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ABSTRACT 

Power Line Communications (PLC) is a technology that uses power lines to 

transport communication data alongside the electric power signals. Due to the ubiquitous 

nature of pre-existing power grid infrastructure, PLC has a huge networking potential, 

especially in the implementation of smart grid technologies. However, the electrical 

architecture and function of distribution grid systems, which is specifically designed to 

carry power signals, poses a major hindrance to communication signals. This hindrance 

typically takes the form of poor signal propagation. Traditional signal processing 

measures may be neither sufficiently adaptable nor optimally effective in recovering 

communication signals at the receiver end. To overcome this challenge, this research 

investigates the use of machine learning techniques as a supplement to the traditional 

digital signal processing techniques. We focus on testing and comparing various 

supervised machine learning and deep learning algorithms for the purpose of signal 

demodulation and bit classification in ultra-low-frequency, baseband PLC systems 

operating in the electrical distribution grid. 

Keywords: power line communications, ULF-PLC, machine learning, ML, smart 

grid 
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1. INTRODUCTION 

1.1. Background and Motivation 

The use of electrical wiring and power lines for network communication is not 

new. Since the early 1920s, this technology, commonly referred to as Power Line 

Communications (PLC), has been used to automate meter reading by utility companies 

[1]. Beyond this application, the potential of PLC was conceptualized as a universal 

networking solution mainly because of the pre-existing power-grid [2]. This power grid 

would obviate the need for building other types of dedicated communication 

infrastructures like phone lines and optical fibers, thereby saving billions in cost [2]. 

However, over the years, such high expectations of this technology have not been 

realized due to many factors. One of the primary culprits is signal propagation.  

From generation in power plants to its use in a load (and loopback), the low-

frequency power signal (50 Hz or 60 Hz depending on the country of origin) goes 

through many levels of voltage and current transformation. These transformations are 

facilitated by different electrical devices such as aptly-named transformers. Most of these 

devices were made specifically for power signals, and thus, pose propagation problems 

for higher-frequency signals traveling through the power lines [3]. This problem can be 

circumvented by excluding these devices altogether by bounding the PLC circuit within a 

“level” of the power grid. In this “intra-level” PLC, the system voltage and other 

properties of the power signal are the same throughout the path of the communication 

signal. Intra-level PLC has been developed into many applications such as powerline 

Local Area Network (LAN) [4] and baby monitors [5]. This solution, however, does not 

address the problem of signal propagation through the different levels of the power grid 
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i.e., “inter-level” PLC. 

One existing solution to this propagation problem in inter-level PLC systems is 

the use of additional equipment like signal repeaters. These repeaters filter and catch the 

communication signal in one level and pass it to the next level so that the integrity of the 

signal is preserved [6]. Broadband over Power Line (BPL) technology, which is a duplex 

and high data-rate application of the inter-level PLC, is reliant on such devices [6].  

However, the primary disadvantage of this solution is the space and cost associated with 

developing, deploying, and maintaining these devices. Another approach, which does not 

require the additional devices, is the transmission of ultra-low-frequency signals. Ultra-

low-frequency signals do not attenuate as much compared to higher frequency signals, 

even after passing through distribution transformers, which have a fairly limited 

passband. Thus, Ultra-Low-Frequency (ULF) signals, typically in the range of 150 Hz-

1350 Hz [7], can be injected into the power lines for PLC. This type of PLC is henceforth 

referred to as ULF-PLC in this paper. In fact, this approach is the main principle behind a 

simplex, low data-rate PLC application called “Audio Frequency Ripple Control” 

(AFRC) that has been used in Europe for many decades for load peak shaving, street 

lighting, etc. [7]. However, one major disadvantage of using ULF bands for 

communication is the low data rate. Consequently, this solution has been under-

researched and mostly overlooked.  

Nonetheless, ULF-PLC has applications in fields that do not require high-speed 

data transmission but prioritize reliability, simplicity, scalability, and ease of deployment. 

There is an urgent need for this kind of technology in the power sector. The existing 

power grids are failing because of the exponential increase in power demand over the last 
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few decades [8] . This problem is exacerbated by the disconnect between the power 

producers and consumers which leads to a huge waste of already depleted power supply. 

ULF-PLC can bridge this disconnect thereby becoming a valuable element in the 

communication infrastructure of a continuously sensing and self-monitoring power grid 

called “smart grid.” 

ULF applications like AFRC employ a “downstream” communication, i.e., the 

directionality of signal is from High Voltage (HV) or Medium Voltage (MV) tier to Low 

Voltage (LV) tier. A different approach to communication is an “upstream” method, 

which injects a communication signal at the end-node in the LV tier of the distribution 

grid and extracts it from the variegated signal in the MV/HV tier at the destination, 

typically the distribution grid’s local substation. If the communication signal effectively 

transits between the tiers of the distribution grid, then various Digital Signal Processing 

(DSP) techniques can be utilized to recreate the signal at the substation. One flaw of this 

approach is that it would be unique to that source-to-destination power grid architecture 

at best, and every individual signal at worst. This is because every element in the power 

grid introduces its own time-varying interference which is coherent with the fundamental 

of the power signal. Thus, this approach, by itself, is not a ubiquitous or scalable solution. 

To make it more universally applicable, Machine Learning (ML) algorithms can be 

employed [9]. These algorithms will adjust the parameters of the signal processing 

programs to correctly extract and reconstruct the communication signal.  Figure 1 shows 

the various types of PLC discussed above alongside some examples. The red circled 

branch in this figure highlights the scope of this research study in the grand scheme of 

PLC.  
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Figure 1. Chart showing the division of Power Line Communications based on signal pathway and 

directionality. Our research study is focused on the upstream, simplex, inter-level PLC as shown within 

the red circle. 

 

1.2. Review of Relevant Literature 

This section reviews the existing body of research related to PLC. Although the 

archival literature covers a wide variety of research in various facets of PLC, this review 

will focus mainly on low and ultra-low frequency, narrow-band PLC. The objective of 

this literature review is to survey the existing implementation method for ULF-PLC, 

which can be broadly categorized into ‘top-down’ and ‘bottom-up’ approach, to identify 

a suitable approach for our research. 

Korki et al. [10] developed a ULF-PLC model for a LV distribution power grid 

network using a bottom-up approach to construct the model via mathematical analysis of 

the grid components. To evaluate the proposed model, Bit Error Ratio (BER) versus 

Signal-to-Noise Ratio (SNR) was investigated through numerical simulation. The 

simulation results showed that the model had acceptable BER (compared to other 

communication standards) for communication between neighboring nodes when SNR 

was above 15dB. They concluded that their analytical approach can satisfactorily model 

ULF-PLC in the LV region. This research applies a bottom-up approach to PLC since it 

builds a PLC model by incorporating the individual parts of the PLC network. Its 

counterpart, a top-down approach, uses measurement and data to estimate the nature of 
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the PLC network. The bottom-up approach is harder to generalize and scale to arbitrary 

PLC networks because of the dynamic nature of the PLC medium. This is shown by the 

highly specific scope (PLC in one-phase LV region between one-hop nodes) of the model 

proposed by this study. Therefore, in our research, we will use a top-down method, like 

ML, to generalize our ULF-PLC solution to a wider, less-specific grid domain. 

Varadarajan et al. [11] investigated the channel and noise characteristics of the 

physical layer of PLC systems in the distribution grid. The characterization of channel 

and noise in the Federal Communications Commission (FCC) regulated PLC frequency 

band (9kHz to 150kHz) was done with empirical measurements from field tests using 

modem, utility meters, and measurement equipment such as spectrum analyzer and 

oscilloscope. The researchers observed that the transformers, located in the distribution 

grid, causes severe frequency-selective attenuation of the PLC signals. Hence, they 

concluded that focusing on the less attenuated sub-bands can increase the quality and the 

coverage of the transmitted PLC signals. In contrast to the research by Korki et al. [10], 

this study uses a top-down, empirical approach to characterize the PLC channel, which is 

simpler than an analytical bottom-up approach. However, the limitation of this research is 

that it does not directly provide a new technological solution to overcome the challenges 

of PLC, it merely makes the observations and provides suggestions for implementations. 

Our research will consider these observations, especially the negative effect of 

transformers in ULF-PLC, whilst also creating a solution framework which leverages and 

categorizes ML-based approaches.  

Prasad et al. [12] evaluated the use of Power Line Modems (PLM) for detecting 

faults in the power grid. To do so, they collected raw data containing diagnostic 



 

6 

parameters from the modem, then, extracted suitable features from these raw data, and 

finally, used ML to identify and predict faults. The results of their experiment showed 

that they were able to detect faults with high accuracy and predict future faults with a 

lower, but satisfactory, accuracy. Similar to the research by Korki et al. [10], this study 

uses mathematical analysis to model PLC architecture. Additionally, similar to the 

research by Varadarajan et al. [11], this study uses a top-down approach to evaluate the 

fault through ML. In contrast to [10] and [11], [12] also presents a direct application of 

PLC i.e., grid diagnostics. However, this study is limited in scope because the associated 

technology, Broadband over Power line (BPL), is not widely available. Therefore, our 

research is not going to be focused on a specific PLC technology or hardware, but a more 

general implementation of ULF-PLC with a wider range of applications.  

Nassar et al. [13] reviewed the signal processing techniques used to model 3-500 

kHz range narrowband PLC (NB-PLC) and presented the local utility applications of NB-

PLC. They modeled the channel using multi-path modeling and transmission-line 

modeling. They characterized the PLC noise in terms of its periodicity and uncoordinated 

interference. Then, they provided the framework for Orthogonal Frequency-Division 

Multiplexing (OFDM) implementation of NB-PLC. They concluded that channel and 

noise modeling can be used to make robust PLC for two-way communication between 

the customers and the local utility. This study uses the channel and noise modeling 

approach similar to Korki et al. [10], while focusing on NB-PLC above 3kHz for utility 

application. One limitation of this study is that, although the research paper is 

comprehensive, no novel techniques or experimentation were introduced. Further, the 

applicability of spectrum above 3kHz is suspect in the distribution grid due to the large, 



 

7 

series inductance presented by transformers. However, the focus on low-frequency 

narrow band and low data-rate for utility application is interesting. As a result, we focus 

on ULF-PLC and leverage findings from the various approaches described in the 

literature.    

This literature review revealed the two main methods of PLC implementation- a 

bottom-up approach through mathematical modeling and a top-down approach through 

empirical measurement. The bottom-up approach is network and application specific, 

cannot be easily scaled, and is usually more complex. The top-down approach, on the 

other hand, has the potential to overcome the limitations of bottom-up approach by being 

easily scalable and simpler to implement. However, the literature survey showed this 

potential is largely untapped. Therefore, the objective of our research is to employ a top-

down approach in ULF-PLC, including a combination of DSP techniques and machine-

learning models to aid in discriminating communication signals in the distribution grid. 

1.3. Thesis Problem Statement 

There is a huge, largely untapped potential of PLC, especially in the 

implementation of smart grid technologies [14]. Although some advancement has been 

made for high-frequency and intra-level PLC, research and development are still lacking, 

particularly in ultra-low frequency, inter-level PLC. Further, use of modern 

computational tools like ML is still uncommon in this domain, even though such tools 

can efficiently handle the problem of dynamic and highly correlated noise in the PLC 

channel. For this reason, the objective of this research is to utilize DSP methods 

alongside ML techniques to perform classification of communication signal components 

in an inter-level, simplex, and upstream ULF-PLC transmission. 
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1.4. Assumptions, Limitations, Delimitations 

1.4.1. Assumptions 

Some of the assumptions we made in carrying out this research and their brief 

justification are listed below: 

❖ Ultra-low-frequency signals will pass upstream through the transformers without 

substantial degradation. We can safely make this assumption because of the 

existing downstream ULF-PLC applications like AFRC and ‘Smart Meters’ as 

well as previous work in this space [15].  

❖ Features extracted using DSP techniques can be used in ML for PLC signals. This 

is a safe assumption since DSP feature extraction has been used for ML and 

Neural Networks (NN) in other domains such as music, radio frequency signals, 

seismic signals, etc.  

❖ Use of ML will make the PLC demodulation technique generalizable and scalable 

for various PLC architectures. This assumption is supported by ML 

implementation in other applications which tend to be generalizable and scalable. 

1.4.2. Limitations 

Limitations are the potential weaknesses of our study which were beyond our 

control. Some of the major limitations of our research and their cause are listed below: 

❖ The frequency of our communication signal is limited to be below 10 kHz. This is 

because our data acquisition device had maximum sampling rate of 20 kHz and 

going above 10 kHz will violate Nyquist rule causing under-sampling errors. 

However, the presence of large, series inductance in the distribution grid 

(transformers) limits frequency content to well below 5kHz. 
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❖ The generalizability and scalability of the proposed ML solution cannot be tested. 

This is because our data were collected only from one substation and a single 

feeder. However, future work will directly address this testing limitation. 

❖ The data we collected have huge dependence on the status of the grid, and thus, 

can show variability at different times even when the controllable parameters are 

kept identical. This could be overcome by testing on an artificial or controlled, 

closed grid which we do not have access to. However, such testing would only be 

applicable in the artificial environment, and so is not particularly useful in 

practical application. 

1.4.3. Delimitations 

Delimitations are the boundaries or scope of a study and are controllable. The 

delimitations of our research and their brief reasoning are listed below:  

❖ Only the physical layer of the PLC medium will be investigated because the 

succeeding layers are similar to other communication media. In particular, OSI 

Layer 2, or medium access control (MAC) or multi-user sequencing /reservation/ 

discrimination is not a consideration in this research. 

❖ The traditional demodulation techniques will not be employed because they are 

well-documented in literature. Further, our approach uses direct modulation in the 

baseband with no upconverting or carrier considerations. 

