Chapter 04
Teaching Mobile App Development in
a Mass Communication Program

by

Cindy Royal, Ph.D.
For the past two decades, I have taught
web design and development courses to
journalism and mass communication
students. These courses began with
covering Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS)
and web animations and have now
progressed to include responsive design
techniques, front-end frameworks, and
customizing content management
systems. In 2014, I began teaching a
more advanced web development
course focused on interactive coding
and data visualization. This course
introduced JavaScript and charting
libraries and presented students with
techniques supporting interaction and
user-experience design.

For years, | had avoided moving into
the mobile application space. I had
invested a lot of time learning web
technologies. I believed in the open
Internet and the ability to publish online
without the constraint of distribution
through application stores. I thought
that the mobile application development
environment introduced a level of
complexity that was beyond the scope of
our curriculum.

Eventually, I came around to the
realization that it was time to introduce
students to the ways in which mobile
applications are made. The mobile
application environment began to grow
with the introduction of smartphones in
the mid-2000s. In January 2018, 77% of
Americans used a smartphone, but for
young people aged 18-29, the
percentage was 94% [3]. The total
number of mobile application
downloads in 2017 exceeded 178 billion
and is expected to grow by 45% in 2020.
[9]. The two most popular application
stores, Google Play and the Apple App
Store, housed 3.8 million and 2 million
apps respectively in 2018 [8]. So, it

http://www.pewinternet.org/fact-sheet/mobile/
https://www.statista.com/statistics/266488/forecast-of-mobile-app-downloads/
https://www.statista.com/chart/12455/number-of-apps-available-in-leading-app-stores/

became clear that mobile development
had become an important part of any
organization’s communication strategy
and needed a presence in our
curriculum.

Mobile applications use different
technologies than websites. These
features include enhanced processing
power and capabilities, including an
accelerometer for detecting movement
and global positioning systems that
allow for location-based services [5],
which are more difficult to execute on
mobile devices with applications made
for browser-based performance.

Two platforms have emerged as the
leaders in the mobile environment: iOS
and Android. The iOS platform is
specific to the iPhone hardware, while
the Android platform, developed by
Google, works on several different
devices made by Samsung, LG, and
other manufacturers. The market for
smartphones is competitive, with Apple
having 44.6% of smartphone
subscribers, Samsung at 29.7%, and LG
at 9.6% on the Android platform.

https://www.janondrus.com/pubs/mobile-application-market-a-developers-perspective

Overall, Android has the most users of

their smartphone operating system at
54.3% with Apple at 44.6% [12].

Mobile application development
languages are becoming an in-demand
competency [17]; [11], but few mass
communication programs offer courses
in these areas. Some programs have
experimented with magazine-style
applications using popular software
programs like Adobe InDesign or
InDesign-based plugins [4]. In 2013, the
University of Texas School of
Journalism and Mass Communication
began teaching an app development
course with journalism and computer
science majors working collaboratively
[6]. Even computer science departments
have been slow to provide specific
instruction on mobile application
development, focusing instead on
languages that support enterprise
systems. Those who move into
application development are often self-
taught through online resources or
enroll in programs in for-profit code
camps, like those offered by General

Assembly [1]; [7]; [10].

http://www.comscore.com/Insights/Rankings
https://www.businessinsider.com/14-most-popular-programming-languages-stack-overflow-developer-survey-2018-4
https://medium.freecodecamp.org/best-programming-languages-to-learn-in-2018-ultimate-guide-bfc93e615b35
https://aejmcmagazine.arizona.edu/Journal/Summer2011/Fletcher.pdf
https://www.janondrus.com/pubs/mobile-application-market-a-developers-perspective
https://www.justinmind.com/blog/learn-mobile-app-development-with-these-10-online-courses/
https://journalism.utexas.edu/news/journalism-computer-science-collaborate-mobile-apps-class
https://www.lynda.com/iOS-tutorials/Programming-Non-Programmers-iOS-11-Swift/642473-2.html

This chapter provides the process by
which I developed and taught the
Mobile Media Development course in
the School of Journalism and Mass
Communication at Texas State
University. We had introduced a new
degree in Digital Media Innovation in
2016, so the program was supportive of
including emerging topics in
curriculum.

