

INTEGER PROGRAMMING FOR DISCRETE OPTIMIZATION

OF THE AGILE SUPPLY CHAIN CONFIGURATION

PROBLEM

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Hayden D. Beauchamp, B.S.

San Marcos, Texas
August 2013

COPYRIGHT

by

Hayden Dan Beauchamp

2013

INTEGER PROGRAMMING FOR DISCRETE OPTIMIZATION

OF THE AGILE SUPPLY CHAIN CONFIGURATION

PROBLEM

Committee Members Approved:

Farhad Ameri, Chair

Clara Novoa

Vedaraman Sriraman

Approved:

J. Michael Willoughby
Dean of the Graduate College

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Hayden Beauchamp, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Ameri for his guidance and patience during the planning

and development of this research work, in addition to providing me with all of the

resources I needed to succeed.

I would like to express my very great appreciation to Dr. Novoa for the

collaboration and long hours. This work would not have been possible without the

direction and help she provided.

I would also like to thank Dr. Batey for his robust instruction in research

methodology and his continuous support through the duration of the graduate program.

This manuscript was submitted on May 7th, 2013.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

ABSTRACT ... xii

CHAPTER

 I. INTRODUCTION ..1

 II. PROBLEM STATEMENT ...4

Research Objective ... 4
Background ... 5

Supply Chain Management ... 5
Supply Chain Networks .. 6
Network Flow Models .. 6
Automated Matching System .. 7
Operations Research ... 8
Mathematical Programming.. 8
Mosel Pogramming Language .. 10

 III. LITERATURE REVIEW ..12

Supplier Selection Problem... 12

IV. RESEARCH METHODOLOGY ..15

Assumptions .. 17
Traditional Formulation Without Distance Constraints 19

Problem Definition.. 19
Model Construction .. 21
Model Solution.. 26
Distance Constraints ... 27

Traditional Formulation with Distance Constraints 27
Nonlinear Programming.. 27
Traditional Formulation with Cuts Added Dynamically 29

vii

Dynamic Constraint Introduction ... 29
Experimental Design ... 32
Column Generation ... 32

Problem Definition.. 33
Model Construction .. 34

Row Generation Decomposition Scheme ... 41
Model Construction .. 41

IV. ANALYSIS OF RESULTS ...44

Instance Data ... 44
Similarity Score .. 46
Supplier Capacity .. 47
Service Duration ... 47
Services per Work Order .. 48
Distance Threshold ... 49
Suppler/Service Ratio ... 49

Traditional Formulation Without Distance Constraints 49
Traditional Formulation with Distance Constraints 51
Traditional Formulation with Cuts.. 52

Toy Problem.. 52
Descriptive Statistics ... 53

Column Generation ... 59

V. CONCLUSION ...66

Future Work .. 68
Simulated Data .. 68
Descriptive models.. 68
Deployment ... 68
Database .. 69
Reformulation of the Column Generation Model 69
SLP Solver for Nonlinear Programs ... 70

APPENDIX A ..71

XpressMP Input/Output for Traditional Formulation 71
Toy Problem Data Input File .. 71
Toy Problem Results Output File ... 72

APPENDIX B ..74

Traditional Formulation Model Code in Mosel .. 74

APPENDIX C ..78

Traditional Formulation with Cuts.. 78

viii

APPENDIX D ..84

Quadradically Constrained Nonlinear Optimization Model 84

APPENDIX E ..90

Column Generation Master Model ... 90
Supplier Knapsack Code ... 97

APPENDIX F ..99

Row Generation Formulation ... 99
Row Generation Master Model ... 99
Row Generation Submodel ... 106

APPENDIX G ... 108

Data Generation Code ... 108

REFERENCES ..110

ix

LIST OF TABLES

Table Page

1. OR study vs. mathematical programming .. 17

2. Toy problem decision variable matrix .. 23

3. Similarity score input to Excel solver ... 24

4. Distances between any two suppliers k and l (mi) ... 28

5. Example solution for one work order ... 30

6. Components for objective function value computation .. 39

7. rows and right hand side. .. 39

8. Expanded matrix .. 40

9. Available capacity of the suppliers (hr) .. 40

10. Transposed disaggregation scheme... 43

11. ANOVA results for traditional formulation .. 45

12. ANOVA 2D vs. 3D duration array ... 48

13. Parameters provided to Excel spreadsheet .. 50

14. Solution provided by Excel Solver Solution ... 50

15. Solution provided by XpressIVE .. 51

16. XpressIVE results for toy problem cuts .. 53

17. Problem instances ... 54

18. Column generation traditional and transposed ... 60

19. Instances with similar work order size .. 62

x

20. Raw Data from traditional model and row generation.. 64

xi

LIST OF FIGURES

Figure Page

1. Flowchart of the column generation process .. 38

2. Boxplot of time vs. problem size vs. instance .. 45

3. The six cut levels and their effect on average score ... 54

4. Categorization of cuts values by number of suppliers .. 55

5. Average optimum and cut score and difference .. 56

6. Average penalties of 37.5% cuts grouped by number of suppliers. 57

7. Two levels of cuts and optimal solutions. ... 57

8. Computation time required to perform cuts at two levels... 58

9. Column generation performance before reformulation .. 59

10. Computation reduction from decomposition reformulation 61

11. Changes observed in performance between models ... 62

12. Computation time for ten sizes of each model formulation .. 63

xii

ABSTRACT

INTEGER PROGRAMMING FOR DISCRETE OPTIMIZATION

OF THE AGILE SUPPLY CHAIN CONFIGURATION

PROBLEM

by

Hayden Dan Beauchamp, B.S.

Texas State University-San Marcos

August 2013

SUPERVISING PROFESSOR: FARHAD AMERI

In order to keep manufacturing operations in lockstep with current market trends,

businesses must continue to incorporate agility into their supply chains. This includes the

ability to assess and select new suppliers quickly. The Digital Manufacturing Market

(DMM) and Manufacturing Service Description Language (MSDL) have been devised

previously as the necessary IT components for improving the intelligence of the supply

chain configuration process. The objective of this research is to enhance the performance

of the DMM’s search engine by incorporating combinatorial optimization techniques. In

particular, this research is aimed at creating an integer programming formulation to

efficiently and effectively solve the supply chain configuration problem by maximizing

the technological competencies of the assigned suppliers, while meeting capacity and

distance constraints. The column generation approach is adopted to resolve the issue of

limited scalability of the traditional LP formulation. Vendor cuts are proposed as a

xiii

method to constrain distance inside the supply chain network. The proposed column

generation formulation successfully enables transition from a computationally prohibitive

methodology to a fully scalable model that maintains functionality at very large sizes.

The results also show that it is possible to achieve an economy of distance with little

effect on match compatibility.

1

I. INTRODUCTION

Manufacturing companies are progressively improving the responsiveness,

flexibility, and agility of their supply chains in order to maintain the capability to meet

market demand and react promptly to unforeseen changes. To obtain agility and

responsiveness, manufacturers should be able to adjust their capacity and capability in a

timely manner through identification of the right partners. This research deals with the

agile supply chain configuration problem. The objective is to improve the effectiveness

of the connection process between buyers and sellers of manufacturing services in a

distributed environment. New solutions are called for to accommodate the specific needs

of agile supply chains, such as increased demand for speed and accuracy while making

sourcing decisions at the strategic and tactical levels. Deployment of an agile supply

chain can be difficult because it requires rapid identification and evaluation of suppliers

that have the necessary technical capabilities and operational capacity to complete the

requested services from an increasingly vast pool of potential suppliers.

One promising solution for improving the efficiency and effectiveness of the agile

supply chain deployment process is to adopt the paradigm of e-commerce for trading

manufacturing services. Electronic marketplaces (e-markets) for manufacturing services

currently exist for certain industries such as contract manufacturing (MFG.com, Inc.,

2013), fashion apparel (Messe Frankfurt Group, 2013) and transportation (Cayot, 2007).

A web-based framework allows for interaction with a far greater number of potential

suppliers, thus providing the customer with a wide array of options in terms of

2

manufacturing capabilities, costs, etc. Moreover, the automation capabilities offered by

web-based solutions improve the efficacy of various computational tasks required for

supply chain management, including supplier identification and evaluation. Despite their

numerous advantages, electronic marketplaces currently fail in building accurate

connections between buyers and sellers of manufacturing services mainly due to the

syntactic (keyword-based) nature of the search process. To address the need for

enhancing the performance of search engines in electronic marketplaces Ameri and Dutta

proposed a semantic approach to supplier discovery through developing a market

framework, called Digital Manufacturing Market (DMM), based on the Semantic Web

(SW) technology (Ameri, 2008). In DMM buyers and sellers of manufacturing services

describe their capabilities and needs using a formal ontology called Manufacturing

Service Description Language (MSDL) (Ameri, 2006). By using the ontological

representation of supply and demand entities, semantic search engines can quantify the

similarities of service provisions (advertisements) and service requests (queries). For

each advertisement-query pair, the semantic search engine returns a numeric similarity

score between 0 (completely dissimilar) and 1 (completely similar). Finding the semantic

similarities of supply and demand on a one-to-one basis can adequately address the needs

of the supply chain configuration problem when the supply chain is small in size and

composed of few suppliers. However, as supply chain size increases, the optimal

configuration of the supply chain becomes more challenging. The optimal supply chain in

DMM is the one with the maximum similarity score. There exist, however, multiple types

of constraints (e.g. capacity and distance constraints) which complicate the optimization

problem and render it difficult to solve when dealing with a large number of potential

3

suppliers. Because DMM is a web-based platform, it is envisioned that the supply and

demand pools will be fairly large; each composed of thousands of businesses distributed

globally. Therefore, a methodology needs to be developed for optimization of supply

chains configured for the DMM. One research outcome which would fulfill the needs of

this market transaction phase is an optimization model that can be applied to improve the

efficacy of the buyer/seller connection process.

4

II. PROBLEM STATEMENT

Supply chain configuration is a multi-criteria problem in which multiple factors

such as technological competency, geographic location, capacity, quality, delivery time,

and cost should be taken into consideration. The use of a web-based platform for

sourcing allows for access to large pools of suppliers for constructing agile supply chains.

Large-scale optimization can be used to design optimal supply chains. However, the size

of the solution space of the optimization model is directly correlated to the number of

supplier agents. In other words, computational complexity increases as the supplier pool

grows. In order to arrive at an optimal solution with modest computational resources, a

mathematical methodology suitable for large-scale problems is needed.

Research Objective

The objective of this study is to define the agile supply chain configuration

problem and identify the characteristics of a suitable analytical tool to supplement the

search algorithms of the DMM scoring agent. The primary function of this tool is to

generate optimal supply chains with respect to the degree of similarity between the

aggregate manufacturing capabilities of the supply chain and the manufacturing needs of

the target work order. The validity of the resulting supply chains, form the technological

capability point of view, is already verified by the semantic search engine within the

DMM platform.

The explicit objective of this research, as will be demonstrated below, is to

establish a discrete integer programming formulation to efficiently and effectively

5

solve the supply chain deployment problem by maximizing the semantic similarity score

between the proposed supply chain and the query, while meeting the capacity and

distance constraints.

Background

Supply Chain Management

Management is practiced through operations incorporating the acquisition and

allocation of resources to realize organizational goals. Those who process or distribute

products or services practice supply chain management (Shapiro, 2006). While effective

business management involves an integrated approach, truly efficient supply chains are

achieved through integrated business planning. Indeed, some businesses advertise the

economic benefits that customers experience due to advanced logistics. Integrated

planning is primarily possible because of the recent development of robust information

technology (IT) systems. Still, extensive and advanced IT systems are of little use

without the proper analytical tools. The integration of supply chain activities is achieved

through the implementation of enterprise resource planning (ERP) systems or the like.

Although transactional IT systems have proven valuable towards integration, flexibility

seems to be a common issue (Shapiro, 2006). In order to realize improvements in

decision making, manufacturing and distribution companies are emphasizing analytical

IT. Diagnostic systems are primarily driven by optimization models, which can be net-

revenue maximizing or cost-minimizing. With access to large transactional databases

they can fully quantify the trade-offs between cost, time, and quality of service or

product. These models can be used to gain control of the costs and risks associated with

6

vehicle routing, non-value-adding supply chain costs, process throughput and virtually

endless components of ever more elaborate supply chains.

As we have seen, modern supply chain management is practiced through the

effective use of data, models and modeling systems. The purpose of this research is to

identify an adequate modeling system and to develop functional models to solve the agile

supply chain deployment problem.

Supply Chain Networks

A supply chain is composed of facilities, internal or third-party, which modify or

handle a company’s products (Shapiro, 2006). Transportation links identify the route that

products flow through, from outside the network as raw materials, between factories and

distribution centers, and finally to distributed markets. At minimum, supply chain

management addresses functional integration, i.e., consideration of manufacturing,

transportation, warehousing, purchasing and inventory management operations during

decision making. This is accomplished through the integration of specialized forecasting

and simulation models which optimize each component.

Network Flow Models

The agile supply chain configuration problem requires that we address

transportation and manufacturing. The classic transportation problem is a special case of

the network flow model, which is not applicable, while the general network flow problem

resembles some aspects of our problem. The penultimate goal of a model which

optimizes supply chains designed in DMM is to reduce transportation costs while

providing compatible matches. By simplifying transportation costs the problem can be

partially represented with a minimum cost network flow model. The ultimate goal of the

7

model is to produce accurate matches while controlling cost. By adding the certain

elements of the network flow model to the primary formulation, we can limit distance

while designing effective supply chains.

Automated Matching System

Automation and intelligence are the two most important requirements for virtual

supply chain deployment (Ameri & McArthur, 2011). Traditional methods for matching

supply and demand in a virtual marketplace include keyword search, directory search and

database search. By using an ontological approach, the matching process can be

performed more accurately (Farhad Ameri & Dutta, 2008). The semantic supplier

discovery process can improve both the intelligence and the automation of pairing by

reducing errors and human resource requirements.

In previous research, an agent-based model was developed for supply chain

configuration. In the proposed model, the buyers and sellers are represented by

blackboard and yellowpage agents respectively (Ameri & Patil, 2012). The middle agent

conducts the search and matching process. The seller subscribes to a yellowpage agent to

offer services, while the buyer submits a request-for-quote (RFQ) to a blackboard agent.

Customers and suppliers each formulate a query to advertise their preferred match. Each

query uses MSDL to outline the service, actor and part for consideration by the middle

agents. Ideally, patrons of the DMM will be able to choose from multiple middle agents

to align their needs with certain industries or markets. Matches are made when each actor

queries a complimentary agent. A customer agent would describe the nature of the

manufacturing service required, the relevant part specifications and the distinctions that

an ideal supplier would have. Then, a search engine would match the buyers query to

8

information provided by suppliers looking to perform similar work. Conversely, supplier

agents would advertise their general manufacturing capabilities, as well as the specific

manufacturing processes they are willing to perform. When a customer queries the

yellow page agent the search algorithm of the machine agent matches the request with

sellers based on the current directory information. The search algorithms, and the overall

methodology of the search engine, determine how accurately the proposed match reflects

the query. The search engine tests potential matches, then scores and ranks them.

However, no optimization is performed to improve the overall similarity score of the

resulting supply chain. This work is aimed to enhance the performance of the supply

chain configuration process by utilizing optimization techniques.

Operations Research

Operations research is the scientific and technological methodology of decision

making (Shapiro, 2006). Decision making is improved by constructing mathematical

models that represent real world problems. A model is populated by data to create

numerical systems that can be optimized by through the application of an algorithm.

Technology primarily serves as the computational resource that applies the mathematical

method. Together, they form a decision-making engine.

Mathematical Programming

The area of applied mathematics called mathematical programming involves the

optimization of a criterion function subject to constraints. By formulating a deterministic

optimization model that accurately represents a problem, a solution to that problem can

be found with the appropriate mathematical tools. An optimization model is essentially a

set of equations and inequalities. Solving the system of equations produces feasible

9

solutions. This cannot be done algebraically, as practical problems are too complex to be

manually solved. Some problems can employ a simpler methodology through the

application of heuristics. That is to say, models can be solved with a rules-based

approach. In other words, prescriptive analysis can yield feasible solutions with limited

computation. However, heuristics solutions are often limited to approximations, and can

confer performance benefits when used to supplement more effective algorithms. Thus,

results from purely heuristic approaches are usually per contra to expectations.

Computers are required to apply known methods to produce final solutions. First,

solution algorithms are used to construction a computer program (solver). Then, solvers

are collected to form an optimizer, the brain of an analytic IT system. An operations

research study is performed to model a system. Exact optimal solutions can be found

through the application of the appropriate solvers to a well-formulated optimization

model. When these decisions are implemented they can lead to impressive improvements

in revenue, lead time, risk, etc.

Linear Programming

A special case in mathematical programming exists when the objective value is

directly proportional to the inclusion of its variables. In other words, the program is

driven and constrained by linear equations. This, then, is called a linear program (LP).

Because so many practical problems can be modeled as linear programs, established

techniques and tools are available to solve them.

Discrete Optimization

 In some cases, certain variables must assume whole number values, and are

classified as discrete optimization models. Furthermore, integer programs (IPs) are those

10

that contain decision variables with integrality conditions. When such a model retains

variables which are free to assume real values it is classified as a mixed-integer program

(MIP). Integer linear programs (ILPs) then, are discrete LPs. In this case the conventional

practice of linear programming does not apply. For this reason these problems are much

harder to solve. However, improvements in methodology and technology have made the

solution of complex integer programs more feasible.

Mosel Programming Language

The FICOTM Xpress Optimization Suite is used to model the problem the

computer. Algorithms are constructed using the IVE console where the appropriate

solvers can be applied. XpressMP uses Mosel because it is a modeling language that also

functions as a programming language. Therefore, modeling statements call forth the

required procedures needed to solve the problem. In this way, modeling statements and

solving statements a can be intelligently designed to explicitly define solution algorithms

for large scale optimization. Different types of problems employ different functions, and

therefore require different solvers. In order to maintain operational efficiency the Mosel

system allows the user to assign particular modules to interface only with the required

solvers. The distinct lexis of each module defines a novel set of functions and procedures,

extending the capacity of the dynamic modeling environment as needed.

To be effective in application Mosel is designed with an open architecture for use

with other software. The e-commerce platform will relay query information to the

manufacturing services ontology database, where it will be processed into similarity score

data. The supply chain optimization model will access the database to retrieve the

processed query data to perform the optimization. Although the mathematical

11

programming research is performed using a standalone program, the software which runs

the final application will replicate its own modeling environment using Mosel libraries.

In this way, a global software application can perform the modeling and solving tasks in

series with the other operations necessary to provide the agile supply chain design

service.

12

III. LITERATURE REVIEW

As a cross-functional driver of supply chain performance a firm’s sourcing is

integral to remaining competitive in today’s rapidly changing markets (Shapiro, 2006).

Businesses are continuing to incorporate agility into their supply chains in order to keep

their manufacturing operations at pace with product development. Typical sourcing

processes include supplier scoring and assessment, supplier selection and contract

negotiation, design collaboration, procurement, and sourcing planning/analysis (Shapiro,

2006). Analytical tools are typically relied upon to make supplier selection and

purchasing decisions, which are the processes that the DDM platform will serve to

facilitate. Supplier assessment and evaluation is modeled as a supplier selection problem,

while purchasing metrics like order quantity are determined by the order allocation

problem.

Supplier Selection Problem

The underlying technical problem of this thesis can be classified under the general

category of supplier selection and order allocation problems. Supplier selection is a

multiple criteria decision-making problem (Çebi & Bayraktar, 2003). A typical

optimization model in supplier selection has multiple objective functions to address

multiple criteria, such as minimizing the purchasing price and manufacturing lead time,

and maximizing the quality of the finished goods (Huo &Wei, 2008). Optimization

models initially included up to 23 parameters for evaluating suppliers, including capacity,

13

delivery time and quantity-based price discounts (Dickson, 1966). Since then additional

studies have identified up to 60 criteria used to assess suppliers (Roa & Kiser, 1980).

The supplier selection and order allocation problems have been studied for over

fifty years. Researchers and practitioners have developed and implemented approaches to

model these problems using mixed integer linear programming (MILP), multi-objective

programming (MOP), goal programming (GP) and nonlinear programming (NLP)

(Sanayei, Farid Mousavi, Abdi, & Mohaghar, 2008). Some examples of the methods used

include IP with tabu search heuristic (Ko, Kim, & Hwang, 2001), Goal Programming

(Karpak, Kumcu, & Kasuganti, 1999). Fuzzy-Multi-objective Integer Programming (Hue

& Wei, 2008), Genetic Algorithms (NLP) (Ding et al., 2004), Analytical Hierarchy

Process (AHP) (Nydick & Hill, 1992), Artificial Neural Network (ANN) (Wu, Zhang,

Zheng, & Xi, 2010), and Analytical Network Process (ANP) (Kirrytopoulos, Leopoulos,

Mavrota, & Voulgaridou, 2010), Multi-attribute Utility approach (MATU) (Min, 1994),

data envelopment analysis (DEA), voting analytical hierarchy process (VAHP), total cost

approach (TCA), and artificial intelligence methods. AHP can be combined with linear

programming to include order allocation problems across multiple suppliers (Ghodsypour

& O’brien, 1998) or with other methods. These hybrid approaches have varying degrees

of success (Sanayei, Farid Mousavi, Abdi, & Mohaghar, 2008).

