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ON THE AHARONOV-CASHER FORMULA FOR DIFFERENT
SELF-ADJOINT EXTENSIONS OF THE PAULI OPERATOR

WITH SINGULAR MAGNETIC FIELD

MIKAEL PERSSON

Abstract. Two different self-adjoint Pauli extensions describing a spin-1/2
two-dimensional quantum system with singular magnetic field are studied. An

Aharonov-Casher type formula is proved for the maximal Pauli extension and

the possibility of approximation of the two different self-adjoint extensions by
operators with regular magnetic fields is investigated.

1. Introduction

Two-dimensional spin-1/2 quantum systems involving magnetic fields are de-
scribed by the self-adjoint Pauli operator. One interesting question about such
systems is the appearance of zero modes (eigenfunctions with eigenvalue zero).
Aharonov and Casher proved in [3] that if the magnetic field is bounded and com-
pactly supported, then zero modes can arise, and the number of zero modes is simply
connected to the total flux of the magnetic field. Since then, Aharonov-Casher type
formulas have been proved for more and more singular magnetic fields in different
settings, see [6, 10, 14, 15]. Recently they were proved for measure-valued magnetic
fields in [8] by Erdős and Vougalter.

We are interested in the Pauli operator when the magnetic field consists of a
regular part with compact support and a singular part with a finite number of
Aharonov-Bohm (AB) solenoids [2]. The Pauli operator for such singular magnetic
fields, defined initially on smooth functions with support not touching the singu-
larities, is not essentially self-adjoint. Thus there are several ways of defining the
self-adjoint Pauli extension, depending on what boundary conditions one sets at the
AB solenoids, see [1, 7, 9, 11, 12]. Different extensions describe different physics,
and there is a discussion going on about which extensions describe the real physical
situation.

There are two possible approaches to making the choice of the extension: trying
to describe boundary conditions at the singularities by means of modelling actual
interaction of the particle with an AB solenoid, or considering approximations of
singular fields by regular ones, see [5, 18]. We are going to study the maximal
extension introduced in [10], called the Maximal Pauli operator, and compare it
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with the extension defined in [8], that we will call the EV Pauli operator. These
two extensions were recently studied in [16] in the presence of infinite number of
AB solenoids, and it was proved that a magnetic field with infinite flux gives an
infinite-dimensional space of zero modes for both extensions.

When studying the Pauli operator in the presence of AB solenoids one must
always keep in mind the possibility to reduce the intensities of solenoids by arbitrary
integers by means of singular gauge transformations. In Section 2 we define both
extensions via quadratic forms. The Maximal Pauli operator can be defined directly
for arbitrary strength of the AB fluxes, while the EV Pauli operator is defined via
gauge transformations if the AB intensities do not belong to the interval [−1/2, 1/2).

The EV Pauli operator has the advantage that the Aharonov-Casher type for-
mula in its original form holds even for singular AB magnetic fields. However,
as we show, it does not satisfy another natural requirement, that the number of
zero modes is invariant under the change of sign of the magnetic field. This ab-
sence of invariance exhibits itself only if both singular and regular parts of the
field are present. This justifies our attempt to study the Maximal Pauli operator
which lacks the latter disadvantage. The price we have to pay for this is that our
Aharonov-Casher type formula has certain extra terms.

For the Dirac operators with strongly singular magnetic field the question on
the number of zero modes was considered in [13]. The definition of the self-adjoint
operator considered there is close to the one in Erdős-Vougalter, however it is
not gauge invariant, therefore the Aharonov Casher-type formula obtained in [13]
depends on intensity of each AB solenoid separately.

In Section 3 we establish that the Maximal Pauli operator is gauge invariant and
that changing the sign of the magnetic field leads to anti-unitarily equivalence. Our
main result is the Aharonov-Casher type formula for the Maximal Pauli operator.
An interesting fact is that this operator can have both spin-up and spin-down zero
modes, in contrary to the EV Pauli operator and the Pauli operator for less singular
magnetic fields, which have either spin-up or spin-down zero modes, but not both.
In [10] a setting with an infinite lattice of AB solenoids with equal AB flux at
each solenoid is studied, having both spin-up and spin-down zero modes, both with
infinite multiplicity.

In Section 4 we discuss the approximation by more regular fields in the sense
of Borg and Pulé, see [5]. It turns out that both the Maximal Pauli operator and
the EV Pauli operator can be approximated in this way. However, the EV Pauli
operator can be approximated as a Pauli Hamiltonian, while the Maximal Pauli
operator can only be approximated one component at a time. Since different ways
of approximating the magnetic field may lead to different results, see [4, 18], we
leave the question if the Maximal Pauli operator can be approximated as Pauli
Hamiltonian open.

2. Definition of the Pauli operators

The Pauli operator is formally defined as

P = (σ · (−i∇+ A))2 = (−i∇+ A)2 + σ3B

on L2(R2)⊗ C2. Here σ = (σ1, σ2), where σ1, σ2 and σ3 are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
,
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where A is the real magnetic vector potential and B = curl(A) is the magnetic
field. This definition does not work if the magnetic field B is too singular, see the
discussion in [8, 17]. If A ∈ L2,loc(R2), using the notations Πk = −i∂k + Ak, for
k = 1, 2, Q± = Π1 ± iΠ2 and λ for the Lebesgue measure, the Pauli operator can
be defined via the quadratic form

p[ψ] = ‖Q+ψ+‖2 + ‖Q−ψ−‖2 =
∫
|σ · (−i∇+ A)ψ|2dλ(x), (2.1)

the domain being the closure in the sense of the metrics p[ψ] of the core consisting
of smooth compactly supported functions. With this notation, we can write the
Pauli operator P as

P =
(
P+ 0
0 P−

)
=

(
Q∗+Q+ 0

0 Q∗−Q−

)
. (2.2)

However, defining the Pauli operator via the quadratic form p[ψ] in (2.1) requires
that the vector potential A belongs to L2,loc(R2), otherwise p[ψ] can be infinite for
nice functions ψ, see [17]. If the magnetic field consists of only one AB solenoid
located at the origin with intensity (flux divided by 2π) α, then the magnetic vector
potential A is given by A(x1, x2) = α

x2
1+x2

2
(−x2, x1) which is not in L2,loc(R2).

