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CLASSICAL SOLUTIONS FOR DISCRETE POTENTIAL
BOUNDARY VALUE PROBLEMS WITH GENERALIZED

LERAY-LIONS TYPE OPERATOR AND VARIABLE EXPONENT

BILA ADOLPHE KYELEM, STANISLAS OUARO, MALICK ZOUNGRANA

Communicated by Vicentiu Radulescu

Abstract. In this article, we prove the existence of solutions for some discrete

nonlinear difference equations subjected to a potential boundary type condi-
tion. We use a variational technique that relies on Szulkin’s critical point

theory, which ensures the existence of solutions by ground state and mountain

pass methods.

1. Introduction

Let us consider the positive integer T and the discrete integer domain function
p : [|0, T |] → (1,∞). We study the existence of solutions for the following class of
potential boundary value problems

−∆(a(k − 1,∆u(k − 1))) = f(k, u(k)) for k ∈ [|1, T |],
(a(0,∆u(0)),−a(T,∆u(T )) ∈ ∂j(u(0), u(T + 1)),

(1.1)

where ∆u(k) = u(k + 1) − u(k) is the forward difference operator. The function
f : R × R → R is Carathéodory and a(k, ·): R → R is a continuous function for
all k ∈ [|0, T |]. Also, j : R × R → (−∞; +∞] is convex, proper (i.e., D(j) := {z ∈
R × R : j(z) < +∞} 6= ∅), lower semicontinuous (in short, l.s.c.) function and ∂j
denotes the subdifferential of j. Recall that for z ∈ R× R, the set ∂j(z) is defined
by

∂j(z) = {m ∈ R× R : j(t)− j(z) > 〈m; t− z〉;∀t ∈ R× R}, (1.2)
where 〈·; ·〉 stands for the usual inner product in R × R. u : X → R is a function,
where the space X will be defined later.

Many potential boundary type condition problems arise from physical phenom-
ena (see [13] and the references therein). In electrostatics, for example, in a system
involving conductor electrodes, the potential is often specified on electrode surfaces
and one is asked to find the potential in the space of the electrodes. Such problems
are called potential boundary value problems.

It is usual to note that nonlinear multivalued boundary conditions include par-
ticular cases of classical boundary conditions; these are obtained by appropriate
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choices of j (see, e.g., [9, Ch.2]). For other choices of j yielding various boundary
conditions, we refer the reader to Gasinski and Papageorgiou [6] and Jebelean and
Serban [10].

The study of boundary value problems with a discrete laplacian using variational
approaches was developed a few years ago. Most of the papers deal with classical
boundary conditions such as Dirichlet boundary conditions (see, e.g. Agarwal et al.
[1], Cabada et al. [3]), Neumann boundary condition (see, e.g. Candito and D’agui
[4], Tian and Ge [21]) and Periodic boundary conditions (see, e.g. He and Chen [8],
Jebelean and Serban [10]). Recently, boundary value problems with the discrete
laplacian subjected to Dirichlet, Neumann or Periodic boundary conditions have
been studied by Molica Bisci and Repovš [16, 17], Galewski and Glab [5], Guiro et
al. [7], Koné and Ouaro [11], Mashiyev et al. [12], Mihailescu et al. [14, 15]. In [2],
Bereanu et al. have made use of variational approach to obtain ground state and
mountain pass solutions for the following problem

−∆p(k−1)

(
u(k − 1)

)
= f(k, u(k)) for k ∈ [|1, T |],

(hp(0)(∆u(0)),−hp(T )(∆u(T )) ∈ ∂j(u(0), u(T + 1)),

where ∆u(k) = u(k + 1) − u(k) is the forward difference operator and ∆p(·) is a
discrete p(·)-Laplacian operator that is

−∆p(k−1)(u(k − 1)) := ∆(hp(k−1)(∆u(k − 1))),

with hp(k) : R→ R is defined by hp(k)(u(k)) = |u(k)|p(k)−2u(k).
In this paper, we consider a more general forward operator which involves a

Leray-Lions type operator. Therefore, a variational approach underlying ground
state and mountain pass techniques for problem (1.1) is essentially used. In this
view, we use some ideas and technics originated by Radulescu and Repovš [18] (see
also Molica Bisci and Repovš[16, 17] and Szulkin [20]) , and combined with specific
tools, due to the discrete and anisotropic character of the problem. Our paper is
organized as follows: the useful preliminary results are presented in Section 2. In
Section 3, we deal with the existence of a solution to problem (1.1) using ground
state methods. The last Section is devoted to the existence of non trivial solutions
by using mountain pass techniques.