Chamodrakas, Batis and Martakos (2010) simplified the supplier selection

problem in a business to business e-market environment by breaking it into two stages. In

the initial screening stage satisficing can be used to qualify vendors. The computational

complexity of the problem in the final supplier selection stage is greatly reduced in

14

comparison to the unpruned model, and can be solve with Fuzzy Parameter Programming

(Chamodrakas et al., 2010).

15

IV. RESEARCH METHODOLOGY

The manufacturing services e-commerce platform requires a customized

optimization technique to drive the decision-making process. The DMM framework

provides a distinct advantage when solving the supplier selection problem. The degree of

complexity needed to model typical supplier criteria is responsible for producing the

variety of modeling systems and solution schemes described above. The DMM approach

involves the decomposition of the matching process into multiple phases, namely,

supplier assessment, evaluation and selection. MSDL is used as an ontology for the

description of customer RFQs and supplier advertisements for generating similarity

scores in the supplier assessment phase. Three principal components of semantic

descriptions are stored in the DMM system. Both qualitative and quantitative descriptions

of manufacturing process capabilities and related part specifications and constraints,

either advertised or required, reflect manufacturing service capabilities. The third type of

characteristic is supplier criteria like quality level and service level. MSDL is also used to

describe both qualitative and quantitative attributes, as well as tangible and intangible

criteria. The automated matching system quantifies the similarity between a query and its

prospective counterparts. Possible matches are scored, likely occurring in multiple stages,

similar to the approach developed by Chamodrakas et al. (2010), in order to reduce the

computational complexity of the assessment process. This research deals with the

supplier evaluation phase. The analytical tool proposed in this paper is intended to

optimize the assessment scores of assigned suppliers while considering capacity and

16

distance constraints. When the problem is decomposed in this way, the burden of

computation falls on the similarity assessment agent. Additional algorithms will need to

be developed to quantify similarity with and expanding list of supplier criteria. The

supplier selection model proposed here needs only a single objective of maximizing the

aggregated similarity score. Future formulations of the supplier evaluation model can

include more supplier criteria and constraints. The requirements of the analytical tool for

the evaluation phase, as currently outlined, are much simpler and can be addressed with a

preliminary operations research study.

The operations research (OR) study is a fairly standardized process consisting of

five phases, namely, problem definition, model construction, model solution, model

validation and model implementation (Taha, 2007). Because the practical purpose of an

OR study is to methodically improve systems, the final phase is implementation of the

solution. This academic study is theoretical. Therefore, feedback from solution

implementation, such as collection and analysis of new data, is beyond the scope of this

research. However, consideration regarding the possibility of the proposed decision to be

implemented is addressed in the model validation phase. Fourer, Gay, & Kernighhan

(2002) have decomposed the mathematical programming process into six main steps as

shown in Table 1. These have been numbered such that we can use them as a reference as

we progress through the MIP development.

17

Table 1. OR study vs. mathematical programming

Phases of an OR
study Steps of the Mathematical Programming Process

Problem Definition 1

Outline the scope and assumptions of the
proposed analytical tool. Define the variables,

objectives and constraints that accurately
represent the general form of the problem to be

solved.
2 Collect data from an explicit instance.

Model Construction 3

Using the preliminary formulation and data
identify an objective function that characterizes

the interaction of the variables which drive
value to be optimized. Interpret apparent

limitations in the problem which restrict the
data into constraint equations.

Model Solution 4

Use a solver program to apply an algorithm and
solve the problem instance. The output of the

model includes the optimal values of the
variables.

Model Validation
5 Analyze the results.

6 Refine the model, input and output. Repeat as
needed.

Model
Implementation Ø Ø

The component definition is relatively straightforward, while design and

refinement of the optimization algorithm will likely iterate to allow for systematic

improvements to model construction and solution through various optimization

techniques. Because we are not collecting data, it must be generated. Appropriate

assumptions regarding data generation are crucial to the validity of the proposed model

and solution scheme.

Assumptions

Before starting the mathematical programming process is will be necessary to

simplify the system we are attempting to model. In order for preliminary formulation to

accurately represent the real-world, certain assumptions must be made. The model can be

18

revised to include the phenomena outlined by the assumptions in subsequent

formulations.

Assumption 1: Raw materials and finished product transportation not

considered. Although distances outside the supplier network are traditionally considered

in the supply chain network design process, only distances between suppliers will be

modeled.

Assumption 2: Each work order contains independent services. Some

manufacturing services are typically performed in rapid succession or in series with

others as part of a larger process, or are otherwise traditionally performed by one supplier

for a handful of reasons. Excluding this should have no effect on the validity of the

formulation.

Assumption 3: Best match is the primary objective of the model. Here we

assume that a higher aggregate score of a proposed supply chain configuration is

preferred over those which contain particular suppliers with outstanding score, but may

have a lower total overall. Other practical reasons exist for supplier preference. Manual

supplier selection is a parameter of query specification. It is therefore a capability of the

model regardless of formulation. Thus, it does not impact performance and will not be

tested in this study.

Assumption 4: Range of process duration is realistic. Each service requires a

certain number of hours per batch to complete, and will vary between suppliers. Each

supplier will perform the service within a certain range, which will vary depending on

industry and process type. The model will simulate this randomly. The functionality of

the model should be the same when handling real data, in this respect.

19

Assumption 5: Supplier matching scores are random. The scores of the data

we are using are randomized. Realistic data would show trends in scores due to the nature

of manufacturing process specialization, i.e., the individual capabilities of a manufacturer

are interrelated. Nevertheless, a robust model, which can handle randomized scores, is

expected to perform well when applied to real samples. This is because real similarity

score data for work orders will likely exhibit trends within suppliers. Some suppliers will

not possess capabilities in queried areas, while those that do will show a tendency to be

suited to multiple services in that work order. These practical scenarios would

hypothetically require less distance than randomized problem instances where each

supplier is suited to fulfill a fraction of the services in a work order.

Traditional Formulation Without Distance Constraints

Problem Definition

Components

The principal elements of the problem are the decision alternatives, restrictions

and the objective criterion used to evaluate the alternatives (Taha, 2007). The objective of

our supply chain optimization model is to fill needs by matching queried services with

offered services. In other words, we are assigning members of one set to those of another.

Defining the characteristics of the objective and constraint functions will illustrate the

kind of problem we are attempting to solve. We know that variables will be assigned to

sets by using binary coefficients, and that assignment constraints will govern the

operation of the optimization model. Studying this problem classification will facilitate

the construction of the model.

20

Set Partitioning Problem

Set packing, covering and partitioning models are those that employ binary

decision variables to identify objects or agents as part of the solution (Rardin, 1998).

The type of assignment problem depends on the how it is constrained. Set

covering constraints require at least one member of the set of agents to

be included in the solution. A notable example involves the use a modified maximal

covering model to plan the layout of EMS stations in Austin, TX (Eaton, Daskin,

Simmons, Bulloch, & Jansma, 1985). This set covering model was designed to determine

the location of each station, and its capacity to provide varying levels of service to

overlapping regions with limited equipment, human resources and funding. In other

words, each area is assigned at least one agent to perform every type of service.

Alternatively, set packing models involve the limitation of agent assignments to one at

most. Example problems include packing a set of items into the smallest number of

containers and packing the most items into a fixed number of containers. While covering

and packing constraints bound assignment, set partitioning constraints require the

assignment of exactly one agent to each member of the solution set.

Likewise, our supply chain design problem requires that every service be performed by

one supplier. Therefore, it is a set partitioning problem. Still, it can be further classified.

Generalized Assignment Problem

Because the specific objective is to maximize the aggregated score of all matches

by assigning each requested service to one agent without violating its capacity, this is a

generalized assignment model (Rardin, 1998). The Generalized Assignment Problem

21

(GAP) is significant because its definition underpins models formulated to solve

problems in resource scheduling, facility location, vehicle routing and manufacturing

systems (Savelsbergh, 1997). In fact, the GAP foundation has been used to support

optimization in crew scheduling, stochastic batch-sizing, capacitated lot-sizing, sports

league scheduling, service network design, political districting, efficient production-

distribution system design, flexible manufacturing systems, vehicle routing with

simultaneous distribution and collection, and much more.

Data from Problem Instance

A small example (toy problem) is used to provide a working reference for the

mathematical programming formulations. The toy problem will also provide an

illustration of how each model operates. The visual aids that follow will illustrate only

the smallest size problem. A range of large scale optimizations will be run, measured and

compared. These robust comparisons will provide the most meaning to the OR study.

An LP has been formulated to model the toy problem for this application.

Microsoft Excel is used to digitally model the LP and its solver generates the optimal

solution, as verified by manual computation. This will be used to validate the solution

provided by XpressIVE. The basic LP generates a valid solution to the toy problem, thus

confirming definition and implementation of the optimization model.

Model Construction

The linear program formulated using a traditional discrete programming approach

has one objective function (i.e. the equation that quantifies the decision consequences)

which aggregates individual service-supplier scores of the selected suppliers. The

objective of the model is to maximize the overall score by assigning values to the binary

22

decision variables. In effect, it will provide high-scoring matches while satisfying all

constraints.

The optimization model uses parameters and data provided by the toy problem to

create a pool of possible solutions. If formulated correctly, the LP should provide the

optimal solution. A solver will assign values to the decision variables in such a way that

the highest value for the objective function is produced. The formulation uses binary

decision variables, linear constraints, and a single linear objective function.

Decision Variables

 The decision variables are a matrix of binary values that determine the inclusion

of customer/supplier matches on a service-by-service basis.

 For example, 1 if service in work order i is performed by supplier k.

Table 2 shows that the rows summations in the array of decision variables is constrained

to one.

23

Table 2. Toy problem decision variable matrix

 Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5
WO1

S11 X111 X112 · · X115 =1
S21 X121 · =1
S31 · · =1

WO2
S12 · · =1
S22 · · =1
S23 · · =1

WO3
S13 · · =1
S23 · · =1
S33 X331 X332 · · X335 =1

 <=C1 <=C2 <=C3 <=C4 <=C5

After the decision variables (inside the table are either 1 or 0) are chosen, the

scores () associated with those pairs are aggregated to produce the objective

value. The Boolean inclusion of the individual scores is affected by multiplying an array

of scores, of identical dimensions, by this table. The overall score is quantified by

summing the score of each assignment.

Parameters/Input Data

The toy problem is used to simulate practical application of the model by

providing parameters of a workable size.

 is the pre-defined threshold for total distance between suppliers in work

order i

 is the duration of/capacity required by service ji in work order i

 is the total available capacity of supplier k

 is the matching score of assigning supplier k to service ji in work order i

24

Table 3 illustrates how these input parameters are input in spreadsheet form to the

Microsoft Excel solver.

Table 3. Similarity score input to Excel solver

 Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5
WO1 Duration

S11 0.64 0.32 0.50 0.43 0.71 3 h
S21 0.23 0.63 0.95 0.58 0.01 7 h
S31 0.15 0.56 0.40 0.42 0.54 9 h

WO2
S12 0.11 0.32 0.38 0.67 0.89 11 h
S22 0.55 0.67 0.34 0.78 0.29 10 h
S23 0.00 0.00 0.00 0.00 0.00 0 h

WO3
S13 0.39 0.58 0.22 0.33 0.24 5 h
S23 0.41 0.08 0.92 0.62 0.78 8 h
S33 0.29 0.45 0.34 0.07 0.11 3 h

Capacity 17 h 13 h 12 h 19 h 17 h

The score provides a virtual quantification of similarity between services

demanded and processes supplied in the digital manufacturing market. The LP matches

individual service requests with suppliers based on the score and constraints. The

objective value is driven by the objective function coefficients (score) and the Boolean

assignment of score inclusion via corresponding binary decision variable.

Objective Function

The objective function is used to rate decisions. The objective function of this

model is a linear equation that contains all of the decision variables. The Traditional

Objective function (TOF) is used to maximize the matching scores while assigning all

services requested in work orders to the available suppliers.

25

The objective function is essentially a weighted sum, where the coefficients that

value each decision variable are similarity scores associated with each possible match

between service and supplier. The objective of the model is to maximize the total score

while satisfying any constraints.

This LP has a solution space which is unimodal. The linear constraints form a

convex set, and the objective function is concave. The purpose of the objective function

is to rank the values of the decision variables in such a way that, when any three are

modeled in a solution space, the coordinates which represent the intersection of a point in

the feasible region of the multi-dimensional objective function curve generated produce

the highest score aggregate and therefore the optimal solution.

Constraints

Some simple constraints can be applied to define boundaries in the solution space.

All constraints in the LP are equations or inequalities that serve to define the practical

validity of possible solutions, based on limitations of the systems modeled in the toy

problem.

Constraint T1 requires each service, in each work order, to be assigned to a single

supplier.

 Constraint T2 prevents the optimizer from creating solutions which would require

suppliers to exceed their capacity in order to fulfill the work orders requested.

26

Model Solution

The basic LP model generates a valid solution to the toy problem as supported by

the Excel solver results, thus confirming the definition of the problem in Mosel and

implementation of the optimization model in XpressMP.

Model Scalability

 The original toy problem contained 5 suppliers and 45 decision variables. The

analytical tool that is need for this application will ultimately handle hundreds of

thousands of suppliers. However, the computation resources available for this study will

only be able to process a fraction of that number. The preliminary formulation must first

be failure tested to establish a range of feasibility for this machine (Intel® Core™ i7

2600 CPU @ 3.4 GHz, 16.00 GB of RAM, Microsoft Windows 7, 64-bit Operating

System). Problem size is a product of number of total services and suppliers. Problems

with 25, 50, 75, 100, 125, 150, and 175 suppliers will each have two levels of services.

Five replicates will be tested for each size. The runs are randomized and run serially by a

master program. The results of each run are transmitted automatically to an Excel

database.

The original formulation assumed for simplicity that each supplier consumes

identical capacity resource to perform each service. In addition to being unrealistic, it has

also been proven to make very large problems more difficult to solve because of a

phenomenon called symmetry (Savelsbergh, 2002). Therefore, the service duration

parameter is reformulated to an array with 3 dimensions.

27

Distance Constraints

The general formulation of the GAP is insufficiently bounded for our application.

The traditional LP model has been constructed to deliver optimum query/provision

matches regardless of transportation costs. There are multiple ways to constrain the

model to address these costs. Each approach will observe the following: Distance

constraints in this study are intentionally oversimplified in order to easily assess risk and

performance metrics like transportation costs, transportation risk, delay risk and transit

time. These factors impact operational costs and drive sourcing decisions in supply chain

management. This thesis will deal with these drivers in a general way. While some of

these costs are indirect, all are directly correlated with distance. Therefore, the magnitude

of a transportation link is a general predictor of its associated costs. By reducing cost

input to arc distance, the network flow problem can be optimized using a minimum cost

flow model. Future models can include more specific parameters and constraint functions

in order to approach optimization in a more realistic manner.

Traditional Formulation with Distance Constraints

Nonlinear Programming

Distance threshold (D_max) values are used to limit the total distance traveled in

each work orders in a solution in order to meet the transportation cost and time

constraints specified by the customer. Therefore, the virtual constraint total distance

traveled in work order i ≤ D_maxi is to be applied in the algorithm. The traditional

mathematical programming approach involves the inclusion of an explicit distance

constraint which defines the relationship between work order distances and threshold

parameters as a set of inequalities. The T3 constraints below are similar to those used to

28

define the objective function of a quadratic assignment model. They sums the distance of

all transportation links between suppliers, shown in Table 4.

In Table 8 the distance matrix contains all distance between suppliers.

Table 4. Distances between any two suppliers k and l (mi)

 Sup1 Sup2 Sup3 Sup4 Sup5
Sup1 0 34 45 87 22
Sup2 34 0 89 69 23
Sup3 45 89 0 13 35
Sup4 87 69 13 0 18
Sup5 22 23 35 18 0

While most decision variables will become zeros, the assignment of a supplier to

a service is represented by a one. The double decision variable coefficients in these

inequalities produce non-zero values only when a pair of decision variables is quantified.

In this way, only the distances of the chosen transportation links are aggregated.

While the T1 and T2 constraint families are arrays of linear constraints, T3 are

dynamic sets of quadratic constraints. Therefore, the model becomes a nonlinear program

(NLP), specifically a nonlinear integer program. NLPs require a different approach, and

the combinatorial nature of NLIP are especially difficult to solve. The Xpress SLP solver

is used to make successive linear approximations of the mixed integer linear formulation.

Nevertheless, nonlinear integer programs are difficult to solve and may not be

appropriate for the size aspirations of the agile supply chain design platform.

29

Traditional Formulation with Cuts Added Dynamically

Our model is deterministic because all of the parameters are knowable. Dynamic

programming involves the decomposition of a problem in to smaller components to be

solved recursively. Deterministic dynamic programming is used to solve shortest path

problems and could be used to model distance in the agile supply chain design problem.

However, solving models recursively means that the final solution depends on the initial

solution. Dynamic programming finds local optima and would not allow us to find exact

optimal solutions. Nevertheless, it may still be advantageous to break down the model

into smaller parts. We will explore this concept later with an alternative formulation

called column generation. First, the concept of dynamic constraint declaration will be

considered as a causal solution to the distance problem.

Enforcement of the distance thresholds, as we have seen, cannot be addressed

with a global constraint without reducing the tractability of the model. A simpler

approach called work order assignment cuts can theoretically accomplish the same end

via different means. The model can iteratively introduce case-specific constraints, which

together bound the solution to distance thresholds.

Dynamic Constraint Introduction

In order to produce feasible solutions without enumerating all possible

permutations of transportation links before running the program, individual constraints

can be introduced on an ad hoc basis. The model will produce the solution with the

highest objective value the first time the LP is solved. The model does not terminate after

the first solution is generated because it may be infeasible with respect to distance

constraints. The distances between suppliers assigned in each work order are summed.

30

The total distance cannot exceed the arbitrary threshold value (T3). For each work order

which fails the distance threshold test, the program will automatically add a constraint

which prohibits that particular assignment of supplier matches.

After the new vendor cuts constraints are added for iteration the optimizer is

prompted to resolve the problem. This process repeats until all distance constraints are

satisfied. Table 5 shows an example where the optimizer chooses suppliers 2, 1, and 4 for

work order one. It is important to note that while the the services in each work order are

performed sequentially, a certain combination of suppliers has a specific total distance,

indifferent to order.

Table 5. Example solution for one work order

 Sup1 Sup2 Sup3 Sup4 Sup5 RHS

WO1

S11 0 1 0 0 0 =1
S21 1 0 0 0 0 =1
S31 0 0 0 1 0 =1

 Order 2nd 1st - 3rd -

The scores associated with these choices are high. However, total distance in

work order 1 exceeds the distance threshold. Therefore, the constraint

 will be added to the model to prevent this particular combination of suppliers

from appearing in future runs. Once this is done for each disqualified work order, the LP

is solved again. In this way, invalid solutions can be individually identified and

eliminated. The objective value will decrease each time the model is solved. After the

model has eliminated enough invalid solutions, it will arrive at highest valid objective

value. This, then, is the optimal solution of the vendor cuts method.

31

The dynamic addition of cuts appears to be the most computationally efficient

feasible way to constrain distances inside the network. An alternative method would

require distance summations for every combination of suppliers to be computed prior to

running the model. As problem size grows, the time require for this operation explodes.

Massive computational power would be needed to solve real world problems of even

modest size. Still, issues associated with computing speed will naturally decrease over

time. It is for the reasons previously discussed, then, that causal constraint definition fits

our problem better than global declaration.

After the traditional model is developed it will be used to support the validity of

solutions provided by a more advanced LP model called column generation (Desaulniers,

Desrosiers & Marius M., 2005). The Branch and Price technique can also be used to

solve these problems. It is, however, a nuanced methodology. Due to time constraints,

only a preliminary investigation was included in the scope of this study.

Survey of Problem Size

Multiple sizes of toy problem will be run in order to identify the effect of

experimental variable number of decision variables on the dependent variables: total

number of runs, CPU runtime using XpressIVE, etc. The number of decision variables is

dictated by number of suppliers and total number of services. If the toy problem has I = 3

work orders, J = 9 services and K = 5 suppliers, then there are 45 decision variables. As

we scale up the toy problem, computation becomes cumbersome. One of our hypotheses

is that the traditional approach is impractical for solution of realistically-sized problems.

32

Experimental Design

The traditional formulation will be tested in different sizes to observe the behavior

of the model as problem size increases. A few experiments will test the predictions

concerning the effect that each type of variable has on the performance of the

optimization model. These hypotheses are outlined below.

DOE 1: Solving the LP to optimality will become computationally prohibitive

H0: The solver will continue to be efficient as problem size grows

H1: The solver will not be able to explicitly generate columns for large sizes

DOE 2: Increase in supplier-to-service ratio will improve tractability

H0: No change will be observed between cases with disparate m/n ratios

H1: Increases in available suppliers will cause a decrease in computation time

DOE 3: Scarcity of supplier capacity will negatively impact performance

H0: Changes in supplier capacity levels will not affect the CPU solve time

H1: Optimization will take longer for cases with less available capacity

The performance can be improved by solving these problems using a column

generation approach. Decomposing the problem will produce fewer decision variables

than the traditional formulation, and maintain optimality at a much higher range than the

explicit formulation.