Here, and elsewhere we identify a point (x1, x2) in the two-dimensional space R2

with z = x1 + ix2 in the complex plan C.
Following [8], we will define the Pauli operator via another quadratic form, that

agrees with p[ψ] for less singular magnetic fields. We start by describing the mag-
netic field.

Even though the Pauli operator can be defined for more general magnetic fields,
in order to demonstrate the main features of the study, without extra technicalities,
we restrict ourself to a magnetic field consisting of a sum of two parts, the first being
a smooth function with compact support, the second consisting of finitely many AB
solenoids. Let Λ = {zj}n

j=1 be a set of distinct points in C and let αj ∈ R \Z. The
magnetic field we will study in this paper has the form

B(z) = B0(z) +
n∑

j=1

2παjδzj , (2.3)

where B0 ∈ C1
0 (R2). In [8] the magnetic field is given by a signed real regular

Borel measure µ on R2 with locally finite total variation. It is clear that µ =
B0(z)dλ(z) +

∑n
j=1 2παjδzj

is such a measure.
The function h0 given by

h0(z) =
1
2π

∫
log |z − z′|B0(z′)dλ(z′)

satisfies ∆h0 = B0 since B0 ∈ C1
0 (R2) and ∆ log |z − zj | = 2πδzj

in the sense of
distributions. The function

h(z) = h0(z) +
n∑

j=1

αj log |z − zj |
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satisfies ∆h = B. It is easily seen that h0(z) ∼ Φ0 log |z| as |z| → ∞, and thus the
asymptotics of eh(z) is

e±h(z) ∼

{
|z|±Φ, |z| → ∞
|z − zj |±αj , z → zj ,

where Φ0 = 1
2π

∫
B0(z)dλ(z) and Φ = 1

2π

∫
B(z)dλ(z) = Φ0 +

∑n
j=1 αj .

We are now ready to define the two self-adjoint Pauli operators. The decisive
difference between them is the sense in which we are taking derivatives. This leads
to different domains, and, as we will see in later sections, to different properties
of the operators. Let us introduce notations for taking derivatives on the different
spaces of distributions. Remember that Λ = {zj}n

j=1 is a finite set of distinct
points in C. We let the derivatives in D′(R2) be denoted by ∂ and the derivatives
in D′(R2 \Λ) be denoted by ∂ with a tilde over it, that is ∂̃. Thus, for example, by
∂z we mean ∂

∂z in the space D′(R2) and by ∂̃z we mean ∂
∂z in the space D′(R2 \Λ).

2.1. The EV Pauli operator. We follow [8] and define the sesquilinear forms π+

and π− by

πh
+(ψ+, ξ+) = 4

∫
∂z̄ (e−hψ+)∂z̄

(
e−hξ+

)
e2hdλ(z),

D(πh
+) =

{
ψ+ ∈ L2(R2) : πh

+(ψ+, ψ+) <∞
}
,

and

πh
−(ψ−, ξ−) = 4

∫
∂z (ehψ−)∂z

(
ehξ−

)
e−2hdλ(z),

D(πh
−) =

{
ψ− ∈ L2(R2) : πh

−(ψ−, ψ−) <∞
}
.

Set

πh(ψ, ξ) = πh
+(ψ+, ξ+) + πh

−(ψ−, ξ−),

D(πh) = D(πh
+)⊕D(πh

−) =
{
ψ =

(
ψ+

ψ−

)
∈ L2(R2)⊗ C2 : πh(ψ,ψ) <∞

}
.

Let us make more accurate the description of the domains of the forms πh
± and πh.

For example, what is required of a function ψ+ to be in D(πh
+)? It should belong

to L2(R2), and the expression

πh
+(ψ+, ψ+) = 4

∫ ∣∣∂z̄

(
e−hψ+

)∣∣2 e2hdλ(z)

should have a meaning and be finite. This means that the distribution ∂z̄

(
e−hψ+

)
actually must be a function and its modulus multiplied with eh must belong to
L2(R2), that is |∂z̄

(
e−hψ+

)
|eh ∈ L2(R2). This forces all the intensities αj to be in

the interval (−1, 1), see [8].
Next we define the norm by

|||ψ|||2πh = |||ψ+|||2πh
+

+ |||ψ−|||2πh
−
,

where
|||ψ+|||2πh

+
= ‖ψ+‖2 +

∥∥∂z̄

(
e−hψ+

)
eh

∥∥2

and
|||ψ−|||2πh

−
= ‖ψ−‖2 +

∥∥∂z

(
ehψ−

)
e−h

∥∥2
.
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This form πh is symmetric, nonnegative and closed with respect to ‖ · ‖, again see
[8], and hence it defines a unique self-adjoint operator Ph via

D(Ph) = {ψ ∈ D(πh) : πh(ψ, ·) ∈
(
L2(R2)⊗ C2

)
} (2.4)

and
(Phψ, ξ) = πh(ψ, ξ), ψ ∈ D(Ph), ξ ∈ D(πh). (2.5)

We call this operator Ph the non-reduced EV Pauli operator.
If some intensities αj belongs to R \ [−1/2, 1/2), we let α∗j be the unique real

number in [−1/2, 1/2) such that αj and α∗j differ only by an integer, that is α∗j−αj =
mj ∈ Z. We define the reduced EV Pauli operator (or just the EV Pauli operator),
Ph, to be

Ph = exp(iφ)Ph exp(−iφ) (2.6)
where φ(z) =

∑n
j=1mj arg(z− zj). Hence, if there are some αj outside the interval

(−1, 1) only the reduced EV Pauli operator is well-defined. If all the intensities αj

belong to the interval [−1/2, 1/2) then we do not have to perform the reduction
and hence there is only one definition. However, if there are intensities αj inside
the interval (−1, 1) but outside the interval [−1/2, 1/2) then we have two differ-
ent definitions of the EV Pauli operator, the direct one and the one obtained by
reduction. In the next section we will show that these two operators are not the
same.