2. Preliminaries

Our approach for the boundary value problem (1.1) relies on the critical point
theory developed by Szulkin [20]. We introduce the function p : [|0, T |]→ (1,+∞),
where [|0, T |] := {0, 1, 2, . . . , T} and the space of functions

X := {u : u : [|0, T + 1|]→ R}
which can be endowed with the Luxemburg norm

‖u‖σ,p(·) = inf
{
λ > 0 : σ

T∑
k=1

1
p(k)
|u(k)
λ
|p(k) ≤ 1

}
.

Let us denote
p+ := max

k∈[|0,T |]
p(k) and p− := min

k∈[|0,T |]
p(k).

For the function a, we assume the following.
(H1) There exists A : [|0, T |] × R → R with a(k, ξ) = ∂A(k, ξ)/∂ξ for all k ∈

[|0, T |] and A(k, 0) = 0 for all k ∈ [|0, T |].
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(H2) There exists C1 > 0 such that |a(k, ξ)| 6 C1(1+ |ξ|p(k)−1) for all k ∈ [|0, T |]
and all ξ ∈ R.

(H3) (a(k, ξ)− a(k, η)) · (ξ − η) > 0 for all (ξ, η) ∈ R2 such that ξ 6= η.
(H4) |ξ|p(k) ≤ a(k, ξ) · ξ ≤ p(k)A(k, ξ), with p : [|0, T |]→ (1,+∞).
Let ϕ : X → R be defined by

ϕ(u) =
T+1∑
k=1

A(k − 1,∆u(k − 1)) for all u ∈ X. (2.1)

Using the functional j, we introduce the functional J : X → (−∞,+∞] given by

J(u) = j(u(0), u(T + 1)) for all u ∈ X. (2.2)

Note that, as j is proper, convex and l.s.c, the same properties hold for J . Let us
set

ψ = ϕ+ J. (2.3)
Let us also define

F (k, t) =
∫ t

0

f(k, τ)dτ for all k ∈ [|1, T |] and all t ∈ R.

Let us now introduce

Φ(u) := −
T∑
k=1

F (k, u(k)) for all u ∈ X. (2.4)

The energy functional associated with the problem (1.1) is

I = Φ + ψ, (2.5)

where Φ ∈ C1(X,R) and ψ : X → (−∞,+∞] are convex, proper and lower semi-
continuous.

Lemma 2.1. Let u ∈ X and p+ < +∞ then ‖u‖σ,p(·) is equivalent to the norm
defined by

‖u‖p(·) = inf
{
λ > 0;

T∑
k=1

|u(k)
λ
|p(k) ≤ 1

}
.

Proof. We have

σ

T∑
k=1

1
p(k)
|u(k)
λ
|p(k) ≥ σ

p+

T∑
k=1

|u(k)
λ
|p(k);

thus,

‖u‖σ,p(·) ≥ κ1‖u‖p(·),

σ

T∑
k=1

1
p(k)
|u(k)
λ
|p(k) ≤ σ

p−

T∑
k=1

|u(k)
λ
|p(k);

hence,
‖u‖σ,p(·) ≤ κ2‖u‖p(·).

Therefore,
κ1‖u‖p(·) ≤ ‖u‖σ,p(·) ≤ κ2‖u‖p(·).

�
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Now, let us present some basic properties of the general critical point theory.
Let I : X → R ∪ {+∞} be the functional satisfying the structural hypothesis

(H5) I = Φ + ψ, with Φ : X → R is a C1 function and ψ : X → R ∪ {+∞} a is
convex, lower semicontinuous and proper function.

Definition 2.2. An element u ∈ X satisfying (H5) is called a critical point of the
functional I : X → R ∪ {+∞} if

〈Φ′(u); v − u〉+ ψ(v)− ψ(u) ≥ 0, for all v ∈ X.

Definition 2.3. The functional I : X → R ∪ {+∞} satisfying (H5) is said to
satisfy the Palais-Smale (in short, (PS)) condition in the sense of Szulkin, if, every
sequence {un} ⊂ X for which I(un)→ c ∈ R and

〈Φ′(un); v − un〉+ ψ(v)− ψ(un) ≥ −ε‖v − un‖ for all v ∈ X (2.6)

where ε→ 0, possesses a convergent subsequence.