Column Generation

When linear programs have huge numbers of variables, it is sometimes not

possible to explicitly generate all columns of the decision variable matrix. Column

generation algorithms are employed to systematically redact and solve sets of columns

and add those that improve the current solution to the problem matrix. Using this iterative

33

process the optimal solution can be reached through successive identification of best

partial solutions.

Column generation tractability depends on the number of alternatives bk generated

for each supplier k. For example, if there are 5 suppliers and bk is 3 for supplier 1, 2 for

supplier 2, 2 for supplier 3, 2 for supplier 4, and 1 for supplier 5, the formulation will

generate a table with 10 columns. This table has 5 sets of 1 to 3 complimentary. The

decision to choose which 4 will supplement any 1 column will result in one of 24

alternatives. This third iteration of the decomposed problem has 10 decision variables,

rather than the 45.

Problem Definition

Decision Variables

In the disaggregated formulation possible assignments for each supplier are

generated by a sub-problem. Assignments included in the solution are determined by a

decision variable which weights each column. The master problem decision variables

 are used to weight columns. if column b of supplier k is selected to

satisfy any services.

The matrix is composed of input data from the solution of sub-problems

which are generated at each iteration. These values substitute for the decision variables of

the traditional formulation. An variable is equal to 1 if service ji in work order i

is supplied in column l of supplier k and 0 otherwise. An initial subset of columns is

provided for the master problem to solve. The matrix will expand as it is populated by

new columns between iterations. The sub-problems will continue to generate novel ways

34

until no more exclusive columns can be generated or the solver can verify that a solution

is optimum.

Parameters

 is the pre-defined threshold distance for suppliers included in work order i

is the capacity consumed by service ji in work order i by supplier k

 is the total available capacity of supplier k

 is the matching score of assigning supplier k to service ji in work order i

 is the total matching score of all assignments in column b

Model Construction

Objective Function

Constraints

Assignment constraints CG1 supervene over the columns of the disaggregated

formulation basis. CG1 are row constraints and will remain in the master problem.

Alternatively, supplier-specific constraints from the original model can be declared in the

sub-problems.

Constraint CG1 is essentially the same as TF1 which states that each service in

each work order must be assigned to a single supplier. Dual variables from the

35

Lagrangian relaxation are used to determine the assignments in the new columns that will

be generated by the sub-problem. Constraint CG2 is a constraint on the columns of a

particular supplier in the master problem.

The model is capable of solving larger problem sizes because the decomposition

scheme involves the delegation of computation to a separate sub-model for each supplier.

A sub-model will generate a column of possible assignments for one supplier. The CG2

constraints state that only one set of possible assignments is chosen. The Lagrangian

duals from these convexity constraints are used to price the columns such that a stopping

point for the iterative process can be identified. The CG2 constraints also help to

maintain feasibility of integer solutions. In order to exploit duality we must allow the

master problem to assume a strictly linear formulation. Unlike the traditional formulation,

there are no integrality constraints. Methods like branch-and-price are devised to resolve

difficulties with discrete solution generation. Nevertheless, integrality is not an issue

when working with problem instances where capacity is abundant, like in the agile supply

chain configuration problem. CG3 is a column constraint, and can be included in the sub-

problem.

Each supplier utilizes a different capacity in order to satisfy service ji.

Constraint CG3 prevents assignments from exceeding the available supplier capacity.

36

The sign constraints of the sub-problems ensure that the assignments in each

column will be integer and binary. Each column represents a partial assignment of

services to suppliers. The objective CGOF is to maximize the resulting total score of

selected columns such that assignments are given for all work orders considered.

Column Generation Master Problem

The formula for is integrated into the objective function as the

coefficient of the decision variables.

st.

Note the removal of the integrality conditions for the decision variable

Iteration in the master problem is assumed continuous and thus, no sign constraint is

introduced. This allows the optimizer to solve the LP relaxation and find the dual prices.

Sub-Problem

The following integer knapsack problem is solved for each .

st.

37

The decision variables enter the basis of the master problem as for

iteration bk of supplier k if the price is positive. The columns of the sub-problems are

priced using the dual variables and . A nonnegative price indicates a column of

positive reduced cost which should enter the basis. The iterative process stops for each

supplier which has exhausted all such columns. The column generation process is over

when all beneficial columns have been found. The final basis is solved as an integer

program. Figure 1 is a flow chart of the column generation algorithm.

38

Start

Introduce an original subset of r rows in the master
problem in such a way

that when solving the master problem as an IP it
provides a feasible way to satisfy all services required
in the work orders. These original columns can be the

solution of the traditional formulation

Solve the master problem as an LP
(i.e. remove integrality constraints)

Get the dual variables π

For each service ji solve the integer
programming (IP) subproblem to find a new

row rijik.

Add the k new r columns generated to the
masters problem

Solve the master problem as an IP
(i.e. introduce integrality constraints for the

y variables) and determine if iterative
procedure must stop

Do
any rows exist
with positive

reduced
cost?

Stop

NoYes

Figure 1. Flowchart of the column generation process.

39

The Table 6 contains the decision variables (yellow) and the total cost parameters.

The multiplication of these two vectors will provide the objective function value named

.

Table 6. Components for objective function value computation
Supplier 1 Supplier 2 Supplier 3

Way 1 Way 2 Way 3 Way 1 Way 2 Way 1 Way 2
Y11= Y12= Y13= Y21= Y22= Y31= Y32=

Table 7 shows the possible assignments for each supplier as multiple columns

representing different partial solutions. Row constraints ensure that all the row sum of all

chosen column in is equal to the right hand side (1).

Table 7. rows and right hand side

 Supplier 1 Supplier 2 ··· Supplier k
 Way1 ··· Wayb Way1 Way2 ··· Way1 Way2

WO1
S11 =1
S21 =1
S31 =1

WO2
S12 =1
S22 =1

WO3
S13 =1
S23 =1
S33 =1

 <=C1 ··· <=C1 <=C2 <=C2 ··· <=C3 <=C3

At each iteration, after solving the master problem as an IP, the total distance

traveled between suppliers selected for the services in each work order is calculated (i.e.

distance traveled in work order i = Di assuming a serial execution of services in the work

order in ascending order). The distance traveled computation will be very similar for the

column generation and for the traditional formulation.

40

If the distance traveled in a work order i exceeds the columns selected

will not be chosen again simultaneously.

Example: Column 1 in supplier 1 and Column 1 in supplier 2 were selected (

. If the distance traveled is violated (> D_maxi) in any work order i

then a cut must be introduced to prevent these columns from being selected

simultaneously. The cut for this case is .

Table 8 shows the time required (in hours) for the different services of the

given work orders. These values will act as coefficients to the column assignments to be

bound by the vector in Table 9.

Table 8. Expanded matrix

There is now a supplier specific value for service duration. This will aid the

algorithm in evaluating individual assignments, based on reduced cost and the capacity

expenditure, by reducing symmetry.

Table 9. Available capacity of the suppliers (hr)

Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5
C1=17 C2=13 C3=12 C4=19 C5=17

 Full Service Duration Vector
 Toy Problem Sup 2 Sup 3 Sup 4 Sup 5

WO1
S11 d11 = 3 d112 · · d115

S21 d12 = 7 d212 · · d215

S31 d13= 9 d132 · · d135

WO2 S12 d21= 11 d212 · · d215
S22 d22= 10 d222 · · d225

WO3
S13 d31= 5 d312 · · d315
S23 d32= 8 d322 · · d325
S33 d33= 3 d332 · · d335

41

Row Generation Decomposition Scheme

Model Construction

The column generation approach was originally intended to be applied to a

problem matrix with many rows and few columns. Thus, the disaggregated formulation

of the LP conferred modest performance benefits when solving medium-sized problems

with a supplier-to-service ratio less than 1:1. The quantity of columns that must be

generated when problems instances have a high supplier-to-service ratio is

computationally prohibitive. However, the decomposition scheme can be transposed to

generate rows instead of columns. In this way, the computational complexity is greatly

reduced and should be able to handle very large problem instances.

Objective Function

The objective function totals the score of the assignments in the rows that are

chosen by the decision variable .

Constraints

The dualized convexity constraints RG1 will provide a pricing index, rather than

the capacity constraints. Alternatively, services-specific assignment will be declared in

the sub-problems.

Constraints CG2 are constraints on the columns of a particular supplier and will

remain in the master problem.

42

By reducing the number of columns that need to be generated (rows), the model is

much more efficient. The constraints interact in a similar way as the previous

formulation, but produce much more rapid changes in the objective value.

The assignment constraints in each sub-problem allow the row to enter the basis

of the master problem with only one assignment. Therefore, there are not incompatible

combinations of columns, as in the previous formulation.

Each row represents an individual assignment. The objective RGOF is to

maximize the resulting total score of selected rows such that capacity constraints are not

violated.

Master Problem

st.

43

Note that the assignment constraints and capacity constraints are switched as

compared to the original column generation formulation. Therefore, the pricing scheme

of the sub-problem is also inverted. Dual variables come from the convexity

constraints (RG1) and are used to price the sub-problem solutions. Dual variables are

now associated with the capacity constraints rather than the assignment constraints.

Sub-Problem

st.

Table 10 shows the row generation scheme in the master problem.

Table 10. Transposed disaggregation scheme

Row WO1 Serv Sup 1 Sup 2 Sup 3 Sup 4 Sup 5 RHS
y11

(1)

WO1

S11 =1
y11

(2) S11 =1
· · ·

y11
(B

1
) S11 =1

y12
(2) S12 =1

y13
(1) S13 =1

y21
(1) WO2 S21 =1

y22
(1) S22 =1

y31
(1)

WO3
S31 =1

y32
(1) S32 =1

y133
(1) S33 =1

 <=C1 <=C2 <=C3 <=C4 <=C5

44

IV. ANALYSIS OF RESULTS

Instance Data

This study differs from the typical OR study in that the model parameters are not

samples collected from a population, but rather are randomly generated. In order to

develop an analytical tool for a process which does not yet exist, samples must be

simulated to reflect the best prediction of characteristics a real population is expected to

have. Information will be collected from soliciting suppliers describing their

manufacturing service capabilities. We will make assumptions based on general

knowledge of manufacturing industries. It is only necessary for the data to exhibit broad

tendencies of the population that will ultimately be sampled. Realistically, a properly

formulated and programmed optimization model is expected to handle both real and

fabricated data in much the same way. The information collected at this phase of research

will illuminate areas of interest for future work that can be studied with descriptive

models and optimized with analytical models.

Analysis of the traditional LP model results shows that the formulation is

consistent in its processing of the five replicates of each size of the problem. Figure 2

illustrates that while larger problems take longer to compute, replicates tend to take the

same amount of time.

45

Figure 2. Boxplot of time vs. problem size vs. instance.

In table 11 a p-value of 0.488 for problem instance leads us to fail to reject the

hypothesis that different problems of a similar size will take the same amount of time to

compute solutions for. Each instance has a different number of active services, and

different data populating the input matrices.

Table 11. ANOVA results for traditional formulation
Two-way ANOVA: Time versus Size, Instance
Source DF SS MS F P
Size 13 1.19214 0.0917030 2922.78 0.000
Instance 4 0.00011 0.0000273 0.87 0.488
Error 52 0.00163 0.0000314
Total 69 1.19388
S = 0.005601 R-Sq = 99.86% R-Sq(adj) =
99.82%

This result allows us to conclude that the computation method used in the

tradition formulation, namely the simplex algorithm, is consistent. Each replicate instance

46

is also repeated three times. Each time a problem is rerun the solution agrees with the

established global optimum.

Similarity Score

Although the data is randomly generated, only one variable is truly random. The

similarity score is a random number between 0 and 1. In practice, the optimization model

will receive scores from an automated matching system which reflect the similarity

between a service request and a service solicitation, described in MSDL, and defined by

the matching algorithms. A low matching score means that the subjects are dissimilar,

while a high score means that a match is possible. In order to maintain solution validity,

the matching algorithm must be able to distinguish possible matches from the rest. The

similarity score data should be post-processed in such a way that incompatible matches

are identified such that the distinction is passed to the optimization model. It is

envisioned that the agile supply chain design platform will be able model and control

certain costs. By constraining the model to yield a solution with lower costs, the total

score is also reduced. It is necessary then that the optimization model be prohibited from

providing inexecutable/infeasible assignments. This could be accomplished via threshold

data or by assigning zero values to impossible matches.

Real samples of suppliers will have tools and processes that are interrelated. This

is because multiple tools and processes are usually required to produce a single part or

product. For these same reasons work order queries will also demonstrate the similar

patterns. This means that if a supplier can provide one service in a work order, they are

likely to be capable of performing another. These distinctions vary greatly over

manufacturing industry, technology requirement, resource consumption and many other

47

variables. This area of study is highly nuanced, and will be recommended as future work.

This study will allow the scores to be completely random. If an optimization model can

produce high-scoring supply chain with random data, it will likely perform better with

real data.

Supplier Capacity

Capacity and service duration are generic units. They may take on any value that

fits the description of a service provision or work order, e.g., unit/s, part/min, hr/ batch,

days/build. The supplier pool is expected to be so large that there is enough excess

capacity to fulfill work order requests. Optimization model performance is tested at

multiple levels of capacity scarcity. Individual supplier capacity varys over 25% and 50%

in excess of the total capacity required. Otherwise, the solution would be infeasible

without adequate capacity provision.

Service Duration

The amount of time required to perform each service will realistically vary

depending on which supplier performs it. The simulated data represents up to a 50%

difference between suppliers. There are too many similarities in process requirements to

allow for a larger disparity. Notwithstanding the proposition of a general range of

deviation for this metric, certain processes will surely display disparities in resource

requirement characteristic of their practice or practitioner. For example, an automated

manufacturing system can inspect parts thousands of times faster than a human. It is often

a matter of technology, and such distinction would be incorporated into the MSDL

descriptions. A customer expressing a need for automated inspecting capabilities would

not be matched with a supplier without one. In this respect, the degree of variation

48

between processing times of truly similar services will be minimal. We will allow service

duration to take on any number between 1 and 13. This limited range will allow us to

observe the effect of capacity scarcity on model performance. Each service is assigned an

average duration. Each supplier will perform the service within ±25% of this norm.

The service duration input was changed from two dimensional to three

dimensional to reduce symmetry and maintain tractability for large scale optimization.

Table 12 shows the comparison of both methods of input and insignificantly different

results.

Table 12. ANOVA 2D vs. 3D duration array
Two-way ANOVA: Time versus Duration dimension, Size
Source DF SS MS F P
Duration dimension 1 0.00009 0.000091 1.05 0.307
Problem Size 13 2.55298 0.196383 2263.32 0.00
Interaction 13 0.00084 0.000064 0.74 0.719
Error 112 0.00972 0.000087
Total 139 2.56363

S = 0.009315 R-Sq = 99.62% R-Sq(adj) = 99.53%

With a p-value of 0.307 it is inferred that these relatively small sizes are not large

enough to exhibit the detrimental effects of symmetry on computation time.

Services per Work Order

Each work order will have a different number of services. The maximum number

of services per work order is dictated by problem size. The number of services is allowed

to take on any number between 66% of the maximum and the maximum. This prevents

the overlap of problem size and allows the effects of interaction with other performance

metrics to be more easily discerned.

49

Distance Threshold

Each work order will be subjected to a maximum distance threshold. Realistic

definition of threshold values would not be entirely arbitrary. The purpose of the

thresholds is to reduce distance traveled in each work order. Arbitrary values for each

work order based on a certain percentage of maximum possible distance based on the

number of services. However, this approach would not allow for direct observation of the

interaction between distance constraints and performance. Therefore, a descriptive model

can has been programmed to reduce the total distance to a predetermined percentage by

incrementally lowering D_max values and resolving the problem until it is reached, while

only allowing total distance to vary a little between work orders. The problems are then

solved with the new D_max values. This ensures a more equitable assignment of distance

threshold values. Moreover, multiple levels per problem size can be recorded and tested

again, to observe the distinction between a global implicit distance constraint and

multiple explicit work order distance constraints.

Suppler/Service Ratio

The observed ratio of suppliers to services is kept a 10:1 to realize the full benefit

of column generation. We will treat this as a minimum since one can easily imagine cases

of common service requests which could be fulfilled by a large pool of suppliers. A

branch-and-price model has been developed for cases where only a very small number of

suppliers are eligible at a certain stage in the matchmaking process.

Traditional Formulation Without Distance Constraints

To confirm the validity of the traditional LP formulation the small toy problem

was modeled in Microsoft Excel. The Excel solver is proven to be effective for small,

50

simple problems. This toy problem with 125 decision variables is well within it

capability. Table 13 shows the problem input table in excel.

Table 13. Parameters provided to Excel spreadsheet

hr/service Scores for service/supplier matches
required S1 S2 S3 S4 S5

3 Service 1 0.64 0.32 0.50 0.43 0.71
7 Work order 1 Service 2 0.23 0.63 0.95 0.58 0.01
9 Service 3 0.15 0.56 0.40 0.42 0.54
11 Service 1 0.11 0.32 0.38 0.67 0.89
10 Work order 2 Service 2 0.55 0.67 0.34 0.78 0.29
0 Service 3 0.00 0.00 0.00 0.00 0.00
5 Service 1 0.39 0.58 0.22 0.33 0.24
8 Work order 3 Service 2 0.41 0.08 0.92 0.62 0.78
3 Service 3 0.29 0.45 0.34 0.07 0.11

The yellow area in Table 14 shows the decision variable matrix after the solver

has been run. The blue numbers indicate variables which are constrained.

Table 14. Solution provided by Excel Solver Solution

Assignment Matrix - Optimal Answer
 S1 S2 S3 S4 S5 Total Required
 Service 1 0.00 0.00 0.00 0.00 1.00 1.00 1

Work order 1 Service 2 0.00 0.00 1.00 0.00 0.00 1.00 1
 Service 3 0.00 1.00 0.00 0.00 0.00 1.00 1
 Service 1 0.00 0.00 0.00 0.00 1.00 1.00 1

Work order 2 Service 2 0.00 0.00 0.00 1.00 0.00 1.00 1
 Service 3 0.00 0.00 0.00 0.00 0.00 0.00 0
 Service 1 1.00 0.00 0.00 0.00 0.00 1.00 1

Work order 3 Service 2 0.00 0.00 0.00 1.00 0.00 1.00 1
 Service 3 0.00 1.00 0.00 0.00 0.00 1.00 1

Total capacity (hr) 5.00 12.00 7.00 18.00 14.00 Total_score
Supplier capacity 17.00 13.00 12.00 19.00 17.00 $5.35

The formulas within certain cells represent the linear equations that make up the

objective function, parameters and constraints. The Excel solver uses linear programming

to solve the system of equations by assigning a binary value to each decision variable.

51

Appendix shows the input/output method used for the XpressIVE model. Table 15 from

the Xpress output shows the same solution provided by Excel solver.

Table 15. Solution provided by XpressIVE
===
 SUPPLIER
 s1 s2 s3 s4 s5

WO1 sv1 0 0 0 0 1
WO1 sv2 0 0 1 0 0
WO1 sv3 0 1 0 0 0
WO2 sv1 0 0 0 0 1
WO2 sv2 0 0 0 1 0
WO2 sv3 0 0 0 0 0
WO3 sv1 1 0 0 0 0
WO3 sv2 0 0 0 1 0
WO3 sv3 0 1 0 0 0
===

 Parity is maintained as problems of different sizes are compared. Therefore, we

concluded that the LP Mosel formulation accurately reflects the theoretical model.

Traditional Formulation with Distance Constraints

The quadratically constrained NLP model initially outperforms the dynamic

programming model with respect to computation time. The NLP model produces exact

optimal solutions up to 75 suppliers and 22,500 decision variables. However, the problem

becomes intractable when service durations are supplier specific. The increase in

variables with the addition of the 3rd dimension causes the global search to identify an

optimal solution at the upper bound without satisfying the all distance constraints. The

objective value of the infeasible solution is often quite close (as small as 2.7/1000 of 1%)

to that obtained by performing cuts. The NLP model has been programmed to produce

pseudo-optimal solutions by dynamically reducing the D_max thresholds until the overall

distance savings exceeds a certain percentage. However, this general approach is not

aligned with future objectives of an explicit formulation of the agile supply chain design

52

optimization model which considers actual distance cost. Still, the nonlinear distance

constraint may be fruitful. The Xpress Optimization Suite is equipped with a solver this

specific purpose. Successive Linear Programming (SLP) is a process of making linear

approximations of the original problem and solving the approximations. SLP is a

complicated programming methodology which needs to be studied in depth, and is

beyond the scope of this research.

The results confirm that the quadratic formulation of the global distance

constraint functions as intended. This constraint can be reformulated and incorporated

into the column generation model. The decomposition of the problem should allow the

constraint to maintain functionality on a much larger scale.

Traditional Formulation with Cuts

Constraining for distance is an effort to control costs. The more the model exhibit

lower performance the more it is constrained. Because computational resources will

become more abundant as the analytic tool matures, we are primarily concerned with the

behavior of the MSDL similarity scores of the assignments.

Toy Problem

The toy problem was directed to cut 50% of the work order distance. Table 16

shows that the cut solution is only 0.16 less than the optimal solution.