❖ ML techniques are applied to the signal identification/bit classification problem of 

PLC to bound operational scope of the project. 
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1.5. Research Questions 

The objective of our research is to use the inter-level PLC data to answer the 

following questions:  

1. What are the optimal amplitude and frequency for ULF-PLC signals?  

2. How should the raw ULF-PLC data be processed to use in ML/NN? 

3. What ML/NN algorithms perform well for the ULF-PLC data? 

1.6. Thesis Structure 

This thesis is organized into five chapters. Chapter 1: ‘Introduction’ presented the 

background on PLC and provided the motivations for our research in this area. This 

chapter also included review and evaluation of some relevant research papers. All this 

background information culminated in identifying the objective and scope of our thesis 

research study. Chapter 2: ‘Machine Learning and Neural Network’ provides an overview 

of the ML/NN concepts and terminologies relevant to our research. Chapter 3: ‘Research 

Methods’ describes the data processing and ML/NN framework used in our experimental 

study. The results of these experiments, alongside their corresponding discussions are 

presented in Chapter 4: ‘Results and Discussions.’ Finally, the overarching conclusions 

of the research and the potential next steps in this PLC project are presented in Chapter 5: 

‘Conclusions and Future Works.’  
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2. MACHINE LEARNING AND NEURAL NETWORK 

Machine learning (ML) is a data-driven algorithm optimization technique. The 

algorithms learn from the data to optimize themselves to perform a specific task more 

effectively, faster, or with better outcomes. ML has applications in various fields such as 

healthcare, finance, social media, transportation, and other applications. In our area of 

interest (PLC), ML may provide an alternative approach to conventional DSP algorithms. 

Rather than using mathematical models to analyze and predict characteristics of a signal 

as it passes through various grid components, which can be very challenging, ML 

aggregates the grid or the channel as a black box. The input and output are on either side 

of this black box, and the collection of ML algorithms tries to find a relationship. In 

doing so, the goal is to find some intrinsic knowledge of the channel as a whole and use it 

to classify or predict the outcome. In our research, the input is the transmitted ULF-PLC 

signal, the output is the received ULF-PLC signal, and the outcome is the binary 

information (“bit state”) contained within this ULF-PLC signal. 

2.1. Types of Machine Learning 

ML algorithms can be categorized based on data, the learning process, the desired 

outcome, and other requirements. Some of these categories and their respective sub-

categories that are relevant to this research are described in more detail in subsequent 

sections. 

2.1.1. Based on the Forms of Learning 

The training or learning process of ML can be performed in a few different ways. 

Based on this process, there are three main types of ML: Supervised, Unsupervised, and 
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Reinforcement Learning. These types are described in subsequent sections. 

2.1.1.1. Supervised Learning 

The training input data are labeled with their corresponding desired, observed, or 

measured outputs in supervised learning. These known outputs for the training data are 

called labels. The supervised algorithms form a model that maps the inputs to the labels 

with direct feedback between each training step. This model can then be used with 

unlabeled data (similar to the training data) to perform some tasks such as a 

classification, in which the training labels are discrete, or  regression, in which the 

training labels are continuous [16], [17]. 

2.1.1.2. Unsupervised Learning 

Unlike supervised learning, the training input data in unsupervised learning do not 

have labels, and thus, the training process does not use feedback [18]. Therefore, the 

outcome of the learning process, even for training data, is not known beforehand. The 

function of unsupervised algorithms is not to map inputs to outputs, but to find the hidden 

structure or meaningful information within the data. An example of this type of learning 

is clustering, where the data are grouped into clusters based on some similarity measure 

[19]. 

2.1.1.3. Reinforcement Learning 

In reinforcement learning, a system or an agent is trained to maximize a reward 

through interaction with the environment [20]. An example of such reinforcement 

learning is a chess engine where the system is trained by associating the reward, i.e., win 

or lose at the end of the game, with each move depending on the environment, i.e., state 

of the board [16]. There is feedback in this type of learning since the reward is connected 
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to the training; however, it is more complex than feedback for supervised learning.  

Depending on the application, PLC can benefit from the full spectrum of ML 

types and techniques. However, for this research, we focus primarily on supervised 

algorithms with classification tasks. Supervised learning provides several benefits over 

unsupervised or reinforcement algorithms for our ULF-PLC application, including the bit 

classification objective of the research, the availability of the training labels, and ease of 

implementation. 

2.1.2. Based on the Data Processing Required 

Although not a traditional category for classifying ML, the data preprocessing 

requirement is an important distinction because of its implication in realistic applications. 

Under this criterion, ML can be broadly divided into two sub-categories: feature-based 

learning and featureless learning, as described in subsequent sections. In this research, we 

implement both feature-based and featureless ML on our PLC data, comparing and 

contrasting the performance of these two methods based on various metrics. 

2.1.2.1. Feature-based Learning 

In this type of ML, valuable features are extracted from the raw data in the 

processing step. These features are then compiled into a dataset before being fed into the 

ML algorithms. The advantage of this type of ML is that large datasets with lots of noise 

and irrelevant features can be transformed and concentrated into smaller datasets, 

reducing computing time and complexity. However, the ML performance largely depends 

on the quality of the extracted features, and different people can get widely different 

results from the same raw dataset. The study of the data and the knowledge of the domain 

is vitally important in this type of ML, and thus, substantial effort in ML applications is 
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spent on these data study and feature planning stages. 

2.1.2.2. Featureless Learning 

In contrast to feature-based learning, featureless ML does not require explicit 

feature extraction during the data processing step. Although the ML or NN algorithms 

still require features, these features are extracted from the raw data by the algorithms 

themselves thereby removing the burden from the operator. This translates to a more 

generalizable, repeatable, and uniform ML analysis. This type of ML is more scalable 

since human intervention is less important when scaling to datasets of different sizes and 

properties. The main disadvantages of this type of ML are that it requires more 

computational time and power, and the data are more susceptible to noise. 

2.2. Algorithms 

Algorithms are the brain of ML. Most supervised ML algorithms work by 

assigning weights to the input data, passing the weighted sum through an activation 

and/or threshold functions to get a ML output, calculating the error between the actual 

label and the ML output, reassigning the weights to minimize this error and so on. The 

major difference between the various algorithms comes from the nature of the activation 

functions and the way the errors are minimized. In our research, we used three supervised 

algorithms: Logistic Regression, Support Vector Machines, and Decision Tree. These 

approaches are described in subsequent sections. 

2.2.1. Logistic Regression 

Logistic Regression is a widely used supervised linear classification algorithm 

that uses probabilities to assign weights and predict outcomes. It uses inverse logit 
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function1 or “Sigmoid” as the activation function [21]. Equation 1 [16] shows the formula 

of this Sigmoid function. In this formula, ‘z’ is the net input defined as the linear 

combination of weights and the input features, as shown by Equation 2 [16]. Figure 2 

shows this algorithm’s overall architecture, which includes the input features ‘x,’ their 

corresponding weights ‘w,’ the net input ‘z,’ the Sigmoid activation function ‘φ,’ the 

threshold step function and the ‘Error.’ This error is defined as the difference between the 

output of the Sigmoid function and the actual label. The cost function of the Logistic 

Regression, shown in Equation 3 [16], is the function of these two parameters. The 

objective of the algorithm is to minimize this cost function ‘J.’ 

 
φ(𝑧) =

1

1 + 𝑒−𝑧
 

(1) 

 𝑧 = 𝑤0𝑥0 + 𝑤0𝑥0 + 𝑤0𝑥0 + ⋯ +  +𝑤𝑚𝑥𝑚 (2) 

 
𝐽(φ(𝑧), 𝑦; 𝑤) =  {

− log(𝜑(𝑧)) 𝑖𝑓 𝑦 = 1

− log(1 − 𝜑(𝑧)) 𝑖𝑓 𝑦 = 0
 

(3) 

 

 
Figure 2. Architecture of Logistic Regression algorithm. 

 

 
1 The “logit” function is the quantile function associated with the standard logistic distribution. 
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2.2.2. Support Vector Machine 

Support Vector Machine (SVM) is another popular supervised classifier 

algorithm. Unlike LR, SVM is capable of non-linear classification, in addition to the 

linear classification, which makes this algorithm more versatile. In the context of this 

algorithm, support vectors are defined as the training samples that are closest to the 

decision boundary. The imaginary curves connecting these support vectors with the same 

label are called hyperplanes. The distance between various hyperplanes is called margin. 

The objective of the SVM algorithm is to maximize this margin. The decision boundary 

with the best separation between various classes is chosen, thereby optimizing 

classification [22]. Figure 3 shows the various components and working of SVM. 

 
Figure 3. Components and working of SVM. (a) Plot showing the data with two distinctive labels and the 

dotted line representing the possible hyperplanes. (b) Same data as (a) but with maximized margin between 

the two hyperplanes. 

 

2.2.3. Decision Tree 

A Decision Tree is a tree diagram method of classification in which a decision 

causes each split or branching. These decisions are chosen at each step to maximize the 

Information Gain (IG) [23]. IG is defined as shown in Equation 4 [16] where ‘f’ is the 

feature column that performs the split, ‘I’ is the Impurity function, ‘Dp’ is the dataset of 
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the parent, ‘Dj’ is the dataset of the jth child node, ‘Np’ is the number of samples at the 

parent node and ‘Nj’ is the number of samples at the jth child node. A child node can be 

generated with each iteration until the training examples at each node all belong to the 

same class. However, this can lead to overfitting, and thus, it is more practical to “prune” 

the tree by setting the maximum depth of the tree.  

 
𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) − ∑

𝑁𝑗

𝑁𝑝
𝐼(𝐷𝑗)

𝑚

𝑗=1

 
(4) 

2.3. Neural Network 

As the name suggests, Neural Networks (NN), also referred to as Artificial Neural 

Networks (ANN), Multi-layer Neural Networks, or Multi-Layer Perceptron (MLP), are 

fully connected networks of artificial neurons, such as the Logistic Regression neuron 

shown in Figure 2. A basic structure of NN is shown in Figure 4, which consists of the 

input layer, at least one hidden layer, and an output layer [24]. The NN is called Deep 

Neural Network (DNN) if there is more than one hidden layer [16].  

 
Figure 4. Basic structure of a Neural Network. This structure shows the input layer with ‘m’ number of 

inputs, hidden layer with ‘n’ number of nodes and output layer with two nodes.  

 

The output of each neuron propagates forward through the network to generate an 
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output in the output layer starting at the input layer. Then, based on this cumulative 

network output, the error is calculated to minimize using a cost function. This error is 

then backpropagated, with partial derivative being calculated to each weight, and the 

model is updated [24]. This process is then repeated. Since derivatives are calculated 

during backpropagation, the activation function of the neurons needs to have derivatives. 

Some of the common activation functions used in NN are Sigmoid function (shown in 

Equation 1), hyperbolic tangent function (Equation 5) and Rectified Linear Unit (ReLU) 

function (Equation 6) [16]. The activation function for the output layer is usually set to 

the softmax function (Equation 7) [16]. 

 
φ𝑡𝑎𝑛ℎ(𝑧) =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

(5) 

 
φ𝑅𝑒𝐿𝑈(𝑧) = {

0 𝑖𝑓 𝑧 < 0
𝑧 𝑖𝑓 𝑧 > 0

 
(6) 

 
φ𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑀
𝑗=1

 
(7) 

2.4. Convolutional Neural Network 

Convolutional Neural Network (CNN) are a special type of NNs in which the 

fully connected NN layers are preceded by at least one convolution layer [25]. CNNs are 

popular especially in the fields of image classification because of their ability to extract 

patterns from the images using convolution filters or kernels. Since we are using 

spectrograms in our research, which in their raw form are “unprocessed images,” CNN 

are given a consideration.  

At the heart of the CNN is the convolution operation. Equation 8 [16] shows the 

mathematical definition of a convolution between input vector ‘x’ and filter ‘w.’ The ‘*’ 
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symbol is a common notation for the convolution operator. 

 
𝑦[𝑖] =  𝑥 ∗ 𝑤 = ∑ 𝑥[𝑖 − 𝑘]𝑤[𝑘]

∞

𝑘=−∞

 
(8) 

  In practice, Equation 8 can be explained as the elements of convolution output ‘y’ 

being the dot product of input ‘x’ and rotated filter ‘wR’ as ‘w’ slides over ‘x.’  

The output of convolution, in the case of CNN, produces feature maps. These 

feature maps are similar to the ML features, and thus, the convolution layer in a CNN is 

also known as feature extraction layer [16]. The difference here is that, unlike the 

traditional ML features, these features are generated automatically by convolution filters. 

Therefore, CNNs are ideal for featureless ML (i.e., without explicitly providing features).   
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3. RESEARCH METHODS 

In this chapter, the methodology used to collect the raw data, the processes used 

to convert or transform the raw data to a ML ready format, and the setups of the ML and 

NN for the experimentation are described. Section 3.1 describes all aspects of the 

research related to the ULF-PLC data whereas Section 3.2 explains the methodology 

behind feature-based and featureless ML/NN.  

3.1. Data 

Figure 5 summarizes the steps taken to convert the raw ULF-PLC data to ML 

datasets. As shown in this figure, the raw ULF-PLC data (.wav format) were divided into 

-two sets: ‘Raw Set 1’ and ‘Raw Set 2.’ From these sets, feature-based (Dataset 1 and 2) 

and featureless (Dataset 3-8) ML/NN datasets were created. For feature-based datasets, 

three features: amplitude envelope, RMS energy and spectral centroid, were extracted 

from the raw data. For featureless datasets, raw time-series data and their spectrograms 

were used. The dimensionality of each of these ML/NN datasets is also shown in Figure 

5. The feature-based and featureless time-series datasets were 1D datasets, magnitude 

spectrogram datasets were 2D datasets, and rectangular spectrogram datasets were 3D 

datasets. Each component of Figure 5 is described in detail in the subsequent sections and 

this figure will be referenced throughout these sections. 