Proposition 2.4 ([20, Proposition 1.1]). If I satisfies (H5) then, each local mini-
mum point of I is necessarily a critical point of I.

Theorem 2.5 ([19, Theorem 23.2]). Let f be a convex function and let x be a point
where f is finite. Then x∗ is a subgradient of f at x if and only if f ′(x, y) ≥ 〈x∗; y〉
for all y ∈ X. In fact, the closure of f ′(x, y) as a convex function of y is the support
function of the closed convex set ∂f(x).

Theorem 2.6 ([20, Theorem 3.2]). Assume that I satisfies (H5), the (PS) condition
and

(i) I(0) = 0 and there exist α, ρ > 0 such that I(u) ≥ α if ‖u‖ = ρ,
(ii) I(e) ≤ 0 for some e ∈ X with ‖e‖ ≥ ρ.

Then, I has a critical value c ≥ α which can be characterized by

c = inf
f∈Γ

sup
t∈[0,1]

I(f(t)),

where Γ = {f ∈ C([0, 1], X) : f(0) = 0, f(1) = e}.

Proposition 2.7. Assume that (H1)–(H3) hold. Then
(i) ϕ is convex and is in C1(X; R);

(ii) J is proper, convex and l.s.c;
(iii) ψ is proper, convex and l.s.c;
(iv) Φ ∈ C1(X; R).

Proof. (i) ϕ is well defined since, according to (H1) and (H2),

|ϕ(u)| = |
T+1∑
k=1

A(k − 1,∆u(k − 1))|

≤
T+1∑
k=1

|A(k − 1,∆u(k − 1))|

≤ C
T+1∑
k=1

‖∆u(k − 1)‖ < +∞.
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A is convex with respect to the second variable according to (H1) and (H3). Let
λ ∈ [0, 1]. For all u, v ∈ X,

ϕ((1− λ)u+ λv) =
T+1∑
k=1

A(k − 1, (1− λ)∆u(k − 1) + λ∆v(k − 1)).

Then

ϕ((1− λ)u+ λv) ≤
T+1∑
k=1

(1− λ)A(k − 1,∆u(k − 1)) + λA(k − 1,∆v(k − 1))

≤ (1− λ)ϕ(u) + λϕ(v).

Therefore ϕ is convex. For u, v ∈ X we have

lim
δ→0+

ϕ(u+ δv)− ϕ(u)
δ

= lim
δ→0+

T+1∑
k=1

A(k − 1,∆u(k − 1) + δ∆v(k − 1))−A(k − 1,∆u(k − 1))
δ

=
T+1∑
k=1

lim
δ→0+

A(k − 1,∆u(k − 1) + δ∆v(k − 1))−A(k − 1,∆u(k − 1))
δ

=
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1).

Therefore,

〈ϕ′(u); v〉 =
T+1∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1).

Every limit is finite because of the continuity of A(k, ·). The continuity of the
derivative comes from the continuity of a(k, ·). Hence, ϕ is in C1(X; R).

(ii) Note that as j is proper, convex and l.s.c, the same properties hold for J .
(iii) Since ϕ and J are convex then, ψ is convex. Suppose that ψ can take the

value −∞; then, in this case, J = ψ − ϕ can take the value −∞, which is not
possible. Therefore, ψ cannot take the value −∞. Hence, ψ is proper. Also,

J(u) ≤ lim
y→u

inf J(y).

Then

ϕ(u) + J(u) ≤ lim
y→u

inf J(y) + ϕ(u) ≤ lim
y→u

inf J(y) + lim
y→u

inf ϕ(y) ≤ lim
y→u

inf ψ(y).

Therefore ψ(u) ≤ limy→u inf ψ(y). Hence, ψ is l.s.c.
(iv) |Φ(u)| = |

∑T
k=1 F (k, u(k))| < ∞ since F is continuous. Then Φ is well

defined. By definition, Φ is derivable and its derivative is continuous; hence Φ ∈
C1(X; R). Moreover,

〈Φ′(u); y〉 = lim
δ→0+

φ(u+ δy)− φ(u)
δ

= − lim
δ→0+

T∑
k=1

F (k, u(k) + δy(k))− F (k, u(k))
δ
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= −
T∑
k=1

lim
δ→0+

F (k, u(k) + δy(k))− F (k, u(k))
δ

= −
T∑
k=1

f(k, u(k))y(k) for all u, y ∈ X.