53

Table 16. XpressIVE results for toy problem cuts

Descriptive Statistics

A descriptive LP model was initially programmed to incrementally reduce the

distance threshold of each work order until the total distance reaches a desired level of

reduction. Six levels of distance reduction at 5%, 10%, 25%, 37.5%, 50% and 75% of

total distance in the optimum solution are tested. Table 17 shows the details of the

problem sizes.

SUPPLIER

 1 2 3 4 5

1 sv1 0 0 0 0 1
1 sv2 0 0 1 0 0
1 sv3 0 0 0 1 0
2 sv1 0 0 0 0 1
2 sv2 0 0 0 1 0
2 sv3 0 0 0 0 0
3 sv1 0 1 0 0 0
3 sv2 1 0 0 0 0
3 sv3 0 1 0 0 0

(0.341 sec) Optimal solution: 5.19
beginning distance: 298
ending distance: 134
distance reduction: 55.0336%

54

Table 17. Problem instances

Problem
Size

Work
Orders Services Suppliers Decision

Variables
1 5 5 25 625
2 5 10 25 1250
3 10 10 50 5000
4 10 15 50 7500
5 15 15 75 16875
6 15 20 75 22500
7 20 20 100 40000
8 20 25 100 50000
9 25 25 125 78125
10 25 30 125 93750
11 30 30 150 135000
12 30 35 150 157500
13 35 35 175 214375
14 35 40 175 245000

Figure 3 shows the effect that the distance constraints have on average score.

Figure 3. The six cut levels and their effect on average score.

After work order distance thresholds are identified that meet each goal, the

models are run again, in random order, with the explicit D_max values and solutions are

0.9400

0.9500

0.9600

0.9700

0.9800

0.9900

1.0000

0% 10% 20% 30% 40% 50% 60% 70%

Av
er

ag
e

Sc
or

e

Average Score vs Distance Reduction from Cuts

Optimal

5%

10%

25%

37.50%

50%

55

quickly identified after the necessary cuts are applied. No solutions subject to 75%

distance reduction are feasible due to insufficient capacity. Figure 4 shows the same data

broken down into the seven levels of suppliers. We can clearly see that the poor data on

the bottom half of the chart is made up of only the smallest size of 25 suppliers. This is

much smaller than is expected in the web-based platform application. We can therefore

conclude that results from supplier pools lager than 175 are expected to contain

assignments of with at least a 0.99 similarity score when subject to cuts of up to 50% of

optimum distance.

Figure 4. Categorization of cuts values by number of suppliers.

This data can yet be further analyzed. It is clear from Figure 5 that if we compare

the scores of the cut to the original optima, that the scores converge as the problem size

increases. We can conclude that the model can provide better scores when drawing from

a larger pool of suppliers.

0.9400

0.9500

0.9600

0.9700

0.9800

0.9900

1.0000

0% 10% 20% 30% 40% 50% 60% 70%

Av
er

ag
e

Sc
or

e

Percent Distance Reduction from Optimum

Average Score vs Distance Reduction from Cuts

25 suppliers

50 suppliers

75 suppliers

100 suppliers

125 suppliers

150 suppliers

175 suppliers

56

Figure 5. Average optimum and cut score (top left) and difference (bottom right).

Finally, when the average score values are grouped by number of suppliers, a

clearer picture begins to immerge. If we assume a hypothetical situation with real data,

choosing from at least 100 suppliers, which is a reasonably safe assumption, an assumed

cut of 37.5% distance can be made while suffering only a tenth of point penalty. Figure 6

shows that sizes of 175 suppliers or more can make the same cut for half that cost in

score reduction.

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0.0090

0.9400

0.9500

0.9600

0.9700

0.9800

0.9900

1.0000

0 50000 100000 150000 200000 250000 300000

Di
ffe

re
nc

e
fr

om
 O

pt
im

al

Av
er

ag
e

Sc
or

e

Decision Variables

Optimal Average Score vs Cut Average Score

Optimal

37.5% distance
reduction

Percent
difference

57

Figure 6. Average penalties of 37.5% cuts grouped by number of suppliers.

Again, in figure 7 we see a more severe penalty exacted for cutting up to 50% of

maximum distance. This still only amounts to five points. This number will be lower

when real data is handled because of manufacturer specialization.

Figure 7. Two levels of cuts and optimal solutions.

In Figure 8 the cuts begin to multiply the required time by a factor of 10.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0 50 100 150 200Pe
rc

en
t D

iff
er

en
ce

 fo
rm

 O
pt

im
al

Suppliers

Average Score Penalty of 37.5% cut by
Problem Size Overall average

Small problems

Large problems

25 suppliers

50 suppliers

75 suppliers

100 suppliers

125 suppliers

150 suppliers

175 suppliers

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0 50 100 150 200

Di
ffe

re
nc

e
fr

om
 O

pt
im

al

Av
er

ag
e

Sc
or

e

Suppliers

Average Score vs Suppliers

Optimal

25% cut

50% cut

Difference

58

Figure 8. Computation time required to perform cuts at two levels.

These results are not too bad for the small samples. However, performing cuts

becomes cumbersome when tens of thousands are required, as they are for the largest size

problem. Cuts in the column generation formulation are expected to perform better

because there are less columns combinations to cut than supplier combinations.

Larger ratios of suppliers to work orders were also tested. The results showed an

improvement in processing times of all models. Similar results were seen when the

supplier capacity was doubled and quadrupled. This is congruent with the theoretical

predictions of abundant capacity. Alternatively, scarcity of capacity makes the problem

much more difficult to solve. Therefore, these are the results that illustrate the efficacy of

our models.

0

5

10

15

20

25

30

35

40

45

50

0 50000 100000 150000 200000 250000 300000

Ti
m

e
(s

ec
)

Decision Variables

Time vs Problem Size, Distance Constraint

LP

10% cuts

37.5% cuts

59

Column Generation

The generalized assignment problem is NP-hard, and many approaches have been

developed to solve it either approximately or exactly. Yet the difficulty in modeling the

general form the GAP is not experienced in the agile supply chain design problem.

Typical academic work modeling the GAP assumes scarce capacity. The larger the

competition of tasks/services for the limited resource, the more difficult it is to solve.

This degree of paucity cannot be experienced in a marketplace environment. Even if

individual suppliers were very conservative with their solicitation, the collective capacity

of the entire system would be abundant. This parameter allows us to exploit the simple

avenues of solving the problem. The simplex method is a powerful algorithm that is able

to solve this problem very quickly.

Figure 9. Column generation performance before reformulation.

Despite the known advantages of column generation, the traditional model

exhibits exceptional performance up to limited size (5,000 suppliers in this case). These

results are indicative of the weak nature of the dual variables associated with the LP

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000

Ti
m

e
(s

ec
)

Suppliers

Model Formulation vs. CPU Time

Traditional Formulation

Column Generation

60

relaxation. An upper bound is essentially constructed, in a maximization problem, by

dualizing the constraints to be used in the objective function. A heuristic was also used to

speed up this process by providing an approximation, preventing the solver from

resorting to lengthy computations, unaided by confounded dual variables. Heuristic

approximations allow the optimal solution to be found in a shorter amount of time.

The typical formulation of a column generation model for the generalized

assignment problem has suppliers in columns and services in rows. This approach is most

efficient when the service to supplier ratio (n/m) is 10:1 or larger, when the problem

matrix has more rows than columns (Ogtildeuz, 2002). The Lagrangian duals values are

less confounded and more effective when there are many assignment constraints

containing fewer column elements in the LP relaxation. Consider the four problem sizes

below. By the same reasoning, the typical column generation approach is

computationally prohibitive when choosing from a large pool of suppliers and the n/m

ratio is very small. For problem size 1 the model will have to generate multiple columns

for each of the 250 suppliers. It would be more efficient to generate rows for each of the

25 services. Table 18 shows the performance improvements associated with transposing

the decomposition scheme.

Table 18. Column Generation Traditional and Transposed

 Column Generation Data CPU Time
Problem Size WOs Services Suppliers Original Transposed

1 5 5 250 18.597 0.312
2 10 5 500 98.483 0.656
3 10 10 1000 625.105 2.067
4 15 10 2000 3538.32 6.436

61

Figure 10 shows that the comparison between the decomposition schemes

resembles the gap between the performance of the traditional model and the first column

generation formulation.

Figure 10. Computation reduction from decomposition reformulation.

The Dantzig–Wolfe decomposition is meant to break down a problem into

components that model the problem in a sensible way. In the generalized assignment

problem the columns represent individual supplier assignments. Therefore, the capacity

constraints are modeled in the knapsack problem and any columns that are generated to

enter the master problem are feasible in that sense. Although the assignment sub-problem

of the new formulation is not technically a knapsack problem because the capacity

constraints remains in the master problem, it is still influenced by dual variables from the

capacity constraints and the rows entering the basis are priced using the convexity

constraints.

While the simplex method had proven to be very efficient, column generation

with the assignment sub-problem is still faster. It is unclear if exact heuristics would be

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500

Ti
m

e
(s

ec
)

Suppliers

Decomposition Scheme vs. CPU Time

Supplier Subproblem

Assignment Subproblem

62

faster, but they may allow for larger problems. Look at the tradeoff between the

traditional formulation and the new column generation formulation.

Figure 11. Changes observed in performance between models.

Instances with different levels of maximum services in work orders have been

tested. Table 19 shows ten problem instances with similar numbers of services. Each

problem size has five replicates. All runs were randomized in blocks and each replicate

was repeated three times.

Table 19. Instances with similar work order size

Problem
Size

Work
Orders Services Suppliers Assignment

Variables
1 5 10 500 25000
2 10 10 1000 100000
3 15 10 1500 225000
4 20 10 2000 400000
5 25 10 2500 625000
6 30 10 3000 900000
7 35 10 3500 1225000
8 40 10 4000 1600000
9 45 10 4500 2025000
10 50 10 5000 2500000

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500

CP
U

 T
im

e
(s

ec
)

Suppliers

Model Formulation vs. CPU Time

Traditional
Formulation
Row
Generation

63

The decomposed row generation formulation produces the same solutions as the

traditional model in less time. Figure 12 shows the gap between the two models grows

quickly as problem size increases.

Figure 12. Computation time for ten sizes of each model formulation.

While these results do not appear to be a significant improvement, it is important

to note that the linear program is limited to problems of 5,000 suppliers and 2.5 mil

assignment variables with these computational resources. A problem with 100 work

orders of 10 services each, and 10,000 suppliers can be solved in 17 min 14 sec. A

problem with 12,500 suppliers will take about 26 min to solve. The computer lacks

sufficient memory to generate larger data sets than this. The performance can be

improved by running the sub-models concurrently.

The full details of the instances are displayed in Table 20. 10 sizes of 5 replicates

each were run in randomized order.

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000

Ti
m

e
(s

ec
)

Suppliers

Model Formulation vs CPU Time

Traditional Formulation

Row Generation

64

Table 20. Raw Data from traditional model and row generation

INPUT OUTPUT

 Set Size Prob Size Traditional Formulation Row Generation

Size Instance WO Services Suppliers No. vars Time (sec) objective Time (sec) objective

1

1

5 10 500

25000 0.249 38.93323 0.655 38.93323

2 25000 0.256 39.9319 0.499 39.9319

3 25000 0.312 45.90898 0.624 45.90898

4 25000 0.479 38.93323 0.515 38.93323

5 25000 0.504 42.92369 0.686 42.92369

2

1

10 10 1000

100000 1.718 78.92174 2.105 78.92174

2 100000 1.673 76.92379 1.809 76.92379

3 100000 1.78 82.91943 1.902 82.91943

4 100000 1.828 83.91909 2.043 83.91909

5 100000 2.807 82.91943 1.934 82.91943

3

1

15 10 1500

225000 5.858 125.9108 4.944 125.9108

2 225000 5.329 119.9137 4.303 119.9137

3 225000 5.689 121.9132 3.945 121.9132

4 225000 5.797 127.9081 4.57 127.9081

5 225000 5.435 123.9121 4.383 123.9121

4

1

20 10 2000

400000 13.768 169.9145 8.876 169.9145

2 400000 13.392 165.9163 8.469 165.9163

3 400000 14.121 171.9138 8.781 171.9138

4 400000 12.849 159.92 8.579 159.92

5 400000 12.971 164.9178 8.486 164.9178

5

1

25 10 2500

625000 29.749 204.9168 15.272 204.9168

2 625000 24.306 211.9142 15.553 211.9142

3 625000 25.227 210.9146 15.35 210.9146

4 625000 23.67 204.9168 14.929 204.9168

5 625000 24.113 209.9148 15.349 209.9148

6

1

30 10 3000

900000 40.462 245.9219 24.617 245.9219

2 900000 48.79 240.924 24.039 240.924

3 900000 41.883 242.9225 24.211 242.9225

4 900000 50.111 252.9204 24.819 252.9204

5 900000 41.688 252.9204 25.037 252.9204

7

1

35 10 3500

1225000 65.648 276.9141 36.534 276.9141

2 1225000 64.727 296.9077 38.906 296.9077

3 1225000 77.34 288.9103 37.751 288.9103

4 1225000 64.867 297.9066 38.766 297.9066

5 1225000 67.637 286.9106 37.564 286.9106

65

Table 20 continued

INPUT OUTPUT

Set Size Prob Size Traditional Formulation Row Generation

Size Instance WO Services Suppliers No. vars Time (sec) objective Time (sec) objective

8

1

40 10 4000

1600000 96.241 327.9195 54.678 327.9195

2 1600000 104.588 341.9178 56.69 341.9178

3 1600000 109.395 325.9207 54.304 325.9207

4 1600000 98.84 331.9191 54.787 331.9191

5 1600000 101.914 335.9188 55.723 335.9188

9

1

45 10 4500

2025000 136.57 373.9103 77.142 373.9103

2 2025000 135.382 360.9132 75.114 360.9132

3 2025000 134.741 370.9108 76.612 370.9108

4 2025000 141.341 375.9098 77.813 375.9098

5 2025000 138.193 374.9099 77.734 374.9099

10

1

50 10 5000

2500000 180.727 418.9161 106.314 418.9161

2 2500000 177.513 401.919 101.244 401.919

3 2500000 184.104 412.9168 104.301 412.9168

4 2500000 188.176 410.9173 103.787 410.9173

5 2500000 193.575 421.9157 105.924 421.9157

66

V. CONCLUSION

This study represents the preliminary phase of an entire line of research that will

move forward based on the descriptive information that can be gleaned from these

results. The technical requirements of the optimization models developed here are

directly related to the descriptive characteristics of the instance data. The conclusions that

can be drawn from these results regarding the effectiveness of the models when

processing different data/ real data are limited. The formulas for generating similarity

score, service duration and supplier capacity were constructed with simple assumptions.

The optimization models handled the resulting data quite well. We know when the

supplier-to-service ratio is low, as typically modeled in the generalized assignment

problem, that the problem would be very difficult to solve. For example, if the supplier-

to-service ratio was 1:10 instead of 10:1, the computational resources needed to solve a

problem instance with 1,000 suppliers with the traditional linear program would exceed

those used in this research. A traditional branch-and-price model was developed to

handle special cases of the problem where the supplier-to-service ratio is small. The

results resembled those shown in the literature. However, branch-and-price and other

methods for solving the GAP are devised to address issues that do not exist when the

problem is formulated for the DMM platform.

By decomposing the LP formulation and taking a column generation approach, a

transition from a computationally prohibitive methodology to a fully scalable model that

maintains functionality at very large sizes, we have fulfilled the principal objective of this

67

study. Although the traditional formulation and column generation models do not directly

control distance, they are effective nonetheless. The abundance of computational

resources in the near future will extend the practical efficacy of the models, even if they

are not reformulated.

In order to fully understand the nature of the supplier selection problem as

formulated specifically for the DMM platform, a number of descriptive models were

needed. To conduct the study, functional programs were also developed to interact with

the data generation, descriptive and optimization models. It is clear that the IT

requirements of the OR branch of the DMM are much more than optimization models.

The most significant result that has been observed is that when problem size is

expanded to reflect the true size of the manufacturing services industry, it can be heavily

constrained while still producing good results. If we consider the trend expected to appear

in the real samples of suppliers with multiple interrelated scores, it should allow for even

greater control over distance while maintaining the collective value of assignments.

This study has addressed three concerns regarding the unique formulation of the

supplier selection problem for DMM. First, the column generation approach resolved the

issue of limited scalability of the traditional LP formulation. Second, distance inside the

supply chain can be reduced without significantly impacting the objective score. Finally,

these results show that a properly devised analytical model can perform supplier

evaluation and selection based on similarity score data derived from MSDL descriptions,

allowing it to provide solutions that neatly fulfill the needs of the agile supply chain

deployment problem.

68

Future Work

Simulated Data

The characteristics of the actual environment intended to be modeled should be

researched in depth. Collecting real data samples was beyond the scope of this research

and was not possible in some senses. In the future, data should be collected when

possible. Otherwise, formulas for generating the data need to be improved.

Descriptive models

Properly formulated model assumptions and accurate data are required to

construct a valid model. Furthermore, model validity must be assessed and maintained in

order to experience the full benefits of optimal decision implementation. Complex

simulation models will need to be deployed to fulfill this end. The descriptive model for

determining the distance thresholds based on general percentages of optimal distance

should continue to be refined. Moreover, it is likely the model could work backwards

from customer-provided specifications to determine the maximum limit to which the

model can be bounded while still meeting the minimum requirements. Cost control using

the set of constraints will likely be exercised through the direct control over one

parameter of choice. As model complexity grows and the parameters are made more

explicit, descriptive models will become vital to the fine tuning and optimum

performance of each optimization model.

Deployment

The optimization models were programmed in the Xpress interactive visual

development environment (IVE). Although Mosel can be implemented as a standalone

application, the modeling environment can also be extended into C, C++, Fortran, Java,

69

VB6 and .NET programming interfaces for practical application of the solver engines. No

loss of functionality occurs when utilizing the modeling environment through callable

libraries in other programming interfaces. This allows the models to be refined or

reformulated without using Mosel’s native GUI. Future optimization tools will need to be

directly integrated into the architecture of the DMM for maximum effectiveness.

Database

The preliminary programming has been implemented to use Microsoft Excel as a

database interface. While it is effective in the short term, it will ultimately need to be

unified with the programming interface that will be chosen to run the entire MSDL/web-

based platform. The established methodology and code for allowing the models to

interact with Excel easily converts to any of the available choices for database systems.

Reformulation of the Column Generation Model

The Lagrangian duals from the LP relaxation are used to weight the decision

variable coefficients of the knapsack sub-problems. The assignment and convexity

constraints are dualized because they have a direct effect on the objective function. The

row generation model is limited in its ability to constrain for capacity and distance

because those constraints influence the objective through indirect control over the

similarity scores associated with the assignments. The model could be reformulated to

improve its capabilities in this regard. For example, capacity and distance could be

penalized in the objective function to produce new dual variables. Additionally, if

columns/rows represented entire work orders, distance could either be constrained within

the knapsack problem or by performing column cuts in the master problem. Performing

cuts to work order knapsacks resulted in an increase in the scalability over the traditional

70

formulation with vendor cuts. However, the disaggregated formulation has reduced

control over effective capacity usage, when the capacity constraint is declared in the

master problem or sub-problem. Although column generation extends the utility of the

linear program to larger sizes, the penalties associated with disaggregation are significant.

Continued pursuit of solutions to the problem through ILPs may require the model to

forfeit robustness. Rather, future work may find nonlinear models better suited for the

multi-criteria nature of the agile supply chain configuration problem.

A most promising approach involves column generation as traditionally practiced

and initially presented in this paper. The massive numbers of columns that would need to

be generated for an agile supply chain configuration problem prevents this approach from

performing well, as shown in the results. However, the decomposition scheme can be

modified such that individual columns include multiple suppliers. It is unclear how this

methodology compares to the untailored formulation, but reducing the number of

columns is likely to improve the performance in some cases where the column-to-row

ratio is at least 1:10 and the ratio of columns to suppliers-per-columncolumn is ~ 1:1.

SLP Solver for Nonlinear Programs

The principals of a nonlinear implementation of the global distance constraint

have proven to be sound. The constraint needs to be scaled up and incorporated as a

column generation global distance constraint. Further study of Successive Linear

Programming will likely be fruitful, as FICO has emphasized and improved the utility of

its SLP solver in recent years. Nonlinear programming may even yield better results than

the established method of cuts, as the small sized problems demonstrated.