 



 

 

2
1
 

 
Figure 5. Chart showing the process of conversion of raw data files to feature-based and featureless ML/NN ready datasets. The blue dashed line shows 

the construction of feature-based datasets (Datasets 1&2) while the red dotted line is for the featureless datasets (Datasets 3 to 8). The datasets corresponding to 

‘Raw Set 1’ (Datasets 1, 3 & 5) are lightly highlighted and the ones corresponding to ‘Raw Set 2’ are dark highlighted. The dimensionality of each dataset 

(axbx..) is shown as well. Please note that the first number in this dimensionality (a) corresponds to the number of independent samples in the ML/NN dataset 

and the numbers following (bx..) corresponds to the dimension of each sample. Hence, feature datasets (1&2) and time-series datasets (7&8) are 1D datasets, 

magnitude spectrograms (3&4) are 2D datasets and rectangular spectrograms (5&6) are 3D datasets.
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3.1.1. Transmission and Collection 

The experimental dataset(s) used in this research study was collected by an 

undergraduate group a few years ago as part of a Senior Design project [15]. 

Unfortunately, attempts to gather new data using evolved acquisition systems and a 

different architectural approach were foiled by lack of appropriate and timely support 

from institutional information technology and networking personnel.  

The data transmission and collection architecture leveraged for the experimental 

dataset(s) is shown graphically in Figure 6. As shown in this figure, baseband modulated 

ULF-PLC data were transmitted from a research lab and collected using a remote data 

acquisition system at a nearby substation. To create the experimental dataset(s), an 

Ametek CS3000 programmable current source [26] was used to generate On-Off Keyed 

(OOK) current signals with frequencies varying from 690 Hz to 2010 Hz and amplitudes 

varying from 0mA (while ‘Off’ or ‘Low’) and 10mA to 1A (while ‘On’ or ‘High’). These 

signals were then injected into the power line via a specially constructed narrowband 

filter. This filter, designed by the Senior Design group [15] based on specifications 

provided by Dr. McClellan, is a transformer-based bandpass filter or “resonant tank” 

which blocks the power signal from entering into the output port of the current source 

while allowing the signal generated by the current source to pass into the power line. The 

signal injected into the power line first enters a split-phase distribution link typical of 

conventional “wall outlets,” then into power grid via three-phase distribution 

transformers which “step up” the voltage for longer distance transmission (e.g., 13kV). 

At each “level change,” the transformer will jointly adjust the voltage (upward) and 

current (downward), according to the structure of the transformer’s coils (turns ratio). 
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Some signature of the transmitted ULF-PLC signal is introduced into all three phases of 

the distribution and transmission links during this voltage transition as a result of  

magnetic cross-coupling within the transformer [3]. In the substation, the power signal 

and the injected ULF-PLC signal are then collected using a conventional high-quality 

Data Acquisition device (DAQ), including Current Transformers (CT) which sense the 

current disturbances introduced by the injected ULF-PLC signal [27].  The ULF-PLC 

communication signal originates at the LV region in the lab and travels towards the HV 

region in the substation of the distribution grid, thereby making the PLC path upstream, 

simplex, and inter-leveled. 

 
Figure 6. Data transmission and capture architecture for upstream, inter-level ULF-PLC. The current 

source located in the lab generates a modulated current signal which is injected into the power line and is 

collected at the substation.  

 

3.1.2. Raw Time-Series Data 

The raw data (shown as ‘Raw .wav files’ in Figure 5) captured using substation-

resident, remote DAQ are a set of three-phase time-series data sequences consisting of a 

60Hz power signal and its harmonics, communication signal (ranging from 690Hz-

2010Hz) and its harmonics, and time-variant noise at all frequencies. The acquired 

signals were sampled at 8kHz using 16-bits of resolution per sample (see Appendix B for 
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more details). The fundamental of the power signal dominates these raw data because of 

its relatively high amplitude, as shown in Figure 7. The three-phase raw time-series data 

plotted in this figure contain the PLC signal at 1595Hz, but it is not apparent from this 

plot alone. Therefore, we hypothesized that analysis of these time-series data via an 

ML/NN approach would not yield a good result. To test this hypothesis, unprocessed 

time-series datasets, Dataset 7 and Dataset 8 shown in Figure 5, were used for ML/NN 

evaluation.  

 
Figure 7. Time-domain plot of three-phase data received at the substation. The three phases 

correspond to the three phases of the power signal, but these signals also contain ULF-PLC signal at 

1595Hz. However, the ULF-PLC signal is not visually identifiable from this plot since the power signal is 

very dominant. 

 

3.1.3. Processing 

Since the raw-time series data are predictably not very useful in our case, the next 

logical step is to transform the signal into other domains and/or extract useful information 

(or features) from it. These transformation and feature-extraction approaches are 

described in subsequent sections. 
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3.1.3.1. Transformation 

Transformation, for our purposes, is defined as the conversion of time-series data 

to frequency domain or time-frequency domain data. This transformation is reversible, 

and, in the absence of additional processing steps, maintains the integrity of the original 

data. Hence, there is very little loss of information in these kinds of transformations. The 

frequency and time-frequency transformations of our original time-series data are 

described in subsequent sections. 

3.1.3.1.1. Frequency Domain 

The time-domain raw data were transformed to frequency domain using the Fast 

Fourier transform (FFT) [28]–[30] . Figure 8 shows a representative example of the 

frequency domain plot of a single-phase sequence containing a ULF-PLC signal 

transmitted at 1595Hz. As seen in this figure, the power signal and its harmonics 

dominate the spectral plot. Nonetheless, as indicated by the red arrow in Figure 8, a 

smaller but prominent peak is present at 1595Hz which shows the presence of our 

transmitted PLC signal. However, the spectrum plot cannot show the time-varying nature 

of the signal, and thus did not provide us information about the OOK encoded data that 

were transmitted. Hence, the frequency-domain transformation of the entire acquired 

signal can be used to detect the presence or absence of the PLC signal but cannot be used 

to decode the time-varying information contained within it.  
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Figure 8. Frequency domain plot of the raw data showing presence of the ULF-PLC signal at 

1595Hz. The highest peak in this plot shows the dominant power signal at around 60Hz. The odd 

harmonics of this power signal can be seen as the secondary peaks. Our test ULF-PLC signal, transmitted at 

1595Hz, has a prominent peak as well, shown by the red arrow.  

 

3.1.3.1.2. Time-frequency Domain 

The deficiencies of the whole-signal frequency domain transformation, i.e., the 

inability to decode OOK information in our case, can be mitigated by appropriate time-

frequency analysis such as a spectrogram. The transformation method(s) used to produce 

a spectrogram are very similar to the frequency-domain conversion, except the FFT is 

applied to frames or sub-sequences within the sequence instead of the entire time-series 

sequence, a process known as Short-Time Fourier Transform (STFT). This approach 

provides some indicative information regarding the presence or absence of the PLC 

signal in those time frames. Therefore, concatenating the spectral analysis of these time 

frames across the length of the data can be used to represent the transmitted information 

in its entirety. 

In practice, there are a few measures that can be taken during this time-frequency 

transformation to enhance information contained in the raw data. Windowing the time 
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frames with window functions can minimize the spectral leakage effect [31]–[33]. 

Similarly, overlapping the time frames prevents information loss caused by the tapered 

ends of the windowing functions. Parameters related to these techniques, such as window 

type, frame length, overlap length, as well as other parameters such as frequency 

resolution affects the quality of the spectrograms, and thus, their values need to be 

carefully chosen (see Appendix C for values). 

Since spectrograms can be produced using Fourier (or similar) transforms, the 

resulting dataset(s) may have complex-valued representations. Complex-valued data have 

both real and imaginary components. Equation 9 [34] shows the mathematical 

representation of a complex number ‘z,’ where ‘a’ is the real component, ‘b’ is the 

imaginary component and ‘i’ is the indeterminate satisfying i2 = -1.   

 𝑧 = 𝑎 + 𝑖𝑏 (9) 

In ML/NN implementation, these complex-valued data pose a critical challenge 

since the traditional ML/NN algorithms and architecture are typically not structured to 

operate on complex-valued datasets. One way to overcome this challenge is to devise 

new ML/NN frameworks which accommodate complex-valued inputs and have complex-

valued weights or coefficients. This is an active area of research [35], [36] but out of 

scope for our study. An easier, more accessible approach is to use an appropriate, real-

valued representation of the complex-valued data as input to conventional ML/NN 

structures.  In this research, we utilize two different real-valued formats for complex-

valued transform data:  the magnitude format, and the rectangular format, as presented in 

subsequent sections. 
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3.1.3.1.2.1. Magnitude Format 

The most common method of converting complex-valued data to real-valued data 

is by combining the rectangular or Cartesian real and imaginary components via a polar 

transformation.  In polar form, the magnitude of a complex number is defined as the 

square root of the sum of squares of the real and imaginary components. Equation 10 [34] 

shows the formula for this magnitude where ‘|z|’ represents the magnitude of a complex 

number ‘z,’ ‘a’ is the real component and ‘b’ is the imaginary component. The magnitude 

of a complex number represents its distance from the origin in the complex plane. 

 |𝑧| = √𝑎2 + 𝑏2 (10) 

For time-series data, taking the magnitude of each complex-valued number of a 

2D complex-valued spectrogram gives a magnitude spectrogram. This magnitude 

spectrogram has the same dimensions as its parent complex-valued spectrogram. Figure 9 

shows a magnitude spectrogram of one of our captured ULF-PLC datasets where the PLC 

frequency is at 1595Hz. This figure shows a dotted band at around 1595Hz which 

correspond to the transmitted OOK PLC signals. The zoomed in version of this band is 

shown in the inset black box of Figure 9, which clearly shows the ‘On’ and ‘Off’ states of 

the ULF-PLC signal.  The solid bands at various frequencies correspond to the power 

signal and its odd harmonics (shown by the black arrows in Figure 9). The harmonics are 

spaced 120Hz apart. The PLC signal also produces its own harmonics, though not as 

strong as power signal harmonics. Interestingly, the “harmonics” of the ULF-PLC signal 

are harmonically offset from the ULF-PLC signal based on the fundamental frequency of 

the power signal, not the ULF-PLC signal. As a result, they are “echoes” or “images” of 

the ULF-PLC signal with harmonic structure described by the power signal’s frequency. 
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If the ULF-PLC signal is injected in the frequency bands between the harmonics of the 

power signal, then a magnitude spectrogram can provide a good estimation of the 

transmitted information, especially OOK or amplitude-shifted ULF-PLC signal as shown 

in Figure 9. Therefore, we used magnitude spectrogram datasets (Dataset 3 and Dataset 4 

as shown in Figure 5) for ML/NN to evaluate the accuracy of decoding the PLC signals. 

 
Figure 9. Magnitude spectrogram of the captured data showing the transmitted OOK ULF-PLC 

signal with the dotted horizontal band at around 1595Hz. The solid bands at lower frequencies 

correspond to the power signal and its harmonics. These bands are brighter than the ULF-PLC band 

because of their dominance in amplitude over the ULF-PLC signal in the power lines. 

 

3.1.3.1.2.2. Rectangular Format 

In addition to magnitude spectrograms, other types of spectrograms can be 

generated as well by manipulating the components of the complex data. By taking only 

the real components, a real spectrogram can be produced. Similarly, an imaginary 

spectrogram can be produced by only taking the imaginary components. Another 

example is a phase spectrogram, which can be generated by taking only the phase angle 

of the polar representation as opposed to the magnitude value. Plots in Figure 10 show 

the real spectrogram, imaginary spectrogram and phase spectrogram of the same dataset 
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used for magnitude spectrogram in Figure 9.  

 
(a) Real spectrogram 

 
(b) Imaginary spectrogram 

 
(c) Phase Spectrogram 

Figure 10. Real spectrogram (a), imaginary spectrogram (b) and phase spectrogram (c) of captured 

data with ULF-PLC signal at 1595Hz.  

 

As seen from plot (c) in Figure 10, the phase spectrogram is very noisy, and the 
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presence of the ULF-PLC signal is not visually apparent. Therefore, phase 

spectrogram(s) were not used in this research study. On the other hand, the real and 

imaginary spectrograms show a trace of the PLC signal at 1595Hz; however, this band is 

not as distinct as the magnitude spectrogram plot in Figure 9. This is expected since the 

real and imaginary spectrograms completely ignore the other component, resulting in 

huge loss of information. However, a combination of these two 2D spectrograms in a 3D 

space could potentially be better than magnitude spectrogram since this would be a direct 

representation of complex-valued data as shown in Equation 9. This 3D spectrogram is 

hereby referred to as ‘Rectangular spectrogram’ in this paper because of its 

correspondence to the rectangular form of the complex number. Figure 11 shows in detail 

how the rectangular spectrogram (and other spectrograms) is generated from the raw 

time-series data (as suggested in [37]). Our previous research study [38] showed that 

rectangular spectrogram indeed performs better than magnitude spectrogram, especially 

when the signal of interest is dominated by out-of-band interferers such as the power 

signal fundamental which is present in PLC transmissions. Therefore, we used 3D 

rectangular spectrograms datasets (Dataset 5 and Dataset 6 as shown in Figure 5) for 

ML/NN analysis and evaluation in this research. 



 

32 

 
Figure 11. Process of generating rectangular spectrogram from raw time-series data. As shown here, 

the 1D raw-time series data are first divided into multiple overlapping frames. Then, each of these frames 

are windowed by a window function. Next, these time-series frames are transformed into frequency space 

using Fast Fourier Transform (FFT). The 1D complex-valued FFT products for all frames are then 

combined to get a 2D complex spectrogram. From this complex spectrogram, real (denoted by axy), 

imaginary (bxy) and magnitude spectrogram (|z|xy) are produced. Finally, the real and imaginary 

spectrograms are stacked to form a 3D rectangular spectrogram.  