2.2. The Maximal Pauli operator. Let αj ∈ R \ Z. We define the forms

ph
+(ψ+, ξ+) = 4

∫
∂̃z̄ (e−hψ+)∂̃z̄

(
e−hξ+

)
e2hdλ(z),

D(ph
+) =

{
ψ+ ∈ L2(R2) : ph

+(ψ+, ψ+) <∞
}
,

and

ph
−(ψ−, ξ−) = 4

∫
∂̃z (ehψ−)∂̃z

(
ehξ−

)
e−2hdλ(z),

D(ph
−) =

{
ψ− ∈ L2(R2) : ph

−(ψ−, ψ−) <∞
}
.

Set

ph(ψ, ξ) = ph
+(ψ+, ξ+) + ph

−(ψ−, ξ−),

D(ph) = D(ph
+)⊕D(ph

−) =
{
ψ =

(
ψ+

ψ−

)
∈ L2(R2)⊗ C2 : ph(ψ,ψ) <∞

}
.

Again, let us make clear about the domains of the forms. For a function ψ+ to
be in D(ph

+) it is required that ψ+ ∈ L2(R2) and that ∂̃z(e−hψ+) is a function.
After taking the modulus of this derivative and multiplying by eh we should get
into L2(R2 \ Λ), that is |∂̃z̄(e−hψ+)|eh ∈ L2(R2 \ Λ). Note that the form ph does
not feel the AB fluxes at Λ since the derivatives are taken in the space D′(R2 \Λ),
and integration does not feel Λ either since Λ has Lebesgue measure zero. This
enable the AB solenoids to have intensities that lie outside (−1, 1).

Also, define the norm

|||ψh|||2ph = |||ψ+|||2ph
+

+ |||ψ−|||2ph
−
,

where
|||ψ+|||2ph

+
= ‖ψ+‖2 +

∣∣∣∣∣∣∂̃z̄

(
e−hψ+

)
eh

∣∣∣∣∣∣2
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and
|||ψ−|||2ph

−
= ‖ψ−‖2 +

∣∣∣∣∣∣∂̃z

(
ehψ−

)
e−h

∣∣∣∣∣∣2 .
Proposition 2.1. The form ph defined above is symmetric, nonnegative and closed
with respect to ‖ · ‖.
Proof. It is clear that ph is symmetric and nonnegative. Let ψn = (ψn,+, ψn,−) be
a Cauchy sequence in the norm |||·|||ph . This implies that ψn,± → ψ± in L2(dλ(z)),
∂̃z̄

(
e−hψn,+

)
→ u+ in L2(e2hdλ(z)) and ∂̃z(ehψn,−) → u− in L2(e−2hdλ(z)). We

have to show that ∂̃z̄

(
e−hψ+

)
= u+ and ∂̃z(ehψ−) = u−. For any test-function

φ ∈ C∞0 (R2 \ Λ),∣∣∣∣∫ φ̄
(
u+ − ∂̃z̄

(
e−hψ+

))
dλ(z)

∣∣∣∣
≤

∣∣∣∣∫ barφ
(
u+ − ∂̃z̄

(
e−hψn,+

))∣∣∣∣ +
∣∣∣∣∫ ∂̃z̄(φ̄)e−h (ψ+ − ψn,+)

∣∣∣∣
≤ ‖φ̄e−h‖ ·

∥∥∥u+ − ∂̃z̄

(
e−hψn,+

)∥∥∥
L2(e2h)

+
∥∥∥∂̃z̄(φ̄)e−h

∥∥∥ · ‖ψ+ − ψn,+‖.

The above expression tends to zero as n→∞, since the first terms in each sum is
bounded (thanks to φ) and the other one tends to zero. The proof is the same for
the spin down component. This shows that ph is closed. �

Hence ph defines a unique self-adjoint operator Ph via

D(Ph) = {ψ ∈ D(ph) : ph(ψ, ·) ∈
(
L2(R2)⊗ C2

)
} (2.7)

and
(Phψ, ξ) = ph(ψ, ξ), ψ ∈ D(Ph), ξ ∈ D(ph). (2.8)

We call this operator Ph the Maximal Pauli operator.

3. Properties of the Pauli operators

In this section we will compare some properties of the two Pauli operators Ph

and Ph defined in the previous section. We start by showing that Ph is gauge
invariant while the non-reduced EV Pauli operator Ph is not.

3.1. Gauge transformations. Let B(z) = B0(z) +
∑n

j=1 2παjδzj be the same
magnetic field as before and let B̂(z) be another magnetic field that differs from
B(z) only by multiples of the delta functions, that is B̂(z)−B(z) =

∑n
j=1 2πmjδzj

,
where mj are integers, not all zero. Then the corresponding scalar potentials ĥ(z)
and h(z) differ only by the corresponding logarithms ĥ(z)−h(z) =

∑n
j=1mj log |z−

zj |. With φ(z) =
∑n

j=1mj arg(z−zj) we get ĥ(z)+iφ(z) = h(z)+
∑n

j=1mj log(z−
zj). This function is multivalued, however, since mj are integers, we have

∂z̄

(
ĥ(z) + iφ(z)

)
= ∂z̄h(z) +

n∑
j=1

mj∂z̄ log(z − zj), (3.1)

∂̃z̄

(
ĥ(z) + iφ(z)

)
= ∂̃z̄h(z), (3.2)

eĥ+iφ = eh
m∏

j=1

(z − zj)mj . (3.3)
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Let us check what happens with ph when we do gauge transforms. Let ψ =
(ψ+, ψ−)t ∈ D(ph). We should check that e−iφψ belongs to D(pĥ), where φ(z) =∑n

j=1mj arg(z − zj) is the harmonic conjugate to ĥ(z)− h(z). We do this for pĥ
+.