71

APPENDIX A

XpressMP Input/Output for Traditional Formulation

Toy Problem Data Input File

score_matrix:[(1 1 1) 0.64 (1 1 2) 0.32 (1 1 3) 0.50 (1 1 4) 0.43 (1 1 5) 0.71
 (1 2 1) 0.23 (1 2 2) 0.63 (1 2 3) 0.95 (1 2 4) 0.58 (1 2 5) 0.01
 (1 3 1) 0.15 (1 3 2) 0.56 (1 3 3) 0.40 (1 3 4) 0.42 (1 3 5) 0.54
 (2 1 1) 0.11 (2 1 2) 0.32 (2 1 3) 0.38 (2 1 4) 0.67 (2 1 5) 0.89
 (2 2 1) 0.55 (2 2 2) 0.67 (2 2 3) 0.34 (2 2 4) 0.78 (2 2 5) 0.29
 (2 3 1) 0.01 (2 3 2) 0.02 (2 3 3) 0.03 (2 3 4) 0.04 (2 3 5) 0.05
 (3 1 1) 0.39 (3 1 2) 0.58 (3 1 3) 0.22 (3 1 4) 0.33 (3 1 5) 0.24
 (3 2 1) 0.41 (3 2 2) 0.08 (3 2 3) 0.92 (3 2 4) 0.62 (3 2 5) 0.78
 (3 3 1) 0.29 (3 3 2) 0.45 (3 3 3) 0.34 (3 3 4) 0.07 (3 3 5) 0.11]

capacity: [(1) 17 (2) 13 (3) 12 (4) 19 (5) 17]

duration: [(1 1) 3 (1 2) 7 (1 3) 9
 (2 1) 11 (2 2) 10 (3 3) 0
 (3 1) 5 (3 2) 8 (3 3) 3]

distance_matrix: [(1 1) 0 (1 2) 34 (1 3) 45 (1 4) 87 (1 5) 22

(2 1) 34 (2 2) 0 (2 3) 89 (2 4) 69 (2 5) 23
 (3 1) 45 (3 2) 89 (3 3) 0 (3 4) 13 (3 5) 35
 (4 1) 87 (4 2) 69 (4 3) 13 (4 4) 0 (4 5) 18
 (5 1) 22 (5 2) 23 (5 3) 35 (5 4) 18 (5 5) 0]

valid_serv: [(1) 3 (2) 2 (3) 3]

D_max: [(1) 100 (2) 101 (3) 102]

72

Toy Problem Results Output File

Begin running model

 The total score (profit) is z = $5.35

 Following is the assignment of SUPPLIERS to services in workorders:

 SUPPLIER

 s1 s2 s3 s4 s5

WO1 sv1 0 0 0 0 1
WO1 sv2 0 0 1 0 0
WO1 sv3 0 1 0 0 0
WO2 sv1 0 0 0 0 1
WO2 sv2 0 0 0 1 0
WO2 sv3 0 0 0 0 0
WO3 sv1 1 0 0 0 0
WO3 sv2 0 0 0 1 0
WO3 sv3 0 1 0 0 0

 End running model

 ===

 Work Order WO1

 First supplier is s5

 The next supplier is s3

 The distance between Supplier s5 and Supplier s3 is 35

 s5 <--------- 35 ---------> s3

 The next supplier is s2

 The distance between Supplier s3 and Supplier s2 is 89

 s3 <--------- 89 ---------> s2

 The total distance traveled in workorder WO1 is 124

 The maximum distance allowed for workorder WO1 is 100

 Eliminate supplier and rerun problem

 ===

 Work Order WO2

 First supplier is s5

73

 The next supplier is s4

 The distance between Supplier s5 and Supplier s4 is 18

 s5 <--------- 18 ---------> s4

 The total distance traveled in workorder WO2 is 18

 The maximum distance allowed for workorder WO2 is 101

 ===

 Work Order WO3

 First supplier is s1

 The next supplier is s4

 The distance between Supplier s1 and Supplier s4 is 87

 s1 <--------- 87 ---------> s4

 The next supplier is s2

 The distance between Supplier s4 and Supplier s2 is 69

 s4 <--------- 69 ---------> s2

 The total distance traveled in workorder WO3 is 156

 The maximum distance allowed for workorder WO3 is 102

 Eliminate supplier and rerun problem

74

APPENDIX B

Traditional Formulation Model Code in Mosel

model "Supplychain_tradformulation"
 options noimplicit
 uses "mmxprs", "mmsystem"
 uses "mmodbc" !this is to gain access to the Xpress-Optimizer solver

 parameters
 WO = 3
 SERV = 3
 SUP = 5
 INST = 1
 DATAFILE=
string("GAP_"+WO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers_"+INST+".dat")
 !OUTFILE= string("result_"+DATAFILE)
 end-parameters

 !declarations section
declarations
 need_to_solve: boolean
 supplis: integer ! number of different suppliers in a work order
 passes: integer !number of times the optimization problem needs to be solved
before finding
 !a solution that satisfies the distance constraint

 ! There are 3 sets: suppliers, services, and workorders
 NSUP: integer ! Number of SUPPLI
 SERVMAX: integer ! Number of SERVICES
 NWO: integer

 end-declarations

 initializations from DATAFILE
 NWO NSUP as "SUP" SERVMAX as "SERV"
 end-initializations

 declarations
 WORKORDERS = 1..NWO
 valid_serv: array(WORKORDERS) of integer
 end-declarations

 initializations from DATAFILE
 valid_serv
 end-initializations

declarations
 SUPPLI = 1..NSUP
 SERVICES = 1..SERVMAX

 cn: array (WORKORDERS,SERVICES) of integer

 total_distance: array(WORKORDERS) of real
 D_max: array(WORKORDERS) of real

 !scores is a parameter provided by the user in the datafile;
 !indicates the scores for the suppliers providing a particular
 !service in a given work order

 score_matrix,SCORE: array(WORKORDERS, SERVICES, SUPPLI) of real

75

 capacity: array(SUPPLI) of integer

 duration: array(WORKORDERS,SERVICES,SUPPLI) of integer

 !distance matrix is a parameter and it is a symetric matrix with distances between
pairs of suppliers
 distance_matrix: array(SUPPLI, SUPPLI) of integer
 formulation: integer
 !binary decision variable that are 1 if supplier k is assigned to service j in
workorder a
 supplier_to_service: array (WORKORDERS, SERVICES, SUPPLI) of mpvar
 avg_score,opt_time,objective: real
 no_vars: integer
 starttime: real
 Total_profit: linctr
 con_w: dynamic array(WORKORDERS,SERVICES) of linctr
 con_suppli: dynamic array(SUPPLI) of linctr
 end-declarations
setparam("XPRS_CPUTIME",1)

 initializations from DATAFILE
 score_matrix duration capacity distance_matrix D_max
 end-initializations

 !objective function
 Total_profit:= sum(a in WORKORDERS,j in SERVICES,k in SUPPLI)
score_matrix(a,j,k)*supplier_to_service(a,j,k)

 !constraints

 ! each valid service in a work order must be assigned to a single supplier
forall (a in WORKORDERS, j in 1..valid_serv(a)) con_w(a,j):= (sum(k in SUPPLI)
supplier_to_service(a,j,k) = 1)

!inactive services will not be considered
 forall (a in WORKORDERS,j in valid_serv(a)+1..SERVMAX) con_w(a,j):= sum(k in SUPPLI)
supplier_to_service(a,j,k) = 0

 ! for each supplier the services assigned must not exceed the available capacity
 forall (k in SUPPLI) con_suppli(k):= (sum (a in WORKORDERS) sum (j in SERVICES)
duration(a,j,k)* supplier_to_service(a,j,k)) <= capacity(k)

 ! Following are sign constraints

 forall (a in WORKORDERS, j in SERVICES, k in SUPPLI)supplier_to_service(a,j,k) is_binary

setparam("XPRS_HEURSTRATEGY",-1)
 starttime:= gettime
 !solve the problem
 maximize(Total_profit)
 opt_time:= gettime-starttime

 passes:= 0
 passes += 1

 !Printing objective value to screen
 writeln("\n Begin running model for the first pass")
 if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n The total score (profit) is z = $", getobjval)
 end-if

 !Output solution to screen as 3D matrix
 writeln("\n Following is the assignment of SUPPLIERS to services in workorders: \n")
 write("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")
 writeln(" \n---")
 forall(a in WORKORDERS, j in SERVICES) do
 write(strfmt(a,3,0)," sv",strfmt(j,2,0))

76

 forall(k in SUPPLI)do
 if(j > valid_serv(a)) then write(" - ")
 else
 write(" ", getsol(supplier_to_service(a,j,k))," ")
 end-if
 end-do
 writeln(" ")
 end-do

 writeln("\n End running model first pass")

 ! solution printing to output file
 fopen(OUTFILE, F_APPEND)
 writeln("\n Begin running model for the first pass")
 if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n Total profit: $", strfmt(getobjval,5,2))
 end-if
 writeln("\n Following the assignment of suppliers to services in workorders: \n")
 write("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")
 writeln(" \n")
 forall (a in WORKORDERS, j in SERVICES) do write(a," sv", j)
 forall(k in SUPPLI) write(" ", getsol(supplier_to_service(a, j, k))," ")
 writeln(" ")
 end-do

 writeln("\n End running model first pass")
 fclose(F_APPEND)
 graph:=IVEaddplot("Score",IVE_BLUE)
 forall(a in WORKORDERS)do
 WOSC:= a
 IVEdrawpoint(graph,gettime, getobjval)
 end-do

 (! Computing total distance for all workorders
 Look for chosen suppliers for work order a (these suppliers should be stored in arrays
because later we will use these supplier numbers to prohibit that all of them be in a
solution for a particular work order !)

 forall (a in WORKORDERS) do
 !writeln("\n ================== ", passes, " =================== ", passes," =======")
 no_times := 0
 supplis:= 0

 total_distance(a):= 0
 forall (j in 1..valid_serv(a)) do
 forall(k in SUPPLI) do
 if getsol(supplier_to_service(a,j,k)) = 1 then
 if j = 1 then

 cn(a,j):=k
 supplis +=1
 writeln("\n Work Order ",A," \n\n First supplier is
",k)
 else
 cn(a,j):= k
 if (cn(a,j) <> cn(a,j-1)) then
 supplis +=1
 end-if

 writeln("\n The next supplier is ", k)
 total_distance(a) += distance_matrix(cn(a,j-1), k)
 writeln("\n The distance between Supplier ",cn(j-
1)," and Supplier ",k," is ", distance_matrix(cn(j-1),k))
 !writeln("\n ", cn(j-1)," <--------- ",
distance_matrix(cn(j-1),k)," ---------> ",k)
 end-if
 end-if
 end-do !SUPPLI

77

 end-do !SERVICES

 writeln ("\n The total distance traveled in workorder ", a," is ", total_distance(a))
 writeln ("\n The maximum distance allowed for workorder ", a," is ", D_max(a))
end-do !) !work order report
 ! average score
 avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a))
 writeln("\naverage score: ",avg_score,"\n")

 writeln("(", opt_time, " sec) Optimal solution: ", getobjval,"\n* * * * * *\n")
 objective:= getobjval
 time_sec:= gettime-starttime
 no_vars:= WO*SERV*SUP
 formulation:= 1
initializations to "mmodbc.excel:results_OUTPUT.xlsm"
 opt_time as 'sec' !'time_sec'
 avg_score as 'avg' !'avg_score'
 objective as 'obj' !'objective'
 no_vars as 'vars' !'no_vars'
 INST as 'instance'
 formulation as 'formulation'
end-initializations

end-model

78

APPENDIX C

Traditional Formulation with Cuts

model "Supplychain_tradform with cuts"
 uses "mmxprs", "mmsystem"
 uses "mmodbc", "mmive" !this is to gain access to the Xpress-Optimizer solver

(!declarations
 WO,SERV,SUP: integer
end-declarations
 instance =
 end-parameters !)
 parameters
 NWO = 3
 SERV= 3
 SUP = 5
 INST= 1
 dist_red_goal= 0.50
 known_threshold= true
 DATAFILE=
"column_generation_data.dat"!string("GAP_"+WO+"_workorders_"+SERV+"_services_"+SUP+"_supp
liers_"+INST+".dat")
 OUTFILE= string("result_"+DATAFILE)
 formulation=1
 end-parameters
 !Modify Optimizer control parameter MAXNODE
!Modify Optimizer control parameter LPITERLIMIT
setparam("XPRS_LPITERLIMIT",100000)
 declarations

 need_to_solve: boolean
 passes: integer !number of times the optimization problem needs to be solved
 ! before finding a solution that satisfies the distance constraint
 ! There are 3 sets: suppliers, services, and workorders
 ! Without lost of generality we are assuming equal number of services in each
workorder
 NSUP: integer ! Number of SUPPLI
 SERVMAX: integer ! Number of SERVICES
 ! NWO: integer

 end-declarations

 !initializations from DATAFILE
 ! NWO NSUP SERVMAX
 !end-initializations

declarations
 WORKORDERS = 1..NWO
 valid_serv: array(WORKORDERS) of integer
end-declarations

initializations from DATAFILE
 valid_serv
end-initializations

declarations
 SUPPLI = 1..SUP
 SERVICES = 1..SERV

 cn: array (WORKORDERS,SERVICES) of integer

79

 !valid_serv: array(WORKORDERS) of integer !this array will let us produce
 !some constraints just for valid services in each workorder

 total_distance: array(WORKORDERS) of integer
 D_max: array(WORKORDERS) of real

 score_matrix,SCORE: array(WORKORDERS, SERVICES, SUPPLI) of real

 !capacities of each supplier is also a parameter provided by the user
 capacity: array(SUPPLI) of integer

 !capacities required by services in different work orders
 ! we are assuming all suppliers will take the same hours in completing
 !a given service in a given work order therefore supplier index is not there
 duration: array(WORKORDERS,SERVICES,SUPPLI) of integer

!distance matrix is a parameter and it is a symetric matrix with distances between
pairs of suppliers

 distance_matrix: array(SUPPLI, SUPPLI) of integer

!binary decision variable that are 1 if supplier k is assigned to service j in
workorder a

 supplier_to_service: array (WORKORDERS, SERVICES, SUPPLI) of mpvar
 iteration: integer
 end-declarations

 !Parameters read from a datafile
 initializations from DATAFILE
 score_matrix duration capacity distance_matrix valid_serv!D_max as "D_max"
 end-initializations

!Modify Optimizer control parameter LPITERLIMIT
!setparam("XPRS_LPITERLIMIT",1000)
!Modify Optimizer control parameter CPUTIME
!setparam("XPRS_CPUTIME",0)

 !objective function
 Total_profit:= sum(a in WORKORDERS,j in SERVICES,k in SUPPLI)
 score_matrix(a,j,k)*supplier_to_service(a,j,k)

 !constraints

 forall(a in WORKORDERS, j in 1..valid_serv(a)) con_w(a,j):= (sum(k in SUPPLI)
supplier_to_service(a,j,k) = 1)
 !inactive services will not be considered
 forall(a in WORKORDERS,j in valid_serv(a)+1..SERV) con_w(a,j):= sum(k in SUPPLI)

supplier_to_service(a,j,k) = 0

 ! each supplier the services assigned must not exceed the supplier capacity
 forall(k in SUPPLI) con_suppli(k):= (sum (a in WORKORDERS) sum (j in SERVICES)

 duration(a,j,k)* supplier_to_service(a,j,k)) <= capacity(k)

 forall(a in WORKORDERS,j in SERVICES,k in SUPPLI) supplier_to_service(a,j, k) is_binary

 starttime:= gettime
 !solve the problem
 maximize(Total_profit)
 opt_time:= gettime-starttime

! writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval)
 passes:= 1
 iteration:= 1
 ! Printing objective value to screen
 writeln("\n Begin running model for the first pass")
 if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n The total score (profit) is z = $", getobjval)

80

 end-if

 !Output solution to screen as 3D matrix
 writeln("\n Following is the assignment of SUPPLIERS to services in workorders: \n")
 write("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")
 writeln(" \n---")
 forall(a in WORKORDERS, j in SERVICES) do
 write(strfmt(a,3,0)," sv",strfmt(j,2,0))
 forall(k in SUPPLI)do
 if(j > valid_serv(a)) then write(" - ")
 else
 write(" ",getsol(supplier_to_service(a,j,k))," ")
 end-if
 end-do
 writeln(" ")
 end-do

 writeln("\n End running model first pass")

 ! solution printing to output file too
 fopen(OUTFILE, F_APPEND)
 writeln("\n Begin running model for the first pass")
 if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n Total profit: $", strfmt(getobjval,5,2))
 end-if
 writeln("\n Following the assignment of suppliers to services in workorders: \n")
 writeln("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")
 writeln(" \n")
 forall (a in WORKORDERS, j in SERVICES) do write(a," sv", j)
 forall(k in SUPPLI) write(" ", getsol(supplier_to_service(a, j, k))," ")
 writeln(" ")
 end-do
 !)
 writeln("\n End running model first pass")
 fclose(F_APPEND)
 !graph:=IVEaddplot("Score",IVE_BLUE)
 !forall(a in WORKORDERS)do ! code to plot iteration progress
! WOSC:= a
! IVEdrawpoint(graph,gettime, getobjval)
! end-do

 (! Computing total distance for all workorders
 Look for chosen suppliers for work order a (these suppliers should be stored in arrays
such that they can be used to prohibit recurrence of the same combination of suppliers
for a particular work order !)

if known_threshold = false then
 initializations from DATAFILE
 D_max
 end-initializations
 else
 initializations from DATAFILE
 D_max as "D_max50"
 end-initializations
end-if

repeat
 need_to_solve:= false
 overall_distance:= 0
 IVEerase !First erase the canvas
 forall (a in WORKORDERS) do
 writeln("\n ================== ", passes, " ==================== ", passes," =======")
 no_times := 0
 supplis:= 0

 total_distance(a) := 0

81

 forall (j in 1..valid_serv(a)) do
 forall(k in SUPPLI) do
 !this only happens once
 if getsol(supplier_to_service(a,j,k)) = 1 and no_times = 0 then
 column_number_1:=k
 cn(a,j):=k !cn0:=k
 supplis +=1
 !writeln("\n Work Order ", a," \n\n First supplier is ", k)
 no_times += 1
 wo += 1
 !this happens twice in a problem where the work order with the
 largest number of valid services is 3
 elif getsol(supplier_to_service(a,j,k)) = 1 and no_times >= 1 then
 column_number_2:=k
 if (column_number_1 <> column_number_2) then
 supplis +=1
 end-if
 if (no_times = 1) then cn1:=k
 elif(no_times = 2)then cn2:=k
 end-if
 cn(a,j):= k
 writeln("\n The next supplier is ", k)
 no_times += 1
 total_distance(a) +=

distance_matrix(column_number_1, k)
 writeln("\n The distance between Supplier ",
column_number_1, " and Supplier ", k, " is ", distance_matrix(column_number_1, k))
 writeln("\n ", column_number_1," <--------- ",
distance_matrix(column_number_1, k)," ---------> ", k)
 column_number_1 := k
 end-if
 end-do !SUPPLI
 end-do !SERVICES
 !work order report
 writeln ("\n The total distance traveled in workorder ", a," is ", total_distance(a))
 writeln ("\n The maximum distance allowed for workorder ", a," is ", D_max(a))

 !distance threashold test
 if (total_distance(a)>D_max(a)) then
 writeln("\n|**|$$|** ELIMINATE SUCH COMBINATION OF SUPPLIERS & RERUN

PROBLEM")

 if known_threshold then
 need_to_solve:=true
 end-if

 !cut formulation

 sum(j in 1..valid_serv(a)) supplier_to_service(a,j,cn(a,j))<= no_times-1 !