Course Development Strategies

I chose to focus on the iOS and Apple development
environment because [knew most of our students
used iPhones and our labs were equipped with iMac
computers. [set about learning the Xcode
interactive development environment (IDE) and
Swift programming language. Apple switched to
Swift from Objective-C in 2014. Swift was
introduced as a simpler, more powerful language to
support the growing mobile development
environment. [felt this was a good introductory
platform for a mobile class.

[began my own training by reviewing Lynda.com
courses starting with Programming for Non-
Programmers with iOS and Swift [10] and using the
free e-book from Apple on App Development with
Swift [2]. While this was a new programming
environment for me, [had experience with logic-
based coding using JavaScript and Python, as well as
experience with object-based programming
environments when I had previously worked with
Adobe Flash. However, for those new to
programming, these tutorials start at a beginner
level. It may be helpful, but not required, to have
worked in Web development languages including
HTML, CSS, and JavaScript. I have created a site at
CodeActually.com that provides basic instruction
and code samples on these topics. Seeking out other
resources on sites like Codecademy.com can provide
an introduction to programming terminology and
processes that one might find helpful to understand
before embarking on mobile application training.

In addition to the above resources, I spent a good
deal of time searching the web for tutorials and code
samples that would help me develop customized
exercises that would provide meaningful context
and support for communication students [13]. It
was not too difficult to adapt to this new
environment, but it did take a significant amount of
time over two semesters to learn these skills and
prepare lessons and exercises.

The objectives of the course were developed for students to be

able to:

® explain the unique characteristics of the mobile
communication environment

https://www.lynda.com/iOS-tutorials/Programming-Non-Programmers-iOS-11-Swift/642473-2.html
https://itunes.apple.com/us/book/app-development-with-swift/id1219117996?mt=11
https://codeactually.com/
https://www.codecademy.com/
https://knightcenter.utexas.edu/books/GlobalJournalism.pdf

® evaluate the features and functions of an
effective mobile application

® construct content and visuals for mobile
distribution

® develop mobile applications that demonstrate
the use of effective content, design, and
functionality

The overall strategy for all my coding courses is to
start with basic concepts and progressively build
throughout the semester. Exercises take students
through code samples and step-by-step examples of
the types of features they will be required to
demonstrate in their projects. Ideally, students
watch tutorials before class, which we review in
class and practice. [also spend a good deal of time
explaining processes and features so students
comprehend why and how things work and become
comfortable with executing their own ideas and
solving problems.

Course Segments, Exercises and Assignments

The eleven students taking the Mobile Media
Development course in Spring 2018 had previously
taken a Web Design course as a prerequisite, so
while they were new to the mobile application
environment, they had some experience making

responsive websites. The Mobile course consists of
three main production segments, each lasting about
four weeks, using step-by-step coding tutorials in
class and culminating with a project on a topic of
each student’s choosing to demonstrate the specific
concepts covered.

The course starts with modules on the mobile app
development environment and the history of
mobile. This includes a discussion of phones and
mobile technologies, along with domestic and global
usage statistics and demographics for the mobile
environment. We discuss some of the categories of
mobile applications, including social media, news,
and information, mapping, messaging and email,
weather, productivity, transportation, calendars and
events, music and entertainment, ecommerce, and
the emerging category of augmented reality.
Subsequent modules deal with the features of
devices that are unique to mobile development,
including touchscreen gestures that provide
different input methods for users - tapping, swiping,
pinching and dragging.

During these modules, online discussions have
students critique their favorite applications' relevant
features and functionality and their own interaction
with applications throughout the day. The lessons
and discussion posts provide a foundation upon
which to build the production elements of the
course to support judgment and critical thinking.

Advanced Responsive Design

The first production segment of the course focuses
on more advanced usage of responsive design in web
applications to be served via browser on a mobile
device. This allows the course to build upon
concepts students learned in the web design course
and introduce decision making on how to select
which type of application development environment
they should use. Conceptually, we discuss mobile
development strategies, including the pros and cons
of making responsive web applications versus
mobile applications.

A series of exercises helps students apply techniques
for percentage widths, media query breakpoints, and
display options using CSS and creating responsive
navigation. Finally, a brief introduction to HTML
Forms, JavaScript and jQuery is provided, so
students can implement simple interactivity on their
sites. This topic also begins to broach conditional
programming concepts, including if-statements and
loops that will also be revisited in the mobile
application segments.

