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ISOPERIMETRIC INEQUALITY FOR AN INTERIOR FREE
BOUNDARY PROBLEM WITH P-LAPLACIAN OPERATOR

IDRISSA LY, DIARAF SECK

Abstract. By considering the p-Laplacian operator, we establish an existence
and regularity result for a shape optimization problem. From a monotony
result, we show the existence of a solution to the interior problem with a free
surface for a family of Bernoulli constants. We also give an optimal estimation
for the upper bound of the Bernoulli constant.

1. Introduction

Let us study the following interior Bernoulli problem: Given K, a C2-regular
and bounded domain in RN , and a constant c > 0, find a domain Ω and a function
uΩ such that

−∆puΩ = 0 in K\Ω̄, 1 < p < ∞
uΩ = 1 on ∂Ω
uΩ = 0 on ∂K

∂uΩ

∂ν
= c on ∂Ω .

(1.1)

Here ∆p denotes the p-Laplace operator, i.e. ∆pu := div(‖∇u‖p−2∇u) and ν is the
interior unit normal of Ω. In this paper we give an optimal estimation for the upper
bound of the Bernoulli constant c. This problem arises in various nonlinear flow
laws, and other physical situations, e.g. electrochemical machining and potential
flow in fluid mechanics. In the linear case a classical approach for such a problem
consists in considering a variational formulation [1].

Inspired by the pioneering work of Beurling, where the notion of sub and super-
solutions in geometrical case is used, Henrot and Shahgohlian studied this problem
in [6]. They proved that when K ⊂ RN is a bounded and convex domain:

• There exists a classical convex solution to (1.1) if only if c ≥ cK .
• The constant cK is underestimated by 1

RK
, where RK = sup{R > 0 :

B(o,R) ⊂ K}.

2000 Mathematics Subject Classification. 35R35.
Key words and phrases. Bernoulli free boundary problem; starshaped domain;

shape optimization; shape derivative; monotony.
c©2004 Texas State University - San Marcos.

Submitted April 7, 2004. Published September 14, 2004.

1



2 I. LY, D. SECK EJDE-2004/109

• For N = 2 and p = 2, the minimal value cK , depending on K and p for
which problem (1.1) has a solution is estimated from above by

cK ≤ 6.252
RK

. (1.2)

But this inequality is not optimal, since K is a disk of radius R.

In [5, p. 202], by considering the Laplacian, Flucher and Rumpf set the following
problem:

Let K be a connected domain and K∗ a ball such that vol(K) =
vol(K∗). Let cK( respectively cK∗) be the minimal value of c for
which the interior Bernoulli problem (1.1) admits a solution. Does
cK satisfy the isoperimetric inequality cK ≥ cK∗?

In [3], Cardaliaguet and Tahraoui gave an estimate from above for the Bernoulli
constant, by using the harmonic radius. But they didn’t give an answer to the
question posed by Flucher and Rumpf.

Now, by combining a variational approach and a sequential method, we establish
an existence result for non-necessary convex domains. Then we show that cK sat-
isfies the isoperimetric inequality in the sense that max{cK : vol(K) = vol(K∗)} ≥
cK∗ . This comparison answers the question posed by Flucher and Rumpf.

The structure of this paper is as follows: In the first part, we present the main
result. In the second section, we give auxiliary results. The third part deals with the
study of the shape optimization problem and the existence of Lagrange multiplier
λΩ. Namely, we study at first the existence result for the shape optimization
problem: Find

min{J(w), w ∈ Oε},

where

Oε = {w ⊂ K : w is an open set satisfying the ε-cone property and vol(w) = m0}

where vol denotes the volume, m0 is a fixed value in R∗
+. The functional J is

J(w) :=
1
p

∫
K\w̄

‖∇uw‖pdx,

where uw is a solution to the Dirichlet problem

−∆puw = 0 in K\w̄, 1 < p < ∞
uw = 1 on ∂w

uw = 0 on ∂K.

(1.3)

Next, we obtain an optimality condition:

∂u

∂ν
= (

p

p− 1
λΩ)1/p on ∂Ω.