 ! else need_to_solve:=false

 overall_distance+= total_distance(a)

 if passes = 1 then
 opt_dist+= total_distance(a)
 first_bound(a):= total_distance(a)
 end-if

 !elif total_distance(a)< best_bound(a) then
 ! best_bound(a):= total_distance(a)

 if not known_threshold then
 if overall_distance > ((1-dist_red_goal)*opt_dist) then !
 need_to_solve:= true
 !
 !end-if
 !if(total_distance(a)>D_max(a)) then

82

 ! move_bound:= false

 ! end-if

 elif overall_distance < ((1-dist_red_goal)*opt_dist) then
 writeln("if test")
 need_to_solve:= false
 ! end-if

 if (total_distance(a)<=D_max(a)) and total_distance(a) >=
(0.5*first_bound(a)) then
 D_max(a)-= 1
 end-if
 end-if
 end-if

 !if overall_distance <

 !if total_distance(a) > 0.25*opt_dist(a) then ! and total_distance(a) <
best_bound(a) then

 !end-if

 end-do !end work order report
 !average score

 !avg_score:= getobjval/(sum(a in WORKORDERS)NSERV(a))
 !writeln("\naverage score: ",avg_score,"\n")
 !rerun original problem w/cuts if is needed for at least one work order after new

constraints are added
 if (need_to_solve=true) then
 !solve the problem

 !minimize(XPRS_LIN,Total_profit)
 maximize(Total_profit)
 passes+= 1
 !IVEdrawpoint(graph,gettime, getobjval)
 writeln("\n /////////////////////////\n\n Begin running model with cuts")

if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n The total score (profit) is z = $", getobjval)
 end-if

writeln("\n Following is the assignment of SUPPLIERS to services in
workorders: \n")

 write("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")
 writeln(" \n")

forall (a in WORKORDERS, j in SERVICES) do
write(a," sv", j)

forall(k in SUPPLI) write(" ", getsol(supplier_to_service(a, j,

 k))," ")
 writeln(" ")
 end-do

writeln("\n End running model")
 fopen(OUTFILE, F_APPEND)
 if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n Total profit: $", strfmt(getobjval,5,2))
 end-if

 writeln("\n Following the assignment of suppliers to services in

workorders: \n")
 writeln("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")

83

 writeln(" \n")
 forall(a in WORKORDERS, j in SERVICES) do write(a," sv", j)

 forall(k in SUPPLI)
 write(" ", getsol(supplier_to_service(a, j, k))," ")
 writeln(" ")
 end-do

 writeln("\n End running model")
 fclose(F_APPEND)
 !)
 dist_reduction:= (1-(overall_distance/opt_dist))*100
 writeln("distance reduction: ",dist_reduction,"%")
 end-if
 writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval)
 !writeln(" iteration: ",iteration)

 !graph:=IVEaddplot("agv_score(dist_reduction)",IVE_RED) !Create a graph
 until (need_to_solve=false)
 ! average score
 avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a))
 !!writeln("\naverage score: ",avg_score,"\n")
writeln("beginning distance: ",opt_dist)
writeln("ending distnance: ",overall_distance)
dist_reduction:= (1-(overall_distance/opt_dist))*100
writeln("distance reduction: ",dist_reduction,"%")
 objective:= getobjval
 time_sec:= gettime-starttime
 no_vars:= NWO*SERV*SUP
initializations to "mmodbc.excel:results_OUTPUT.xlsm"
 time_sec as 'time_s' !'time_sec'
 avg_score as 'av' !'avg_score'
 objective as 'objval' !'objective'
 no_vars as 'num_vars' !'no_vars'
 INST as 'inst'
 formulation as 'fml'
 dist_reduction as "dist_reduction"
end-initializations

if not known_threshold then
 initializations to DATAFILE
 D_max as "D_max10"
 end-initializations
end-if

end-model

84

APPENDIX D

Quadradically Constrained Nonlinear Optimization Model

model "Supplychain_tradform NLP"
 uses "mmxprs", "mmsystem"
 uses "mmodbc", "mmive","mmnl" !this is to gain access to the Xpress-Optimizer solver

parameters
 NWO = 3
 SERV= 3
 SUP = 5
 INST= 1
 DATAFILE="column_generation_data.dat"!
string("GAP_"+WO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers_"+INST+".dat")
 OUTFILE= string("result_"+DATAFILE)
 formulation=1
 end-parameters

! XSLPcommand(A: string)
!declarations section
declarations

 !next 3 variables are useful for computation of distance in a workorder
 no_times: integer ! similar to max # of services in work order for small example
 ! with up to 3 services in a work order the max value that no_times is 3
 column_number1 : integer
 column_number2 : integer

 ! variables to record the id's of suppliers involved in a given work order
 cn_0 : integer
 cn_1 : integer
 cn_2 : integer

need_to_solve: boolean

 supplis: integer ! number of different suppliers in a work order
 passes: integer !number of times the optimization problem needs to be solved
 ! before finding a solution that satisfies the distance constraint

 ! There are 3 sets: suppliers, services, and workorders

 NSUP: integer ! Number of SUPPLI
 SERVMAX: integer ! Number of SERVICES
 !NWO: integer

 end-declarations

 !initializations from DATAFILE
 ! NWO SUP SERV
 !end-initializations

 declarations
 WORKORDERS = 1..NWO
 valid_serv: array(WORKORDERS) of integer
 end-declarations

 initializations from DATAFILE
 valid_serv
 end-initializations

85

declarations
 SUPPLI = 1..SUP
 SERVICES = 1..SERV

 cn: array (WORKORDERS,SERVICES) of integer
 !valid_serv : array(WORKORDERS) of integer !this array will let us produce
 !some constraints just for valid services in each workorder

 !invalid_serve: array(WORKORDERS) of integer ! for a particular service
 ! assignments should have an equal to 0 RHS for these invalid services

 total_distance: array(WORKORDERS) of integer
 D_max: array(WORKORDERS) of integer
 wo_distance: array(WORKORDERS) of integer

 score_matrix,SCORE: array(WORKORDERS, SERVICES, SUPPLI) of real

 !capacities of each supplier is also a parameter provided by the user
 capacity: array(SUPPLI) of integer

 !capacities required by services in different work orders
 ! we are assuming all suppliers will take the same hours in completing
 !a given service in a given work order therefore supplier index is not there
 duration: array(WORKORDERS,SERVICES) of integer

 !distance matrix is a parameter and it is a symetric matrix with distances between
pairs of suppliers
 distance_matrix: array(SUPPLI, SUPPLI) of integer

 !binary decision variable that are 1 if supplier k is assigned to service j in
workorder a
 supplier_to_service: array (WORKORDERS, SERVICES, SUPPLI) of mpvar
 iteration: integer
 !con_m:
 con_suppli: array (SUPPLI) of linctr
 con_w: array(WORKORDERS,SERVICES) of linctr!genctr
 con_m: array(WORKORDERS) of nlctr
 profit: mpvar
 Total_profit: linctr! gexp
 end-declarations

 !Things that we will read from a datafile
 initializations from DATAFILE
 score_matrix duration as "capacities" capacity as "cap_sup" distance_matrix
 end-initializations
 !Modify Optimizer control parameter LPITERLIMIT
!setparam("XPRS_LPITERLIMIT",100)

! forall(a in WORKORDERS) SLPDATA("IV",wo_distance(a),300)

 !objective function
 Total_profit:= sum(a in WORKORDERS,j in SERVICES,k in SUPPLI)

score_matrix(a,j,k)*supplier_to_service(a,j,k)

profit = Total_profit
profit is_free

!constraints

forall (a in WORKORDERS, j in 1..valid_serv(a)) con_w(a,j):=

(sum(k in SUPPLI) supplier_to_service(a,j,k) = 1)
 !inactive services will not be considered
 forall (a in WORKORDERS,j in valid_serv(a)+1..SERVMAX) con_w(a,j):=

 sum(k in SUPPLI) supplier_to_service(a,j,k) = 0
(! if invalid_serve(a) <> 0 then
 forall (j in valid_serv(a)+1..invalid_serve(a)) con_w(a,j):=

(sum(k in SUPPLI) supplier_to_service(a,j, k) = 0)
 end-if
 end-do
 !)

86

 ! forall (a in WORKORDERS, j in SUPPLI) con_w(a,j):= (sum(k in SUPPLI)
supplier_to_service(a,j,k) = 1)

 ! Second constraint is for each supplier the services selected (or assigned) must not

exceed the supplier capacity
 forall (k in SUPPLI) con_suppli(k):= (sum (a in WORKORDERS) sum (j in SERVICES)

duration(a,j)* supplier_to_service(a,j,k)) <= capacity(k)

 forall (a in WORKORDERS, j in SERVICES, k in SUPPLI) supplier_to_service(a,j,k)
is_binary

!quadratic distance constraint
 forall (a in WORKORDERS) con_m(a):=

(sum(k,l in SUPPLI)distance_matrix(k,l)*sum(j in 1..valid_serv(a)-1)
supplier_to_service(a,j,k)*supplier_to_service(a,j+1,l)) <= D_max(a)

!setparam ("xslp_verbose", true)
!setparam ("xslp_log", 0)

 starttime:= gettime
 !solve the problem
 !SLPloadprob(profit)
 !SLPmaximize(profit)

 maximize(Total_profit)

opt_time:= gettime-starttime

! writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval)

passes:= 1
iteration:= 1

! Printing objective value to screen
 writeln("\n Begin running model for the first pass")
! if(getprobstat<>XPRS_OPT) then
! writeln("\n Problem is infeasible")
! else
 writeln("\n The total score (profit) is z = $", getobjval)
 !end-if

 !Output solution to screen as 3D matrix
 writeln("\n Following is the assignment of SUPPLIERS to services in workorders: \n")
 write("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")
 writeln(" \n---")
 forall(a in WORKORDERS, j in SERVICES) do
 write(strfmt(a,3,0)," sv",strfmt(j,2,0))
 forall(k in SUPPLI)do
 if(j > valid_serv(a)) then write(" - ")
 else
 write(" ",getsol(supplier_to_service(a,j,k))," ")
 end-if
 end-do
 writeln(" ")
 end-do

 writeln("\n End running model first pass")
(!
 ! solution printing to output file too
 fopen(OUTFILE, F_APPEND)

 writeln("\n Begin running model for the first pass")
 !if(getprobstat<>XPRS_OPT) then
 ! writeln("\n Problem is infeasible")
 ! else
 writeln("\n Total profit: $", strfmt(getobjval,5,2))
 ! end-if
 writeln("\n Following the assignment of suppliers to services in workorders:

 \n")
 writeln("\n SUPPLIER \n\n ")
 forall (k in SUPPLI) write(" ", k, " ")

87

 writeln(" \n")

 forall (a in WORKORDERS, j in SERVICES) do write(a," sv", j)
 forall(k in SUPPLI) write(" ",getsol(supplier_to_service(a, j, k))," ")
 writeln(" ")
 end-do

 writeln("\n End running model first pass")

 fclose(F_APPEND)
 graph:=IVEaddplot("Score",IVE_BLUE)
 forall(a in WORKORDERS)do
 WOSC:= a
 IVEdrawpoint(graph,gettime, getobjval)
 end-do
 !)
 (! Computing total distance for all workorders
Look for chosen suppliers for work order a (these suppliers should be stored in arrays
such that they can be used to prohibit recurrence of specific combination for a
particular work order !)

 !initializations from "raw:shmem"
 ! D_max
 !end-initializations

repeat
 !SLPglobal
 writeln("\n ============== ", passes, " ===================== ", passes,"
===========")
 need_to_solve:= false
 forall (a in WORKORDERS) do
 writeln("\n********************* Work Order",a," ******************\n")
 no_times := 0
 supplis:= 0
 maximize(Total_profit)
 total_distance(a) := 0
!DumpStack
 !total_distance(a):=

(sum(k,l in SUPPLI)distance_matrix(k,l)*sum(j in 1..valid_serv(a)-1)
supplier_to_service(a,j,k)*supplier_to_service(a,j+1,l))

forall(j in 1..valid_serv(a)) do

 forall(k in SUPPLI) do
 !this only happens once
 if getsol(supplier_to_service(a,j,k)) = 1 and j <= 1 then
 column_number_1:=k
 cn(a,j):=k !cn0:=k
 supplis +=1
 writeln(" service ",j,": supplier ", k)
 no_times += 1
 wo += 1
 !this happens twice in a problem where the work order with the

 largest number of valid services is 3
 elif getsol(supplier_to_service(a,j,k)) = 1 and j >= 1 then
 column_number_2:=k
 if (column_number_1 <> column_number_2) then
 supplis +=1
 end-if

if (no_times = 1) then cn1:=k
 elif(no_times = 2)then cn2:=k
 end-if

cn(a,j):= k
 writeln("\n service ",j,": supplier ", k)
 no_times += 1

 total_distance(a)+=distance_matrix(column_number_1, k)

 writeln("\n The distance between Supplier ",
column_number_1, " and Supplier ", k, " is ", distance_matrix(column_number_1, k))

88

 writeln("\n ", column_number_1," <--------- ",
distance_matrix(column_number_1, k)," ---------> ", k)
 column_number_1 := k
 end-if
 end-do !SUPPLI
 end-do !SERVICES
 !work order report
 writeln ("\n The total distance traveled in workorder ", a," is ", total_distance(a))
 writeln ("\n The maximum distance allowed for workorder ", a," is ", D_max(a))

 !distance threashold test
 if total_distance(a).sol>= 100 then
 writeln("\n|**|$$|** ELIMINATE SUCH COMBINATION OF SUPPLIERS & RERUN

PROBLEM")
 need_to_solve:=true
 end-if
 !end-do
 !cut formulation

 sum(j in 1..valid_serv(a)) supplier_to_service(a,j,cn(a,j))<= no_times-1

 ! else need_to_solve:=false
 ! end-if ! this is for larger problems
 ! D_max(a):= total_distance(a) - 1
 end-do !end work order report

 !average score
 avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a))

 writeln("\naverage score: ",avg_score,"\n")

 !rerun original problem w/cuts if is needed for at least one work order after new

constraints are added

 if (need_to_solve=true) then
 !solve the problem
 !forall (a in WORKORDERS) con_m(a):=

(sum(k,l in SUPPLI)distance_matrix(k,l)*sum(j in 1..NSERV(a)-1)
 supplier_to_service(a,j,k)*supplier_to_service(a,j+1,l)) <= D_max(a)

 maximize(Total_profit)
 passes+= 1
 !IVEdrawpoint(graph,gettime, getobjval)
 writeln("\n /////////////////////////\n\n Begin running model with cuts")

if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n The total score (profit) is z = $", getobjval)
 end-if

 writeln("\n Following is the assignment of SUPPLIERS to services in

 workorders: \n")
 write("\n SUPPLIER \n\n ")

forall (k in SUPPLI) write(" ", k, " ")
 writeln(" \n")

forall (a in WORKORDERS, j in SERVICES) do
write(a," sv", j)

forall(k in SUPPLI)write(" ",getsol(supplier_to_service(a,j,k)),

 " ")

writeln(" ")
 end-do

writeln("\n End running model")

89

fopen(OUTFILE, F_APPEND)
 if(getprobstat<>XPRS_OPT) then
 writeln("\n Problem is infeasible")
 else
 writeln("\n Total profit: $", strfmt(getobjval,5,2))
 end-if

 writeln("\n Following the assignment of suppliers to services in

workorders: \n")
 writeln("\n SUPPLIER \n\n ")

forall (k in SUPPLI) write(" ", k, " ")

writeln(" \n")

forall (a in WORKORDERS, j in SERVICES) do
write(a," sv", j)

forall(k in SUPPLI)

write(" ", getsol(supplier_to_service(a, j, k))," ")

 writeln(" ")
 end-do

 writeln("\n End running model")
 fclose(F_APPEND)

 end-if
 writeln("(", gettime-starttime, " sec) Optimal solution: ", getobjval)
 writeln(" iteration: ",iteration)

 until need_to_solve=false

 ! average score
 avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a))
 !!writeln("\naverage score: ",avg_score,"\n")

 objective:= getobjval
 time_sec:= gettime-starttime
 no_vars:= NWO*SERV*SUP

initializations to "mmodbc.excel:results_OUTPUT.xlsm"
 time_sec as 'sec' !'time_sec'
 avg_score as 'avg' !'avg_score'
 objective as 'obj' !'objective'
 no_vars as 'vars' !'no_vars'
 INST as 'instance'
 formulation as 'formulation'
end-initializations
!)
!)
end-model

90

APPENDIX E

Column Generation Master Model

model "column_generation_formulation"
uses "mmxprs", "mmsystem","mmjobs", "mmive"; !gain access to the Xpress-Optimizer solver
 !uses "mmnl";
!optional parameters section
parameters
 NWO = 10
 SERV= 10
 SUP = 50
 INST= 1
 DATAFILE=
string("GAP_"+NWO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers.dat")!_"+INST+".dat")

end-parameters
declarations
 WORKORDERS = 1..NWO
 SERVICES= 1..SERV
 SUPPLI = 1..SUP
 NCOLS: array(SUPPLI) of integer
 price: real
end-declarations

forward procedure column_gen
!forward function column_knapsack(capacities:array(WORKORDERS,SERVICES) of integer,
! cap_sup: array(SUPPLI) of integer,
!
 initialsolution:array(WORKORDERS,SERVICES,SUPPLI) of integer):integer
forward function supplier_knapsack(SCORE_DUAL:array(WORKORDERS,SERVICES)of real,
 sup_scores:
array(WORKORDERS,SERVICES) of real,

 capacities:array(WORKORDERS,SERVICES,SUPPLI) of integer,
 capctr: integer,
 xbest:array(WORKORDERS,SERVICES) of
integer,
 !K: integer,
 SUP_DUAL: real,
 valid_serv: array(WORKORDERS) of
integer):real
forward procedure optimization_report
forward procedure optimization
forward procedure generate_random_cols
!Modify Optimizer control parameter CPUTIME
setparam("XPRS_CPUTIME",1)
declarations
 !next 3 variables are useful for distance computation
 !no_times : integer
 !column_number1 :integer
 !column_number2 : integer
 !cn_0,cn_1,cn_2: integer
 !need_to_solve: boolean
 valid_serv: array(WORKORDERS) of integer
 capacities: array(WORKORDERS,SERVICES,SUPPLI) of integer
 score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real
 cap_sup: array(SUPPLI) of integer ! Max capacity per supplier
 !dual_record: array(way,WORKORDERS,SERVICES)of real
 xbest: array(WORKORDERS,SERVICES) of integer
 SCORE_DUAL: array(WORKORDERS,SERVICES)of real

91

 !initialsolution: array(WORKORDERS,SERVICES,SUPPLI) of integer
 !sup_scores: array(WORKORDERS,range) of real
 pass: integer
 way_selector: array(SUPPLI,range) of mpvar
 way_matrix: array(SUPPLI,range,WORKORDERS,range)of integer
 xway: integer
 way_score: array(SUPPLI,range) of real
 RHS: array(WORKORDERS,SERVICES) of real
 EPS = 1e-6 ! Zero tolerance
 !total_distance: real
 !D_max: array(WORKORDERS)of real

 score: real
 distance_matrix: array(SUPPLI,SUPPLI) of integer
 Grand_Total: linctr
 way_ctr: array(SUPPLI)of linctr
 assignment: array(WORKORDERS,range) of linctr
 supplier: array(SUPPLI)of real
 starttime: real
 max_supplier: integer
 K: integer
 Column_knapsack: Model
 Supplier_knapsack: Model !mpproblem
 SUP_DUAL: real
 PRICE_DUAL,pricing_prob: array(SUPPLI) of real
 new_column: basis
 iter: integer
 col_gen_break: array(SUPPLI) of integer
 scores: array(WORKORDERS,range,SUPPLI) of real
 durations: array(WORKORDERS,range,SUPPLI) of integer

end-declarations

starttime:=gettime

initializations from DATAFILE
 valid_serv as "NSERV" ! distance_matrix D_max!
 score_matrix as "SCORE"
 cap_sup as "CAP" capacities as "duration"
end-initializations

forall(k in SUPPLI) NCOLS(k):=0

forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)do
 duration(a,j,k):= capacities(a,j,k)
end-do

forall(a in WORKORDERS,j in 1..valid_serv(a))do
 forall(k in SUPPLI) do
 scores(a,j,k):= score_matrix(a,j,k)
 !write(scores(a,j,k)," ")
 end-do
 !writeln
end-do

generate_random_cols
generate_random_cols

setparam("XPRS_verbose",true)

res:= compile (" ","Supplier_knapsack.mos","shmem:bim")
load (Supplier_knapsack, "shmem:bim")

forall(k in SUPPLI) way_ctr(k):= sum(b in 1..NCOLS(k))way_selector(k,b) = 1
!asssignment constraints
forall(a in WORKORDERS, j in 1..valid_serv(a)) assignment(a,j):=

(sum(k in SUPPLI)sum(b in 1..NCOLS(k))way_matrix(k,b,a,j)*way_selector(k,b)) = 1

forall(a in WORKORDERS, j in valid_serv(a)+1..SERV) potato(a,j):=

(sum(k in SUPPLI)sum(b in 1..NCOLS(k))way_matrix(k,b,a,j)*way_selector(k,b)) = 0

92

! way score calculation
forall(k in SUPPLI,b in 1..NCOLS(k))way_score(k,b):=

sum(a in WORKORDERS,j in 1..valid_serv(a))way_matrix(k,b,a,j)*scores(a,j,k)

! Objective: maximize total value
Grand_Total:= sum(k in SUPPLI,b in 1..NCOLS(k)) way_selector(k,b)*way_score(k,b)

 column_gen

maximize(XPRS_LIN,Grand_Total)

write("\n\n ")
forall(k in SUPPLI,b in 1..NCOLS(k))do
 if(way_selector(k,b).sol = 1 and way_score(k,b) > 0)then
 write("(",k,") ")
 end-if
end-do

write("\n----------------------------\n")
forall(a in WORKORDERS,j in SERVICES)do
 write("sv ",j)
 forall(k in SUPPLI)do
 write(" | ")
 forall(b in 1..NCOLS(k))do
 if(way_selector(k,b).sol = 1 and way_score(k,b) > 0)then
 write(way_matrix(k,b,a,j))
 end-if
 end-do
 end-do

write(" = ",RHS(a,j))
 write("\n")
end-do

forall(k in SUPPLI,b in 1..NCOLS(k)) do
 if way_selector(k,b).sol = 1 then
 write(k,"(",b,") ")
 end-if
end-do

writeln("\nobjective value: ",getobjval)
write("\nComputation time: ", gettime-starttime," sec")

!**
! Column generation loop ~ MASTER PROBLEM
!**
procedure column_gen
 defcut:=getparam("XPRS_CUTSTRATEGY") ! Save setting of `CUTSTRATEGY'
 setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts: MIP
 setparam("XPRS_PRESOLVE", 0) ! Switch presolve off: disable
 setparam("zerotol", EPS) ! Set comparison tolerance of Mosel

iter:=0
repeat
 iter+=1
 if iter > 1 then
 maximize(XPRS_LIN,Grand_Total)
 savebasis(new_column)

 optimization

 !optimization_report
 end-if
 writeln("\n\n > > ~ column generation loop pass ",iter," ~ < <\n")

 ! supplier column generation loop
 forall(k in SUPPLI)do

 if pricing_prob(k) = 0 and iter > 2 then
 !writeln(pricing_prob(k))
 col_gen_break(k):= 1