The project that accompanies this segment is to
create a mobile web app that demonstrates
interactivity through form elements and
manipulation of the Document Objective Model
(DOM). Students can develop a calculator, a short
quiz or other interactive project, as long as a user
can interact with the page and be presented a result.
It must be designed responsively and work well on a
mobile browser.

Basic iPhone Application Development

The second segment of the course begins to
introduce the iOS development environment. It
starts with a general introduction to Swift
programming concepts; use of variables and data
types; concatenation; properties and methods and
logical operations, if-statements; functions; loops;
arrays; and objects (See Figure 1). Since some of
these concepts were introduced in the first segment
related to JavaScript, this builds on prior knowledge
and applies it to the new setting.

Programming
Terminology

e Variable - A symbol or name that
stands for a value.

e Data Type - Classification of a
particular type of information —
strings, numbers, etc.

e Concatenation - The act of linking
together two or more objects.

e Property - A characteristic of an
object. For example, the length
property of a string indicates the
number of characters.

e Method - A procedure that is
executed when an object receives a
message.

e If Statement - A programming
decision based on meeting a
condition or not.

e Function - A section of a program
that performs a specific task.

e Loop - A programming segment
that repeats until a particular
condition is met.

e Array - A simple list of elements.

e Object - A list of key-value pairs.

Figure 1: Programming Terminology

Playing In the Xcode Playground

To gain practice with Swift, Xcode provides a
Playground to try out code and learn language
concepts. In Xcode, choose File:New:Playground,
then choose the Blank template and Save. Students
can run each line of code below individually, and the
Playground will provide a response to the right of
the code and console result in the bottom window

(Figure 2).

eoce Ready | Today at 12:07 PM [3) E o ellooo
B < & MyPlayground

import UIKit

var greeting:String = "Hello World" Hello World
print(greeting) Hello World\n

var name:String = "Cindy" Cindy'
var message:String = "Hello, \(name)" Hello, Cindy’
print(message) Hello, Cindy\n

oEEe 06

9

10 var apples:Int = 5

11 var oranges:Int = 2

12 var total:Int = apples + oranges

13 var fruit:String = "Total Fruit: " + String(total) Total Fruit: 7

® print(fruit) Total Fruit: 7\n

CIOCIOL)

= >
Hello World

Hello, Cindy
Total Fruit: 7

Figure 2: Xcode Playground

Students are instructed to play with simple variable,
math and concatenation concepts to become familiar
with their execution in Swift. Swift code can also be
run in the online Swift Playground at
http://online.swiftplayground.run/.

Xcode Interactive Development Environment

http://online.swiftplayground.run/

Next, the Xcode interactive development
environment (IDE) is introduced. It provides a
combination of visual and coding windows and
libraries of components. The first exercises
demonstrate how to start a new project and use the
sections of the interface. The Xcode interface can
seem daunting at first—with multiple ways to show
and hide windows, but once each section’s purpose
is described, students grow comfortable with how
they will navigate it. The main sections we use are
the Navigator to access various files, the Editor
which has both coding and visual windows, and a
Utility pane that changes depending on which
element is selected. The Library pane provides
access to resources provided by Xcode for creating
controllers, buttons, and other features (In XCode
10, the Library is now a floating panel accessed by an
icon on the top-right of the screen when the
Storyboard is selected). The Toolbar allows the
developer to run the application and see it in the
Simulator. Errors can be addressed in the debugging
area. See Figure 3 for an illustration of the Xcode 10
Interface.

= e B Toolbar .

=3

Figure 3: Xcode Interface sections

An Xcode project includes the .xcodeproj file and a
folder including several supporting files. The
Main.storyboard (visual interface) and the
ViewController.swift (code) are the main files
accessed. An Assets.xcassets folder is used to upload
and store image and other resources used in the
application.

When starting a new project, it is common to begin
by using a Single View App template, although there
are several other templates with which to begin a
project. After the user provides a project name and
other identifying information (Figure 4), the project
interface opens to a screen of options. To begin
coding, one must use the Navigator area on the left
to select a file.

Choose options for your new project:

Product Name: myFirstApp|
Team: Add account...
Organization Name: Cindy Royal
Organization Identifier: com.cindyroyal
Bundle Identifier: com.cindyroyal.myFirstApp
Language: Swift é

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous Next

Figure 4: Beginning an Xcode Project.