�

Now, let us claim the following important result.

Proposition 2.8. If u ∈ X is a critical point of the functional I in the sense that

〈Φ′(u); y − u〉+ ψ(y)− ψ(u) > 0, for all y ∈ X; (2.7)

then u is a classical solution of (1.1).

Proof. Since 〈Φ′(u); y− u〉+ψ(y)−ψ(u) > 0, we can take y = u+ sw for all s > 0
in (2.7). Dividing (2.7) by s and letting s→ 0+, we obtain

〈Φ′(u);w〉+ 〈ϕ′(u);w〉+ J ′(u;w) ≥ 0 ∀w ∈ X, (2.8)

where J ′(u;w) is the directional derivative of the convex function J at u in the
direction of w. Since

J(u) = j(u(0), u(T + 1)),
we obtain from (2.8),

〈Φ′(u);w〉+ 〈ϕ′(u);w〉+ j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0, for all w ∈ X.
Since

〈Φ′(u);w〉 = −
T∑
k=1

f(k, u(k))w(k) for all u,w ∈ X

and

〈ϕ′(u);w〉 =
T+1∑
k=1

a(k − 1,∆u(k − 1))∆w(k − 1) for all u,w ∈ X,

it follows that

−
T∑
k=1

f(k, u(k))w(k) +
T+1∑
k=1

a(k − 1,∆u(k − 1))∆w(k − 1)

+ j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0.

Therefore,

−
T∑
k=1

f(k, u(k))w(k) +
T+1∑
k=1

a(k − 1,∆u(k − 1))[w(k)− w(k − 1)]

+ j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0.

Then

−
T∑
k=1

f(k, u(k))w(k) +
T+1∑
k=1

a(k − 1,∆u(k − 1))w(k)

−
T+1∑
k=1

a(k − 1,∆u(k − 1))w(k − 1) + j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0
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such that

−
T∑
k=1

f(k, u(k))w(k) + a(T,∆u(T ))w(T + 1) +
T∑
k=1

a(k − 1,∆u(k − 1))w(k)

−
T∑
k=0

a(k,∆u(k))w(k) + j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0,

which leads to

−
T∑
k=1

f(k, u(k))w(k) + a(T,∆u(T ))w(T + 1)− a(0,∆u(0))w(0)

+
T∑
k=1

a(k − 1,∆u(k − 1))w(k)

−
T∑
k=1

a(k,∆u(k))w(k) + j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0.

Therefore,

−
T∑
k=1

f(k, u(k))w(k) + a(T,∆u(T ))w(T + 1)− a(0,∆u(0))w(0)

−
T∑
k=1

[a(k,∆u(k))− a(k − 1,∆u(k − 1))]w(k)

+ j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0.

Consequently,

−
T∑
k=1

f(k, u(k))w(k)−
T∑
k=1

∆a(k − 1,∆u(k − 1))w(k)

+ a(T,∆u(T ))w(T + 1)− a(0,∆u(0))w(0)

+ j′((u(0), u(T + 1)); (w(0), w(T + 1))) > 0.

As w ∈ X is arbitrarily chosen, we can take w(0)=w(T + 1)=0 to obtain

T∑
k=1

(
−∆a(k − 1,∆u(k − 1))

)
w(k) =

T∑
k=1

f(k, u(k))w(k).

Hence, it follows that

−∆a(k − 1,∆u(k − 1)) = f(k, u(k)) for all k ∈ [|1, T |]. (2.9)

It remains to show that (a(0,∆u(0)),−a(T,∆u(T ))) ∈ ∂j(u(0), u(T + 1)). One
has

−
T∑
k=1

f(k, u(k))w(k)−
T∑
k=1

∆a(k − 1,∆u(k − 1))w(k) + a(T,∆u(T ))w(T + 1)

− a(0,∆u(0))w(0) + j′((u(0), u(T + 1)), (w(0), w(T + 1))) > 0
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and
T∑
k=1

(
−∆a(k − 1,∆u(k − 1))

)
=

T∑
k=1

f(k, u(k)).

Therefore,

j′((u(0), u(T + 1)); (w(0), w(T + 1))) > −a(T,∆u(T ))w(T + 1) + a(0,∆u(0))w(0),

for all w ∈ X. Taking w ∈ X with w(0) = p and w(T + 1) = q, where p, q ∈ R are
arbitrarily chosen, it follows that

j′((u(0), u(T + 1)); (p, q)) > −a(T,∆u(T ))q + a(0,∆u(0))p, for all (p, q) ∈ R2

which by Theorem 2.5 implies

(a(0,∆u(0)),−a(T,∆u(T )) ∈ ∂j(u(0);u(T + 1))).