Then we conclude this section with a monotony result. The last part is devoted to
the proof of the main result.
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2. Main result

Let K be a C2-regular, star-shaped and bounded domain and K∗ a ball of radius
R1 centered at the origin such that vol(K) = vol(K∗). Let

α(RK , p,N) :=


e/RK if p = N

| p−N
p−1 |∣∣( p−1

N−1 )
N−1
N−p −( p−1

N−1 )
p−1
N−p

∣∣ 1
RK

if p 6= N.

where RK = sup{R > 0 : B(o,R) ⊂ K}. Let

E := {cK : vol(K) = vol(K∗)},
where cK is the minimal value for which the interior Bernoulli problem (1.1) admits
a solution.

Theorem 2.1. If the solution Ω of the shape optimization problem min{J(w), w ∈
Oε} is C2-regular, then for all constant c > 0 satisfying c ≥ α(RK , p,N), Ω is the
classical solution of the free-boundary problem (1.1). Moreover:

(i) The constant cK satisfies 0 < cK ≤ α(RK , p,N).
(ii) Replacing K by K∗, the constant cK∗ which is the minimal value for which

(1.1) admits a solution, satisfies

cK∗ = α(R1, p,N),

0 < cK∗ ≤ α(RK , p,N).

We have also α(RK , p,N) = max E.

To prove this theorem we need some auxiliary results.

3. Auxiliary results

For the rest of this article, we consider a fixed, closed domain D which contains
all the open subsets used.

Let ζ be an unitary vector of RN , ε be a real number strictly positive and y be
in RN . We call a cone with vertex y, of direction ζ and angle to the vertex and
height ε, the set defined by

C(y, ζ, ε, ε) = {x ∈ RN : |x− y| ≤ ε and |(x− y)ζ| ≥ |x− y| cos ε}.
Let Ω be an open set of RN , Ω is said to have the ε-cone property if for all x ∈ ∂Ω

then there exists a direction ζ and a strictly positive real number ε such that

C(y, ζ, ε, ε) ⊂ Ω, for all y ∈ B(x, ε) ∩ Ω̄.

Let K1 and K2 be two compact subsets of D. Let

d(x,K1) = inf
y∈K2

d(x, y) , d(x,K2) = inf
y∈K1

d(x, y) .

Note that

ρ(K1,K2) = sup
x∈K2

d(x,K1) , ρ(K2,K1) = sup
x∈K1

d(x,K2) .

Let
dH(K1,K2) = max[ρ(K1,K2), ρ(K2,K1)],

we call Hausdorff distance of K1 and K2, the following positive number, denoted
dH(K1,K2).
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Let (Ωn) be a sequence of open subsets of D and Ω be an open subset of D. We
say that the sequence (Ωn) converges on Ω in the Hausdorff sense and we denote
by Ωn

H→ Ω if limn→+∞ dH(D̄\Ωn, D̄\Ω) = 0.
Let (Ωn) be a sequence of open sets of RN and Ω be an open set of RN . We

say that the sequence (Ωn) converges on Ω in the sense of Lp, 1 ≤ p < ∞ if χΩn

converges on χΩ in Lp
loc(RN ), χΩ being the characteristic functions of Ω.

Let (Ωn) be a sequence of open subsets of D and Ω be an open subset of D. We
say that the sequence (Ωn) converges on Ω in the compact sense if

(1) Every compact G subset of Ω, is included in Ωn for n large enough.
(2) Every compact Q subset of Ω̄c, is included in Ω̄c

n for n large enough.

Lemma 3.1. Let (fn)n∈N be a sequence of functions of Lp(Ω), 1 ≤ p < ∞ and
f ∈ Lp(Ω). We suppose fn converges on f a.e. and limn→∞ ‖fn‖p = ‖f‖p. Then
we have limn→∞ ‖fn − f‖p = 0.

For the proof of the above lemma see for example [7].