The default elements of the code interface provide the following

statements and functions:

® import UIKit — imports the library of Ul
elements.

e class viewController — area of the code where
most statements are made.

¢ func viewDidLoad method - statements in this
function run when application loads.

The Storyboard and ViewController are accessed
simultaneously in the Editor by opening one, then
using Option-click to open the other. This is
necessary to connect code to elements in the visual
interface. Xcode provides a Simulator that you run
from the Toolbar when you are ready to test your
applications.

This segment of the course focuses on finding
elements in the Xcode Library and applying outlets
and actions. The basic operation within Xcode is to
identify an element you want to use in the Library
pane and drag it into the Storyboard window. This
can be a Label or other Ul element — Text Fields,
Buttons, Switches, Sliders or more advanced
features - depending on your desired usage. Once an
item is selected in the Storyboard, by right-clicking
(or ctrl-clicking), you can drag from the element
into the viewController class (or other function) in
the code window to begin coding. Dialog boxes
appear to provide options depending on your
desired functionality. This is the fundamental
workflow in defining elements in the Xcode
environment (See code in Figure 5).

Creating Outlets
and Actions with

Xcode and Swift

An element can be turned into an Outlet or
created as an Action. This is an important
process to emphasize and practice with
students. Turning a Label into an Outlet
allows it to receive information
programmatically. An Action on an element
creates a function that gets executed on an
event associated with the element.

This code applied to a Label element gives it
a variable name that can be
programmatically changed through an
Action. By dragging from the Label to the
code, a dialog box assists in providing the
correct syntax. (In each case below, the IB
stands for Interface Builder and is the
required syntax in Swift to begin these
statements.)

@IBOutlet weak var mylLabel: UILabel!

This code creates an Outlet from a Text
Field and gives it a variable name that can be
referenced later in the program. In the same
manner as the Label, by dragging from a
Text Field to the code, a dialog box assists in
providing the correct syntax.

@IBOutlet weak var myName: UITextField!

To create an Action, a Button that is
dragged from the Library to the Storyboard
can be used to assign a function that changes
the value of a Label Outlet, as in welcoming
a user to a site after completing a login form.
In the same manner as above, by dragging

from the Button on the Storyboard into the
code, a dialog box assists with creating the
correct syntax for the Action.

@IBAction func myButton(_ sender: Any)
{
let name = myName.text!
myLabel.text = "Hello \(name)"

}

When an element in the Storyboard has a
connection to the code, it is indicated by a
filled circle instead of the line number.
Connections can be edited in the Utility area
with the Connections Inspector (small icon
with arrow pointing to right).

The above code demonstrates a simple
workflow for changing the value of a Label
via user input and Button event. Exercises
progressively work through several
examples of the above process to get
students familiar with manipulating Outlets
and Actions, then introduce other input
methods that include Switches, Sliders, and
Picker Views.

Figure 5: Creating Outlets and Actions with Swift and Xcode

Subsequent exercises in this segment show options
for including additional View Controllers (to
function as additional pages or scenes in the app)
and embedding a Navigation Controller to navigate
through the application. While there are many more
complex development and design techniques
associated with mobile application development,

these are the most basic concepts a student must
grasp and will use throughout the rest of the course.

The project for this segment of the class is to create
a simple quiz application. Students are to use Xcode
and Swift to demonstrate interactivity via the use of
Labels, Text Fields, Buttons, Switches or Sliders, and
to develop an interface using Image Views, multiple
View Controllers, and appropriate navigation. One
example is this budgeting app created by a student in
the class (Figure 6).

Welcome to the Budget
Calculator App!

o) = -

200

Start Budgeting

YEAHSIKNOW-..

]
A L

-

= -
=-THAT- THE GUAG[)WI‘R

Figure 6: Budgeting App Developed by Danielle Molinar in
Mobile Media Design course.

Advanced Application Development

The third segment of the course deals with advanced
application functionality. At this stage, students have
become familiar with the process for creating
Outlets and Actions and have gained experience
with some basic input methods and functionality.
An exercise (Figure 7) is used to demonstrate simple
math operations and functions in a game
application.