 

3.1.3.2. Feature Extraction 

As mentioned in Chapter II, one of our project goals was to compare the 

performance of feature-based and featureless ML/NN techniques. For featureless NN, the 

raw time-series data as well as the various types of spectrograms can be used. However, 

for a traditional, feature-based ML/NN, a set of signal features needs to be extracted from 

the raw data. These features can then be compiled into a ML/NN ready dataset (Dataset 1 

and Dataset 2 as shown in Figure 5). For our research, we chose the: amplitude envelope, 

root-mean-square energy, and spectral centroid as elements of our feature dataset. These 
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elements are described in subsequent sections. 

3.1.3.2.1. Amplitude Envelope 

This feature gives the change in the amplitude of the signal over time [39]. It 

effectively traces the outline of the signal in the time-domain and is loosely 

representative of the instantaneous energy in the signal. In our case, the raw signal’s 

amplitude envelope would not provide any meaningful information, since as described in 

Section 3.1.2 and Figure 7, the 60Hz power signal dominates all other superimposed 

sinusoidal signals. Therefore, we filtered the raw frames with bandpass filters of 100Hz 

bandwidth starting from 1Hz and up to 3000Hz with no overlap (1Hz-100Hz, 101Hz-

200Hz,…,2901-3000Hz). Hence, we divided each frame into thirty frequency-separated 

signals and calculated amplitude envelope for each. Our expectation was that the 

amplitude envelope of some of these signals, which contains our communication signal, 

would provide information about the bit that was transmitted in that frame. 

3.1.3.2.2. Root-Mean-Square Energy 

The energy of a signal is the measure of the “strength” of the signal. A signal’s 

energy is defined as the sum of the square of its magnitude [40]. Thus, Root-Mean-

Square Energy (RMSE) is the square root of the mean energy of a signal. This is 

particularly useful for signals which are “balanced” or have zero mean in the time 

domain. Equation 11 [41] shows the formula for RMSE where xi is the ith sample of 

signal x and N is the total number of samples. 

 

𝑅𝑀𝑆𝐸 = √
(𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑁

2 )

𝑁
 

(11) 

In our case, the raw signal's energy (or instantaneous energy in a frame) would 
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again be dominated by the power signal. Hence, we frequency separated the frames as 

described in Section 3.1.3.2.1 and calculated RMSE for each of the thirty bandpass 

filtered signals of each frame. Like the amplitude envelope, we were expecting variations 

in the RMSE in frequency range containing ULF-PLC signals (for example 1501-1600Hz 

for the 1595Hz PLC signal) corresponding to the bit these frames were carrying. 

3.1.3.2.3. Spectral Centroid 

Amplitude envelope and RMSE are time-domain signal features, and thus, they 

were extracted or estimated directly from the time-series data. In contrast, the spectral 

centroid probes the frequency-domain representation of the raw data for important signal 

characteristics. The spectral centroid measures the center of mass of the signal’s spectrum 

[42]. Our raw signal’s spectrum had a primary peak at near 60Hz and large secondary 

harmonic peaks at odd multiples of 60Hz because of the dominant power signal. 

Whenever the communication signal is present in the raw signal, a peak is present at that 

frequency and time location, such as the peak shown by the red arrow in Figure 8. The 

presence and absence of the communication signal (corresponding to 1 and 0, or “energy” 

and “no energy” respectively) would noticeably shift the center of mass of the spectral 

representation, thereby providing a classification measure of the transmitted bit. 

Therefore, we included the spectral centroid of each frame as one of the features. 

3.1.4. Dataset 

In this section, the series of steps taken to convert the raw data into ML/NN ready 

format dataset, as shown in Figure 5, are described in detail.  As discussed in Section 

3.1.3.1.2, the use of conventional ML/NN structures require real-valued input data, so 

various pre-processing steps may be valuable in constructing, evaluating, and leveraging 
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various training structures and algorithmic constraints. 

First, the bulk of the experimental dataset was divided into two sets. The first set 

(shown as ‘Raw Set 1’ in Figure 5) contained eight data files, all with the same frequency 

but with varying amplitude (see Appendix D). The second set (‘Raw Set 2’ in Figure 5) 

contained twenty-three files, all with the same amplitude but with varying frequencies 

(Appendix E). The amplitudes and frequencies for the two sets are shown in Table 1. 

‘Raw Set 1’ was used to analyze the effect of PLC signal amplitude variations on the 

performance of ML/NN while ‘Raw Set 2’ was used to analyze the effect of PLC signal 

frequency variations on ML/NN performance. For every file in both sets, the capture 

sampling rate was 8000 samples per second and the signal length was 105 seconds (more 

in Appendix B).  

Table 1. The two sets of raw data and their corresponding amplitudes and frequencies. 

Raw Data 

Sets 

Amplitude (mA) Frequency (Hz) 

Raw Set 1 10, 20, 50, 100, 250, 

500, 750, 1000 

1170 

Raw Set 2 1000 690, 750, 810, 870, 930, 990, 1050, 1110, 1170, 1230, 

1290, 1350, 1410, 1470, 1530, 1590, 1650, 1710, 1770, 

1830, 1890, 1950, 2010 

 

The bit duration, i.e., the length of the individual on or off signal representing a 

‘0’ or ‘1’ bit, in the experimental dataset is about 2 seconds (8000*2=16000 samples) on 

average. However, to get more ML/NN dataset samples (corresponding to the rows of the 

dataset) per file, the bit size was fragmented and set to 1000 samples. Further, each file 

from ‘Raw Set 1’ and ‘Raw Set 2’ were trimmed from 105 seconds to 100 seconds to 

achieve 800,000 samples per file (per phase). Hence, each of these files provided 800 

samples or rows (800,000 raw time-series samples ÷ 1000 samples per bit) in the feature-

based ML/NN dataset.  



 

36 

Next, for each of these files, amplitude envelope, RMS energy and spectral 

centroid were calculated. Then, these features were combined for files in ‘Raw Set 1’ and 

‘Raw Set 2’ to get ‘Dataset 1’ and ‘Dataset 2’ respectively. These two datasets were later 

used for feature-based ML/NN. These two datasets comprised a 2D dataset with 61 

feature columns - 30 each for amplitude envelope and RMS energy, and 1 for spectral 

centroid - and 6400 rows (800 per file*8 files) for ‘Dataset 1,’ and 18400 rows (800 per 

file*23 files) for ‘Dataset 2.’ 

Similarly, for each file in ‘Raw Set 1’ and ‘Raw Set 2,’ 2D magnitude 

spectrogram and 3D rectangular spectrograms were constructed (see Appendix C for 

spectrogram parameters). The combined magnitude spectrograms for files in ‘Raw Set 1’ 

gave rise to ‘Dataset 3’ and for files in ‘Raw Set 2’ to ‘Dataset 4.’ Similarly, with 

rectangular spectrograms, ‘Dataset 5’ and ‘Dataset 6’ were constructed from two sets of 

raw data. Finally, the raw time-series made up ‘Dataset 7’ and ‘Dataset 8.’ The labels 

were also extracted and added to each of the datasets. The label extraction was done by 

filtering the raw data using a narrow band-pass filter centered at the PLC carrier 

frequency and using a threshold function to determine the ‘On/Off’ state. Figure 12 

shows the plot of the filtered signal overlaid with the extracted ‘On/Off’ (or digital) state 

which corresponds to the binary labels of the datasets.  
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Figure 12. Plot showing the validity of feature extraction process. The raw signal after passing through 

band-pass filter centered at ULF-PLC frequency is shown by the blue line and the label extracted from this 

filtered signal is shown by the red line. 

 

3.2. Machine Learning and Neural Network 

3.2.1. Feature-based ML/NN 

For feature-based ML/NN, ‘Dataset 1’ and ‘Dataset 2’ were used as discussed in 

Section 3.1.3.2 and Section 3.1.4. After these datasets were formed by compiling the 

features from the raw data and the corresponding labels were recorded (as shown in 

Figure 5), they were used in forming ML models with a 70:30 training-testing split. To 

form the models with various supervised algorithms, Python Sci-kit learn [43] was used 

for Logistic Regression (LR) [44], Support Vector Machines (SVM) [45], and Decision 

Tree (TREE) [46]. The hyperparameters for these algorithms were optimized using the 

grid search [47] method. Accuracy, precision [48], recall [49], and f1 scores [50] were 

computed to evaluate and compare these various models’ training and testing 

performance. Learning curves [51] were plotted and evaluated to ensure the models were 

not overfitting or underfitting. Confusion matrices [52] were also plotted to visualize the 
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accurate label versus the predicted label.  

In general, LR does well on linear classification. Our OOK PLC signals, by 

themselves (or isolated), are linearly separable. However, the background power line 

channel, with the power signal and its coherent harmonics, are highly non-linear. Hence, 

if featureless or unprocessed dataset were used on LR, we expect this algorithm to 

struggle. The feature extraction process we have utilized filters out these background 

non-linearities to some extent. Therefore, LR should still be able to do reasonably well 

with both feature datasets. SVM, on the other hand, has both linear and non-linear kernel 

and TREE is a non-linear classifier. Therefore, both these algorithms should be able to 

provide high performance measure on our feature datasets.  

Besides these basic “one neuron” ML models, multi-neuron, multilayer 

ANN/DNN model was also tested using python’s Tensor Flow [53] and Keras [54]. The 

various hyperparameters of these ANN/DNN models were optimized by manual trial and 

error method. Accuracy scores, loss and validation curves, and confusion matrix were 

generated to evaluate this ANN/DNN model’s performance and this performance was 

compared with the other ML models. Since ANN/DNN is also a non-linear classifier, we 

expect this method to provide high classification accuracy. For low dimensional, low 

complexity feature dataset such as ours, this algorithm is probably an overkill and could 

potentially lead to overfitting. However, ANNs are more versatile than LR, SVM and 

TREE because of its multi-neuronal, multi-layer structure, and thus, could also be used in 

ULF-PLC data with more complex signal characteristics in the future.  
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3.2.2. Featureless ML/NN 

ANN/DNN was also used for our featureless datasets because of its simple 

architecture, ease of implementation, scalability, and most importantly, its ability to 

process multi-dimensional datasets. The multi-neuron nodes and fully connected layers of 

ANN can process complex information, such as the 2D and 3D spectrogram datasets, 

where the one-neuron ML algorithms fail. Therefore, they are an ideal candidate to test 

our featureless ULF-PLC datasets.  

The hyperparameters of the ANN including the number of hidden layers and the 

number of neurons in each layer were optimized for each dataset using a similar manual 

trial and error method as for the ANN for feature-based datasets. Accuracy scores, loss 

and validation curves, and confusion matrix were generated for the optimized models for 

each dataset to evaluate the performance of the models and compare them across datasets 

and with feature-based methods. 

Within our featureless datasets, we expect the time-series dataset to fail as 

described in Section 3.1.2. As for the magnitude and rectangular spectrogram datasets, 

there is a tradeoff between the quality and the quantity of information between these two. 

Since our PLC data have OOK signals, the magnitude spectrogram is going to capture 

this On/Off state’s amplitude information more clearly and compactly. However, as 

described in Section 3.1.3.1.2.2., the rectangular spectrogram is a more complete 

representation of the raw signal, and thus, contains more information about the 

transmitted PLC signal. Therefore, the accuracy and other performance measure of these 

two datasets in a NN model depends on how well the NN fits the respective data. With 

enough optimization, we expect both these datasets to provide similar performance.   



 

40 

4. RESULTS AND DISCUSSIONS 

The results of our research are divided into three main sections based on the type 

of dataset used in ML/NN. Section 4.1 covers the results generated from feature-based 

dataset, Section 4.2 covers the results from the use of featureless dataset in ML/NN, and 

Section 4.3 compares the feature-based and featureless datasets as seen from our results. 

At the end of this chapter, the main results from these sections are summarized in Section 

4.4.  

4.1. Feature-based Dataset 

As described in Section 3.1.4 and Figure 5, we constructed two feature-based 

datasets- ‘Dataset 1’ for amplitude analysis using ‘Raw Set 1’ and ‘Dataset 2’ for 

frequency analysis using ‘Raw Set 2.’ Both datasets had 61 feature columns, 30 each for 

the ‘Amplitude Envelope’ and ‘RMS Energy,’ and 1 for the ‘Spectral Centroid.’  

4.1.1. Amplitude Analysis 

‘Dataset 1’ was used for PLC signal amplitude analysis using feature-based 

ML/NN. The primary goal of analyzing this dataset was to evaluate the effect of PLC 

signal amplitudes on the quality of the transmitted signal, using ML/NN performance as a 

metric. The primary objective was, therefore, to identify a discrete amplitude or range of 

amplitudes that is suitable for PLC. The secondary objective was to identify a ML/NN 

algorithm that is best for evaluating the transmitted PLC signal.  

‘Dataset 1’ was a 2D feature-dataset with 6400 rows or samples, corresponding to 

the 8 ‘Raw Set 1’ files (8 files*800 samples/file), and 61 columns. This dataset, after 

standardization, was fed into four different supervised ML algorithms: Logistic 
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Regression (LR), Support Vector Machines (SVM), Decision Tree (TREE) and Neural 

Network (NN). The hyperparameters of the LR, SVM, and TREE algorithms were 

optimized using grid search method [47] and through manual tuning for each of the  

amplitude subsets within this dataset. These optimized hyperparameters are shown in 

Table 2.  

Table 2. Optimized hyperparameters of the LR, SVM and TREE for the various signal amplitudes of 

Dataset 1. 

Algorithms LR SVM TREE 

Hyperparameters C solver C gamma Max depth Min samples 

split 

10mA 0.0001 lbfgs 1 0.001 3 2 

20mA 0.0001 liblinear 10 0.0001 1 1 

50mA 0.0001 lbfgs 10 0.0001 1 1 

100mA 1 lbfgs 10 0.001 3 2 

250mA 0.1 lbfgs 10 0.001 1 1 

500mA 0.01 lbfgs 1 0.01 1 1 

750mA 1 lbfgs 1000 0.0001 5 7 

1A 0.0001 liblinear 1 0.001 1 1 

 

Hyperparameters for the NN were optimized manually and are shown in Table 3. 