It is similar for pĥ
−. Since ψ+ ∈ D(ph

+) we know that ∂̃z̄(ψ+e
−h) ∈ L1,loc(R2 \ Λ).

Let us check that ∂̃z̄(ψ̂+e
−ĥ) ∈ L1,loc(R2 \ Λ). Again, by (3.3) we have

∂̃z̄(ψ̂+e
−ĥ) = ∂̃z̄

(
ψ+e

−h
n∏

j=1

(z − zj)−mj

)
= ∂̃z̄(ψ+e

−h)
n∏

j=1

(z − zj)−mj + ψ+e
−h∂̃z̄

( n∏
j=1

(z − zj)−mj

)
,

which clearly belongs to L1,loc(R2 \ Λ).
Next we should check that |∂̃z̄(ψ̂+e

−ĥ)|eĥ belongs to L2(R2 \ Λ) under the as-
sumption that |∂̃z̄(ψ+e

−h)|eh belongs to L2(R2 \Λ). A calculation using (3.2) and
(3.3) gives∣∣∣∂̃z̄

(
e−ĥψ̂+

)∣∣∣ eĥ

=
∣∣∣∂̃z̄

(
e−ĥ−iφψ+(z)

)∣∣∣ eĥ

=
∣∣∣ (
∂̃z̄(−h(z))ψ+ + ∂̃z̄ψ+(z)

)
e−h

n∏
j=1

(z − zj)−mj

∣∣∣eh
n∏

j=1

|z − zj |mj

=
∣∣∣∂̃z̄

(
e−hψ+

)∣∣∣ eh.

(3.4)

Hence ψ+ ∈ D(ph
+) implies ψ̂+ = e−iφψ+ ∈ D(pĥ

+). In the same way it follows that
ψ− ∈ D(ph

−) implies that ψ̂− = e−iφψ− ∈ D(pĥ
−). Thus e−iφD(ph) ⊂ D(pĥ). In

the same way we can show that eiφD(pĥ) ⊂ D(ph), and thus we can conclude that
e−iφD(ph) = D(pĥ). From the calculation in (3.4) and a similar calculation for the
spin-down component ψ− it also follows that

pĥ
(
e−iφψ, e−iφψ

)
= 4

∫ ∣∣∣∂̃z̄

(
e−ĥ−iφψ+

)∣∣∣2 e2ĥ +
∣∣∣∂̃z

(
eĥ−iφψ−

)∣∣∣2 e−2ĥdλ(z)

= 4
∫ ∣∣∣∂̃z̄

(
e−hψ+

)∣∣∣2 e2h +
∣∣∣∂̃z

(
ehψ−

)∣∣∣2 e−2hdλ(z)

= ph(ψ,ψ).

Hence we can conclude that if ψ ∈ D(Ph) and ξ ∈ D(ph) then e−iφψ ∈ D(Pĥ) and
e−iφξ ∈ D(pĥ). If we denote by Uφ the unitary operator of multiplication by eiφ,
then we get

(Phψ, ξ) = ph(ψ, ξ) = pĥ(U∗φψ,U
∗
φξ) = (PĥU

∗
φψ,U

∗
φξ) = (UφPĥU

∗
φψ, ξ),

and hence Ph and Pĥ are unitarily equivalent. We have proved the following
proposition.

Proposition 3.1. Let B and B̂ be two singular magnetic fields as in (2.3), with
difference B̂ − B =

∑n
j=1 2πmjδzj , where mj are integers, not all equal to zero.

Then their corresponding Maximal Pauli operators defined by (2.7) and (2.8) are
unitarily equivalent.
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To see that Ph is not gauge invariant it is enough to look at an example. Note
that this operator is defined only for intensities belonging to the interval (−1, 1).
Let n = 1, z1 = 0, α1 = −1/2 and m1 = 1, so the two magnetic fields are
B(z) = B0(z) − πδ0 and B̂(z) = B0(z) + πδ0. The scalar potentials are given by
h(z) = h0(z) − 1

2 log |z| and ĥ(z) = h0(z) + 1
2 log |z| respectively, where h0(z) is

a smooth function with asymptotics Φ0 log |z| as |z| → ∞. We should show that
D(πĥ) is not given by e−iφD(πh), where φ(z) = arg(z). Then it follows that πh

and πĥ do not define unitarily equivalent operators.
Let ψ+ ∈ D(πh

+). This means, in particular, that ∂z̄(ψ+e
−h) belongs to the

space L1,loc(R2). Now let ψ̂+ = e−iφψ+. Then, according to (3.3) we get

∂z̄(ψ̂+e
−ĥ) = ∂z̄(ψ+e

−ĥ−iφ) = ∂z̄

(
ψ+e

−h

z

)
= ∂z̄(ψ+e

−h)
1
z

+ ψ+e
−hπδ0

which is not in L1,loc(R2) since it is a distribution involving δ0 (for non-smooth
ψ+ it is not even well-defined). Thus we have D(πĥ

+) 6= e−iφD(πh
+) and hence

D(πĥ) 6= e−iφD(πh) so πh and πĥ are not defining unitarily equivalent operators
Ph and Pĥ.

3.2. Zero modes. When studying spectral properties of the operator Ph it is
sufficient to consider AB intensities αj that belong to the interval (0, 1), since the
operator is gauge invariant. See the discussion after the proof of Theorem 3.3 for
more details about what happens when we do gauge transformations.

