.” 

However, based on the results of this study the lidar outcomes were very similar 

to those from the LANDFIRE data.  Although the LANDFIRE data were not meant for 

local-scale projects (as stated above by the U.S. Department of Agriculture), the lidar 

method used in this project was unable to improve significantly on the LANDFIRE 

technique despite the resolution differential. 

One of the original rationales for this research was to examine whether there 

would be a need for expansion of lidar coverage (particularly in WUI areas) to improve 

the quality of wildfire risk mapping.  Instead of a need for more lidar, there appears to be 

a need for more lidar software.  Specifically, software that is interoperable across an array 

of operating systems and file formats, provides accurate tools for extracting specific data 

metrics from a point cloud, and can maximize the available processing power to produce 

results quickly. Then foresters and land managers could utilize the strengths inherent to 

lidar data but without sacrificing the time necessary to prepare it for a wildfire model 

only to have the advantage in precision nullified by the error threshold of a model 

constructed for a coarser data input.  

The assessment of the effect of fuel moisture on wildfire spread from Research 

Question II does provide a reason for wildfire modeling analysts to consider live 

vegetation water content at a finer spatial scale than currently allowed when using the 

Scott and Burgan (2005) fuel model.  Since the commonly used NFFL wildfire model 

only accounts for dead fuel moisture content, it will be the analyst’s choice to conduct 
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additional remote sensing analyses with a complementary tool as proposed in this study, 

or accept the limitations of fuel moisture as calculated through a fuel model. 

Overall, two alternate applications of wildfire behavior modeling techniques were 

tested in this research to assess whether improvements in wildfire risk assessment in the 

wildland urban interface conducted from maps produced by wildfire behavior modeling 

software were possible.  Results of the study have indicated that enhanced precision in 

vegetation measurement (lidar) does not produce wildfire model outputs that differ 

substantially from those produced by less precise but readily available Landsat-derived 

LANDFIRE data.  This study has also demonstrated the value of including live foliar 

moisture content in the wildfire modeling process (particularly during a drought) due to 

the strong relationship found between FMC and the spread of wildfire in a WUI 

environment.  It is hoped that these results will encourage development of new and 

improved software to calculate vegetation metrics from lidar (or possibly even new 

wildfire models that utilize lidar as a direct input) as well as incorporate heterogeneous 

foliar moisture content.



 
 

149 

 

REFERENCES 

 

Albini, F.A. 1984. Wildland Fires. American Scientist 72: 590-597. 

American Society for Photogrammetry and Remote Sensing. LAS Specification Version 1.4.  

http://www.asprs.org/a/society/committees/lidar/LAS_1-4_R6.pdf (accessed April 7, 

2012). 

Andersen, H.E., R.J. McGaughey, and S.E. Reutebuch. 2005. Estimating forest canopy fuel 

parameters using LIDAR data. Remote Sensing of Environment 94, no. 4: 441-449. 

Andrews, P.L. 2007. BehavePlus fire modeling system: past, present, and future. In: Proceedings 

of 7th Symposium on Fire and Forest Meteorological Society. 2007 October 23-25; Bar 

Harbor, ME. 13 p. 

Arroyo, Laura, Cristina Pascual, and Jose A. Manzanera. 2008. Fire models and methods to map 

fuel types: The role of remote sensing. Forest Ecology and Management 256, no. 6: 

1239-1252. 

Avitabile, Valerio, Alessandro Baccini, Mark A. Friedl, and Christiane Schmullius. 2012. 

Capabilities and limitations of Landsat and land cover data for aboveground woody 

biomass estimation of Uganda. Remote Sensing of Environment 117: 366-380.  

Baldwin, Benjamin. 2003. Catastrophic wildfire hazard assessment in pinyon-juniper woodlands 

utilizing a managerial paradigm. PhD diss., Utah State University.  

Bar Massada, Avi, Volker C. Radeloff, Susan I. Stewart, and Todd J. Hawbaker. 2009. Wildfire 

risk in the wildland–urban interface: A simulation study in northwestern Wisconsin. 

Forest Ecology and Management 258, no. 9: 1990-1999.  

Bhandary, Uddhab. 2007. Vulnerability to natural hazards: A study of wildfire-burned 

subdivisions in the wildland-urban interface using IKONOS imagery and GIS data. PhD 

diss., University of Colorado at Denver. Caccamo, G., L. A. Chisholm, R. A. Bradstock, 

and M.L. Puotinen. 2011. Assessing the sensitivity of MODIS to monitor drought in high 

biomass ecosystems. Remote Sensing of Environment 115, no. 10: 2626-2639.