93

 else
 NCOLS(k)+=1
 K:= k
 capctr:= cap_sup(k)
 forall(a in WORKORDERS,j in SERVICES)do
 sup_scores(a,j):= score_matrix(a,j,k)
 end-do
 !writeln("SUP_SCORES",sup_scores)
 SUP_DUAL:= PRICE_DUAL(k)
 price:=
supplier_knapsack(SCORE_DUAL,sup_scores,capacities,capctr,xbest,SUP_DUAL,valid_serv)

 writeln("price: ",price)
 pricing_prob(k):= price
 create(way_selector(k,NCOLS(k)))
 forall(a in WORKORDERS,j in 1..valid_serv(a)) do
 way_matrix(k,NCOLS(k),a,j):= xbest(a,j)
 assignment(a,j)+=
 way_matrix(k,NCOLS(k),a,j)*way_selector(k,NCOLS(k))
 end-do
 way_selector(k,NCOLS(k)) is_binary
 way_ctr(k)+= way_selector(k,NCOLS(k))
 way_score(k,NCOLS(k)):= sum(a in WORKORDERS,j in 1..valid_serv(a))

 way_matrix(k,NCOLS(k),a,j)*scores(a,j,k)

 Grand_Total+= way_selector(k,NCOLS(k))*way_score(k,NCOLS(k))

 end-if

 end-do ! SUPPLIER column gen loop

 ! print new columns
!write("\n\n KNAPSACK COLUMNS \n ")
!forall (k in SUPPLI) write(k, " ")
!forall(a in WORKORDERS,j in 1..valid_serv(a)) do
! write("\nsv ",j," ")
! forall(k in SUPPLI)do
! write("| ")
! write(way_matrix(k,NCOLS(k),a,j)," ")
! end-do
!end-do
!writeln

! if iter >= 100 then
! break
! end-if

!generate_random_cols
if iter > 1 then
savebasis(new_column)
 loadprob(Grand_Total)
 if sum(k in SUPPLI)col_gen_break(k) >= SUP then ! and sum(a in WORKORDERS,j in
1..valid_serv(a))RHS(a,j) >= 8 then
 writeln("no profitable column found.\n")
 break
 end-if
end-if

until(false)

 setparam("XPRS_CUTSTRATEGY", defcut) ! Enable automatic cuts
 setparam("XPRS_PRESOLVE", 1) ! Switch presolve on

 end-procedure
!**

! knapsack problem
!**
function supplier_knapsack(SCORE_DUAL:array(WORKORDERS,SERVICES)of real,
 sup_scores: array(WORKORDERS,SERVICES) of real,

94

 capacities:array(WORKORDERS,SERVICES,SUPPLI) of integer,
 capctr: integer,
 xbest:array(WORKORDERS,SERVICES) of integer,
 !K: integer,
 SUP_DUAL: real,
 valid_serv: array(WORKORDERS) of integer):real

!with Burglar do
initializations to "raw:noindex"
 SCORE_DUAL as "shmem:SCORE_DUAL" sup_scores capacities as "shmem:capacities"
 capctr SUP_DUAL valid_serv
end-initializations

run (Supplier_knapsack, "k="+K+",SUPPLIERS="+SUP+",SERVMAX="+SERV+",NWO="+NWO)

 ! Start solving knapsack subproblem

wait ! Wait until subproblem finishes
dropnextevent ! Ignore termination message

initializations from "raw:"
 xbest as "shmem:xbest" returned as "shmem:score"
end-initializations

(!
 declarations
 con_suppli: linctr
 GenerateWay: linctr
 rkji: array(WORKORDERS,range) of mpvar ! 1 if we take item i; 0 otherwise
 !xbest: array(WORKORDERS,range) of integer
 score: real
 !valid_serv: array(WORKORDERS)of integer
 !K: integer
 noassign: array(WORKORDERS,range) of linctr
 end-declarations

 !Objective: maximize total value
 GenerateWay:= sum(a in WORKORDERS,j in 1..valid_serv(a))

((scores(a,j,K)-SCORE_DUAL(a,j))*rkji(a,j))-SUP_DUAL

 !Capacity constraint
 con_suppli:= (sum(a in WORKORDERS,j in 1..valid_serv(a))duration(a,j)*rkji(a,j))<=capctr
 !BIP
 forall(a in WORKORDERS,j in 1..valid_serv(a)) rkji(a,j) is_binary ! All x are 0/1
 forall(a in WORKORDERS,j in valid_serv(a)..SERVMAX) noassign(a,j):= rkji(a,j) = 0
 maximize(GenerateWay) ! Solve the MIP-problem

writeln("test supplier: ",K)
returned:=getobjval
writeln(getobjval)
forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)
xbest(a,j):=integer(rkji(a,j).sol)

 !)

 end-function

!**
! master problem optimization procedure
!
!
! ***
 procedure optimization
 forall(a in WORKORDERS,j in SERVICES)do
 SCORE_DUAL(a,j):= getdual(assignment(a,j))
 !IVEdrawpoint(plot1,iter,SCORE_DUAL(a,j))
 end-do
 ! pricing dual values from convexity constraint
 forall(k in SUPPLI) do
 PRICE_DUAL(k):= getdual(way_ctr(k))
 !IVEdrawpoint(plot2,iter,PRICE_DUAL(k))

95

 end-do

 !writeln("assignment duals: ",SCORE_DUAL)
 !writeln("convexity duals: ",PRICE_DUAL)
 end-procedure

!**
! optimization report procedure
!
!
! ***
 procedure optimization_report

 forall(a in WORKORDERS,j in SERVICES)RHS(a,j):=

sum(k in SUPPLI)sum(b in 1..NCOLS(k))way_matrix(k,b,a,j)*(way_selector(k,b).sol)

!print way matrix
write("\n\n WAY MATRIX \n ")
forall (k in SUPPLI) write("supplier ",k," ")
write("\n ")
forall(k in SUPPLI) do
 forall(b in 1..NCOLS(k))write(strfmt(b,2))
 write(" ")
end-do

write("\n--
----------------------")
forall(a in WORKORDERS,j in SERVICES) do
 write("\nsv ",j," ")
 forall(k in SUPPLI)do
 write("| ")
 forall(b in 1..NCOLS(k))do
 write(way_matrix(k,b,a,j)," ")
 end-do
 end-do
 write("= ",RHS(a,j))
end-do
write("\n--
----------------------\nXklk ")
forall(k in SUPPLI) do
 write("| ")
 forall(b in 1..NCOLS(k))write(getsol(way_selector(k,b))," ")
end-do
 (!write("\n\nWay Score\n")
 forall(b in 1..NCOL(k))write(" | way ",strfmt(b,2))
 write("\n")
 forall(k in SUPPLI)do
 write("\n")
 forall(b in 1..NCOL(k))write(" |",strfmt(way_score(k,b),7))
 end-do
 write("\n---\n")

 !forall(b in way)write(" | ",strfmt(way_total(b),6))!)
 write("\n\n*-*-*-*-*-*-*-*-*-*-*-*\n|",strfmt("|",22),"\n| Grand_score:
",strfmt(getobjval,-6),"|\n|",strfmt("|",22),"\n*-*-*-*-*-*-*-*-*-*-*-*")

 end-procedure

!**
! random column generation procedure
!
!
! ***
procedure generate_random_cols
! generate initial columns
forall(k in SUPPLI)NCOLS(k)+=1

 !writeln("\nway ",NCOLS(k),"\n")

96

 forall(a in WORKORDERS,j in 1..valid_serv(a))do
 !forall(k in SUPPLI)supplier(k):= scores(a,j,k) !random ! assign
random supplier
 !min_supplier:=
minlist(supplier(1),supplier(2),supplier(3),supplier(4),supplier(5))
 max_supplier:= 1
 forall(k in SUPPLI)do
 if score_matrix(a,j,k) >
score_matrix(a,j,max_supplier) then
 max_supplier:= k
 end-if
 end-do
 !forall(k in SUPPLI)do
 ! if supplier(k)= min_supplier then
 ! supplier(k):= 1
 ! else supplier(k):= 0
 ! end-if
 !end-do
 forall(k in SUPPLI)do
 way_matrix(k,NCOLS(k),a,j):= 0 !integer(supplier(k)) !
feasible but not constrained
 end-do
 way_matrix(max_supplier,NCOLS(1),a,j):= 1
 end-do
(! write("\n\n Random WAY \n ") ! write way
forall (k in SUPPLI) write(k, " ")
forall(a in WORKORDERS,j in SERVICES) do
 write("\nsv ",j," ")
 forall(k in SUPPLI)do
 write("| ")
 write(way_matrix(k,xway,a,j)," ")
 end-do
end-do !)
!writeln

repeat waycheck:= false
 repeat invalid_demand:=false
 forall(k in SUPPLI) do ! verify capacity ctr
 if sum(a in WORKORDERS,j in 1..valid_serv(a))

way_matrix(k,NCOLS(k),a,j)*capacities(a,j,k)>cap_sup(k) then
 invalid_demand:= true
 waycheck:= true
 !writeln("XXX supplier ",k," demand ",

sum(a in WORKORDERS,j in SERVICES)way_matrix(k,xway,a,j)*capacities(a,j),
" X< ",cap_sup(k))

 forall(a in WORKORDERS,j in 1..valid_serv(a)) do !reassign ½ of services
 if way_matrix(k,NCOLS(k),a,j) = 1 then
 if round(random) = 1 then! remove half of assignments
 ! assign random supplier

 forall(l in 1..k-1)supplier(l):= score_matrix(a,j,k)
 supplier(k):= 0
 forall(l in k+1..SUP) supplier(l):= score_matrix(a,j,k)
 max_supplier:=1

 forall(l in SUPPLI)do
 if supplier(l) > score_matrix(a,j,max_supplier) then
 max_supplier:= l
 end-if
 end-do
 forall(l in SUPPLI)do
 if supplier(l)= min_supplier then
 supplier(l):= 1
 else supplier(l):= 0
 end-if
 end-do

 forall(l in SUPPLI)do
 way_matrix(l,NCOLS(l),a,j):= 0
 end-do
 way_matrix(max_supplier,NCOLS(1),a,j):= 1
 end-if

97

 end-if
 end-do
 !writeln("new demand ",sum(a in WORKORDERS,j in SERVICES)

way_matrix(k,xway,a,j)*capacities(a,j)," < ",cap_sup(k))
 end-if ! invalid capacity loop
 end-do ! supplier loo
 !forall(k in SUPPLI)do
 !writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in SERVICES)

way_matrix(k,xway,a,j)*capacities(a,j)," < ",cap_sup(k))
 !end-do
 until invalid_demand= false

until waycheck = false

forall(k in SUPPLI) do
 create(way_selector(k,NCOLS(k)))
 way_selector(k,NCOLS(k)) is_binary
end-do

 forall(k in SUPPLI)do
 writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in
1..valid_serv(a))way_matrix(k,NCOLS(k),a,j)*capacities(a,j,k)," <= ",cap_sup(k))
 end-do
end-procedure
end-model

Supplier Knapsack Code

model "Supplier_knapsack" ! Start a new model

uses "mmxprs" ! Load the optimizer library

declarations
SUPPLIERS = 50
SERVMAX = 10
NWO = 10
WORKORDERS = 1..NWO
SERVICES = 1..SERVMAX
SUPPLI = 1..SUPPLIERS

 SCORE_DUAL: array(WORKORDERS,SERVICES) of real ! score of services
 capacities: array(WORKORDERS,SERVICES,SUPPLI) of integer ! decision variables
 score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real
 scores: array(WORKORDERS,range,SUPPLI) of real
 duration: array(WORKORDERS,range,SUPPLI) of integer
 assign_dual: array(WORKORDERS,range) of real
 capctr: integer ! Max capacity per supplier
 SUP_DUAL: real
 con_suppli: linctr
 GenerateWay: linctr
 rkji: array(WORKORDERS,SERVICES) of mpvar ! 1 if we take item i; 0 otherwise
 xbest: array(WORKORDERS,SERVICES) of integer
 score: real
 valid_serv: array(WORKORDERS)of integer
 K: integer
 noassign: array(WORKORDERS,range) of linctr
end-declarations

!writeln("knapsack test")

 initializations from "raw:noindex"

score_matrix capctr K SUP_DUAL valid_serv SCORE_DUAL as "shmem:SCORE_DUAL"
capacities as "shmem:capacities"

 end-initializations

98

forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)do
 duration(a,j,k):= capacities(a,j,k)
 assign_dual(a,j):= SCORE_DUAL(a,j)
end-do

forall(a in WORKORDERS,j in 1..valid_serv(a))do
 forall(k in SUPPLI) do
 scores(a,j,k):= score_matrix(a,j,k)
 !write(scores(a,j,k)," ")
 end-do
 !writeln
end-do
 !forall(a in WORKORDERS,j in 1..valid_serv(a))do
 !write("wo ",a," service ",j," ")
 ! forall(k in SUPPLI) write(scores(a,j,k),' ')
 !writeln
 !end-do

! Objective: maximize total value
 GenerateWay:= sum(a in WORKORDERS,j in 1..valid_serv(a))

((scores(a,j,K)-SCORE_DUAL(a,j))*rkji(a,j))-SUP_DUAL

! Capacity constraint
con_suppli:= (sum(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)

duration(a,j,k)*rkji(a,j)) <= capctr
 !BIP

 forall(a in WORKORDERS,j in 1..valid_serv(a)) rkji(a,j) is_binary ! All x are 0/1
!forall(a in WORKORDERS,j in valid_serv(a)..SERVMAX) noassign(a,j):= rkji(a,j) = 0

 maximize(GenerateWay) ! Solve the MIP-problem

score:=getobjval

forall(a in WORKORDERS,j in SERVICES) xbest(a,j):=integer(rkji(a,j).sol)

initializations to "raw:"
 xbest as "shmem:xbest" score as "shmem:score"
end-initializations
 ! Print out the solution
!writeln("Solution:\n Objective: ", getobjval)
!forall(j in SERVICES, k in SUPPLI) writeln(" r(", j,k, "): ", rkji(j,k).sol)

end-model

99

APPENDIX F

Row Generation Formulation

Row Generation Master Model

model "column_generation_formulation"
uses "mmxprs", "mmsystem","mmjobs", "mmive"; !gain access to the Xpress-Optimizer solver
 !uses "mmnl";
!optional parameters section
parameters
 NWO = 125
 SERV= 10
 SUP = 12500
 INST= 1
 DATAFILE=
string("GAP_"+NWO+"_workorders_"+SERV+"_services_"+SUP+"_suppliers_"+INST+".dat")

end-parameters
declarations
! WORKORDERS: set of integer
 WORKORDERS = 1..NWO
 SERVICES= 1..SERV
 SUPPLI = 1..SUP
 NCOLS: array(WORKORDERS,SERVICES) of integer
 price: real
end-declarations
!finalize(WORKORDERS,SERVICES,SUPPLI)
forward procedure column_gen
!forward function column_knapsack(capacities:array(WORKORDERS,SERVICES) of integer,
! cap_sup: array(SUPPLI) of integer,
!
 initialsolution:array(WORKORDERS,SERVICES,SUPPLI) of integer):integer
forward function service_knapsack(xbest:array(SUPPLI) of integer):real
forward procedure optimization_report
forward procedure optimization
forward procedure generate_random_cols
!Modify Optimizer control parameter CPUTIME
setparam("XPRS_CPUTIME",0)

declarations
 opt_time: real
 valid_serv: array(WORKORDERS) of integer
 capacities: array(WORKORDERS,range,SUPPLI) of integer ! decision variables
 score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real
 cap_sup: array(SUPPLI) of integer ! Max capacity per supplier
 !dual_record: array(way,WORKORDERS,SERVICES)of real
 xbest: array(SUPPLI) of integer
 PRICE_DUAL: array(WORKORDERS,SERVICES)of real
 !initialsolution: array(WORKORDERS,SERVICES,SUPPLI) of integer
 !sup_scores: array(WORKORDERS,range) of real
 pass: integer
 way_selector: array(WORKORDERS,SERVICES,range) of mpvar
 way_matrix: array(SUPPLI,WORKORDERS,range,range)of integer
 !xway: integer
 way_score: array(SUPPLI,range) of real
 RHS,pricing_prob: array(WORKORDERS,SERVICES) of real
 EPS = 1e-6 ! Zero tolerance
 !total_distance: real

100

 !D_max: array(WORKORDERS)of real
 !!capctr: array(SUPPLI) of integer,
 score: real
 distance_matrix: array(SUPPLI,SUPPLI) of integer
 Grand_Total: linctr
 way_ctr: array(WORKORDERS,range)of linctr
 capacity_ctr: array(SUPPLI) of linctr
 supplier: array(SUPPLI)of real
 starttime: real
 max_supplier: integer
 A,J: integer
 Service_knapsack: Model !mpproblem
 SCORE_DUAL: array(SUPPLI) of real
 new_column: basis
 iter: integer
 col_gen_break: array(WORKORDERS,range) of integer
 avg_score: real

end-declarations

starttime:=gettime

initializations from DATAFILE
 valid_serv ! distance_matrix D_max!
 score_matrix
 cap_sup as "capacity"
 capacities as "duration"
end-initializations

forall(a in WORKORDERS, j in 1..valid_serv(a)) NCOLS(a,j):=0

!forall(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)do
! duration(a,j,k):= capacities(a,j,k)
!end-do

!forall(a in WORKORDERS,j in 1..valid_serv(a))do
! forall(k in SUPPLI) do
! scores(a,j,k):= score_matrix(a,j,k)
! !write(scores(a,j,k)," ")
! end-do
 !writeln
!end-do

setparam("XPRS_verbose",true)

res:= compile (" ","transposed_knapsack.mos","shmem:bim")
load (Service_knapsack, "shmem:bim")

(!forall(l in SUPPLI) do
 capctr(l):= cap_sup(l)
 forall(a in WORKORDERS,j in SERVICES,k in SUPPLI)do
 !sup_scores(a,j):= score_matrix(a,j,k)
 duration(a,j):= capacities(a,j,k)
 end-do
!)

! load all fixed info into shared memory

initializations to "raw:noindex"
 valid_serv score_matrix capacities cap_sup
end-initializations

forall(a in WORKORDERS,j in 1..valid_serv(a)) way_ctr(a,j):=

sum(b in 1..NCOLS(a,j))way_selector(a,j,b) = 1

forall(k in SUPPLI)capacity_ctr(k):=

sum(a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j))
capacities(a,j,k)*way_matrix(k,a,j,b)*way_selector(a,j,b) <= cap_sup(k)

101

! Objective: maximize total value
Grand_Total:= sum(k in SUPPLI,a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j))

way_selector(a,j,b)*way_matrix(k,a,j,b)*score_matrix(a,j,k)

optimization

 column_gen

maximize(XPRS_LIN,Grand_Total)

!optimization_report

objective:=getobjval
writeln("\nobjective value: ",getobjval)
opt_time:=gettime-starttime
write("\nComputation time: ",opt_time," sec")

avg_score:= getobjval/(sum(a in WORKORDERS)valid_serv(a))
writeln("\naverage score: ",avg_score,"\n")

no_vars:= NWO*SERV*SUP
formulation:=2

initializations to "mmodbc.excel:results_OUTPUT.xlsm"
 opt_time as 'sec' !'time_sec'
 avg_score as 'avg' !'avg_score'
 objective as 'obj' !'objective'
 no_vars as 'vars' !'no_vars'
 INST as 'instance'
 formulation as 'formulation'
end-initializations

!**
! Column generation loop at the top node: MASTER MODEL
! solve the LP and save the basis
! get the solution values
! generate new column(s) (=cutting pattern)
! load the modified problem and load the saved basis
!**
procedure column_gen
 defcut:=getparam("XPRS_CUTSTRATEGY") ! Save setting of `CUTSTRATEGY'
 setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts: MIP
 setparam("XPRS_PRESOLVE", 0) ! Switch presolve off: disable
 setparam("zerotol", EPS) ! Set comparison tolerance of Mosel

iter:=0

repeat
 iter+=1
 if iter > 1 then
 maximize(XPRS_LIN,Grand_Total)

 writeln
 integer_solution:= true
 repeat
 forall(a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j)) do
 if way_selector(a,j,b).sol <>0 and way_selector(a,j,b).sol <>1 then
 integer_solution:= false
 break
 write(getsol(way_selector(a,j,b))," ")
 end-if
 end-do
 if integer_solution= true then
 savebasis(new_column)
 else loadbasis(new_column)
 maximize(XPRS_LIN,Grand_Total)
 end-if
 until integer_solution = true

 optimization

102

 !optimization_report
 end-if
 writeln("\n\n > > ~ column generation loop pass ",iter," ~ < <\n")

 ! supplier column generation loop
 forall(a in WORKORDERS,j in 1..valid_serv(a))do

 if pricing_prob(a,j) <= 0 and iter > 1 then
 !writeln(pricing_prob(k))
 col_gen_break(a,j):= 1
 else
 NCOLS(a,j)+=1
 A:= a
 J:= j
 !writeln("SUP_SCORES",sup_scores)
 !SUP_DUAL:= PRICE_DUAL(k)
 price:= service_knapsack(xbest)

 writeln("price: ",price)
 pricing_prob(a,j):= price
 create(way_selector(a,j,NCOLS(a,j)))
 forall(k in SUPPLI) do
 way_matrix(k,a,j,NCOLS(a,j)):= xbest(k)
 capacity_ctr(k)+= way_matrix(k,a,j,NCOLS(a,j))