Lemma 3.2. Let cj ∈ C and zj ∈ C, j = 1, . . . , n, where zj 6= zi if j 6= i and not
all cj are equal to zero. Then

n∑
j=1

cj
z − zj

∼ |z|−l−1, |z| → ∞, (3.5)

where l is the smallest nonnegative integer such that
∑n

j=1 cjz
l
j 6= 0.

Proof. If |z| is large in comparison with all |zj | we have
n∑

j=1

cj
z − zj

=
1
z

n∑
j=1

cj
1− zj/z

=
∞∑

k=0

 n∑
j=1

cjz
k
j

 1
zk+1

=

 n∑
j=1

cjz
l
j

 1
zl+1

+O(|z|−l−2)

and thus
∑n

j=1
cj

z−zj
∼ |z|−l−1 as |z| → ∞. �

Remark. We note that l in Lemma 3.2 may never be greater than n− 1. Indeed,
if l ≥ n then we would have the linear system of equations {

∑n
j=1 cjz

k
j = 0}n−1

k=0 .
But the determinant of this system is

∏
i>j(zi − zj) 6= 0, and this would force all

cj to be zero.
Note also that for l < n we have a linear system of l equations {

∑n
j=1 cjz

k
j =

0}l−1
k=0 with n unknowns cj , and that the l × n matrix {zk

j } has rank l.
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Theorem 3.3. Let B(z) be the magnetic field (2.3) with all αj ∈ (0, 1), and let
Ph be the Pauli operator defined by (2.7) and (2.8) in Section 2 corresponding to
B(z). Then

dim kerPh = {n− Φ}+ {Φ} , (3.6)
where Φ = 1

2π

∫
B(z)dλ(z), and {x} denotes the largest integer strictly less than x

if x > 1 and 0 if x ≤ 1. Using the notations Q± introduced in Section 2, we also
have

dim kerQ+ = {n− Φ} and dim kerQ− = {Φ} . (3.7)

Proof. We follow the reasoning originating in [3], with necessary modifications.
First we note that (ψ+, ψ−)t belongs to kerPh if and only if ψ+ belongs to kerQ+

and ψ− belongs to kerQ−, which is equivalent to

∂̃z̄

(
e−hψ+

)
= 0 and ∂̃z

(
ehψ−

)
= 0. (3.8)

This means exactly that f+(z) = e−hψ+(z) is holomorphic and f−(z) = ehψ−(z) is
antiholomorphic in z ∈ R2 \ Λ. It is the change in the domain where the functions
are holomorphic that influences the result.

Let us start with the spin-up component ψ+. The function f+ is allowed to have
poles of order at most one at zj , j = 1, . . . , n, and no others, since eh ∼ |z − zj |αj

as z → zj and ψ+ = f+e
h should belong to L2(R2). Hence there exist constants cj

such that the function f+(z)−
∑n

j=1
cj

z−zj
is entire. From the asymptotics eh ∼ |z|Φ,

|z| → ∞, it follows that f+ −
∑n

j=1
cj

z−zj
may only be a polynomial of degree at

most N = −Φ− 2. Hence

f+(z) =
n∑

j=1

cj
z − zj

+ a0 + a1z + . . . aNz
N ,

where we let the polynomial part disappear if N < 0. Now, the asymptotics for ψ+

is
ψ+(z) ∼ |z|−l−1+Φ + |z|N+Φ, |z| → ∞,

where l is the smallest nonnegative integer such that
∑n

j=1 cjz
l
j 6= 0. To have ψ+

in L2(R2) we take l to be the smallest nonnegative integer strictly greater than
Φ. Remember also from the remark after Lemma 3.2 that l ≤ n − 1. We get
three cases. If Φ < −1, then all complex numbers cj can be chosen freely, and a
polynomial of degree {−Φ} − 1 may be added which results {n − Φ} degrees of
freedom. If −1 ≤ Φ < n− 1 we have no contribution from the polynomial, and we
have to choose the coefficients cj such that

∑n
j=1 cjz

k
j = 0 for k = 0, 1, . . . , l − 1.

The dimension of the null-space of the matrix {zk
j } is n− l = {n−Φ}. If Φ ≥ n−1

then we must have all coefficients cj equal to zero and we get no contribution from
the polynomial. Hence, in all three cases we have {n− Φ} spin-up zero modes.

Let us now focus on the spin-down component ψ−. The function f− may not
have any singularities, since the asymptotics of e−h is |z− zj |−αj as z → zj . Hence
f− must be entire. Moreover, f− may grow no faster than a polynomial of degree
Φ − 1 for ψ− to be in L2(R2). Thus f− has to be a polynomial of degree at most
{Φ} − 1, which gives us {Φ} spin-down zero modes. �

The number of zero modes for Ph and Ph are not the same. The Aharonov-
Casher theorem for the EV Pauli operator (Theorem 3.1 in [8]) states for the field
under consideration:
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Theorem 3.4. Let B(z) be as in (2.3) and let B̂(z) be the unique magnetic field
where all AB intensities αj are reduced to the interval [−1/2, 1/2), that is B̂(z) =
B(z)+

∑n
j=1 2πmjδzj , where αj+mj ∈ [−1/2, 1/2). Let Φ = 1

2π

∫
B̂(z)dλ(z). Then

the dimension of the kernel of the EV Pauli operator Ph is given by {|Φ|}. All zero
modes belong only to the spin-up or only to the spin-down component (depending
on the sign of Φ).

Below we explain by some concrete examples how the spectral properties of the
two Pauli operators Ph and Ph differ.