These static parameters as well as the NN architecture were consistent for all signal 

amplitudes.  

Table 3. Optimized hyperparameters of the NN for Dataset 1. 

No. of hidden layers 2 

Hidden layer 1 No. of nodes 64 

Activation function Relu 

Hidden layer 2 No. of nodes 32 

Activation function Relu 

Output layer No. of nodes 2 

Activation function Softmax 

Learning rate 0.001 

Optimizer Adam 

Loss Sparse categorical crossentropy 

Epochs 50 

Batch size 16 
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After optimization, all four of these algorithms were fitted with the training data 

for each amplitude subset (of Dataset 1). A 70:30 ratio of training to testing samples was 

used for all models, resulting in 560 samples for training and 240 samples for testing. 

After fitting, each amplitude subset was tested with the testing samples. The process was 

repeated ten times (with randomized training test split for each iteration) to explore the 

variance of the performance of these models.  

The performance of the models, across all experimentation in this research, were 

evaluated primarily using the accuracy metric. This is because accuracy in our 

experimental context characterizes the Bit Error Ratio (BER), which is an important 

metric in digital communication. BER is the ratio of wrongly classified bits (or error bits) 

to the total number of transmitted or evaluated bits. Thus, BER is the “unit complement” 

of accuracy, i.e., BER + accuracy =100%. Therefore, higher accuracy translates to lower 

BER, which in turn means that communication is more efficient.   

Figure 13 illustrates the test accuracies of the four models with various amplitudes 

contained within Dataset 1. As seen from this figure, all the models show a similar profile 

across the experimental amplitude range with lower test accuracies in the lower 

amplitudes and vice versa. The accuracies jump significantly when going from 100mA to 

250mA and stay relatively stable beyond that. This jump represents the threshold 

amplitude necessary for the ULF-PLC signal to be transmitted in our inter-level ULF-

PLC architecture. In other words, the effective “signal to noise” concept inherent in 

communications systems can be inferred via the ML training process.   
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Figure 13. Graph showing test accuracy curves of Logistic Regression, SVM, Decision Tree and 

Neural Network models fitted with various ULF-PLC signal amplitude dataset (subsets of Dataset 1). 

The shadowed region of the curve represents the 95% confidence interval of the accuracies. The inset graph 

shows a zoomed in version of the curves for amplitudes of 250mA and higher.    

 

The inset graph within Figure 13 shows the zoomed in version of the test accuracy 

curves with emphasis on transmitted signal amplitudes from 250mA to 1A. As can be 

seen from the experimental outcomes, SVM has slightly higher accuracy in most cases, 

which may be due to its non-linear classification capability. This conclusion is supported 

by the confusion matrices in Figure 14, which are taken from the best performing model 

of each algorithm fitted with 750mA amplitude dataset. The shaded region in each 

confusion matrix plot in Figure 14 shows the accurately classified samples whereas the 

non-shaded boxes show the misclassified ones from among 240 test samples. SVM has 

least number of misclassified samples (2) whereas Neural Network has most 

misclassified samples (6). LR and TREE had 3 and 5 misclassified samples, respectively. 

Accuracy of each model can be calculated from this confusion matrix with the formula 

shown in Equation 12. The difference in accuracies between the models, about 1.67% 

between the highest and lowest performing models shown in Figure 14, is not significant 
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enough to declare a clear winner among the algorithms.  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

(12) 

This inset graph of Figure 13 also shows a slight increase in accuracies of all 

models as signal amplitude increases which conforms to intuition related to signal 

strength and SNR, but a slight decrease in accuracy above 750mA, which may be 

counter-intuitive. The increase in accuracy as the PLC signal amplitude increases is 

intuitive since we are using On/Off keying, a version of Amplitude Shift Keying (ASK), 

and thus, higher signal amplitude results in more distinct energy difference between the 

On state and the Off state, and higher SNR in a consistent channel. However, the 

decrease in accuracy above 750mA may be an effect of the highly nonlinear PLC channel 

which introduces coherent noise as a byproduct of modulation.  In short, the introduction 

of high energy PLC signals induces higher energy replicas of introduced signal which are 

offset at 120Hz spacings (harmonically related to the fundamental). As a result, the PLC 

signal encounters additional, higher-energy coherent interference which can confound the 

training process. However, to examine this phenomenon, more tests in a wider range of 

amplitudes and frequency options is necessary. 
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Figure 14. Figure showing confusion matrices of Logistic Regression, SVM, Decision Tree and 

Neural Network models fitted with 750mA subset of Dataset 1.  

 

4.1.2. Frequency Analysis 

In real-life implementation of PLC, the amplitude parameter of the PLC signal 

can be set to a certain value (after analysis like shown in Section 4.1.1); however, the 

frequency parameter is more complicated to maneuver because of the highly reactive 

channel. The fundamental power signal in the PLC channel oscillates close to 60Hz and 

produces strong odd harmonics at 120Hz spacings. These dominant signals, therefore, 



 

46 

occupy a wide range of frequencies in the low-frequency PLC spectrum. This problem is 

exacerbated by the variable noise of the channel which can present time-variant 

interference to the PLC signals. Therefore, transmitting a PLC signal in these low 

frequency bands can be challenging. To address these issues, ‘Dataset 2’ was used in 

three different ways, which are described in in Sections 4.1.2.1 through 4.1.2.3. 

4.1.2.1. Case 1- Known and Static Frequency 

Case 1 simulates the scenario in which the frequency band to send the PLC signal 

is known and always the same. This would require a great deal of knowledge of the 

channel, so that the PLC frequency band does not overlap with the pre-existing 

harmonics (or the noise). Therefore, this is an unlikely scenario; however, if implemented 

correctly, is the easiest for the receiver to process. 

To recreate this scenario, we divided ‘Dataset 2’ into individual frequency subsets 

(like amplitudes for ‘Dataset 1’ in Section 4.1.1) and used them as an expanded training 

set for the ML/NN. Similar to ‘Dataset 1,’ these subsets of ‘Dataset 2’ were standardized 

and fitted with LR, SVM, TREE and NN algorithms after hyperparameter optimization. 

These optimized hyperparameters are shown in Table 4. The model architecture for the 

NN was the same as for ‘Dataset 1,’ and thus, the hyperparameters are the same as listed 

in Table 3. 
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Table 4. Optimized hyperparameters of LR, SVM, and TREE for frequency subsets of Dataset 2 

(Case 1).  

Algorithms LR SVM TREE 

Hyperparameters C solver C gamma Max depth Min samples 

split 

690Hz 0.0001 lbfgs 0.0001 0.0001 1 1.0 

750Hz 10 lbfgs 10 0.0001 1 1.0 

810Hz 10 lbfgs 10 0.0001 2 2 

870Hz 10 lbfgs 1000 0.0001 4 2 

930Hz 0.1 lbfgs 100 0.01 3 2 

990Hz 0.1 lbfgs 100 0.001 1 1.0 

1050Hz 0.01 lbfgs 10 0.001 1 1.0 

1110Hz 0.001 liblinear 1 0.01 3 2 

1170Hz 0.0001 liblinear 10 0.01 1 1.0 

1230Hz 0.001 lbfgs 1 0.01 1 1.0 

1290Hz 1000 liblinear 0.1 0.01 1 1.0 

1350Hz 0.1 lbfgs 1000 0.01 1 1.0 

1410Hz 0.1 lbfgs 1 0.01 1 1.0 

1470Hz 0.01 liblinear 1 0.01 3 2 

1530Hz 0.001 lbfgs 10 0.0001 1 1.0 

1590Hz 0.01 lbfgs 100 0.001 1 1.0 

1650Hz 0.1 liblinear 10 0.001 1 1.0 

1710Hz 1 lbfgs 10 0.001 3 2 

1770Hz 1 lbfgs 1 0.01 1 1.0 

1830Hz 1 lbfgs 10 0.0001 1 1.0 

1890Hz 1 liblinear 1 0.001 5 5 

1950Hz 0.1 lbfgs 100 0.0001 2 2 

2010Hz 0.1 lbfgs 10 0.0001 4 2 

 

The training to test ratio for each experiment was set to 70:30. Since, each 

frequency subset was trained and tested separately, there were 560 training samples and 

240 test samples for every Case 1 experiments. After fitting the models with these 

training data, the models were tested with test data. Figure 15 shows the accuracies (mean 

accuracy curves and the 95% confidence interval from ten iterations) of the four models 

from these test data at various frequencies. The inset graph within Figure 15 shows the 

frequencies, from 930Hz to 1650Hz, where the model test accuracies were consistently 
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over 90%.  

 
Figure 15. Graph showing test accuracy curves of Logistic Regression, SVM, Decision Tree and 

Neural Network models fitted with various ULF-PLC signal frequency dataset (subsets of Dataset 2). 

The shadowed region of the curve represents the 95% confidence interval of the accuracies. The inset graph 

shows a zoomed in version of the curves for frequencies from 930Hz to 1650Hz.    

 

As seen in Figure 15, the lower and higher end of the experimental spectrum both 

have low test accuracies across all models. This is due to the bandpass filtering nature of 

the channel for the PLC signals as well as the limits of the coupling filter. At lower range 

of frequencies (below 870Hz in the graph), the harmonics of the fundamental power 

signal is very strong, and thus, the PLC signal is severely distorted. As frequency 

increases, these harmonics die off, opening dynamic subchannels into which the PLC 

signals can be introduced. However, beyond a certain frequency (after 1710Hz in the 

graph), the PLC signals are heavily attenuated by the transformers and other grid 

components, including the coupling filter, causing poor PLC output at the receiver. 

Therefore, there is a frequency window where the PLC signal transmission is optimal. 

Figure 15 shows that, in our case, this window is between 930Hz to 1650Hz. Within this 

window, the test accuracies are fairly high (mostly above 95%) and stable for all models, 
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as shown by the inset graph in Figure 15.  

In summary, this Case 1 experimentation shows that with sufficient knowledge of 

the channel and with a set known PLC frequency, upwards of 95% accuracies can be 

obtained using feature-based ML/NN. As stated in Section 4.1.1., high accuracy of the 

models means low BER which translates to high efficiency in communication. 

4.1.2.2. Case 2- Known but Dynamic Frequency 

Case 2 is similar to Case 1 in the sense that it simulates a scenario where the PLC 

frequency is known. However, in this case this frequency is not constant, but changes 

frequently to some known set of values (e.g., frequency hopping). This case is more 

realistic than Case 1 because it accounts for the variable nature of the channel and the 

ability to dynamically select (or pre-select) open subsections of the low-frequency 

spectrum. However, this approach still relies on the assumption that the at least some of 

the frequency bands or sub-channels in the pre-defined set is always optimal for 

transmission. As a result, effective implementation of a frequency-hopped low-frequency 

PLC system would depend in large part on dynamic spectral analysis of the channel. 

To simulate this case, we took ‘Dataset 2’ as a whole for training and testing, instead of 

separating it with respect to frequency as described for Case 1 in Section 4.1.2.1. Hence, 

‘Dataset 2’ was randomly split into training and test set, and the ML/NN models were 

fitted with the training set and evaluated with the test set. The dataset is more complex in 

this case for ML/NN to generalize because the PLC frequency is not the same 

throughout, and thus, the weight for the feature column keeps changing. This results in 

slower convergence than Case 1, as shown in Figure 16. 
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    (a) Case 1 at frequency of 1290Hz 

   
                                      (b) Case 2 with full ‘Dataset 2’                                                                        (c) Case 2 with trimmed ‘Dataset 2’ 

 

Figure 16. Graphs showing training and test (or validation) accuracy and loss curves of identical NN for (a) Case 1 with frequency of 1290Hz, (b) Case 2 

with full dataset, and (c) Case 2 with trimmed dataset. The trimmed dataset for (c) is from 870Hz to 1710Hz.   
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As seen in Figure 16 (a), the accuracy and loss curves of both training and test set 

converge within the first few epochs for Case 1. However, for Case 2, the convergence 

takes more epochs. Figure 16 (b) is for the Case 2 dataset with full range of frequencies, 

i.e., the complete ‘Dataset 2.’ This plot shows that not only do the loss and accuracy 

curves not converge as fast as in Case 1, but these curves actually do not stabilize within 

the 50 epochs. In addition, the accuracies are much lower at the end of the training than 

in Case 1 (approximately 80% compared to around 95% for Case 1). This is because of 

the presence of 690Hz-810Hz and 1770Hz-2010Hz frequency data within ‘Dataset 2’ 

which contains distorted PLC signals as shown in Figure 15. The data corresponding to 

these frequencies dilute the dataset, thereby causing low accuracies in Case 2. Therefore, 

for a fairer comparison, we took out these frequency data from the dataset for further 

Case 2 analysis, resulting in a “trimmed” dataset for Case 2. Figure 16 (c) shows the 

accuracy and loss curves of this trimmed ‘Dataset 2.’ In addition to the increased 

accuracies, this plot shows that the accuracy and loss curves do stabilize.  

After trimming ‘Dataset 2’ to include only the frequency data from 870Hz-

1710Hz (i.e., the passband of our PLC channel), next we fitted the four algorithms with 

this updated dataset. The training and test accuracies, precision, recall and F1 scores of 

these models are listed in Table 5.  

Table 5. Performance of LR, SVM, TREE and NN with trimmed ‘Dataset 2.’ The values shown in the 

table are the mean +/- standard deviation from ten iterations. 