150 

 

 
 

Ceccato, Pietro, Stephane Flasse and Jean-Marie Gregoire. 2002. Designing a spectral index to 

estimate vegetation water content from remote sensing data: Part 2. Validation and 

applications. Remote Sensing of Environment 82, no. 2-3: 198-207. 

Chen, Qi, Gaia Vaglio Laurin, John J. Battles, and David Saah. 2012. Integration of airborne 

lidar and vegetation types derived from aerial photography for mapping aboveground live 

biomass. Remote Sensing of Environment 121: 108-117. 

Cheng, Yen-Ben, Pablo J.  Zarco-Tejada, David Riano, Carlos A. Rueda, and Susan L. Ustin. 

2006. Estimating vegetation water content with hyperspectral data for different canopy 

scenarios: Relationships between AVIRIS and MODIS indexes. Remote Sensing of 

Environment 32, no. 4: 317-326. 

Clevers, J.G.P.W., L. Kooistra, and M.E. Schaepman. 2010. Estimating canopy water content 

using hyperspectral remote sensing data. International Journal of Applied Earth 

Observation and Geoinformation 12, no. 2: 119-125. 

Danson, F.M., & P. Bowyer. 2004. Estimating live fuel moisture content from remotely sensed 

reflectance. Remote Sensing of Environment 92, no. 3: 309-321. 

Davidson, Andrew, Shusen Wang, and John Wilmshurst. 2006. Remote sensing of grassland-

shrubland vegetation water content in the shortwave domain. International Journal of 

Applied Earth Observation and Geoinformation 8, no. 4: 225-236. 

Esri 2012. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research 

Institute. 

Finney, M.A., and P.L. Andrews. 1999. FARSITE – A Program for Fire Growth Simulation. 

Fire Management Notes 59, no. 2: 13. 

Finney, Mark A. 2006. A computational method for optimizing fuel treatment locations.   In: 

Andrews, Patricia L.; Butler, Bret W., comps. 2006. Fuels Management-How to Measure 

Success: Conference Proceedings. 28-30 March 2006; Portland, OR. Proceedings RMRS-

P-41. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain 

Research Station. p. 107-123. 

Flaxman, Michael. 2001. Multi-scale fire hazard assessment for wildland urban interface areas: 

An alternative futures approach. PhD diss., Harvard University.  

Fry, J., G. Xian, S. Jin, J. Dewitz, C. Homer, L. Yang, C. Barnes, N. Herold, and J. Wickham. 

2011. Completion of the 2006 National Land Cover Database for the Conterminous 

United States.  PE&RS  77, no. 9: 858-864. 

http://www.mrlc.gov/downloadfile2.php?file=September2011PERS.pdf
http://www.mrlc.gov/downloadfile2.php?file=September2011PERS.pdf


151 

 

 
 

Garcia, Mariano, David Riano, Emilio Chuvieco, Javier Salas, and F. Mark Danson. 2011. 

Multispectral and LiDAR data fusion for fuel type mapping using Support Vector 

Machine and decision rules. Remote Sensing of Environment 115, no. 6: 1369-1379. 

Gao, Bo-cai. 1996. NDWI – A normalized difference water index for remote sensing of 

vegetation liquid water from space. Remote Sensing of Environment 58, no. 3: 257-266. 

Gao, Zhigiang, Wei Gao, and Ni-Bin Chang. 2011. Integrating temperature vegetation dryness 

index (TVDI) and regional water stress index (RWSI) for drought assessment with the 

aid of LANDSAT TM/ETM+ images.  International Journal of Applied Earth 

Observation and Geoinformation 13, no. 3: 495-503. 

Halligan, Kerry. 2007. Mapping forest canopy fuels in Yellowstone National Park using lidar 

and hyperspectral data. PhD diss., University of California, Santa Barbara.  

Hawbaker, Todd. 2009. Human-fire interactions: Patterns of fire and risk to housing in the U.S. 

PhD diss., The University of Wisconsin at Madison.  

Hunt, E. Raymond Jr., Barrett N. Rock, and Park S. Nobel. 1987. Measurement of leaf relative 

water content by infrared reflectance. Remote Sensing of Environment 22, no. 3: 429-435. 

Hunter, Bruce Allan. 2005. A geospatial tool for wildfire threat analysis in Central Texas. 

Master’s thesis, University of North Texas.  