Example 3.5. Since Ph is not gauge invariant we must not expect that the number
of zero modes of Ph is invariant under gauge transforms. To see that this property
in fact can fail, let us look at the Pauli operators Ph1 and Ph2 induced by the
magnetic fields

B1(z) = B0(z) + πδ0,

B2(z) = B0(z)− πδ0

respectively, where B0 has compact support and Φ0 = 1
2π

∫
B0(z)dλ(z) = 3

4 . Then
B2 is reduced (that is, its AB intensity belong to [−1/2, 1/2)) but B1 has to be
reduced. Due to Theorem 3.4, the EV Pauli operators Ph1 and Ph2 corresponding
to B1 and B2 have no zero modes. However, a direct computation for the non-
reduced EV Pauli operator Ph1 corresponding to B1 shows that it actually has one
zero mode. The situation is getting more interesting when we look at the operator
that should correspond to B3 = B0(z) + 3πδ0. The AB intensity for B3 is too
strong so we have to make a reduction. In [8] the reduction is made to the interval
[−1/2, 1/2), and we have followed this convention, but physically there is nothing
that says that this is the natural choice. Reducing the AB intensity of B3 to −1/2
gives an operator with no zero modes and reducing it to 1/2 gives an operator with
one zero mode.

The Maximal Pauli operators Ph1 , Ph2 and Ph3 for these three magnetic fields
all have one zero mode. This is easily seen by applying Theorem 3.3 to Ph1 and
then using the fact that the operators are unitarily equivalent.

However, more understanding is achieved when looking more closely at how
the eigenfunctions for these three Maximal Pauli operators look like. Let hk be
the scalar potential for Bk, k = 1, 2, 3. Then, as we have seen before h1(z) =
h0(z) + 1

2 log |z|, h2(z) = h0(z)− 1
2 log |z| and h3(z) = h0(z) + 3

2 log |z| where h0(z)
corresponds to B0(z). Following the reasoning from the proof of Theorem 3.3 we
see that the solution space to Ph1ψ = 0 is spanned by ψ = (0, e−h1)t.

Next, we see what the solutions to Ph2ψ = 0 look like. Now we have Φ2 =
1
2π

∫
B2(z)dλ(z) = 1/4 > 0. Let us begin with the spin-up component ψ+. This

time, the holomorphic f+ = e−h2ψ+ may not have any poles since then ψ+ would
not belong to L2(R2), and f+(z) = e−h2ψ+(z) → 0 as |z| → ∞, so we must have
f+ ≡ 0, and thus ψ+ ≡ 0. For ψ−(z) to be in L2(R2) it is possible for f− to have a
pole of order 1 at the origin. Hence there exist a constant c such that f−(z)− c/z̄
is antiholomorphic in the whole plane. The function f−(z) → 0 as |z| → ∞ since
the total intensity Φ2 > 0. This implies, by Liouville’s theorem, that f−(z) ≡ c/z̄,
so the solution space to Ph2ψ = 0 is spanned by ψ(z) = (0, e−h2/z̄).

Finally, we determine the solutions to Ph3ψ = 0. Now Φ3 = 1
2π

∫
B3(z)dλ(z) =

9/4. Consider the spin-up part ψ+. For ψ+ to be in L2(R2) our function f+ may
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have a pole of order no more than two at the origin. As before, there exist constants
c1 and c2 such that f+(z)− c1/z − c2/z

2 is entire and its limit is zero as |z| → ∞,
and thus f+(z) ≡ c1/z + c2/z

2. Again, both c1 and c2 must vanish for ψ+ to be
in L2(R2) (otherwise we would not stay in L2 at infinity). Thus ψ+ ≡ 0. On the
other hand, the function f− may not have any poles (these poles would push ψ−
out of L2(R2)), so it is antiholomorphic in the whole plane. It also may grow no
faster than |z|5/4 as |z| → ∞, and thus f− has to be a first order polynomial in
z̄, that is f−(z) = c0 + c1z̄. Moreover for ψ− to be in L2(R2) it must have a zero
of order 1 at the origin, and thus f−(z) = c1z̄. We conclude that the solutions to
Ph3ψ = 0 are spanned by (0, z̄e−h3)t.

A natural property one should expect of a reasonably defined Pauli operator is
that its spectral properties are invariant under the reversing the direction of the
magnetic field: B 7→ −B. The corresponding operators are formally anti-unitary
equivalent under the transformation ψ 7→ ψ̄ and interchanging of ψ+ and ψ−.

Example 3.6. The number of zero modes for Ph is not invariant under B(z) 7→
−B(z), which we should not expect since the interval [−1/2, 1/2) is not sym-
metric. We check this by showing that the number of zero modes are not the
same. To see this, let B(z) = B0(z) + πδ0, where B0 has compact support and
Φ0 = 1

2π

∫
B0(z)dλ(z) = 3

4 . Then B has to be reduced since the AB intensity at zero
is 1/2 6∈ [−1/2, 1/2). After reduction we get the magnetic field B̂(z) = B0(z)−πδ0,
and we can apply Theorem 3.4. Let Φ̂ = 1

2π

∫
B̂dλ(z) = 1

4 . Thus the number of zero
modes for Ph is 0. Now look at the Pauli operator P−h defined by the magnetic field
B−(z) = −B(z) = −B0(z) − πδ0. This magnetic field is reduced and thus we can
apply Theorem 3.4 directly. The total intensity is Φ− = 1

2π

∫
−B(z)dλ(z) = − 5

4 ,
so the number of zero modes for P−h is 1. If B has several AB fluxes then the
difference in the number of zero modes of Ph and P−h can be made arbitrarily
large.

Remark. If there are only AB solenoids then the EV Pauli operator preserves the
number of zero modes under B 7→ −B, so the absence of signflip invariance can be
noticed only in the presence of both AB and nice part.