Other exercises in the course show students how to
pass data between multiple View Controllers and
how to implement additional user input methods.
Exercises provide examples for how to select images
from the camera roll, implement maps, add web
links to an application and use data in an application.

Demonstrating Math
Operations and
Functions

The game exercise demonstrates how to
create two buttons, one that increments a
score by one point and the other that
increments it by five points. The functions
myAlien and myPredator are attached to the
buttons. The code below demonstrates how
to create the function didScore that
increments the score with points passed to it
from the button functions.

func didScore(points:Int){
score = score + points
myScore.text = "Score: \(score)”

}

@IBAction func myAlien(_ sender: Any) {
didScore(points:1)

}

@IBAction func myPredator(_ sender:

Any) A
didScore(points:5)

}

Once this functionality is established,
students discuss ways that the game can be
made more challenging. One way is to create
the code that resets the score to 0. The
exercise goes through several different ways
to create a “chars” variable to be used in a
modulo function to reset the score to O if the
score is divisible by a number. A random
number is generated in a “chars” variable
(the code below creates a random number
between 2-12), and the didScore function is
modified with an if statement to reset the
score to zero when the score is divided
evenly (without a remainder) by the
number.

var chars:Int =

Int(arc4random_uniform(10) + 2)

func didScore(points:Int){
score = score + points
if(score % chars == 0) {

score=0

myScore.text = "Score: \(score)”

}

The interface for this project is a simple
layout of two buttons and a label to hold the
score. The focus is on functionality. The
goal of the game is to get as many points as
possible without resetting the score, so the
player must figure out the pattern. A timer
function is later added to the game. The full
exercise can be found at
mobile.cindyroyal.net.

This simple math exercise provides the
foundation for students to be able to add
more complex formulas to their projects.
Giving students step-by-step instructions,
this method allows them to think through
more complex processes using proper
coding standards to later apply on their own.

Figure 7: Game Application Code

A module on Layout features in Xcode is

introduced. These are Constraint and Alignment

features that allow for the interface to be flexible to

work on devices of various sizes. The Auto Layout

Toolbar is found in the bottom right corner of the

Storyboard window. The buttons are used to update

frames, stack and embed elements, add alignment

constraints, and resolve layout conflicts (see Figure

8). Although students in this course are primarily

focused on creating functioning code, attention to

these design implications is recommended.

Figure 8: Xcode Auto Layout Toolbar and Add New

Constraints Interface

https://mobile.cindyroyal.net/

The final modules of the course demonstrate how to
test a project on a device and the process of
submitting an application to Apple’s App Store for
distribution.

We also discuss using design-thinking processes and
prototyping tools, before spending time coding.
While the Xcode interface is relatively simple, it is
helpful to have a general idea of how one wants to
design an application, either by using pencil and
paper or a prototyping software program, before
beginning to code. Other concepts we discuss in the
course include the programming repository GitHub.
Students use GitHub.com to upload their project
files so they can be graded. GitHub is a type of social
network for developers that allows for code sharing
and collaboration. Students are also introduced to
the agile development methodology, so they are
familiar with iteration and collaboration processes
in the software development industry [16].

Student Work

The final project in the course is a demonstration of
all the app development features to which the
student has been introduced throughout the
semester. The project is designed to allow students
to exercise creativity in selecting their topic and
functionality, and challenges them to implement

https://github.com/
https://www.infoworld.com/article/3237508/agile-development/what-is-agile-methodology-modern-software-development-explained.html

advanced features. One student developed an

application that asked the user to unscramble

sections of a photo by swapping pieces. Another

student created a timed math quiz with three levels

of difficulty (Figure 9).

@ Game T 1:43 PM 20 4 |carrier = 1:46 PM

{ Back Puzzle 3 { Back

Difficulty: HARD

Begin

Submit

Timer

Reset

Figure 9: Screen captures from two final projects: an image-

swapping app by Danielle Molinar and a timed-math quiz by

Sydney Dorsey.

Future Course Considerations

Different students learn at different rates and
through different means. These are difficult
concepts for all to grasp, and even the best students
are still app development novices at the end of the
course. Exercises are developed to allow all students
to demonstrate basic functionality in their projects
and work at their own speed, but reward students
who put in extra effort and creativity in bringing
their application ideas to reality.