Algorithms Training 

accuracy 

Testing 

accuracy 

Precision Recall F1 score 

LR  0.81790 +/- 

0.00328 

0.81870 +/- 

0.00398 

 0.84334 +/- 

0.00522 

0.80534 +/- 

0.00808 

 0.82387 +/- 

0.00429 

SVM 0.92355 +/- 

0.00293 

0.90826 +/- 

0.00388 

0.93420 +/- 

0.00595 

 0.88838 +/- 

0.00473 

0.91070 +/- 

0.00370 

TREE 0.90768 +/- 

0.00478 

0.86604 +/- 

0.00980 

0.91220 +/- 

0.02532 

 0.82626 +/- 

0.02008 

0.86661 +/- 

0.00889 

NN 0.90571 +/- 

0.00313 

0.90078 +/- 

0.00409 

0.91201 +/- 

0.01740 

0.89916 +/- 

0.02417 

0.90507 +/- 

0.00517 
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As seen in Table 5, SVM had the highest scores in all performance metrics for 

this trimmed ‘Dataset 2’: Case 2. TREE and NN displayed similar performance, while 

LR outcomes were substantially worse with approximately 10% difference in every 

metric compared to SVM.  

To analyze the possible causes of this discrepancy between the various 

algorithms, we constructed a 2D plot with decision regions for each of these models. The 

two feature columns for these 2D plots were selected using Sequential Backward 

Analysis (SBS) to give two most influential feature columns for each model (described in 

more detail in Section 4.1.3). Figure 17 shows these plots for LR, SVM and TREE 

models. As seen in Figure 17, LR displays a linear and continuous boundary, while the 

decision boundary of SVM is continuous and curved, and the decision boundaries of 

TREE are straight but discontinuous. These decision boundaries separate the two classes 

(i.e., On and Off or 1 and 0); therefore, the more flexible these boundaries are, the better 

the accuracy of the models’ classification is going to be. The linearity of LR can 

sometimes prevent it from fitting some training data, whereas the SVM and TREE are 

more flexible, and thus, can have better performance, i.e., higher classification accuracy. 

However, SVM and TREE are more prone to overfitting for the same reason. In our 

current case, i.e., Case 2, there is no overfitting (or underfitting) on any of our models as 

shown by the small difference between training and testing accuracies.   
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                                                         (a) LR 

 
                                                                   (b) SVM 

 
                                                                  (c) TREE 

Figure 17. Plots showing training and test data, plotted over two feature columns, along with the 

decision boundary and shaded target regions of (a) LR (b) SVM and (c) TREE models. 
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4.1.2.3. Case 3- Unknown and Dynamic Frequency 

Case 3 simulates a scenario in which the PLC frequency band is unknown as well 

as dynamic. In this case, the ML/NN is trained with a range of frequencies, and the test is 

done with some frequency within or close to this range, but not present in the training set. 

Therefore, the only prior information needed in this scenario for real-life implementation 

is the frequency bound within which the PLC signal is likely to be in and a training set 

within this bound. The expectation is that the ML/NN will train within this range and be 

able to generalize well enough to classify signals in frequencies it never trained on. To 

simulate this scenario from our dataset, we separated ‘Dataset 2’ into individual 

frequency subsets, used all except one subset for training, and tested on the unused one. 

Our objective with this case was to test how well ML/NN models can generalize on data 

with untrained PLC frequency and to observe what effect the frequency has on this test.  

As with Case 2, including the complete ‘Dataset 2’ for this case would dilute the dataset 

and cause low accuracies. In practical use cases, the frequency bounds can be tested and 

made sure they fall within the bandpass range of the channel. Therefore, for Case 3, we 

used trimmed ‘Dataset 2’ as we did in Case 2 in Section 4.1.2.2.  

Figure 18 shows the test accuracies of this experiment for the four algorithms. 

The frequencies on the X-axis are the frequencies of the test data. For example, for 

X=1170Hz, the ML/NN models were trained on trimmed ‘Dataset 2’ apart from the 

subset where PLC frequency was 1170Hz. After training, the test was done with this 

subset and the test accuracy values are plotted in Figure 18.  
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Figure 18. Test accuracies for Logistic Regression, SVM, Decision Tree and Neural Network for 

Dataset 2: Case 3. The PLC frequency on the x-axis represents the test frequency.  

 

As seen in Figure 18, all of the algorithms had some success in generalizing to the 

test data with untrained PLC frequency characteristics. However, the performance is not 

consistent for any algorithms across the whole spectrum. The low accuracies at the 

extremes, i.e., 870Hz and 1710Hz can be explained by their training data. Their 

respective models are trained only on the frequencies higher or lower from the testing 

frequency. Therefore, the model only has the upper or lower bound subset to generalize 

the test set. This causes low accuracy. Extending this similarity measure argument to the 

whole dataset would mean that the frequency subsets in the middle of range would have 

the highest accuracy and the accuracy decreases as we move to either side from the 

middle, producing a bell-shaped accuracy profile. The curves in Figure 18 promise a 

similar trend; however, this bell-shaped profile is broken by two big dips at 1050Hz and 

1350Hz. Upon closer examination of these models at these two frequencies, we found out 

that these dips are caused largely due to the robustness of the models themselves. The 
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architecture and hyperparameters of each of these models for all frequencies are kept the 

same throughout this case experiment, i.e., the models are not optimized for specific 

training set. This was done to simulate the real-life implementation of this case, where the 

models cannot be optimized for the unknown test frequency. Therefore, our models were 

not optimized for certain test sets, and they failed at those frequencies. Despite this 

setback, the models showed high accuracy in majority of the test frequencies, and thus, 

showed promising generalizing behavior. Further optimization of these models or using 

more complex models can rectify the vulnerabilities, and the practical implementation of 

Case 3 may be possible.   

4.1.3. Feature Analysis 

In addition to analyzing the amplitude and frequency of the PLC signal, we also 

wanted to investigate which features were the best for our PLC data. To do this, we used 

the Sequential Backwards Selection (SBS) technique to reduce the dimensionality of our 

datasets from N=61 to N=2, where ‘N’ is the number of feature columns in our dataset. 

We chose N=2 for our new dataset so that we could produce 2D plots of the dataset as 

shown in Figure 17. We performed SBS for ‘Dataset 1’ and for Case 1 of ‘Dataset 2,’ the 

results of which are shown in Table 6 and 7, respectively. We did not conduct SBS for 

Cases 2 and 3 of ‘Dataset 2’ because in these cases, multiple frequency subsets were used 

for training, and subsequently, the most impactful features would change multiple times 

during training.  
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Table 6. The two most impactful features for various amplitude subsets of ‘Dataset 1’ along with test 

accuracies of LR, SVM and TREE models on the full N=61 dataset and reduced N=2 dataset. APEV 

and RMSE denotes amplitude envelope and RMS energy features, respectively.  

PLC 

Amp 

[mA] 

Feature 1 Feature 2 LR Test Acc SVM Test Acc TREE Test Acc 

N=61 N=2 N=61 N=2 N=61 N=2 

10 APEV 1-

100 

APEV 101-

200 0.5417 0.5375 0.5375 0.5375 0.4833 0.5541 

20 RMSE 

601-700 

RMSE 801-

900 0.5208 0.5416 0.5417 0.5375 0.5167 0.5416 

50 APEV 1-

100 

APEV 101-

200 0.5375 0.5375 0.5417 0.5375 0.4667 0.4625 

100 APEV 

1101-1200 

RMSE 1101-

1200 0.6625 0.5083 0.6750 0.6291 0.5750 0.5166 

250 APEV 

1101-1200 

APEV 1201-

1300 0.9083 0.925 0.9208 0.9125 0.9042 0.7208 

500 APEV 

601-700 

APEV 1101-

1200 0.9667 0.9583 0.9667 0.9583 0.9542 0.9541 

750 APEV 

1001-1100 

APEV 1101-

1200 0.9708 0.9708 0.9750 0.9708 0.9542 0.9583 

1000 APEV 1-

100 

APEV 1101-

1200 0.9500 0.9625 0.9708 0.75 0.9500 0.9625 

 

In Table 6, columns ‘Feature 1’ and ‘Feature 2’ list the two most impactful 

features (for the corresponding amplitude subset in the row) gotten from SBS analysis. 

These two features were common for all three algorithms shown for a particular 

amplitude data subset, which indicates that even though the three algorithms work in 

different ways to optimize weights for each column (to generate ML models), eventually 

these weights were spread out in a similar fashion for all three models. Therefore, the 

impactful features are, in some respect, independent of the algorithms.  

In Table 6, the two optimal features are named either APEV for ‘Amplitude 

Envelope’ or RMSE for ‘Root Mean Square Energy,’ while the range after these feature 

names denotes the frequency of the filtered signals. Evaluating these two features, we can 

see that, for PLC amplitudes above 100mA, APEV 1101-1200 (as shown by the green 

shaded cells in Table 6), i.e., amplitude envelope of the signal after filtering with 1101Hz 

to 1200Hz bandpass filter, is one of the two SBS features. This is significant because the 
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PLC frequency of all these signals is 1170Hz. Therefore, the ML models were able to 

identify the PLC frequency from the data and relate the presence and absence of the 

signal in this frequency to the On/Off state. This also means that SBS analysis could be 

used to identify certain signal characteristics, like frequency in our case, from the feature 

dataset. For amplitudes below 100mA, the PLC signals were distorted as shown in Figure 

13. Therefore, the ML models for these amplitudes did not get to the same conclusion in 

identifying the optimal features.  

Table 6 also lists the test accuracies of the three models with the full feature 

dataset (N=61) and SBS reduced dataset (N=2). Comparing these accuracies shows that 

in most cases the SBS reduced models perform as well as the full feature models. This 

can be attributed to the major impact these features have on the ML models. In some 

cases (such as LR for 250mA), the SBS reduced model’s accuracy is even higher than the 

full feature models. This may be due to the weights becoming spread out over numerous 

non-impactful features in the full dataset which causes the impactful features to have 

lower weights compared to the SBS reduced dataset, thereby leading to lower accuracy.  

Table 7 shows optimal features and accuracies for ‘Dataset 2.’ A similar 

conclusion can be drawn from this table as Table 6. One key difference here is that there 

is no common feature for all frequency subsets. This is because the PLC frequency 

changes when switching subsets, and thus, the impactful features keep changing. 

However, in most cases the PLC frequency falls within the bandpass frequency range of 

the RMS energy feature, as shown by the green shaded cells. Therefore, for this dataset, 

the RMS energy feature provides information about the signal frequency. 

 

 



 

59 

Table 7. Two most impactful features for various frequency subsets of ‘Dataset 2’ along with test 

accuracies of LR, SVM and TREE models on the full N=61 dataset and reduced N=2 dataset.  

PLC 

Freq 

[Hz] 

Feature 1 Feature 2 LR Test Acc SVM Test Acc TREE Test Acc 

N=61 N=2 N=61 N=2 N=61 N=2 

690 APEV 1-100 APEV 101-200 0.6083 0.5917 0.6083 0.5917 0.6083 0.5917 

750 APEV 701-800 APEV 1201-1300 0.5833 0.5250 0.5500 0.5250 0.5625 0.5250 

810 APEV 101-200 RMSE 801-900 0.8167 0.6750 0.6875 0.6750 0.6583 0.6750 

870 RMSE 701-800 RMSE 801-900 0.9000 0.8333 0.9042 0.8333 0.8292 0.8333 

930 RMSE 901-

1000 

RMSE 1001-1100 
0.9750 0.9750 0.9625 0.9750 0.9333 0.9750 

990 APEV 1-100 RMSE 901-1000 0.9708 0.9750 0.9792 0.9750 0.9750 0.9750 

1050 APEV 1-100 RMSE 1001-1100 0.9333 0.9500 0.9500 0.9500 0.9583 0.9500 

1110 APEV 1-100 RMSE 1101-1200 0.9667 0.9625 0.9583 0.9625 0.9542 0.9625 

1170 APEV 1-100 APEV 1101-1200 0.9500 0.9625 0.9667 0.9625 0.9500 0.9625 

1230 APEV 1201-

1300 

RMSE 1201-1300 
0.9625 0.9792 0.9750 0.9792 0.9708 0.9792 

1290 APEV 601-700 RMSE 1201-1300 0.9583 0.9750 0.9750 0.9750 0.9833 0.9750 

1350 APEV 1201-

1300 

APEV 1301-1400 
0.9458 0.9458 0.9500 0.9458 0.9417 0.9458 

1410 APEV 1-100 APEV 1401-1500 0.9667 0.9500 0.9625 0.9500 0.9583 0.9500 

1470 RMSE 1301-

1400 

RMSE 1401-1500 
0.9667 0.9667 0.9625 0.9667 0.9667 0.9667 

1530 APEV 1401-

1500 

RMSE 1501-1600 
0.9542 0.9542 0.9708 0.9542 0.9667 0.9542 

1590 APEV 1-100 RMSE 1501-1600 0.9625 0.9833 0.9583 0.9833 0.9875 0.9833 

1650 APEV 1-100 RMSE 1601-1700 0.9333 0.9458 0.9417 0.9458 0.9458 0.9458 

1710 RMSE 1601-

1700 

RMSE 1701-1800 
0.8333 0.8292 0.8208 0.8292 0.7708 0.8292 

1770 RMSE 1701-

1800 

RMSE 1801-1900 
0.7125 0.7292 0.6708 0.7292 0.7208 0.7292 

1830 RMSE 1801-

1900 

RMSE 1901-2000 
0.7958 0.8083 0.7667 0.8083 0.8000 0.8083 

1890 RMSE 1201-

1300 

RMSE 1801-1900 
0.7542 0.7042 0.7083 0.7042 0.6708 0.7042 

1950 RMSE 1201-

1300 

RMSE 1901-2000 
0.6917 0.7042 0.6958 0.7042 0.7000 0.7042 

2010 APEV 1501-

1600 

RMSE 2001-2100 
0.6375 0.6708 0.6292 0.6708 0.5833 0.6708 

 

4.2. Featureless Dataset 

In addition to using the traditional feature dataset in ML/NN, we also investigated 

the use of featureless datasets. We did so by constructing 1D time-series, 2D magnitude 

spectrogram and 3D rectangular spectrogram datasets, as discussed in Chapter III. NNs 
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were used on each dataset because of their ability to take in multi-dimensional data. The 

multi-neuronal architecture of NNs is also more complex than one-neuron structures of 

LR, SVM or TREE, which could aid in parsing through our noisy featureless datasets. 