Example 3.7. The number of zero modes for Ph is invariant under B(z) 7→ −B(z).
Since it is clear that the number of zero modes is invariant under z 7→ z̄ we look
instead at how the Pauli operators change when we do B(z) 7→ B̂(z) = −B(z̄). If
we set ζ = z̄ we get B̂(ζ) = −B(z) and the scalar potentials satisfy ĥ(ζ) = −h(z).
Assume that ψ = (ψ+(z), ψ−(z))t ∈ D(ph). Then

ph(z)

((
ψ+(z)
ψ−(z)

)
,

(
ψ+(z)
ψ−(z)

))
= 4

∫ ∣∣∣∂̃z̄(ψ+(z)e−h(z))
∣∣∣2 e2h(z) +

∣∣∣∂̃z(ψ−(z)eh(z)
∣∣∣2 e−2h(z)dλ(z)

= 4
∫ ∣∣∣∂̃ζ(ψ+(ζ̄)eĥ(ζ)

∣∣∣2 e−2ĥ(ζ) +
∣∣∣∂̃ζ̄(ψ−(ζ̄)e−ĥ(ζ)

∣∣∣2 e2ĥ(ζ)dλ(ζ)

= pĥ(z̄)

((
ψ−(z)
ψ+(z)

)
,

(
ψ−(z)
ψ+(z)

))
Hence we see that (ψ+, ψ−)t belongs to D(Ph(z)) if and only if (ψ−, ψ+)t belongs
to D(Pĥ(z̄)) and then Pĥ(z̄) = Ph(z)V where V : L2(R2) ⊗ C2 → L2(R2) ⊗ C2 is
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the isometric operator given by V ((ψ+, ψ−)t) = (ψ−, ψ+)t. Hence it is clear that
Pĥ(z̄) and Ph(z) have the same number of zero modes.

Example 3.8. In the previous example we saw that changing the sign of the
magnetic field results in unitarily equivalent Maximal Pauli operators. This im-
plies that the number of zero modes for the Maximal Pauli operators correspond-
ing to B and −B are the same. This, however, can be seen directly from the
Aharonov-Casher formula in Theorem 3.3. To be able to apply the theorem to
−B = −B0 −

∑n
j=1 2παjδj we have to do gauge transformations, adding 1 to all

the AB intensities, resulting in B̂ = −B0 +
∑n

j=1 2π(1 − αj)δj . Now according to
Theorem 3.3 the number of zero modes of P−h is equal to

dim kerP−h = {Φ̂}+ {n− Φ̂} = {n− Φ}+ {Φ} = dim ker Ph,

where we have used that Φ̂ = 1
2π

∫
B̂dλ(z) = n− Φ.

4. Approximation by regular fields

We have mentioned that the different Pauli extensions depend on which bound-
ary conditions are induced at the AB fluxes. Let us now make this more precise.
Since the self-adjoint extension only depends on the boundary condition at the AB
solenoids it is enough to study the case of one such solenoid and no smooth field.
For simplicity, let the solenoid be located at the origin, with intensity α ∈ (0, 1),
that is, let the magnetic field be given by B = 2παδ0. We consider self-adjoint
extensions of the Pauli operator P that can be written in the form

P =
(
P+ 0
0 P−

)
=

(
Q∗+Q+ 0

0 Q∗−Q−,

)
with some explicitly chosen closed operators Q±. It is exactly such extensions P
that can be defined by the quadratic form (2.1). A function ψ+ belongs to D(P+)
if and only if ψ+ belongs to D(Q+) and Q+ψ+ belongs to D(Q∗+), and similarly for
P−.

With each self-adjoint extension P± = Q∗±Q± one can associate (see [7, 9, 11, 18])
functionals c±−α, c±α , c±α−1 and c±1−α, by

c±−α(ψ±) = lim
r→0

rα 1
2π

∫ 2π

0

ψ±dθ,

c±α (ψ±) = lim
r→0

r−α

(
1
2π

∫ 2π

0

ψ±dθ − r−αc±α (ψ±)
)
,

c±α−1(ψ±) = lim
r→0

r1−α 1
2π

∫ 2π

0

ψ±e
iθdθ,

c±1−α(ψ±) = lim
r→0

rα−1

(
1
2π

∫ 2π

0

ψ±e
iθdθ − rα−1c±1−α(ψ±)

)
.

such that ψ± ∈ D(P±) if and only if

ψ± ∼ c±−αr
−α + c±α r

α + c±α−1r
α−1e−iθ + c±1−αr

1−αe−iθ +O(rγ) (4.1)

as r → 0, where γ = min(1 + α, 2− α) and z = reiθ.
Any two nontrivial independent linear relations between these functionals de-

termine a self-adjoint extension. In order that the operator be rotation-invariant,
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none of these relations may involve both α and 1 − α terms simultaneously. Ac-
cordingly, the parameters ν±0 = c±α /c

±
−α and ν±1 = c±1−α/c

±
α−1, with possible values

in (−∞,∞], are introduced in [5], and it is proved that the operators P± can be
approximated by operators with regularized magnetic fields in the norm resolvent
sense if and only if ν±0 = ∞ and ν±1 ∈ (−∞,∞] or if ν±0 ∈ (−∞,∞] and ν±1 = ∞.

Before we check what parameters the Maximal and EV Pauli operators corre-
spond to, let us in a few words discuss how the approximation in [5] works.

The vector magnetic potential A is approximated with the vector potential

AR(z) =

{
A(z) |z| > R

0 |z| < R

avoiding the singularity in the origin. The corresponding Hamiltonian HR, formally
defined as

HR = (i∇+ AR)2 +
β

R
δ(r −R),

where β = β(α,R), is studied. It is decomposed into angular momentum operators
hm,R. Only the operators hm,R where m = 0 or m = 1 have nontrivial deficiency
space. Let hβ

m,R be self-adjoint extensions of hm,R and let Hβ
R =

⊕∞
m=−∞ hβ

m,R.
Theorem 1 in [5] says (here we use the notation ν0 and ν1 for what could be ν±0
and ν±1 respectively):

(I) If
β(α,R) + α

R2α
→ 2αν0

then Hβ
R converges in the norm resolvent sense to one component of the

Pauli Hamiltonian corresponding to ν1 = ∞.
(II) If

β(α,R)− α+ 2
R2(1−α)

→ 2(1− α)ν1

then Hβ
R converges in the norm resolvent sense to one component of the

Pauli Hamiltonian corresponding to ν0 = ∞.