Throughout the course, I emphasize problem-
solving and troubleshooting. It is important for
students in any coding course to understand that the
practice of programming is one in which solving
problems is the norm and that programs often don’t
work on first execution. I emphasize confidence
building through small successes leading to more
advanced logic and functionality and encourage
students to have fun with the creative process in
which they are participating.

As I began teaching the Mobile Media Development
course again in 2019, [have incorporated a few
modifications. [reduced the responsive web
application segment of the course to a shorter
exercise and started more quickly with mobile
application development with Xcode and Swift. I felt
that these are complex topics that could use
additional time and that a more advanced course in
responsive design and user experience would better
suit those topics.

With the additional time, I extended the Layout and
Design segment to provide a stronger appreciation
of how to implement the Alignment and Constraint
features in Xcode. The final course segments now

include cloud database integration with Google’s
Firebase and descriptions of the Android
development environment and cross-platform
development with frameworks like the JavaScript-
based React Native. In the future, I'd like to
experiment with the Augmented Reality features
provided in Apple’s ARKit components.

As the course evolves, I'd like to incorporate more
attention to conceptual issues to include modules on
information security and user privacy concerns. The
applications created in this course do not share user
data. However, addressing these topics will provide
students with critical thinking and judgment skills to
apply to future projects. My course site hosts my
lessons and tutorials, and I plan to continue to
improve the presentation of code samples on the site
(mobile.cindyroyal.net).

With the high percentage of female students in
journalism and mass communication programs, by
teaching coding, we have a unique opportunity to
introduce technology skills to those under-
represented in computer science and other
technology-based majors [14], [15] . As in other
coding courses in mass communication programes,
the goal is to not necessarily create fully formed
professional developers. However, the insight into
how mobile applications are made provides students
with a strong perspective to bring to their careers as
they make recommendations and work on
collaborations that are likely to include mobile
strategies. Learning coding demystifies the
technology development process, builds problem-
solving skills and confidence and can be a lot of fun!
These skills will make students more desirable for a
range of careers, and their presence in mass

http://mobile.cindyroyal.net/
http://www.niemanlab.org/2012/10/cindy-royal-journalism-schools-need-to-get-better-at-teaching-tech-where-the-girls-are/
http://mediashift.org/2017/12/digital-media-degree-attracting-female-students/

communication curriculum will continue to be in
demand.

Chapter 4 Citations

To cite this article:

MLA: Royal, Cindy. “Teaching Mobile App Development in
a Mass Communication Program.” Coding Pedagogy, edited
by Jeremy Sarachan, 2019, ch. 4, http://codingpedagogy.net.
Accessed 1 Apr. 2020. [update access date]

APA: Royal, C. (2019). “Teaching Mobile App Development
in a Mass Communication Program.” In J. Sarachan (Ed.),
Coding Pedagogy, ch. 4. Retrieved from
http://codingpedagogy.net.

Chicago: Royal, Cindy, “Teaching Mobile App Development
in a Mass Communication Program," in Coding Pedagogy,
ed. Jeremy Sarachan, ch. 4, Coding Pedagogy, 2019.
http://codingpedagogy.net.

“10 Best Online Courses for Learning Mobile App
Development” (2018). Justinmind.
https://www.justinmind.com/blog/learn-
mobile-app-development-with-these-10-
online-courses/.

https://www.justinmind.com/blog/learn-mobile-app-development-with-these-10-online-courses/

“App Development with Swift by Apple Education
on Apple Books.” Apple Books.
https://itunes.apple.com/us/book/app-
development-with-swift/id1219117996?
mt=11.

"Demographics of Mobile Device Ownership and
Adoption in the United States" (5 Feb. 2018).
Pew Research Center.
http://www.pewinternet.org/fact-
sheet/mobile/.

Fletcher, Carol (2011). "Going Mobile with Student
Magazines." Journal of Magazine & New Media
Research, 12(2), pp. 1-9.
https://aejmcmagazine.arizona.edu/
Journal/Summer2011/Fletcher.pdf

Holzer, Adrian, and Jan Ondrus (Feb. 2011). “Mobile
Application Market: A Developer’s
Perspective.” Telematics and Informatics,

28(1), pp. 22-31. ScienceDirect,
https://www.janondrus.com/pubs/mobile-
application-market-a-developers-perspective.