*way_selector(a,j,NCOLS(a,j))*capacities(a,j,k)
 end-do
 way_selector(a,j,NCOLS(a,j)) is_binary
 way_ctr(a,j)+= way_selector(a,j,NCOLS(a,j))
 !way_score(k,NCOLS(a,j)):=

sum(a in WORKORDERS,j in 1..valid_serv(a))way_matrix(k,NCOLS(k),a,j)
*score_matrix(a,j,k)

 Grand_Total+= sum(k in SUPPLI)way_selector(a,j,NCOLS(a,j))

 *way_matrix(k,a,j,NCOLS(a,j))*score_matrix(a,j,k)

 end-if

 end-do ! SUPPLIER column gen loop

 ! print new columns
!write("\n\n KNAPSACK COLUMNS \n ")
!forall (k in SUPPLI) write(k, " ")
!forall(a in WORKORDERS,j in 1..valid_serv(a)) do
! write("\nsv ",j," ")
! forall(k in SUPPLI)do
! write("| ")
! write(way_matrix(k,NCOLS(k),a,j)," ")
! end-do
!end-do
!writeln

! if iter >= 100 then
! break
! end-if

!generate_random_cols
if iter > 0 then

 loadprob(Grand_Total)
 loadbasis(new_column)
 if sum(a in WORKORDERS,j in 1..valid_serv(a))col_gen_break(a,j) >= sum(a in
WORKORDERS)valid_serv(a) then ! and sum(a in WORKORDERS,j in 1..valid_serv(a))RHS(a,j) >=
8 then
 writeln("no profitable column found.\n")
 break
 end-if
 ! if iter >= 3 then
 ! break
 ! end-if
end-if
writeln

103

 !end-do
until(false)

 setparam("XPRS_CUTSTRATEGY", defcut) ! Enable automatic cuts
 setparam("XPRS_PRESOLVE", 1) ! Switch presolve on

 end-procedure
!**
! knapsack problem
!**
function service_knapsack(xbest:array(SUPPLI) of integer):real

!with Burglar do
 !initializations to "raw:noindex"
 ! SCORE_DUAL as "shmem:SCORE_DUAL" SUP_DUAL !capacities as "shmem:capacities"
 ! valid_serv sup_scores capctr
 !end-initializations

run (Service_knapsack,"A="+A+",J="+J+",SUPPLIERS="+SUP+",SERVMAX="+SERV+",NWO="+NWO)

 ! Start solving knapsack subproblem
wait ! Wait until subproblem finishes
dropnextevent ! Ignore termination message

 initializations from "raw:"
 xbest as "shmem:xbest" returned as "shmem:score"
 end-initializations

 end-function

!**
! master problem optimization procedure
!
!
! ***
 procedure optimization
 forall(k in SUPPLI)do
 SCORE_DUAL(k):= integer(getdual(capacity_ctr(k)))+1
 !IVEdrawpoint(plot1,iter,SCORE_DUAL(a,j))
 !if SCORE_DUAL(k)>0 then
 ! writeln(SCORE_DUAL)
 !end-if
 end-do
 ! pricing dual values from convexity constraint
 forall(a in WORKORDERS,j in 1..valid_serv(a)) do
 PRICE_DUAL(a,j):= getdual(way_ctr(a,j))
 !IVEdrawpoint(plot2,iter,PRICE_DUAL(k))
 end-do
 initializations to "raw:noindex"
 SCORE_DUAL PRICE_DUAL
 end-initializations

 !writeln("assignment duals: ",SCORE_DUAL)
 !writeln("convexity duals: ",PRICE_DUAL)
 end-procedure
!**
! optimization report procedure
!
!
! ***
 procedure optimization_report

forall(a in WORKORDERS,j in 1..valid_serv(a))RHS(a,j):=

sum(k in SUPPLI,b in 1..NCOLS(a,j))way_matrix(k,a,j,b)
*(way_selector(a,j,b).sol)

!print way matrix
write("\n\n WAY MATRIX \n ")
forall (k in SUPPLI) write(" ",strfmt(k,-2))
!writeln!("\n ")
!forall(k in SUPPLI) do
! !forall)write(strfmt(b,2))

104

! write(" ")
!end-do

write("\n--
-----------------------------")
forall(a in WORKORDERS,j in 1..valid_serv(a)) do
 write("\nsv ",j," ")
 forall(k in SUPPLI)do
 write("| ")
 !forall(b in 1..NCOLS(k))do
 write(way_matrix(k,a,j,NCOLS(a,j))," ")
 end-do
 !end-do
 write("= ",RHS(a,j))
end-do
write("\n--
--------------------------------\ncapcty")
forall(k in SUPPLI) do
 write("| ",strfmt(sum(a in WORKORDERS,j in 1..valid_serv(a))

way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k),-2))

end-do
 write("\n\ncapsup")
 forall(k in SUPPLI) do
 write("| ",strfmt(cap_sup(k),-2))
 end-do

 (!write("\n\nWay Score\n")
 forall(b in 1..NCOL(k))write(" | way ",strfmt(b,2))
 write("\n")
 forall(k in SUPPLI)do
 write("\n")
 forall(b in 1..NCOL(k))write(" |",strfmt(way_score(k,b),7))
 end-do

write("\n---\n")

 forall(b in way)write(" | ",strfmt(way_total(b),6))!)
 write("\n\n*-*-*-*-*-*-*-*-*-*-*-*-*\n|",strfmt("|",24),"\n| Grand_score:

 ",strfmt(getobjval,-8),"|\n|",strfmt("|",24),"\n*-*-*-*-*-*-*-*-*-*-*-*-*")
 writeln
 writeln
 forall(a in WORKORDERS,j in 1..valid_serv(a),b in 1..NCOLS(a,j)) do
 if way_selector(a,j,b).sol >0 then
 write(b," ")
 end-if
 end-do

 end-procedure

!**
! random column generation procedure
!
!
! ***
procedure generate_random_cols
! generate initial columns
forall(a in WORKORDERS,j in 1..valid_serv(a))NCOLS(a,j)+=1
 !writeln("\nway ",NCOLS(k),"\n")
 forall(a in WORKORDERS,j in 1..valid_serv(a))do
 !forall(k in SUPPLI)supplier(k):= scores(a,j,k) !random ! assign
random supplier
 max_supplier:= 1
 forall(k in SUPPLI)do
 if score_matrix(a,j,k) >= score_matrix(a,j,max_supplier) then
 max_supplier:= k
 end-if
 end-do
 !if round(random)=1 then
 ! writeln("2/3 test")

105

 ! max_supplier:= integer(round((random*(SUP-1))+.5))
 !end-if

 !forall(k in SUPPLI)do
 ! if supplier(k)= min_supplier then
 ! supplier(k):= 1
 ! else supplier(k):= 0
 ! end-if
 !end-do
 forall(k in SUPPLI)do ! feasible but not constrained
 way_matrix(k,a,j,NCOLS(a,j)):= 0 !integer(supplier(k))
 end-do

way_matrix(max_supplier,a,j,NCOLS(a,j)):= 1
 end-do

(! write("\n\n Random WAY \n ") ! write way
forall (k in SUPPLI) write(k, " ")
forall(a in WORKORDERS,j in SERVICES) do
 write("\nsv ",j," ")
 forall(k in SUPPLI)do
 write("| ")
 write(way_matrix(k,xway,a,j)," ")
 end-do
end-do !)
!writeln

repeat waycheck:= false
 repeat invalid_demand:=false
 forall(k in SUPPLI) do
 if sum(a in WORKORDERS,j in 1..valid_serv(a))way_matrix(k,a,j,NCOLS(a,j))

 *capacities(a,j,k)>cap_sup(k) then ! verify capacity ctr

invalid_demand:= true
 waycheck:= true
 !writeln("XXX supplier ",k," demand ",sum(a in WORKORDERS,j in SERVICES)

 way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k)," X< ",cap_sup(k))

forall(a in WORKORDERS,j in 1..valid_serv(a)) do !reassign 1/2 of services
 if way_matrix(k,a,j,NCOLS(a,j)) = 1 then
 if round(random*.75) = 1 then! remove half of assignments
 !assign random supplier

forall(l in 1..k-1)supplier(l):= score_matrix(a,j,l)
 supplier(k):= 0
 forall(l in k+1..SUP) supplier(l):= score_matrix(a,j,l)
 max_supplier:=1

 forall(l in SUPPLI)do
 if supplier(l) >= score_matrix(a,j,max_supplier)
then
 max_supplier:= l
 end-if
 end-do

 forall(l in SUPPLI)do
 if supplier(l)= min_supplier then
 supplier(l):= 1
 else supplier(l):= 0
 end-if
 end-do
 !)
 forall(l in SUPPLI)do
 way_matrix(l,a,j,NCOLS(a,j)):= 0

!feasible but not constrained
!integer(supplier(l))

 end-do
 way_matrix(max_supplier,a,j,NCOLS(a,j)):= 1
 end-if
 end-if
 end-do

106

!writeln("new demand ",sum(a in WORKORDERS,j in 1..valid_serv(a))
way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k)," < ",cap_sup(k))

 end-if ! invalid capacity loop
end-do ! supplier loop
 !forall(k in SUPPLI)do
 !writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in SERVICES)

way_matrix(k,xway,a,j)*capacities(a,j)," < ",cap_sup(k))
 !end-do
 until invalid_demand= false

until waycheck = false

forall(a in WORKORDERS,j in 1..valid_serv(a)) do
 create(way_selector(a,j,NCOLS(a,j)))
 way_selector(a,j,NCOLS(a,j)) is_binary
end-do

 !forall(k in SUPPLI)do
 !writeln("supplier ",k," demand ",sum(a in WORKORDERS,j in 1..valid_serv(a))

way_matrix(k,a,j,NCOLS(a,j))*capacities(a,j,k)," <= ",cap_sup(k))
! end-do
 !way:= sum(a in WORKORDERS,j in 1..valid_serv(a),k in SUPPLI)

way_matrix(k,a,j,NCOLS(a,j))*score_matrix(a,j,k)
 !writeln("way score ",way)

end-procedure

end-model

Row Generation Submodel

model "transposed_knapsack" ! Start a new model

uses "mmxprs","mmsystem" ! Load the optimizer library

parameters
 SUPPLIERS = 25
 SERVMAX = 10
 NWO = 5
 A=1
 J=1
end-parameters

declarations
 WORKORDERS = 1..NWO
 SERVICES = 1..SERVMAX
 SUPPLI = 1..SUPPLIERS
 PRICE_DUAL: array(WORKORDERS,SERVICES) of real
 capacities: array(WORKORDERS,SERVICES,SUPPLI) of integer
 score_matrix: array(WORKORDERS,SERVICES,SUPPLI) of real
 !scores: array(WORKORDERS,range,SUPPLI) of real
 !duration: array(WORKORDERS,SERVICES) of integer
 SCORE_DUAL: array(SUPPLI) of real
 GenerateWay: linctr
 rkji: array(SUPPLI) of mpvar ! 1 if we take item i; 0 otherwise
 xbest: array(SUPPLI) of integer
 score: real
 valid_serv: array(WORKORDERS)of integer
 assignment: linctr
 start: real
end-declarations

!start:=gettime
!setparam("XPRS_CPUTIME",1)

107

 initializations from "raw:noindex"
 score_matrix capacities SCORE_DUAL PRICE_DUAL
 end-initializations

!forall(a in WORKORDERS,j in SERVICES)do
! duration(a,j):= capacities(a,j,K)
! assign_dual(a,j):= SCORE_DUAL(a,j)
!end-do
!forall(a in WORKORDERS,j in 1..valid_serv(a))do
! forall(k in SUPPLI) do
! scores(a,j,k):= score_matrix(a,j,k)
! !write(scores(a,j,k)," ")
! end-do

!writeln
!end-do
 !forall(a in WORKORDERS,j in 1..valid_serv(a))do
 !write("wo ",a," service ",j," ")
 ! forall(k in SUPPLI) write(scores(a,j,k),' ')
 !writeln
 !end-do

! Objective: maximize total value
GenerateWay:= sum(k in SUPPLI)

((score_matrix(A,J,k)-SCORE_DUAL(k))*rkji(k))-PRICE_DUAL(A,J)

!asssignment constraints
assignment:= (sum(k in SUPPLI) rkji(k)) = 1

 !BIP

 forall(k in SUPPLI) rkji(k) is_binary ! All x are 0/1

 maximize(GenerateWay) ! Solve the MIP-problem

 !writeln("\nComputation time: ", gettime-start," sec")

score:=getobjval

forall(k in SUPPLI) xbest(k):=integer(rkji(k).sol)

initializations to "raw:"
 xbest as "shmem:xbest" score as "shmem:score"
end-initializations
 ! Print out the solution
!writeln("Solution:\n Objective: ", getobjval)
!forall(j in SERVICES, k in SUPPLI) writeln(" r(", j,k, "): ", rkji(j,k).sol)

end-model

108

APPENDIX G

Data Generation Code

 model GenData
 uses "mmsystem"

 parameters
 NI = 1
 NWO = 3
 SERV = 3
 SUP = 5
 end-parameters

 declarations
 WORKORDERS = 1..NWO
 NSERV: array(WORKORDERS) of integer
 DATAFILE: string
 SUPPLI = 1..SUP
 SERVICES = 1..SERV
 duration: array(WORKORDERS,SERVICES,SUPPLI) of integer
 SCORE: array(WORKORDERS,SERVICES,SUPPLI) of real
 capacity: array(SUPPLI) of integer
 D_max: array(WORKORDERS) of integer
 distance_matrix: array(SUPPLI,SUPPLI) of integer
 tot: integer
 end-declarations

forall(a in WORKORDERS)do
 valid_serv(a):= integer(round((random*.33+0.67)*SERV))
end-do

setrandseed(666)

! generate distance matrix
 forall(k in SUPPLI) do
 forall(l in SUPPLI) do
 if l < k then distance_matrix(k,l):= distance_matrix(l,k)
 elif l = k then distance_matrix(k,l):= 0
 else distance_matrix(k,l):= integer(random*100)
 end-if
 end-do
 end-do

total:=0

! Generate data
 DATAFILE:=
string(text("GAP_")+text(NWO)+"_workorders_"+text(SERV)+"_services_"+text(SUP)+"_supplier
s_"+text(NI)+".dat")

 forall(a in WORKORDERS)do
 !forall(k in SUPPLI)score_root(k):=(random*.75)+0.125 !patterned scores

 forall(j in 1..valid_serv(a)) do
 ! Duration(a,j,k) = random integer in [1,13]
 dur_root:= integer(round((10*random)+0.5))! average dur of service (a,j)

total+=dur_root

109

 forall(k in SUPPLI) do
 ! random dur within range +-25% of dur_root(a,j)

duration(a,j,k):= integer(round(dur_root*((random*.5)+0.75)))

 ! for patterned scores--> score_root(k)*((random*.25)+0.875)

score_matrix(a,j,k):=random
 end-do
 end-do
 end-do
 forall(k in SUPPLI) capacity(k):= integer(round(total/NWO)*(0.75+(.5*random)))

 forall(a in WORKORDERS)D_max(a):= integer(valid_serv(a)*30)

 ! Write data to file
 initializations to DATAFILE
 SUP valid_serv NWO SERV
 duration capacity score_matrix D_max distance_matrix
 end-initializations

end-model

110

REFERENCES

Ameri, F., & Dutta, D. (2006). An upper ontology for manufacturing service description, In

Proceedings of ASME DETC 2006, Philadelphia, PA, United States.

Ameri, F., & McArthur, C. (2011). An Experimental Evaluation of a Rule-Based Approach to

Manufacturing Supplier Discovery in Distributed Environments. Retrieved from

http://www.kirkman-enterprises.com/sites/kirkman-

enterprises.com/files/portfolio/publications/ASME-IDETC-2011-47768.pdf

Ameri, F., & Patil, L. (2012). Digital manufacturing market: a semantic web-based framework for

agile supply chain deployment. Journal of Intelligent Manufacturing, 1–16.

Ameri, Farhad, & Dutta, D. (2008). A Matchmaking Methodology for Supply Chain Deployment

in Distributed Manufacturing Environments. Journal of Computing and Information

Science in Engineering, 8(1), 011002. doi:10.1115/1.2830849

Cayot, B. (2007). Strategic transportation sourcing: A comprehensive approach. PRTM,

Retrieved

http://www.prtm.com/uploadedFiles/Strategic_Viewpoint/Articles/Article_Content/PRT

M_Strategic_Transportation_Sourcing.pdf

Çebi, F., & Bayraktar, D. (2003). An integrated approach for supplier selection. Logistics

Information Management, 16(6), 395–400. doi:10.1108/09576050310503376

Chamodrakas, I., Batis, D., & Martakos, D. (2010). Supplier selection in electronic marketplaces

using satisficing and fuzzy AHP. Expert Systems with Applications, 37(1), 490–498.

doi:10.1016/j.eswa.2009.05.043

111

Desaulniers, G., Desrosiers, J., & Marius, M. S. (2005). Column generation. New York, NY:

Springer Science Business Media Inc. Retrieved from

http://books.google.com/books?id=ncD7qnkT-

1EC&printsec=frontcover&source=gbs_atb

Dickson, G.W. (1966). An analysis of vendor selection systems and decisions, J. Purchasing, 2

1966(2), pp. 5–17

Ding, H., Benyoucef, L., & Xie, X. (2004). A multiobjective optimization method for strategic

sourcing and inventory replenishment. In Proceedings of the IEEE international

conference on robotics and automation (pp. 2711–2716).

Eaton, D. J., Daskin, M. S., Simmons, D., Bulloch, B., & Jansma, G. (1985). Determining

emergency medical service vehicle deployment in Austin, Texas. Interfaces, 15(1), 96–

108.

Fourer, R., Gay, D., & Kernighhan, B. (2002). AMPL A Modeling Language for Mathematical

Programming (2nd Edition.). Duxbur Press.

Huo, H., & Wei, Z. (2008). Suppliers selection and order allocation in the environment of supply

chain based on fuzzy multi-objective integer programming model (Vol. 2, pp. 2299–

2304). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4682919

Ko, C. S., Kim, T., & Hwang, H. (2001). External partner selection using tabu search heuristics in

distributed manufacturing. International Journal of Production Research, 39(17), 3959–

3974. doi:10.1080/00207540110072263

Konstantinos Kirytopoulos, Vrassidas Leopoulos, George Mavrotas, Dimitra Voulgaridou (2010).

Multiple sourcing strategies and order allocation: an ANP-AUGMECON meta-model.

Supply Chain Management: An International Journal, Vol. 15 Iss: 4, pp.263 – 276.

Messe Frankfurt Group. (2013). Apparel sourcing paris. Retrieved from http://apparelsourcing-

fr.messefrankfurt.com/paris/en/exhibitors/welcome.html

112

MFG.com, Inc. (2013). CNC machining, injection molding and metal fabrication marketplace.

Retrieved from http://www.mfg.com.

Min, H. (1994). International supplier selection: A multi-attribute utility approach. International

Journal of Physical Distribution & Logistics Management, 24(5), 24–33.

Nydick, R. L., & Hill, R. P. (1992). Using the analytic hierarchy process to structure the supplier

selection procedure. International Journal of Purchasing and Materials Management,

28(2), 31–36.

Ogtildeuz, O. (2002). Generalized column generation for linear programming. Management

Science, 48(3), 444–452.

Rardin, R. (1998). Optimization in operations research. Upper Saddle River, New Jersey 07458:

Prentice Hall, Inc.

Savelsbergh, M. (1997). A branch-and-price algorithm for the generalized assignment problem.

Operations Research, 831–841.

Sanayei, A., Farid Mousavi, S., Abdi, M. R., & Mohaghar, A. (2008). An integrated group

decision-making process for supplier selection and order allocation using multi-attribute

utility theory and linear programming. Journal of the Franklin Institute, 345(7), 731–747.

doi:10.1016/j.jfranklin.2008.03.005.

Shapiro, J. F. (2006). Modeling the Supply Chain (2nd ed.). Brooks Cole.

Roa, C.P. Kiser, G.E. (1980). Educational buyer's perception of vendor attributes, J. Purchasing

Mater. Manage, 1980(16), pp. 25–30.

Taha, H. (2006). Operations research: An introduction (8th ed.). Upper Saddle River, NJ 07458:

Pearson Prentice Hall.

Wu, J., Zhang, J., Zheng, C., & Xi, C. Y. (2110). The study on neural network-based supplier

selection and evaluation (Vol. 1, pp. 31–34). Presented at the Third International

Conference on Information and Computing. Retrieved from

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5514244.

VITA

Hayden Beauchamp is graduate student in the Industrial Technology program at

Texas State University-San Marcos. In 2013 he interned at T.B. Woods, a long-standing

manufacturer of industrial power transmission couplings. He has previously been

published in the field of human factors engineering and ergonomics. Following this, he

spent two years conducting research in polymer nano-composites for the Institute of

Industrial Science at Texas State University before starting graduate school.

Permanent Email Adress: hb1087@gmail.com

This thesis was typed by Hayden Beauchamp.