We are now going to check what parameters the Maximal and EV Pauli operators
corresponds to. Generally, for the function ψ+ to be in D(P+), it must belong to
D(Q+) and Q+ψ+ must belong to D(Q∗+). We will find out what is required for a
function g to be in D(Q∗+). Take any φ+ ∈ D(Q+), then the integration by parts
on the domain ε < |z| gives

〈g,Q+φ+〉 = lim
ε→0

∫
|z|>ε

g(z)−2i
∂

∂z̄
(e−hφ+(z))ehdλ(z)

= lim
ε→0

∫
|z|>ε

−2i
∂

∂z
(g(z)eh)e−hφ+(z)dλ(z)

+ lim
ε→0

ε

∫ 2π

0

g(εeiθ)φ+(εeiθ)e−iθdθ

= 〈Q−g, φ+〉+ lim
ε→0

ε

2

∫ 2π

0

g(εeiθ)φ+(εeiθ)e−iθdθ
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Hence, for g to belong to D(Q∗+) it is necessary and sufficient that

lim
ε→0

ε

∫ 2π

0

g(εeiθ)φ+(εeiθ)e−iθdθ = 0

for all φ+ ∈ D(p+), and thus for Q+ψ+ to belong to D(Q∗+) it is necessary and
sufficient that

lim
ε→0

ε

∫ 2π

0

(
∂

∂z̄
(e−hψ+)eh

) ∣∣∣
z=εeiθ

φ+(εeiθ)e−iθdθ = 0

for all φ+ ∈ D(p+). We know that ψ+ has asymptotics ψ+ ∼ c+−αr
−α + c+α r

α +
c+α−1r

α−1e−iθ + c+1−αr
1−αe−iθ +O(rγ) and that ∂

∂z̄ = eiθ

2

(
∂
∂r + i

r
∂
∂θ

)
in polar coor-

dinates. A calculation gives

ε
∂

∂z̄
(e−hψ+)ehe−iθ

∣∣∣
z=εeiθ

∼ −2αc+−αε
−α + 2(1− α)c+1−αε

1−αe−iθ +O(rγ),

hence we must have

lim
ε→0

∫ 2π

0

(
−2αc+−αε

−α + 2(1− α)c+1−αε
1−αe−iθ

)
φ+(εeiθ)dθ = 0 (4.2)

for all φ+ ∈ D(p+). A similar calculation for the spin-down component yields

lim
ε→0

∫ 2π

0

(
2αc−α ε

α + 2(α− 1)c−α−1ε
α−1eiθ

)
φ−(εeiθ)dθ = 0. (4.3)

To calculate what parameters ν±0 and ν±1 the Maximal and EV Pauli extensions
correspond to, it is enough to study the asymptoics of the functions in the form
core.

Let us first consider the Maximal Pauli extension. Functions on the form
(φ+

0 c/z)e
h constitute a form core for ph

+, where φ0 is smooth. Hence there are
elements in D(ph

+) that asymptotically behave as rα and also elements with asymp-
totics rα−1e−iθ. According to (4.2) this means that c+−α and c+1−α must be zero.
Similarly, the elements that behave like r−α and elements that behave like r1−αeiθ

constitute a form core for ph
−, which by (4.3) forces c−α and c−α−1 to be zero. The

parameters ν±0 and ν±1 are given by ν+
0 = c+α/c

+
−α = ∞, ν+

1 = c+1−α/c
+
α−1 = 0,

ν−0 = c−α /c
−
−α = 0 and ν−1 = c−1−α/c

−
α−1 = ∞. We see that the spin-up component

can be approximated as in (II), while the spin-down component can be approxi-
mated as in (I).

Let us now consider the EV Pauli extension, and study the case when α ∈
(0, 1/2). The case α < 0 follows in a a similar way. A form core for πh

+ is given
by ehφ0 where φ0 is smooth, see [8]. These functions have asymptotic behavior rα.
From (4.2) follows that c+−α must vanish. However, ψ+ belonging to D(Q+) must
also belong to D(πh

+) and since the functions in the form core for πh
+ behave as rα

or nicer, we see that the term c+α−1r
α−1e−iθ gets too singular to be in D(Q+) if

c+α−1 6= 0, and hence c+α−1 must be zero.
Similarly, a form core for πh

− is given by e−hφ0, with φ0 smooth. Functions in
this form core have asymptotic behavior r−α or r−α+1eiθ which forces c−α and c−α−1

to be zero.
Hence the parameters ν±0 and ν±1 are given by ν+

0 = c+α/c
+
−α = ∞, ν+

1 =
c+1−α/c

+
α−1 = ∞, ν−0 = c−α /c

−
−α = 0 and ν−1 = c−1−α/c

−
α−1 = ∞.
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We conclude that the spin-up part of the EV Pauli operator can be approximated
in either of the ways (I) or (II), while the spin-down part can be approximated in
way (I).

Remark. From the calculations above it follows that the EV Pauli operator can be
approximated as a Pauli Hamiltonian in the sense of [5], while the Maximal Pauli
operator cannot be approximated as a Pauli Hamiltonian, since the spin-up and
spin-down components are approximated in different ways.

Since AB is defined up to a singular gauge transformation and regular fields can
not be transformed in this way it is unclear which additional physical requirements
or principles can decide on which way of approximation is the most physically
reasonable.
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[11] Geyler, V. A. and Šťov́ıček, P. On the Pauli operator for the Aharonov-Bohm effect with two

solenoids, J. Math. Phys. 45 (2004), no. 1, 51–75.
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