The structure and hyperparameters of the NN for the time-series and magnitude 

spectrogram dataset were identical to the NN used for feature dataset (see Table 3). For 

the rectangular spectrogram though, an additional convolution layer and a max pool layer 

were added before the fully connected NN layers. The complete architecture of this 

convolutional neural network (CNN) is shown in Figure 19.  

 
Figure 19. CNN architecture showing the various layers of operation on our rectangular spectrogram 

dataset.  

 

As seen in Figure 19, each sample of the rectangular spectrogram is 3x1024x2, 

where 2 is the number of channels (i.e., stacked real spectrogram and imaginary 

spectrograms). The first operation is convolution with 64 3x3 filters producing 

1x1022x64 feature maps. Then comes the max pool layer with pool size 1x3 which 

produces output of 1x340x64. This output is flattened to 1D array of size of 21760. The 

flattened feature maps are then fed into the fully connected NN. This NN is identical to 
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the ones used in feature dataset (see Table 3). The results of amplitude and frequency 

analysis of these three datasets are described in Section 4.2.1. and Section 4.2.2. 

respectively. 

4.2.1. Amplitude Analysis 

From ‘Raw Set 1,’ magnitude spectrogram, rectangular spectrogram and time-

series datasets were generated to create ‘Dataset 3,’ ‘Dataset 5’ and ‘Dataset 7’ 

respectively. Figure 20 shows the test accuracy curves of NN/CNN models fitted with 

these datasets.  

 
Figure 20. Graph showing test accuracy curves (with 95% confidence interval) of NN models fitted 

with magnitude spectrogram (Dataset 3), rectangular spectrogram (Dataset 5) and time-series 

datasets (Dataset 7) containing ULF-PLC signals of various amplitudes. The inset graph shows a 

zoomed in version of the curves for amplitudes of 250mA and higher.    

 

As seen from the low accuracy curve of the time series in this figure, the time 

series dataset could not classify our On/Off keyed PLC signals effectively. The accuracy 

hovering around 50% for this dataset suggests the NN model could not find any relevant 

feature maps from this dataset. This result was expected since the unprocessed time series 
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data, as shown in Figure 7, are dominated by the power signal.  

 The accuracy curve profiles of NN/CNN models of magnitude and rectangular 

spectrograms look similar to the feature-based dataset models in Figure 13, as these 

datasets were generated from the same ‘Raw Set 1.’ As concluded from Figure 13, Figure 

20 also shows that increasing the amplitude above 250mA is optimal for PLC, with the 

threshold being somewhere between 100mA and 250mA.  

Comparing between the magnitude spectrogram and rectangular spectrogram, we 

expected close performance between these two datasets, as discussed in Section 3.2.2. 

The inset graph of Figure 20, which shows the NN model accuracies for these two 

datasets between 250mA and 1A, supports our intuition. The difference in accuracies 

between the two spectrogram models within this amplitude range is less than 1%. This 

means that both datasets are equally efficient for PLC in this amplitude range. However, 

a considerable difference in accuracies can be seen at 100mA PLC signal amplitude in 

Figure 20. The magnitude spectrogram model has classification accuracy of 

approximately 85% while the rectangular spectrogram model gets only up to about 55% 

at this amplitude. This could be because magnitude spectrogram is more efficient in 

retaining the amplitude information than rectangular spectrogram, as explained in Section 

3.2.2. Therefore, the more efficient magnitude spectrogram model has lower amplitude 

threshold (for high classification accuracy) than the rectangular spectrogram. More data 

in the intermediate amplitudes between 100mA and 250mA are necessary to validate this 

conclusion. 
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4.2.2. Frequency Analysis 

For frequency analysis, ‘Raw Set 2’ was transformed to magnitude spectrogram, 

rectangular spectrogram and time-series datasets creating ‘Dataset 4,’ ‘Dataset 6’ and 

‘Dataset 8’ respectively. As in the cases using feature-based datasets, these three datasets 

were evaluated with three case scenarios in sections 4.2.2.1 through 4.2.2.3 

4.2.2.1. Case 1- Known and Static Frequency 

In Case 1, the NN/CNN is trained and tested within a particular frequency subset. 

The test accuracy results of the NN/CNN models are presented in Figure 21. As with 

amplitude datasets, the time-series dataset had the worst performance, as expected due to 

the strong out of band interference. The magnitude spectrogram models exhibited better 

overall performance, and particularly better accuracy than the rectangular spectrogram 

models, especially in the lower and the higher end of the spectrum. The magnitude 

spectrogram models also had a much narrower and more consistent confidence interval 

than the rectangular spectrogram. The confidence interval result is especially interesting 

since a larger confidence interval implies larger variance, and hence, the rectangular 

spectrogram dataset seems to have higher variance in its accuracy results. Higher 

variance suggests more unpredictability and less repeatability in the performance which 

is undesirable.  
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Figure 21. Graph showing test accuracy curves (with 95% confidence interval) of NN models fitted 

with magnitude spectrogram (Dataset 4), rectangular spectrogram (Dataset 6) and time-series 

(Dataset 8) datasets containing ULF-PLC signals of various frequencies.  

 

This discrepancy in performance between magnitude spectrogram models and 

rectangular spectrogram models can be explained by the type and quantity of information 

each dataset contains. As described in Section 3.2.2., magnitude spectrogram, by 

definition, contains only the magnitude or energy information of the signal, which is 

directly related to the signal amplitude. So, for ASK signals, the magnitude spectrogram 

more clearly represents modulation transitions, thus simplifying the task of the NN. In 

contrast, the rectangular spectrogram holds more information about the signal, including 

phase data, which could be advantageous in some use cases. However, in the approaches 

discussed here, the larger size of the rectangular dataset causes data dilution resulting in 

lower performance compared to magnitude spectrogram models.  

4.2.2.2. Case 2- Known but Dynamic Frequency 

As in Case 2 of the feature-based ML/NN analysis (Section 4.1.2.2.), NN/CNN is 

trained with the trimmed featureless datasets (without separating frequency subsets). The 
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objective here is to explore which featureless datasets perform the best when trained with 

samples containing PLC signals of varying frequencies. Table 8 summarizes the result of 

this experimentation (with ten iterations of each model).  

 Table 8. Performance of magnitude spectrogram (Dataset 4), rectangular spectrogram (Dataset 6) 

and time-series (Dataset 8) NN/CNN models. The values shown in the table are the mean +/- standard 

deviation from ten iterations. 

Dataset type Training 

accuracy 

Testing 

accuracy 

Precision Recall F1 score 

Time-series 0.52595 +/- 

0.00000 

 0.52583 +/- 

0.00000 

0.52583 +/- 

0.00000 

1.00000 +/- 

0.00000 

0.68924 +/- 

0.00000 

Magnitude 

spectrogram 

1.00000 +/- 

0.00000 

0.95503 +/- 

0.00326 

 0.96010 +/- 

0.00413 

0.95415 +/- 

0.00512 

0.95710 +/- 

0.00314 

Rectangular 

spectrogram 

0.76138 +/- 

0.15679 

0.73655 +/- 

0.14313 

0.74463 +/- 

0.14841 

0.88257 +/- 

0.08874 

0.79102 +/- 

0.07624 

 

As shown in Table 8, the magnitude spectrogram models outperform other 

models. The time-series models fail again due to the nature of the unprocessed time-

series PLC data. Interestingly, the recall score of the time-series dataset is very close to 1. 

This does not mean that the time-series model performed well. Figure 22 shows the 

confusion matrix of one of these time-series models, which explains why the recall score 

was high even though the accuracy was low. As shown in this figure, the time-series 

model predicted all samples as ‘1’ (On) which explains the low accuracy. The recall is 

calculated as shown in Equation 9. The true positives are the accurately classified 

positives (top left quadrant in Figure 22) while the false negatives are misclassified 

negatives (bottom left quadrant). In our case, both values are zero, giving 0÷0, which 

causes error, but is overwritten as 1 during processing. In this way, the recall was very 

high.   

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(9) 
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Figure 22. Confusion matrix of a featureless time-series model. This model was fitted with trimmed 

‘Dataset 8’ for Case 2 analysis.  

 

4.2.2.3. Case 3- Unknown and Dynamic Frequency 

In Case 3, the NN/CNN models are trained using every frequency subset within 

the dataset (Datasets 4,6 and 8) except one and tested with the one which was left out of 

the training process. The objective here is to observe if the NN/CNN featureless models 

can generalize during the training process to be able to perform well on test data with 

untrained PLC frequency. The result of this experimentation is summarized in Figure 23. 
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Figure 23. Test accuracy curves of NN/CNN models fitted with magnitude spectrogram, rectangular 

spectrogram, and time-series dataset for Case 3 analysis. 

 

As seen in Figure 23, the time series data again failed, as expected and as 

described in Section 3.1.2. The magnitude and rectangular spectrogram models, however, 

had some success in generalizing to a new frequency data subset. The bell-shaped 

accuracy curves of both rectangular and magnitude spectrograms support the “similarity 

measure” hypothesis formulated previously in Case 3 of feature-based datasets in Section 

4.1.2.3. This hypothesis was that the ML/NN models would be able to generalize the best 

(and perform well) to a test frequency when it trained on the greatest number of similar 

frequencies. The edge cases have the fewest “similar” training frequencies whereas the 

middle ones have the most, and hence, the accuracies for edge cases should be the lowest 

with increasing accuracy moving towards the middle. The curves for both spectrogram 

datasets shown in Figure 23 indeed show that the accuracies are low at the edge 

frequencies and greatest at mid frequencies, supporting our hypothesis. For practical 

implementation, this means that the training frequency range, for this type of unknown 

and dynamic PLC frequency scenario, should be wide enough so that the most probable 
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PLC test frequencies lie somewhere in the middle. This would ensure good classification 

accuracy (or low BER), and hence, efficient communication.  

4.3. Feature-based Vs Featureless Learning 

In Sections 4.1 and 4.2, the results of feature-based and featureless ML/NN/CNN 

were discussed separately. In the present section, these two methods are compared 

directly based on the previous results of NN models from each category, as shown in 

Figure 24. NN is used to compare the two methods because an identical NN (with same 

hyperparameters) was used with feature-based as well as featureless datasets. For 

featureless method, magnitude spectrogram is used as the dataset of choice (i.e., Datasets 

3 and 4) because of its overall best performance as shown by results in Section 4.2. 
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(a) Amplitude analysis 

 

 
(b) Frequency analysis: Case 1- known and static frequency 

 
(c) ) Frequency analysis: Case 3- unknown and dynamic frequency 

Figure 24. Graphs showing test accuracy curves (with 95% confidence interval) of Neural Network 

models fitted with feature dataset and magnitude spectrogram-based featureless datasets. (a) 

Amplitude analysis using feature-based ‘Dataset 1’ and featureless ‘Dataset 3,’ (b) Case 1 frequency 

analysis using feature-based ‘Dataset 2’ and featureless ‘Dataset 4’ and (c) Case 3 frequency analysis using 

‘Dataset 2’ and ‘Dataset 4.’  
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Analyzing the graphs (a) and (b) in Figure 24 reveals that the featureless NN 

model had slightly higher accuracies than feature-based NN model when testing these 

models with a trained parameter. In both these cases, NN models were able to find the 

relevant features, using extracted features for the feature dataset and feature maps for 

featureless dataset. However, the information contained within the relevant feature maps 

is truer to the original raw signal than the lossy extracted features because of less data 

processing steps. Therefore, the featureless NN models had marginally better 

performance than feature-based NN. 

On the other hand, when the models were asked to generalize to an untrained 

parameter, as in Case 3 shown in Figure 24 (c), the feature-based NN models perform 

better overall than featureless NN. This result may be due to the fact that the NN model 

needed to be more complex for the featureless dataset on account of its greater size 

(3x1024 per sample for magnitude spectrogram dataset whereas 1x61 for the feature 

dataset), higher dimensionality (2D for magnitude spectrogram while 1D for feature 

dataset) or the noise within the dataset (higher noise level in magnitude spectrogram 

dataset than the feature dataset). Another probable cause could be that the NN model 

overfitted the featureless dataset. Overfitting might not have been a problem with the 

feature-based dataset because of the limited number of features. However, for the 

featureless dataset, there are a lot more features (in the form of feature maps), and thus, 

the weights are spread out during training, causing overfitting of the training data. This 

overfitting would then result in poor generalization for untrained samples.  
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4.4. Summary of Results 

The main results from Sections 4.1-4.3 are listed below: 

1. Amplitude analysis of the feature-based (Section 4.1.1, Figure 13) and featureless 

datasets (Section 4.2.1, Figure 20) showed that the threshold amplitude for efficient 

PLC is about 250mA. 

2. Frequency analysis of the feature-based (Section 4.1.2.1, Figure 15) and featureless 

datasets (Section 4.2.2.1., Figure 21) showed that frequency range from 930Hz -

1650Hz is optimal for PLC.  

3. Section 4.1.3. showed that RMS energy and amplitude envelope were the most 

impactful features in the feature dataset. The analysis of these features could help in 

identifying the frequency of the PLC signal. 

4. When the frequency of the test PLC signal is new to the ML/NN (i.e., ML/NN did not 

train on signals with the test frequency), the test accuracy depended on the location of 

the test frequency within the training set spectrum. When the test frequency was taken 

in the middle of the training spectrum, the accuracy was higher than when the test 

frequency was taken near the edge of the training set spectrum, as shown by Figure 

18 and Figure 23. 