Jensen, Jennifer L.R., Karen S. Humes, Tamara Conner, Christopher J. Williams and John 

DeGroot. 2006. Estimation of biophysical characteristics for highly variable mixed-

conifer stands using small-footprint lidar. Canadian Journal of Forest Research 36, no. 

5: 1129-1138. 

Jensen, Jennifer L.R., Karen S. Humes, Lee A. Vierling, and Andrew T. Hudak. 2008. Discrete 

return lidar-based prediction of leaf area index in two conifer forests. Remote Sensing of 

Environment 112, no. 10: 3947-3957. 

Jensen, Jennifer L.R., Karen S. Humes, Andrew T. Hudak, Lee A. Vierling, and Eric Delmelle. 

2011. Evaluation of the MODIS LAI product using independent lidar-derived LAI: A 

case study in mixed conifer forest. Remote Sensing of Environment 115, no. 12: 3625-

3639. 

Jensen, John R. 2000. Remote Sensing of the Environment: An Earth Resource Perspective. 

Upper Saddle River, NJ: Prentice-Hall, Inc. 

Koch, Barbara. 2010. Status and future of laser scanning, synthetic aperture radar and 

hyperspectral remote sensing data for forest biomass assessment. ISPRS Journal of 

Photogrammetry and Remote Sensing 65, no. 6: 581-590. 



152 

 

 
 

Lampin-Maillet, Corinne, Marielle Jappiot, Marlène Long, Christophe Bouillon, Denis Morge, 

and Jean-Paul Ferrier. 2010. Mapping wildland-urban interfaces at large scales 

integrating housing density and vegetation aggregation for fire prevention in the south of 

France. Journal of Environmental Management 91, no. 3: 732-741.  

Lefsky, M.A., W.B. Cohen, S.A. Acker, G.G. Parker, T.A. Spies, and D. Harding. 1999. Lidar 

remote sensing of the canopy structure and biophysical properties of Douglas-fir western 

hemlock forests. Remote Sensing of Environment 70, no. 3: 339-361. 

Lefsky, M.A., D.P. Turner, M. Guzy, and W.B. Cohen. 2005. Combining lidar estimates of 

aboveground biomass and Landsat estimates of stand age for spatially extensive 

validation of modeled forest productivity. Remote Sensing of Environment 95, no. 4: 549-

558. 

Lein, James K. and Nicole I. Stump. 2009. Assessing wildfire potential within the wildland–

urban interface: A southeastern Ohio example. Applied Geography 29, no. 1: 21-34.  

Long, A. Forest Encyclopedia Network. http://www.forestencyclopedia.net/p/p467 (accessed 

September 12, 2012). 

Luo, Wei. 2004. A modeling approach to studying wildland urban interface fires. PhD diss., 

University of California, Berkeley.  

Maclean, G.A. and W.B. Krabill. 1986. Gross-merchantable timber volume estimation using an 

airborne LIDAR system. Canadian Journal of Remote Sensing 12, no. 1:7-18. 

Maune, D. F., ed. 2007. Digital Elevation Model Technologies and Applications: The DEM 

Users Manual. 2nd ed. Bethesda, MD: American Society for Photogrammetry and 

Remote Sensing.  

McVicar, Tim R. and David L. B. Jupp. 1998. The current and potential operational uses of 

remote sensing to aid decisions on drought exceptional circumstances in Australia: a 

review. Agricultural Systems 57, no. 3: 399-468. 

Mishra, Ashok K., and Vijay P. Singh. 2010. A review of drought concepts. Journal of 

Hydrology 391, no. 1-2: 202-216. 

Missoula Fire Sciences Laboratory.  Fire Behavior and Fire Danger Software. 

http://www.firemodels.org/index.php/national-systems (accessed November 24, 2011). 

Mutlu, Muge, Sorin C. Popescu, Curt Stripling, and Tom Spencer. 2008. Mapping surface fuel 

models using lidar and multispectral data fusion for fire behavior. Remote Sensing of 

Environment 112, no. 1: 274-285. 



153 

 

 
 

Naesset, Erik. 1997. Determination of mean tree height of forest stands using airborne laser 

scanner data. ISPRS Journal of Photogrammetry & Remote Sensing 52, no. 2: 49-56. 

The National Drought Mitigation Center.  Current U.S. Drought Monitor. http://drought.unl.edu/ 

(accessed September 25, 2011) 

Natural Resources Conservation Service.  PLANTS Profile. 

http://plants.usda.gov/java/profile?symbol=QUFU (accessed September 12, 2012) 

NatureServe. Ecological Systems of the United States. 

http://www.natureserve.org/publications/usEcologicalsystems.jsp (accessed September 

23, 2012) 

Nelson, R. M. 2000. Prediction of diurnal change in 10-h fuel stick moisture content. Canadian 

Journal of Forest Research 30: 1071-1087. 