�

Lemma 2.9. Let u ∈ X and p+ < +∞. Then, the following properties hold:
(i) ‖u‖σ,p(·) < 1 implies

‖u‖p
+

σ,p(·) ≤ σ
T∑
k=1

|u(k)|p(k)

p(k)
≤ ‖u‖p

−

σ,p(·);

(ii) ‖u‖σ,p(·) > 1 implies

‖u‖p
−

σ,p(·) ≤ σ
T∑
k=1

|u(k)|p(k)

p(k)
≤ ‖u‖p

+

σ,p(·).

Proof. Suppose that ‖u‖σ,p(·) > 1. Then

σ

T∑
k=1

|u(k)|p(k)

p(k)
= σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

‖u‖σ,p(·)
∣∣∣p(k)

≤ σ
T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

‖u‖p
+

σ,p(·).

Therefore,

σ

‖u‖p+σ,p(·)

T∑
k=1

|u(k|p(k)

p(k)
≤ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
|‖u‖σ,p(·)

∣∣∣p(k)

.

Using the same arguments, one has

σ

T∑
k=1

|u(k)|p(k)

p(k)
≥ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

‖u‖p
−

σ,p(·).

Then
σ

‖u‖p−σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
≥ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

.

Finally,

σ

‖u‖p+σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
≤ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

≤ σ

‖u‖p−σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
,
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which is equivalent to

σ

‖u‖p+σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
≤ 1 ≤ σ

‖u‖p−σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
.

Thus,

‖u‖p
−

σ,p(·) ≤ σ
T∑
k=1

|u(k)|p(k)

p(k)
≤ ‖u‖p

+

σ,p(·).

Suppose now that ‖u‖σ,p(·) < 1. Then

σ

T∑
k=1

|u(k)|p(k)

p(k)
= σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

‖u‖σ,p(·)
∣∣∣p(k)

≤ σ
T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

‖u‖p
−

σ,p(·).

Therefore,

σ

‖u‖p−σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
≤ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

.

One also has

σ

T∑
k=1

|u(k)|p(k)

p(k)
≥ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

‖u‖p
+

σ,p(·).

Thus,

σ

‖u‖p+σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
≥ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

.

So,

σ

‖u‖p−σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
≤ σ

T∑
k=1

1
p(k)

∣∣∣ u(k)
‖u‖σ,p(·)

∣∣∣p(k)

≤ σ

‖u‖p+σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
,

which is equivalent to

σ

‖u‖p−σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
≤ 1 ≤ σ

‖u‖p+σ,p(·)

T∑
k=1

|u(k)|p(k)

p(k)
.

We conclude that

‖u‖p
+

σ,p(·) ≤ σ
T∑
k=1

|u(k)|p(k)

p(k)
≤ ‖u‖p

−

σ,p(·).

�
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3. Proof of the existence of classical solutions by ground state
methods

We begin with a result which states that the energy functional I has a minimum
point in X provided that the potential of the nonlinearity f lies asymptotically on
the left of the first eigenvalue like constant

λ1 := inf
{( T+1∑

k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1)
)
/
( T∑
k=1

1
p(k)
|u(k)|p(k)

)
:

u ∈ X − {0} and
(
u(0), u(T + 1)

)
∈ D(j)

}
.

The existence result will be obtained under the assumption that λ1 > 0.

Theorem 3.1. Assume that (H1)–(H4) hold and λ1 > 0. Also assume that

lim
|t|→∞

sup
p(k)F (k, t)
|t|p(k)

< λ1, for all k ∈ [|1, T |]. (3.1)

Then, problem (1.1) has at least one classical solution which minimizes I on X.

Proof. Step 1: We first show that I is sequentially lower semicontinuous on X.
Indeed, from Proposition 2.7, the functional ψ is lower semicontinuous and the func-
tion Φ is C1 on X. Therefore, the functional I is sequentially lower semicontinuous
on X.
Step 2: We prove that I is bounded from below and coercive on X. One the one
hand, using (3.1), one obtains the existence of some constants α > 0 and ρ > 1
such that

F (k, t) ≤ λ1 − α
p(k)

|t|p(k) for all k ∈ [|1, T |] and all t ∈ R with |t| > ρ.