Lemma 3.2 (Brezis-Lieb). Let (fn)n∈N be a bounded sequence of functions of
Lp(Ω), 1 ≤ p < ∞. We suppose that fn converges on f a.e., then f ∈ Lp(Ω)
and ‖f‖p = limn→∞(‖fn − f‖p + ‖fn‖p).

For the proof of the above lemma, see for example [7].

Lemma 3.3. Let (Ωn)n∈N be a sequence of open sets in RN having the ε-cone
property, with Ω̄n ⊂ F ⊂ D, F a compact set and D a ball, then, there exists an
open set Ω, included in F , which satisfies the ε

2 -cone property and a subsequence
(Ωnk

)k∈N such that

χΩnk

L1

→ χΩ, Ωnk

H→ Ω

∂Ωnk

H→ ∂Ω, Ω̄nk

H→ Ω̄.

The above lemma is a well known result in functional analysis related to shape
optimization. But let us present the proof again.

Proof. It is known that the Hausdorff topology is compact, then there exists a
subsequence (Ωnk

)k∈N,Ω and an open set Ω such that Ωnk

H→ Ω, χΩnk
→f with

σ(L∞, L1), 0 ≤ f ≤ 1 and χΩ ≤ f a.e. To obtain χΩ = f a.e., we have only to show
that f is identically equal to zero on D\Ω. Let us take x ∈ ∂Ω since D̄\Ωnk

H→ D̄\Ω
and denoting again nk by n, there exists xn ∈ D̄\Ωn such that xn converges on x.

Let x̂n ∈ ∂Ωn such that ‖xn − x̂n‖ = d(xn, ∂Ωn), we claim that x̂n converges
on x if not there exists ni and η > 0 such that d(xni

, ∂Ωni
) ≥ η. This implies

that B(xni
, η) ⊂ D̄\Ωni

and by the continuity of the inclusion for the Hausdorff
convergence, we have B̄(x, η) ⊂ D̄\Ω. This is impossible, because x ∈ ∂Ω. Since
by assumption Ωn satisfies the ε-cone property we have C(x̂n, ζ(x̂n), ε, ε) ⊂ D̄\Ωn.
There also exists a subsequence of ζ(x̂n) which converges on ζ = ζ(x). By passing
to the limit, we have C(x, ζ(x), ε, ε) ⊂ D̄\Ω, and then C(x, ζ(x), ε

2 , ε
2 ) ⊂ D̄\Ω. Let

us take y ∈ B(x, ε) ∩ D̄\Ω, then there exists yn ∈ D̄\Ωn such that yn converges on
y and we have ‖yn − xn‖ converges on ‖y − x‖ < ε and ‖xn − x̂n‖ converges on 0.
Then, for n big enough, we have ‖yn − x̂n‖ < ε.

The ε-cone property implies that C(yn, ζ(x̂n), ε, ε) ⊂ D\Ω̄n and by the continuity
of the inclusion for the Hausdorff convergence, we obtain ¯C(y, ζ(x), ε, ε) ⊂ D̄\Ω then
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C(y, ζ(x), ε
2 , ε

2 ) ⊂ D̄\Ω. This means that the ε
2− cone property is satisfied by D̄\Ω

and then by Ω too. Let us take φ ∈ L1(D), then,∫
C(y,ζ(x),ε,ε)

φdx = lim
n→∞

∫
C(yn,ζ(x̂n),ε,ε)

φdx

= lim
n→∞

∫
C(yn,ζ(x̂n),ε,ε)

χD\Ωn
φdx

=
∫

C(y,ζ(x),ε,ε)

φ(χD − f)dx

=
∫

C(y,ζ(x),ε,ε)

φdx−
∫

C(y,ζ(x),ε,ε)

φfdx.