National Oceanic and Atmospheric Administration (NOAA).  U.S. Experiences Warmest 

Summer on Record. http://txsdc.utsa.edu/ (accessed September 25, 2011). 

Popescu, Sorin C. and Kaiguang Zhao. 2008. A voxel-based lidar method for estimating crown 

base height for deciduous and pine trees. Remote Sensing of Environment 112, no. 3: 767-

781. 

Popescu, Sorin C., Kaiguang Zhao, Amy Neuenschwander, and Chinsu Lin. 2011. Satellite lidar 

vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass 

estimates and forest structure metrics at footprint level. Remote Sensing of Environment 

115, no. 11: 2786-2797. 

Radeloff, V.C., R.B. Hammer, S.I Stewart, J.S. Fried, S.S. Holcomb, and J.F. McKeefry. 2005. 

The Wildland Urban Interface in the United States. Ecological Applications 15: 799-805. 

Rhee, Jinyoung, Jungho Im, and Gregory J. Carbone. 2010. Monitoring agricultural drought for 

arid and humid regions using multi-sensor remote sensing data. Remote Sensing of 

Environment 114, no. 12: 2875-2887. 

Riano, D., E. Meier, B. Allgower, E. Chuvieco, and S.L. Ustin. 2003. Modeling airborne laser 

scanning data for the spatial generation of critical forest parameters in fire behavior 

modeling. Remote Sensing of Environment 86, no. 2: 177-186. 

Riano, D., E. Chuvieco, S. Condes, J. Gonzalez-Matesanz and S.L. Ustin. 2004. Generation of 

crown bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment 92, 

no. 3: 345-352. 

 



154 

 

 
 

Rothermel, R. C. 1972. A mathematical model for predicting fire spread in wildland fuels. 

General Technical Report INT-115. Ogden, UT: U.S. Department of Agriculture, Forest 

Service, Intermountain Forest and Range Experiment Station.  

http://www.firemodels.org/index.php/behaveplus-introduction/behaveplus-

publications#Rothermel_1972 

Rothermel, R. C. 1991. Predicting behavior and size of crown fires in the Northern Rocky 

Mountains. Research Paper INT-438. Ogden, UT: U.S. Department of Agriculture, Forest 

Service, Intermountain Research Station. 

http://www.firemodels.org/index.php/behaveplus-introduction/behaveplus-

publications#Rothermel_1991 

Rouse, J.W., R.H. Haas, D.W. Deering, J.A. Schell and J.C. Harlan. 1974. Monitoring 

Vegetation Systems in the Great Plains with ERTS. Proceedings, 3rd Earth Resource 

Technology Satellite (ERTS) Symposium. p. 48-62. 

Scott, Joe H., Robert E. Burgan. 2005. Standard fire behavior fuel models: a comprehensive set 

for use with Rothermel’s surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153. 

Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain 

Research Station.  

Shafran, Aric P. 2008. Risk externalities and the problem of wildfire risk. Journal of Urban 

Economics 64, no. 2: 488-495. 

Shan, J. and C. Toth, ed. 2008. Topographic Laser Ranging and Scanning, Principles and 

Processing. Boca Raton, FL: Taylor & Francis Group.  

Sims, Daniel A. and John A. Gamon. 2003. Estimation of vegetation water content and 

photosynthetic tissue area from spectral reflectance: a comparison of indices based on 

liquid water and chlorophyll absorption features. Remote Sensing of Environment 84, no. 

4: 201-207. 

Su, Zhongbo, Abreham Yacob, Jun Wen, Gerbert Roerink, Yanbo He, Benhu Gao, Hendrik 

Boogaard, and Cees van Diepen. 2003. Assessing relative soil moisture with remote 

sensing data: Theory, experimental validation, and application to drought monitoring 

over the north China plain. Physics and Chemistry of the Earth 28, no. 1-3: 89-101.  

Texas Forest Service.  TFS Newsroom.  

http://txforestservice.tamu.edu/main/article.aspx?id=12888 (accessed September 25, 

2011). 

Texas Natural Resources Information System. TNRIS Home Page. www.tnris.org (accessed 

December 10, 2011). 

 

Texas State Data Center.  Texas State Data Center. 