On the other hand, by the continuity of F (k, .) over [−ρ, ρ], there is a constant
Mρ > 0 such that

|F (k, t)| ≤Mρ, for all k ∈ [|1, T |] and all t ∈ [−ρ, ρ].

Hence, we infer that

F (k, t) ≤Mρ +
λ1 − α
p(k)

|t|p(k), for all (k, t) ∈ [|1, T |]× R.

To prove the coercivity of I, we use the above inequality to obtain for all (k, t) ∈
[1;T ]× R,

−
T∑
k=1

F (k, u(t)) ≥ −MρT − (λ1 − α)
T∑
k=1

|u(k)|p(k)

p(k)
.

It follows that

I(u) ≥ ϕ(u)−MρT − (λ1 − α)
T∑
k=1

|u(k)|p(k)

p(k)
+ J(u)

≥ ϕ(u)−MρT − λ1

T∑
k=1

|u(k)|p(k)

p(k)
+ α

T∑
k=1

|u(k)|p(k)

p(k)
+ J(u)

≥ ϕ(u)−MρT −
T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) + α

T∑
k=1

|u(k)|p(k)

p(k)
+ J(u).
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From hypothesis (H4),

A(k − 1,∆u(k − 1)) ≥ 1
p(k − 1)

|∆u(k − 1)|p(k−1),

which leads to

ϕ(u) ≥
T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1). (3.2)

Hence, if ‖u‖σ,p(·) > 1, one makes use of Lemma 2.9 and (3.2) to obtain

I(u) ≥
T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) −MρT

−
T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) + σ

T∑
k=1

|u(k)|p(k)

p(k)
+ J(u)

≥ −MρT + σ

T∑
k=1

|u(k)|p(k)

p(k)
+ J(u)

≥ −MρT + ‖u‖p
−

σ,p(·) + J(u).

Since j is convex and l.s.c, it is bounded from below by an affine functional. There-
fore, using J(u) = j(u(0), u(T )), there are constants m1, m2, m3 ≥ 0 such that

I(u) ≥ −MρT + ‖u‖p
−

σ,p(·) −m1|u(0)| −m2|u(T + 1)| −m3

≥ ‖u‖p
−

σ,p(·) −m1|u(0)| −m2|u(T + 1)| − C1, where C1 = MρT +m3

≥ ‖u‖p
−

σ,p(·) − C2‖u‖∞ − C1, where C2 = m1 +m2.

Also, any norm on X is equivalent to ‖ · ‖σ,p(·). Then, there exists C3 > 0 such that

I(u) ≥ ‖u‖p
−

σ,p(·) − C3‖u‖σ,p(·) − C1.

Consequently, I(u)→ +∞ as ‖u‖σ,p(·) →∞. Therefore, I is coercive on X.
Step 3: We now show that the functional I is bounded from below. For that, let
‖u‖σ,p(·) < 1. By (H4) and Lemma 2.9, we obtain

I(u) ≥ ϕ(u)−MρT + J(u)

≥ −MρT + ‖u‖p
+

σ,p(·) + J(u)

≥ −MρT + ‖u‖p
+

σ,p(·) −m1|u(0)| −m2|u(T + 1)| −m3

≥ ‖u‖p
+

σ,p(·) −K1‖u‖∞ −K ′,

where K ′ = MρT +m3. Since any norm on X is equivalent to ‖ ·‖σ,p(·), there exists
K ′′ such that

I(u) ≥ ‖u‖p
+

σ,p(·) −K
′′‖u‖σ,p(·) −K ′

≥ −K ′′‖u‖σ,p(·) −K ′

≥ −K ′′ −K ′ > −∞.
Therefore, I is bounded from below. Finally, we conclude that I is sequentially
lower semicontinuous, bounded from below and coercive on the real Banach space
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X. Thus, I attains its infimum at some u ∈ X. Using now Proposition 2.4 and
the Proposition 2.8, on obtains that the problem (1.1) has at least one solution on
X. �

4. Existence of classical solutions using mountain pass methods

In this section we are concerned with the existence of non trivial solutions to
problem (1.1). The main tool in obtaining such results will be [20, Theorem 3.2].