We obtain that
∫

C(y,ζ(x),ε,ε)
φfdx = 0, for all φ ∈ L1(D) and then f = 0 on

C(y, ζ(x), ε, ε) a.e.
By varying y ∈ B(x, ε) ∩ D̄\Ω and next x ∈ ∂Ω, we obtain f = 0 on the set

{x ∈ D\Ω; d(x, ∂Ω) < ε}.
By the same reasoning for y ∈ D\Ω such that d(y, ∂Ω) ≥ ε, we show that f = 0

on {y ∈ D\Ω; d(y, ∂Ω) ≥ ε}. We also have just showed that χΩnk
converges on χΩ

a.e. and in L1(D) sense.
Now we show that Ω̄nk

H→ Ω̄: for a subsequence Ωnk
such that Ω̄nk

H→ G and it
is sufficient to show that G = Ω̄. Let B̄(x, η) ⊂ Ω then B̄(x, η) ⊂ Ωnk

for n large
enough, then, B̄(x, η) ⊂ Ω̄nk

. By the continuity of the inclusion for the Hausdorff
convergence, we have B̄(x, η) ⊂ G for any ball in Ω. This imply that Ω ⊂ G then
Ω̄ ⊂ G. Let F = D̄\Ω and x ∈ G ∩ F , we have to show that x ∈ Ω̄. We remark
that, there exists a subsequence (xnk

)k∈N ⊂ Ω̄nk such that xnk
converges on x

and ynk
∈ D̄\Ωnk

such that ynk
converges on x. The sequence x̂nk

belongs to
[xnk

, ynk
] ∩ ∂Ωnk

, then we have x̂nk
which converges on x.

It is interesting to remark that

C( ˆxnk
, ζ(x̂nk

), ε, ε) ⊂ Ωnk
, Ωnk

⊂ Ω̄nk
,

C(x̂nk
,−ζ(x̂nk

), ε, ε) ⊂ D\Ω̄nk
, D\Ω̄nk

⊂ D̄\Ωnk
.

We can assume that ζ(x̂nk
) converges on ζ(x) then

C(x, ζ(x), ε, ε) ⊂ G

C(x,−ζ(x), ε, ε) ⊂ D̄\Ω.

Let η > 0 and set

Cnk
(η) = {z ∈ C(x̂nk

, ζ(x̂nk
), ε, ε), d(z, ∂C(x̂nk

, ζ(x̂nk
), ε, ε) ≥ η}.

We remark that ρ(Cnk
(η), Fnk

) ≥ η, and by passing to the limit ρ(C(η), F ) ≥ η,
then C(η) ⊂ Ω. This implies that C̄(x, ζ(x), ε, ε) ⊂ Ω̄, then G ∩ F ⊂ Ω̄ and
G ∩ F ⊂ ∂Ω. It is easy to see that by an absurdity reasoning, we have G\Ω̄ = ∅,
and then G ⊂ Ω̄. �

4. Shape optimization and monotony results

Theorem 4.1. The problem “Find Ω ∈ Oε such that J(Ω) = min{J(w), w ∈ Oε}”
admits a solution.
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Proof. Consider the function ũ defined by

ũ =

{
u if x ∈ K\Ω̄
1 if x ∈ Ω̄

∇ũ =

{
∇u if x ∈ K\Ω̄
0 if x ∈ Ω̄

Let E be a functional defined on W 1,p
0 (K) by

E(ũw) =
1
p

∫
K

‖∇ũw‖pdx, 1 < p < ∞

where ũw is the extension by 1 in Ω̄ of uw solution of the problem

−∆puw = 0 in w\K
uw = 1 on ∂w

uw = 0 on ∂K

Let J(w) := E(ũw). Then J(w) > 0 this implies that inf{J(w), w ∈ Oε} > −∞.
Let α = inf{J(w), w ∈ Oε}. Then, there exists a minimizing sequence (Ωn)n∈N ⊂
Oε such that J(Ωn) converges on α.

Since the sequence (Ωn)n∈N is bounded, there exists a compact set F such that
Ω̄n ⊂ F ⊂ K. By lemma (3.3), there is a subsequence (Ωnk

)k∈N, and Ω verifying
the ε-cone property such that Ωnk

H→ Ω and χΩnk
→χΩ a.e. Let us set uΩn

= un

and show that the sequence (ũn)n∈N is bounded in W 1,p(K). If not, for all s there
exists a subsequence denoted ũs

n ∈ W 1,p
0 (K) such that

∫
K
‖∇ũn‖pdx > s and∫

K

‖∇ũs
n‖pdx =

∫
K\Ω̄n

‖∇ũs
n‖pdx +

∫
Ω̄n

‖∇ũs
n‖pdx ,∫

K

‖∇ũs
n‖pdx =

∫
K\Ω̄n

‖∇ũs
n‖pdx.