5. Section 4.3 showed that feature-based dataset models had higher test accuracies when 

generalizing to untrained signal characteristics while featureless datasets had higher 

accuracies when the test samples and training samples had the same PLC frequency.  
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5. CONCLUSIONS AND FUTURE WORKS 

5.1. Summary and Conclusions 

This research study has been defined and executed based on a pre-existing 

collection of ultra-low-frequency PLC (ULF-PLC) data (see Section 3.1.4, Table 1 and 

Appendix B ) which used amplitude-shifting and frequency-shifting to effect a 

communications channel from LV to HV region. Using this dataset, three broad questions 

related to the use of ML-driven algorithms in manipulation of such communication 

signals were explored. First, PLC signal characteristics were evaluated for use in 

nonstandard, ML-driven demodulation and decoding activities to recover transmitted 

information. Typically, signal processing algorithms are used for this purpose, but the 

potential for the use of ML techniques in “blind recognition” of ULF-PLC signals is 

compelling.  Second, methods for pre-processing and formatting complex-valued 

communications signals were explored for use in conventional ML algorithms. ML 

algorithms and common toolkits typically require some effort in preparation of the 

dataset.  Interestingly, conventional approaches are constructed to use only real-valued 

data, whereas communication signals depend directly on manipulation of signal 

characteristics in the complex domain. As a result, “best practices” do not exist for such 

mismatched data and algorithm configurations.  Finally, the efficacy of a small collection 

of supervised ML techniques in decoding and processing the ULF-PLC communication 

data has been evaluated, with performance characteristics typical of ML-driven 

approaches and certain outcomes typical in the evaluation of communication signals. 

Since the domain of interest (i.e., ULF-PLC) is unique and poses challenges which are 

foreign to conventional communication systems as well as ML approaches, all outcomes 
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and learnings are couched in the context of this particular application. A brief overview 

and resulting conclusions of- PLC signal characteristics are described in Section 5.1.1, 

dataset formatting and related issues are described in Section 5.1.2, and finally, outcomes 

of supervised ML algorithms using ULF-PLC data are presented in Section 5.1.3.  

5.1.1. PLC Signal Characteristics 

The dataset available for this study (Appendix B) contained transmitted ULF-PLC 

signals which leveraged conventional baseband amplitude and frequency shifting.  Phase 

shifting was not present in the signals contained in the dataset.  As a result, effective 

discrimination of amplitude and frequency shifting in the ULF-PLC signals are key 

parameters that need to be optimized for accurate decoding of the information contained 

in each signal. As presented the energy or signal-to-noise analysis of Section 4.1.1 

(Figure 13) and Section 4.2.1 (Figure 20), 250mA appears to be a critical threshold 

amplitude for effective transmission of the binary, amplitude shifted ULF-PLC signals 

contained in the experimental dataset. As presented in the frequency analysis of Section 

4.1.2.1 (Figure 15) and Section 4.2.2.1 (Figure 21), the optimal frequency range for low-

frequency, inter-leveled PLC appears to be confined in a distinct passband around 

930Hz-1650Hz. Below this band, the strong odd harmonics of the fundamental power 

signal interfere directly with the PLC signal resulting in very low SNR, while above this 

band, other grid components such as large, series transformers and other elements 

attenuate the signals substantially, causing poor signal propagation from LV to HV 

regions of the distribution grid.  

The threshold amplitude and usable frequency range of ULF-PLC signals are 

dependent on various factors such as the distribution grid architecture (between the PLC 
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signal transmitter and receiver), the power load and temporal noise/artifacts in the 

distribution grid, etc. Therefore, the values of amplitude and frequency range as 

presented in this research may be relatively common but are not universally applicable. 

However, the bandpass nature of the power line channel is indeed characteristic of ULF-

PLC. 

5.1.2. Dataset Characteristics 

One of the primary objectives of this study was to explore how the raw PLC data 

could be used in ML, what classes of algorithms might be more effective, and what types 

of data pre-processing might be most desirable. To that end, we investigated two different 

methods- feature-based and featureless.  

For feature-based methods, three sets of features were extracted from the raw 

ULF-PLC data. The amplitude envelope and RMS energy were extracted from raw time-

domain data, and the spectral centroid was extracted from the transformed frequency-

domain data. As presented in Section 4.1.3, SBS analysis indicated that amplitude 

envelope and RMS energy were the most impactful features. This is logical since these 

features relate directly to the amplitude information of the ULF-PLC signals contained in 

the dataset (Appendix B). In cases where other modulation techniques may be in use 

(e.g., phase modulation), additional features need to be explored to create effective 

feature-based dataset for ML. 

To explore featureless methods, 1D raw time-series dataset, 2D magnitude 

spectrogram dataset and 3D rectangular spectrogram dataset were created from the ULF-

PLC dataset. These three pre-processed dataset formats were then used to train a 

NN/CNN with the aim of classifying the On/Off state information of the transmitted 
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ULF-PLC signals. In this evaluation, the time-series format was the least effective 

because of the dominance of power signal in this domain, as shown in Figure 7. The 

strong “out of band” interference posed by the fundamental power signal essentially 

dominated and confused the training process. By preprocessing the time-domain data 

using a spectral transform, however, additional information can be presented to the 

training process which improves ML performance. Interestingly, the increase in 

dimensionality of the preprocessed data also changes the outcomes of the training 

process.  In particular, as shown in Table 8, Figure 20, Figure 21, and Figure 23, the 

dataset preprocessed into a magnitude spectrogram alone (ignoring phase information) 

performed better than the dataset preprocessed into rectangular (real, complex) format. 

This outcome is logical given the constraints of the ULF-PLC dataset, which does not 

contain information which has been phase modulated.  Rather, the magnitude information 

present in the magnitude spectrogram relate directly to the amplitudes of the PLC signal 

and contain all of the relevant transmitted data, thereby retaining the On/Off state 

information more efficiently than the rectangular spectrogram. If more sophisticated 

frequency and/or phase shift methods are used for modulating data into the ULF-PLC 

channel, then the use of rectangular spectrogram formats is likely to outperform 

magnitude spectrogram formats, as concluded in our previous research [38]. Therefore, 

there are merits to all of these featureless datasets, in PLC application and beyond.  

The outcomes from feature-based and featureless datasets were compared directly 

using an identical NN. The results of this comparison are discussed in Section 4.3 and 

shown in Figure 24. Interestingly, the featureless magnitude spectrogram models had 

higher test accuracy than the feature-based models when the test data had the same PLC 
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signal parameter (amplitude or frequency) as the training data. However, when the test 

data had completely different signal parameters (as described in Section 4.1.2.3 and 

Section 4.2.2.3), the feature-based models were more consistent in providing high 

classification accuracies. As a result, we conclude that NN models overfit with the larger 

featureless dataset, causing it to generalize poorly on the test data with untrained 

parameters. Therefore, feature-based methods may be more appropriate when 

generalization is desired. 

In addition to testing accuracy, comparison of feature-based and featureless 

methods using metrics such as the complexity of the ML models, time of processing, 

scalability, etc. may be valuable outcomes. In our tests using the ULF-PLC dataset, 

feature-based models had similar performance to featureless models despite employing 

simpler ML. The use of simpler ML models along with smaller dataset size of the 

feature-based method resulted in a requirement for substantially less computer processing 

power and training time, as noted anecdotally. However, the feature-dataset also requires 

data preprocessing, which requires time and knowledge of the domain, and which was 

not included in our anecdotal comparison of the methods. In contrast, although 

featureless methods require more complex ML/NN models, they are also easier to scale 

to varying architectures and applications and require less domain-specific knowledge to 

optimize. Therefore, feature-based methods are desirable when training time and 

computer processing power are a consideration, while featureless methods are attractive 

when scaling and ease of deployment are the main concerns.   
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5.1.3. ML/NN Algorithm Characteristics 

To evaluate the ULF-PLC dataset, we utilized three supervised ML algorithms: 

Logistic Regression (LR), Support Vector Machine (SVM) and Decision Tree (TREE). 

We also used Neural Network (NN) and Convolutional Neural Network (CNN) models. 

The comparison between LR, SVM, TREE and NN for training using a feature-dataset is 

presented in in Section 4.1. These outcomes indicate that the classification accuracies of 

these models were very similar, with SVM slightly better in most cases due to its non-

linear capability. However, this also meant that SVM models needed much more 

stringent regularization to avoid overfitting, which increases implementation complexity. 

In contrast, NN and CNN may be more suitable for featureless datasets because of their 

relatively more complex architectures and native ability to process multi-dimensional 

datasets. For the same reason, NN and CNN approaches are also more flexible and 

scalable.   

5.2. Future Works 

For this study, two sets of ULF-PLC data were available as described in Section 

3.1.4 and Table 1. To validate and strengthen the conclusions of this thesis, additional 

ULF-PLC data are necessary for training and testing, using multiple variations of 

modulation and transmitted power. New data should have the same amplitude and 

frequency characteristic as the existing data as well as wider ranges of these parameters, 

and including other conventional modulation techniques (e.g., phase modulation). 

Further, the labels for the data used in this study were extracted using conventional DSP 

techniques. In the future, these data labels can be recorded while modulating the 

information and transmitting the signals, which would make the labels more accurate.  
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The complexity of the transmitted PLC signal can be increased too. This can be 

done by using various conventional modulation schemes like Amplitude Shift Keying 

(ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK) and their more 

sophisticated variants (e.g., M-ary PSK, M-ary ASK, Quadrature Amplitude Modulation 

(QAM), and so on). Additionally, multicarrier transmission techniques, i.e., passing PLC 

signals in multiple frequency bands via transform-based methods such as Orthogonal 

Frequency-Division Multiplexing (OFDM) and variants, can increase the bit rate of the 

ULF-PLC transmission, which could have major effect in the scope of its application. 

The ML/NN-based bit classification techniques which are presented in this thesis can also 

be applied to these more complex ULF-PLC modulation techniques but will require 

additional evaluation and classification of efficiency and data pre-processing approaches.  

At the receiver, the demodulation/decoding and processing steps can be further 

streamlined and optimized. Rectangular spectrograms need very little pre-processing and 

can be used with conventional modulation schemes such as ASK, FSK and PSK. 

Therefore, the use of rectangular spectrogram data may serve as a good candidate for 

streamlined and universal application of ULF-PLC. However, such an approach would 

also need more complex ML techniques.   

At the transmitter, the approach to modulating ULF-PLC signals depends on test 

equipment including a lab-grade current source (Ametek CS3000) [26]. Miniaturization 

of this bulky device is a major challenge that needs to be resolved to be able to employ 

the proposed inter-level ULF-PLC in real-world applications. Further, an automated 

approach to probing the power line channel spectrum is critical to find the optimal 

frequency bands for subsequent transmission (e.g., via dynamic spectral allocation [55], 
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or DySpan [56] techniques). This would ensure that the transmitted ULF-PLC signals are 

exposed to the least amount of interference from the power signal harmonics, the latent 

grid noise, and the coherent interference due to harmonically related images of the ULF-

PLC signals themselves.   
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APPENDIX SECTION 

 

Appendix A 

GitHub page 

The data files and python scripts used for in this thesis can be found at: 

https://github.com/kushal-thapa/ML_for_PLC_thesis  

 

Appendix B 

Features of the raw ULF-PLC data 

Number of raw PLC files: 30  

File type: .wav 

Length of each file: 105 seconds (trimmed to 100 seconds during processing) 

PLC signal amplitude: 10mA, 20mA, 50mA, 100mA, 250mA, 500mA and 1A 

PLC frequency: 690Hz-2010Hz with 60Hz spacings 

Number of channels: 3  

Sampling rate: 8000 samples per second 

 

Appendix C 

Spectrogram parameters 

Frame size = 500 samples 

Frame overlap = 250 samples 

FFT size =1024 

Window = Hanning  

 

https://github.com/kushal-thapa/ML_for_PLC_thesis
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Appendix D 

 
Appendix Figure 1. Magnitude spectrogram of the combined files of ‘Raw Set 1.’ The red line points to 

1170Hz, the ULF-PLC band for this set of files. The zoomed version of this band is shown in the black 

box. The vertical dotted white lines separate the eight amplitude sections from within this combined 

spectrogram.  

 

 
Appendix Figure 2. Subplots of the filtered time-series signals of the eight files of ‘Raw Set 1.’ 
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Appendix E 

 
Appendix Figure 3. Magnitude spectrogram of the combined files of ‘Raw Set 2.’ The vertical dotted 

white lines separate the twenty-three different frequency sections from within this combined spectrogram.  

 

 
Appendix Figure 4. Subplots of the filtered time-series signals of the twenty-three files of ‘Raw Set 2.’ 
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Appendix F 

Train and test accuracies:  

 
Appendix Figure 5. Subplots of train and test accuracies of LR, SVM, TREE and NN for Dataset 1. 

 

 
Appendix Figure 6. Subplots of train and test accuracies of LR, SVM, TREE and NN for Dataset 2: 

Case 1. 
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Appendix Figure 7. Subplots of train and test accuracies of LR, SVM, TREE and NN for Dataset 2: 

Case 3. 

 

 
Appendix Figure 8. Subplots of train and test accuracies of NN models for magnitude spectrogram 

(Dataset 3), rectangular spectrogram (Dataset 5) and time-series (Dataset 7) dataset. 
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Appendix Figure 9. Subplots of train and test accuracies of NN models for magnitude spectrogram 

(Dataset 4), rectangular spectrogram (Dataset 6) and time-series (Dataset 6) dataset: Case 1. 

 

 
Appendix Figure 10. Subplots of train and test accuracies of NN models for magnitude spectrogram 

(Dataset 4), rectangular spectrogram (Dataset 6) and time-series (Dataset 8) dataset: Case 3. 
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