Theorem 4.1. Assume (H1)–(H5) hold. Also assume that λ1 > 0 and that there
exist constants θ > p+, K, M > 0 such that

(H6) j(0, 0) = 0;
(H7) j′(z, z) ≤ θj(z) +K,∀z ∈ D(j);
(H8) lim|t|→0 sup p(k)F (k,t)

|t|p(k) < λ1, for all k ∈ [|1, T |];
(H9) 0 < θF (k, t) ≤ tf(k, t) for all k ∈ [|1, T |] with |t| > M .

Then, there exists a non trivial solution u ∈ X to problem (1.1).

Proof. Step 1: We show that the functional I satisfying (H5) satisfies the (PS)
condition in the sense of Szulkin on (X, ‖ · ‖σ,p(·)). So, let {un} ⊂ X be a sequence
for which, I(un)→ c ∈ R and (2.6) hold, with εn → 0. For this purpose, since X is
a finite dimensional space, it is sufficient to prove that {un} is bounded. We may
assume that {un} ⊂ D(I) = D(J) and ‖un‖σ,p(·) > 1 for all n ∈ N. By (H7) and
(2.2), it follows that

J(v)− 1
θ
J ′(v; v) ≥ −K1, for all v ∈ D(J), (4.1)

with K1 = K
θ . Using the relation (H9), one deduces that for all n ∈ N,

T∑
k=1,|u(k)|>M

[θF (k, un(k))− un(k)f(k, un(k))] ≤ 0.

Consequently,

−Φ(un) +
1
θ
〈Φ′(un);un〉 =

1
θ

T∑
k=1

[θF (k, un(k))− un(k)f(k, un(k))]

=
1
θ

T∑
k=1,|un(k)|>M

[θF (k, un(k))− un(k)f(k, un(k))]

+
1
θ

T∑
k=1,|un(k)|≤M

[θF (k, un(k))− un(k)f(k, un(k))]

≤ 1
θ

T∑
k=1,|un(k)|≤M

[θF (k, un(k))− un(k)f(k, un(k))]

≤ 1
θ

T∑
k=1

max
|x|≤M

|θF (k, x)− xf(k;x)| =: C3,

where C3 is a positive constant. Therefore, one can write

− Φ(un) +
1
θ
〈Φ′(un);un〉 ≤ C3. (4.2)
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Since the real sequence (I(un))n∈N converges to the real number c, it is clear
that, there is a constant C4 > 0, such that

|I(un)| ≤ C4, for all n ∈ N. (4.3)

Furthermore, setting v = un + sun in (2.6), dividing by s > 0 and letting s→ 0+,
one obtains

〈Φ′(un);un〉+ 〈ϕ′(un);un〉+ J ′(un;un) ≥ −εn‖un‖ for all n ∈ N. (4.4)

Using (4.3) and (4.4), we deduce that

C4 +
εn
θ
‖un‖σ,p(·)

≥ Φ(un) + ϕ(un) + J(un) +
εn
θ
‖un‖σ,p(·)

≥ Φ(un)− 1
θ
〈Φ′(un);un〉+ ϕ(un)− 1

θ
〈ϕ′(un);un〉+ J(un)− 1

θ
J ′(un;un)

and by (4.1), (4.2) and (4.3), it follows that

K1 + C3 + C4 +
εn
θ
‖un‖σ,p(·) ≥ ϕ(un)− 1

θ
〈ϕ′(un);un〉,

while

ϕ(un)− 1
θ
〈ϕ′(un);un〉

=
T+1∑
k=1

A(k − 1,∆un(k − 1))− 1
θ

T+1∑
k=1

a(k − 1,∆un(k − 1))∆un(k − 1).

We use (H4) to obtain

ϕ(un)− 1
θ
〈ϕ′(un);un〉 ≥

(−1
θ

+
1
p+

) T+1∑
k=1

|∆un(k − 1)|p(k−1).

So,

K1 + C3 + C4 +
εn
θ
‖un‖σ,p ≥ (

−1
θ

+
1
p+

)
T+1∑
k=1

|∆un(k − 1)|p(k−1). (4.5)

Since

λ1 ≤
∑T+1
k=1

1
p(k−1) |∆u(k − 1)|p(k−1)∑T
k=1

1
p(k) |u(k)|p(k)

,

we have

λ1

T∑
k=1

1
p(k)
|u(k)|p(k) ≤

T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1).

Hence,

K1 + C3 + C4 +
εn
θ
‖un‖σ,p ≥ (

−1
θ

+
1
p+

)λ1

T∑
k=1

1
p(k)
|u(k)|p(k)

and, from Lemma 2.9, we deduce that

K1 + C3 + C4 +
εn
θ
‖un‖σ,p(·) ≥

(−1
θ

+
1
p+

)λ1

σ
‖u‖p

−

σ,p(·).