That is, J(Ωn) converges on +∞. Then, inf{J(w), w ∈ Oε} = +∞ is a contradic-
tion. Since W 1,p(K) is a reflexive space, there exists a subsequence (unk

)k∈N and
u∗ such that unk

converges weakly on u∗ in W 1,p(K) and∫
K\Ω̄

‖∇u∗‖pdx ≤ lim inf
∫

K\Ω̄nk

‖∇unk
‖pdx.

From the above we get J(Ω) ≤ J(Ωnk
) and J(Ω) ≤ inf{J(w), w ∈ Oε}. Finally, we

have J(Ω) = min{J(w), w ∈ Oε}. �

Remark 4.2. On the one hand, it is easy to verify that u∗ equals uΩ and satisfies

−∆pu
∗ = 0 in K\Ω̄

u∗ = 1 on ∂Ω

u∗ = 0on ∂K

On the other hand, we have a regularity of uΩ solution to the problem (1.3); see
[4, 9, 18].
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For the rest of this article, we assume that Ω is C2-regular in order to use the
shape derivatives. This hypothesis is possible because if we work with a class of
domains which are C3-regular and verifying the geometric normal property, we can
show that Ω solution to the shape optimization problem is C2-regular.

Theorem 4.3. Let L be a compact set of RN . Let (fn)(n∈N) be a sequence of
functions, fn ∈ C3(L) with∣∣∂fn

∂xi

∣∣ ≤ M,
∣∣ ∂2fn

∂xi∂xj

∣∣ ≤ M,
∣∣ ∂3fn

∂xi∂xj∂xk

∣∣ ≤ M,

where M is a positive constant independent of n. We define a sequence (Ωn)(n∈N),
by Ωn = {x ∈ L : fn(x) > 0}. We assume that there exists α > 0 such that
|fn(x)| + |∇fn(x)| ≥ α for all x belonging to L. We assume in addition that
Ωn has the geometric normal property. Then there exists, Ω a C2-regular domain
and a subsequence of (Ωn)(n∈N) denoted (Ωnk

)(k∈N) such that Ωnk
converges in the

compact sense on Ω and J(Ω) = min{J(w) : w ∈ Oε}.
We remark thatΩn and Ω as above belong to Oε. For this theorem, we need the

following lemma. Then the proof of Theorem 4.3 can be found in [13].

Lemma 4.4. Let (fn)(n∈N) be a sequence functions defined as in theorem 4.3. One
supposes that Ω is an open set defined by

Ω = {x ∈ L : h(x) > 0} with ∂Ω = {x ∈ L : h(x) = 0}
where h is a continuous function defined on L which is a compact set of RN . If fn

converges uniformly on h, then we have Ωn converges in the compact sense to Ω.

Proof. Let K1 be a compact set included in Ω, and let α = infK1 h, we have α > 0.
There exists n0 belonging to N, such that for all n ≥ n0 we get |fn − h|L∞(K) < α.
Then for all x belonging to K1 we have fn(x) > h(x) − α ≥ 0 for n ≥ n0. This
implies that K1 is contained in Ωn.

Let L0 be a compact subset of Ω̄c by hypothesis we have Ω̄ = Ω∪ ∂Ω = {x ∈ L :
h(x) ≥ 0} then β := maxL0 h < 0. Therefore, there exists n1 belonging to N such
that for all n ≥ n1 implies that |fn − h|L∞(L0) < −β. One has fn(x) ≤ h(x) − β
for all x belonging to L0. This implies that fn(x) ≤ 0 and then L0 is contained in
Ω̄c

n because {x ∈ L : h(x) < 0} ⊂ Ω̄c
n. �

The next theorem gives necessary conditions of optimality.