155 

 

 
 

http://txsdc.utsa.edu/Index.aspx (accessed December 10, 2011). 

Tian, Xin, Zhongbo Su, Erxue Chen, Zengyuan Li, Christiaan van der Tol, Jianping Guo, and 

Qisheng He. 2012. Estimation of forest above-ground biomass using multi-parameter 

remote sensing data over a cold and arid area. International Journal of Applied Earth 

Observation and Geoinformation 14, no. 1: 160-168. 

Theobald, David M. and William H. Romme. 2007. Expansion of the US wildland–urban 

interface. Landscape and Urban Planning 83, no. 4: 340-354.  

U.S. Department of Agriculture. 2011a. LIDAR & IFSAR Tools. 

http://forsys.cfr.washington.edu/JFSP06/lidar_&_ifsar_tools.htm (accessed December 10, 

2011). 

U.S. Department of Agriculture. 2011b. LANDFIRE. http://www.landfire.gov (accessed 

December 10, 2011). 

U.S. Forest Service. Wildland Fire Assessment System. http://www.wfas.net/ (accessed 

December 10, 2011). 

U.S. Forest Service. Index of Species Information. 

http://www.fs.fed.us/database/feis/plants/tree/junash/all.html (accessed September 12, 

2012). 

U.S. Geological Survey. Global Visualization Viewer. http://glovis.usgs.gov/ (accessed 

December 10, 2011). 

U.S. Geological Survey. National Land Cover Institute. http://landcover.usgs.gov/ (accessed 

February 19, 2012). 

Van Wagner. C. E. 1977. Conditions for the start and spread of crown fire. Canadian Journal of 

Forest Research 7 no. 1: 23-34.   

Verbesselt, J., B. Somers, J. van Aardt, I. Jonckheere, and P. Coppin. 2006. Monitoring 

herbaceous biomass and water content with SPOT VEGETATION time-series to improve 

fire risk assessment in savanna ecosystems. Remote Sensing of Environment 215, no. 1-3: 

239-250. 

Verbesselt, J., B. Somers, J. van Aardt, I. Jonckheere, and P. Coppin. 2007. Monitoring 

herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk 

prediction in savanna ecosystems. Remote Sensing of Environment 108, no. 4: 357-368. 

Xu, Jianchun. 2006. An approach to spatial data gathering technology: Realizing large-scale fire 

modeling in the wildland urban interface. PhD diss., University of California, Berkeley. 



156 

 

 
 

Yilmaz, M. Tugrul, E. Raymond Hunt Jr., and Thomas J. Jackson. 2008. Remote sensing of 

vegetation water content from equivalent water thickness using satellite imagery. Remote 

Sensing of Environment 112, no. 5: 2514-2522. 

Zarco-Tejada, P.J., C.A. Rueda, and S.L. Ustin. 2003. Water content estimation in vegetation 

with MODIS reflectance data and model inversion methods. Remote Sensing of 

Environment 85, no. 1: 109-124. 

Zhang, Yangjian, Hong S. He, and Jian Yang. 2008. The wildland–urban interface dynamics in 

the southeastern U.S. from 1990 to 2000. Landscape and Urban Planning 85, no. 3-4: 

155-162. 

Zhao, Kaiguang, Sorin Popescu and Ross Nelson. 2009. Lidar remote sensing of forest biomass: 

A scale-invariant estimation approach using airborne lasers. Remote Sensing of 

Environment 113, no. 1: 182-196. 

Zheng, G., J. M. Chen, Q. J. Tian, W. M. Ju, and X. Q. Xia. 2007. Combining remote sensing 

imagery and forest age inventory for biomass mapping. Journal of Environmental 

Management 85, no. 3: 616-623. 

 



 
 

 
 

VITA 

Shelby M. Coder was born in Dallas, Texas on September 16, 1984, and is the daughter 

of Craig E. Coder and L. Dianne Coder.  After completing her work at Mineola High School in 

2002, she entered Texas A&M University-College Station.  Shelby graduated in 2006 with a 

Bachelor of Science in Environmental Geosciences and minors in Geoinformatics and Geology.  

During the following years she was employed as a GIS analyst for the City of Pflugerville and 

then a GIS consultant at Lockwood, Andrews and Newnam, Inc.  Shelby has served as the GIS 

and lidar project manager at the Texas Natural Resources Information System since 2009.  In the 

fall of 2010, she entered the Graduate College of Texas State University-San Marcos. 

Permanent Address: shelbycoder@gmail.com 

This thesis was typed by Shelby M. Coder. 