Moreover, θ > p+. Then, we infer that the sequence (un)n∈N is bounded.
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Step 2: We show that I has a “mountain pass geometry”. From (H6), it is clear
that

I(0) = Φ(0) + ϕ(0) + J(0) = 0.

Using (H8), we have

lim
|u|→0

sup
p(k)F (k, u(k))
|u(k)|p(k)

< λ1.

This leads to the existence of ε, β > 0 such that

F (k, t) <
λ1 − ε
p(k)

|t|p(k) with |t| < β.

Consequently,

Φ(u) ≥ −(λ1 − ε)
T∑
k=1

1
p(k)
|u(k)|p(k), (4.6)

for all u ∈ X −{0}, u(0) = u(T + 1) and |u| < β. Using again hypothesis (H4) and
(4.6), we can write

Φ(u) + ϕ(u) ≥ −(λ1 − ε)
T∑
k=1

1
p(k)
|u(k)|p(k) +

T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1)

≥ ε
T∑
k=1

1
p(k)
|u(k)|p(k).

According to (4.6) and (H6) we have J(u) = j(u(0), u(T + 1)) = j(0, 0) = 0.
Therefore, for β < 1,

Φ(u) + ϕ(u) + J(u) ≥ ε
T∑
k=1

1
p(k)
|u(k)|p(k) ≥ ε

σ
‖u‖p

+

σ,p(·).

Hence, choosing ‖u‖p
+

σ,p(·) = β which is equivalent to ‖u‖σ,p(·) = β
1

p+ , then I(u) ≥ α
with α = ε

σβ.
Coming back to relation (H9) and taking |u| big enough, we have

f(k, u(k))
F (k, u(k))

≥ θ

u
.

So, F (k, u(k)) ≥ cuθ for |u| big enough. Thus, F (k, u(k)) ≥ cuθ −K, for all u > 0.
One can use (H1) to say that

A(k, ξ) =
∫ ξ

0

a(k, λ)dλ.

Using (H2), we have the existence of a real C1 > 0 such that

|a(k, ξ)| 6 C1(1 + |ξ|p(k)−1) for all k ∈ [|0, T |] and all ξ ∈ R.

Therefore, ∫ ξ

0

|a(k, λ)|dλ ≤ C1

∫ ξ

0

(1 + |λ|p(k)−1)dλ

≤ C1[λ]ξ0 + C1[
λp(k)

p(k)
]ξ0
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≤ C1|ξ|+ C1
|ξ|p(k)

p(k)
.

One deduces that

ϕ(u) =
T+1∑
k=1

A(k − 1,∆u(k − 1))

≤ C1

T+1∑
k=1

|∆u(k − 1)|+ C1

T+1∑
k=1

|∆u(k − 1)|p(k)

p(k)
.

Let u0 ∈ X − {0} be such that u0(0) = u0(T + 1) = 0 and ‖u0‖σ;p(·) > 1. From
(H6), we have that J(su0) = 0 for all s ∈ R. Then

I(su0) = Φ(su0) + ϕ(su0) + J(su0)

= −
T∑
k=1

F (k, su0(k)) +
T+1∑
k=1

A(k − 1,∆su0(k − 1)) + 0

≤
T∑
k=1

(K − c|su0(k)|θ) +
T+1∑
k=1

C1

(
|s∆u0(k − 1)|+ |s∆u0(k − 1)|p(k)

p(k)

)
= TK +

T∑
k=1

[
C ′1|su0(k)| − c|su0(k)|θ

]
+
C ′2
σ
‖su0‖p

+

σ,p(·)

≤ TK + C ′′1 ‖su0‖∞ − csθ‖u0‖θ∞ + C ′′2 s
p+‖u0‖∞ → −∞

as s → +∞ because θ > p+. Hence, we can choose s large enough such that
I(su0) ≤ 0 and ‖su0‖σ,p(·) > β. Using [20, Theorem 3.2] deduce that problem (1.1)
has at least one non trivial solution. �
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77-109.

[21] Tian, Y.; Ge, W.; The existence of solutions for a second-order discrete Neumann problem

with a p-Laplacian. J. Appl.Math. Comput. 26 (2008), 333-340.

Bila Adolphe Kyelem
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