Theorem 4.5. If Ω is the solution of the shape optimization problem min{J(w) :
w ∈ Oε}, then there exists a Lagrange multiplier λΩ > 0 such that ∂u

∂ν = ( p
p−1λΩ)1/p

on ∂Ω.

Proof. The main technique used to prove this result is the shape derivatives as used
in [16, 15]. For the computations, we refer to [10, page 42-52], �

Remark 4.6. A consequence of the Theorems (4.1) and (4.5) is that (Ω, uΩ) sat-
isfies

−∆puΩ = 0 in K\Ω̄, 1 < p < ∞
uΩ = 1 on ∂Ω
uΩ = 0 on ∂K

∂uΩ

∂ν
=

( p

p− 1
λΩ

)1/p on ∂Ω .
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To conclude this section, we state a monotony result, in the following sense.

Theorem 4.7. Suppose that K is star-shaped with respect to the origin. Let Ω1 and
Ω2 be two different solutions to the shape optimization problem min{J(w), w ∈ Oε},
star-shaped with respect to the origin such that Ω1 ⊂ Ω2 and ∂Ω1 ∩ ∂Ω2 6= ∅, then
λΩ1 ≥ λΩ2 .

Proof. For any i ∈ {1, 2}, if Ωi is the solution of the shape optimization problem
min{J(w), w ∈ Oε}, we have ui which satisfies that

−∆pui = 0 inK\Ω̄i, 1 < p < ∞
ui = 1 on ∂Ωi

ui = 0 on ∂K .

On the one hand, consider the problem

−∆pz = 0 inK\Ω̄2, 1 < p < ∞
z = u1 on ∂Ω2

z = 0 on ∂K.

(4.1)

It is easy to see that z = u1 is a solution to problem (4.1). We have 0 ≤ u1 ≤ 1,
0 ≤ u2 ≤ 1, and u2 ≥ u1 on ∂(K\Ω̄2). By the comparison principle [17], we obtain
u2 ≥ u1 in K\Ω̄2. Let x0 ∈ ∂Ω1 ∩ ∂Ω2, then

u2(x0 − νh)− u2(x0)
h

≥ u1(x0 − νh)− u1(x0)
h

.

Passing to the limit,

lim
h→0

u2(x0 − νh)− u2(x0)
h

≥ lim
h→0

u1(x0 − νh)− u1(x0)
h

,

this implies

−∂u2

∂ν
(x0) ≥ −∂u1

∂ν
(x0) ;

hence, ∂u2
∂ν (x0) ≤ ∂u1

∂ν (x0).
On the other hand u1 and u2 are solutions to the shape optimisation problem ,

then there exists λΩ1 and λΩ2 such that

∂u1

∂ν
= (

p

p− 1
λΩ1)

1/p on ∂Ω1 ,

∂u2

∂ν
= (

p

p− 1
λΩ2)

1/p on ∂Ω2.

Then ∂u1
∂ν (x0) ≥ ∂u2

∂ν (x0) is equivalent to

(
p

p− 1
λΩ1)

1/p ≥ (
p

p− 1
λΩ2)

1/p

and therefore λΩ1 ≥ λΩ2 . �
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5. Proof of the main result

We use the preceding theorems to prove the main result.

Proof of Theorem 2.1. Let RK = sup{R > 0 : B(o,R) ⊂ K}. Let r > 0 such that
B(o, r) ⊂ B(o,RK). First, we have to look for a solution u0 to the problem

−∆pu = 0 in BRK
\Br

u = 0 on ∂BRK

u = 1 on ∂Br .

(5.1)

The solution u0 is explicitly determined by

u0(x) =


ln ‖x‖−ln RK

ln r−ln RK
if p = N

−‖x‖
p−N
p−1 +R

p−N
p−1

K

R
p−N
p−1

K −r
p−N
p−1

if p 6= N,
(5.2)

and

‖∇u0(x)‖ =


1

r(ln RK−ln r) if p = N

| p−N
p−1 |‖x‖

−N+1
p−1

|r
p−N
p−1 −R

p−N
p−1 |

if p 6= N.