“Journalism, Computer Science Collaborate in
Mobile Apps Class” (22 Sept. 2015). School of
Journalism, Moody College.
https://journalism.utexas.edu/news/journalis
m-computer-science-collaborate-mobile-apps-
class.

https://itunes.apple.com/us/book/app-development-with-swift/id1219117996?mt=11
http://www.pewinternet.org/fact-sheet/mobile/
https://aejmcmagazine.arizona.edu/Journal/Summer2011/Fletcher.pdf
https://www.janondrus.com/pubs/mobile-application-market-a-developers-perspective
https://journalism.utexas.edu/news/journalism-computer-science-collaborate-mobile-apps-class

Liu, Trista (11 Feb. 2018). “10 Best APP
Development Courses for Beginners and Get a
Job.” Medium.
https://medium.com/@tristaljing/10-best-app-
development-courses-for-beginners-and-get-a-
job-d84dbf34b101.

Loesche, Dyfed (2018). “The Biggest App Stores.”
Statista.
https://www.statista.com/chart/12455/numbe
r-of-apps-available-in-leading-app-stores/.

"Number of Mobile App Downloads Worldwide in
2017, 2018 and 2022" (2018). Statista.
https://www.statista.com/statistics/266488/for
ecast-of-mobile-app-downloads/.

Perkins, Todd. “Learn Mobile App Development.”
Lynda.Com. https://www.lynda.com/iOS-
tutorials/Programming-Non-Programmers-
i0S-11-Swift/642473-2.html.

Petkov, Alexander (16 Jan. 2018). “Here Are the Best
Programming Languages to Learn in 2018.”
FreeCodeCamp.Org.
https://medium.freecodecamp.org/best-
programming-languages-to-learn-in-2018-
ultimate-guide-bfc93e615b35.

https://medium.com/@tristaljing/10-best-app-development-courses-for-beginners-and-get-a-job-d84dbf34b101
https://www.statista.com/chart/12455/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/266488/forecast-of-mobile-app-downloads/
https://www.lynda.com/iOS-tutorials/Programming-Non-Programmers-iOS-11-Swift/642473-2.html
https://medium.freecodecamp.org/best-programming-languages-to-learn-in-2018-ultimate-guide-bfc93e615b35

“Rankings" (June 2018). Comscore, Inc..
http://www.comscore.com/Insights/Rankings.

Royal, Cindy (2017). "Coding the Curriculum:
Journalism Education for the Digital Age."
Global Journalism Education in the 21st
Century: Challenges & Innovations. Knight
Center for Journalism in the Americas.
https://knightcenter.utexas.edu/
books/GlobalJournalism.pdf.

Royal, Cindy (2012). "Journalism Schools Need to
Get Better at Teaching Tech Where the Girls
Are. Nieman Journalism Lab."
http://www.niemanlab.org/2012/10/cindy-
royal-journalism-schools-need-to-get-better-
at-teaching-tech-where-the-girls-are/.

Royal, Cindy (Dec. 2017). "Why Texas State’s
Digital Media Degree Is Attracting Female
Students." Mediashift.
http://mediashift.org/2017/12/digital-media-
degree-attracting-female-students/.

Sacolick, Issac (Mar. 2018). “What Is Agile
Methodology? Modern Software Development
Explained | InfoWorld.” Infoworld.
https://www.infoworld.com/article/3237508/
agile-development/what-is-agile-
methodology-modern-software-development-
explained.html.

http://www.comscore.com/Insights/Rankings
https://knightcenter.utexas.edu/books/GlobalJournalism.pdf
http://www.niemanlab.org/2012/10/cindy-royal-journalism-schools-need-to-get-better-at-teaching-tech-where-the-girls-are/
http://mediashift.org/2017/12/digital-media-degree-attracting-female-students/
https://www.infoworld.com/article/3237508/agile-development/what-is-agile-methodology-modern-software-development-explained.html

Sandler, Rachel (20 Apr. 2018). "14 Most Popular
Programming Languages According to Stack
Overflow Study." Business Insider.
https://www.businessinsider.com/14-most-
popular-programming-languages-stack-
overflow-developer-survey-2018-4.

https://www.businessinsider.com/14-most-popular-programming-languages-stack-overflow-developer-survey-2018-4