In particular ‖∇u0‖ > c on ∂Br for r small enough.
Now consider the following problem

−∆pu = 0 in K\Br

u = 1 on ∂Br

u = 0 on ∂K.

(5.3)

The problem (5.3) admits a solution denoted by ur. This solution is obtained by
minimizing the functional J defined on the Sobolev space

V ′ = {v ∈ W 1,p(K\Br), v = 1on ∂Br andv = 0 on ∂K}

and J(v) = 1
p

∫
K\Br

‖∇v‖pdx.
Consider the problem

−∆pv = 0 in BRK
\Br

v = 1 on ∂Br

v = ur on ∂BRK
.

(5.4)

It is easy to see that v = ur is a solution to problem (5.4). By the comparison
principle [17], we obtain 0 ≤ u0 ≤ 1 and 0 ≤ ur ≤ 1. On ∂(BRK

\Br), we obtain
ur ≥ u0 and then, ur ≥ u0 in BRK

\Br. Finally, we have ‖∇ur‖ ≤ ‖∇u0‖on∂Br.

Case where p = N .

‖∇u0‖|∂Br
=

1
r(lnRK − ln r)

= g(r), ∀r ∈]0, RK [.

It is easy to see that g(r) is a strictly decreasing function on ]0, RK

e [ and a strictly
increasing function on ]RK

e , RK [. Then for all r ∈]0, RK [, ‖∇u0‖|∂Br
≥ g(RK

e ) =
e

RK
.
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(1) For c = e/RK , let δ > 0 be a fixed and sufficiently small number. To initialize
we choose r0 ∈]0, RK

e [∪]RK

e , RK [ such that
∣∣‖∇u0‖|∂Br0

− c
∣∣ > δ. To fix ideas let

us consider r0 ∈]0, RK

e [. The process will be identical if r0 ∈]RK

e , RK [.
By varying r in the increasing sense, we will achieve a step denoted n such that

rn ∈]0,
RK

e
[and

∥∥|∇u0‖|∂Brn
− c

∣∣ < δ.

Consider On the class of admissible domains defined as follows

On = {w ∈ Oε, Brn ⊂ w, ∂Brn ∩ ∂w 6= ∅, and vol(w) = V0} ,

where V0 denotes a fixed positive constant. We look for Ω ∈ On such that

−∆pu = 0 in K\Ω̄
u = 1 on ∂Ω
u = 0 on∂K

∂u

∂ν
= cΩ on ∂Ω

(5.5)

where cΩ = ( p
p−1λΩ)1/p. Applying the theorem (4.1), the shape optimization prob-

lem min{J(w), w ∈ On} admits a solution and by theorem (4.5), Ω satisfies the
overdetermined boundary condition ∂u

∂ν = cΩ. Then problem (5.5) admits a solu-
tion .

Since Ω ∈ On, we have Brn ⊂ Ω, ∂Brn ∩ ∂Ω 6= ∅ and urn satisfies

−∆purn
= 0 in K\Brn

urn = 1 on ∂Brn

urn
= 0 on ∂K.

(5.6)

Let us consider the problem

−∆pz = 0 in K\Ω̄
z = urn

on ∂Ω
z = 0 on ∂K.

(5.7)

It is easy to see that z = urn
is a solution to the problem (5.7), and we get

0 ≤ urn ≤ 1 and 0 ≤ u ≤ 1. On ∂(K\Ω̄), we have urn ≤ u. Since ∂Ω ∩ ∂Brn 6= ∅,
let x0 ∈ ∂Ω ∩ ∂Brn , we have

lim
h→0

urn
(x0 − νh)− urn

(x0)
h

≤ lim
h→0

u(x0 − νh)− u(x0)
h

,

This is equivalent to
∂urn

∂ν
(x0) ≥

∂u

∂ν
(x0) = cΩ.

Let Ω = Ω0 as the first iteration. We iterate by looking for Ω1 ∈ O1
n such that

−∆pu1 = 0 in K\Ω̄1

u1 = 1 on ∂Ω1

u1 = 0 on ∂K

∂u1

∂ν
= cΩ1 on ∂Ω1.

(5.8)
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where cΩ1 = ( p
p−1λΩ1)

1/p, and

O1
n = {w,w ∈ Oε,Ω0 ⊂ w, and∂w ∩ ∂Brn

6= ∅ vol(w) = V1} , whereV1

is a strictly positive constant and V0 < V1. By the same reasoning as above, we
conclude that

∂urn

∂ν
(x1) ≥

∂u1

∂ν
(x1) = cΩ1

where x1 ∈ ∂Ω1 ∩ ∂Brn
. We can continue the process until a step denoted by k

which we will determine and we have
∂urn

∂ν
(xk) ≥ ∂uk

∂ν
(xk) = cΩk

and xk ∈ ∂Ωk ∩ ∂Brn
.

Finally, we have constructed an increasing sequence of domain solutions: Ω0 ⊂
Ω1 ⊂ Ω2 · · · ⊂ Ωk. By the monotony result, we have cΩ0 ≥ cΩ1 ≥ cΩ2 · · · ≥ cΩk

.
Since ‖∇urn

‖ ≤ ‖∇u0‖ on ∂Brn
, k is chosen as follows: At each point s0 ∈ ∂Brn

,
we have

cΩk
≤ ∂u0

∂ν
(s0) ≤ cΩk−1 .

Then we obtain the inequality

cΩk
− e

RK
≤ ∂u0

∂ν
(s0)−

e

RK
≤ cΩk−1 −

e

RK
. (5.9)

The sequence (cΩj
)(0≤j≤k) is decreasing and strictly positive, then it converges on

l. Passing to the limit in (5.9), we obtain that l = e
RK

and there exists Ω solution
to problem (1.1). The sequence (Ωj)(0≤j≤k) gives a good approximation to Ω. The
uniqueness of the solution Ω is given by the monotony result.
(2) For c > e

RK
and r ∈]0, RK

e [∪]RK

e , RK [. We have the same reasoning and we
show that the problem (1.1) admits a solution.

Case where p 6= N . Here the reasoning is identical to the case p = N . We note
that

‖∇u0‖|∂Brn
=

∣∣p−N

p− 1

∣∣ 1

1− ( r
RK

)
N−p
p−1

1
r

= g(r)

and g is strictly increasing on ]( p−1
N−1 )

p−1
N−p RK , RK [ and a strictly decreasing on

]0, ( p−1
N−1 )

p−1
N−p RK [. For all

c ≥ |p−N

p− 1
| 1

|( p−1
N−1 )

N−1
N−p − ( p−1

N−1 )
p−1
N−p |

1
RK

= g((
p− 1
N − 1

)
p−1
N−p RK),

problem (1.1) admits a solution.
Let us now prove the assertions (i) and (ii) of theorem (2.1). It is easy to have,

0 < cK ≤ α(RK , p,N). If K is a ball of radius R, an explicit computation gives
cK = α(R, p, N) and for all 0 < c < cK problem (1.1) has no solution.

To prove the assertion (ii), let K∗ be a ball of radius R1 and K ⊂ RN be star-
shaped with respect to the origin such that vol(K) = vol(K∗). We remark that
RK ≤ R1 and this implies

α(R1, p,N) ≤ α(RK , p,N), cK∗ = α(R1, p,N).

The sequence (α(RK , p,N))K is reduced by cK∗ and decreasing in the follow-
ing sense: For all K, K ′ : vol(K) = vol(K∗) = vol(K ′) if RK ≤ RK′ then
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α(RK′ , p,N) ≤ α(RK , p,N) this implies that the sequence α(RK , p,N) converges
on cK∗ . �

Commentary. If there is no K1 different from the ball K∗ such that vol(K∗) =
vol(K1) and cK∗ > cK1 then for all K such that vol(K) = vol(K∗), we have
cK∗ ≤ cK . If there exists K1 such that vol(K1) = vol(K∗) and cK∗ > cK1 then K1

can’t be a ball and RK1 < R1.
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