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CENTRES AND LIMIT CYCLES FOR AN EXTENDED KUKLES
SYSTEM

JOE M. HILL, NOEL G. LLOYD, JANE M. PEARSON

ABSTRACT. We present conditions for the origin to be a centre for a class
of cubic systems. Some of the centre conditions are determined by finding
complicated invariant functions. We also investigate the coexistence of fine
foci and the simultaneous bifurcation of limit cycles from them.

1. INTRODUCTION

In this paper we establish some properties of the cubic differential system
&= P(z,y) = Az +y + kay,

U =Q(z,y) = —x + My + a12® + asxy + azy® + asx® + asx®y + agry® + ary®,

(1.1)
where the a; and k are real. We first became interested in this class of systems when
considering transformations to generalised Liénard form [I]. It was also brought to
our attention that a system used to model predator-prey interactions with intrat-
rophic predation could be transformed so that it is an example of a system of type
(1.1). We investigated this particular case of system in [7]. In [6] we found
conditions for the origin to be an isochronous centre for system ([1.1)).

When A\ = 0 the origin is said to be a fine focus; then system s derived from
a second order scalar equation and it has an invariant line kxz = —1. When k& = 0,
is often referred to as the Kukles system; this system has been extensively
studied, see [2], [12] and [I4] for example.

Here we derive conditions for the origin to be a centre for system and
consider the simultaneous bifurcation of limit cycles from several fine foci. We shall
see, for example, that at most two fine foci of can coexist; when one fine focus
is of order one, the other is of maximum order six and when one fine focus is of
order two, the other is of maximum order two. We show that in the latter case a
large amplitude limit cycle can surround the two fine foci and conjecture that this
is also true in the former.

We obtain necessary conditions for a critical point to be a centre for by
calculating the focal values, which are polynomials in the coefficients k, a;. There is
a function V, analytic in a neighbourhood of the origin, such that its rate of change
along orbits, V, is of the form nyr? +n4r* +- - -, where 72 = 22 +y2. The 7y; are the
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focal values and the origin is a centre if, and only if, they are all zero. The relations
My =My = --- = 15 = 0 are used to eliminate some of the variables from 72;2.
This reduced focal value 72542, with strictly positive factors removed, is known as
the Liapunov quantity L(j). We note that L(0) = A. The circumstances under
which the calculated L(j) are zero yield possible centre conditions. The origin is a
fine focus of order j if L(i) =0fori=0,1,...,7—1 and L(j) # 0; at most j small
amplitude limit cycles can bifurcate from a fine focus of order j.

Various methods are used to prove the sufficiency of centre conditions; in this
paper we require three of them. The simplest is that the origin is a centre if
the system is symmetric in either axis, that is, it remains invariant under the
transformation (z,y,t) — (z, -y, —t) or (x,y,t) — (—z,y, —t). Another technique
which we employ involves a transformation of the system to Liénard form

=y, y=—f(2)y—g@) (1.2)
The relevant results are as follows; proofs can be found in [3].

Lemma 1.1. Consider system where f,g are analytic, g(0) = 0, xzg(x) > 0
for x #£0 and ¢g'(0) > 0. Let F(x) = fom f(w)du and G(z) = fogg g(p)du.
(i) The origin is a centre for system if and only if there is an analytic
function ® with ®(0) = 0 such that G(z) = ®(F(x)) in a neighbourhood of
z =0.
(ii) The origin is a centre for system if and only if there is a function z(x)
satisfying 2(0) = 0, 2/(0) < 0 such that F(z) = F(z) and G(z) = G(z).

The third approach, and the one which is of particular interest to us here, is the
possibility of finding an integrating factor. If the origin is a critical point of focus
type then it is a centre if there is a function D # 0 such that

9] 9]

o (DP) + ay (DQ) =0 (1.3)
in a neighbourhood of the origin. Such a function is called an integrating factor
or Dulac function. The existence of the function D means the system is integrable
and the origin is a centre.

We make a systematic search for an integrating factor of the form D = II7_, C*¢,
where each C; is an invariant algebraic function. In this context an invariant func-
tion is such that C; = C;L;, where L;, known as the cofactor of Cj, is of degree one
less than that of the system. We require

%(DP)—&-%(DQ) =D(Py+Qy+a1L1+---+a,L,) =0. (1.4)
The «; and the coefficients in the C;, L; are functions of the coefficients &, a;. We
note that the C;, L;, a; may be complex; a real Dulac function is then constructed
from these together with their conjugates. In any given situation there may well
be no invariant functions and even though there is an upper bound for the possible
degree of an invariant curve it is not known how to determine this bound. Darboux
[5] showed that if n > $m(m+1)+2 invariant functions exist, where m is the degree
of the system, then the n functions can be combined to form a first integral. In
practice we find that fewer such functions are required. As will be apparent later,
finding such functions is non-trivial. However it is a relatively straightforward
matter to confirm that the functions found actually satisfy the relation .
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These techniques for finding centre conditions are well established but the com-
putational problems encountered are often formidable. We are constantly pushing
the available software to its limits. The reduction of the focal values to obtain the
Liapunov quantities is one area which causes difficulties and here we demonstrate
the usefulness of our suite of programs INVAR [I1] in the search for invariant func-
tions. We are unable to complete the reduction the focal values for to obtain
the conditions that are necessary for the origin to be a centre, but we can find
sufficient conditions by searching for invariant functions. We then try to determine
whether or not we have a complete set of conditions for the origin to be a centre.

The necessary and sufficient conditions for the origin to a centre for the Kukles
system are known; we summarise them in Theorem [I.2] We note that the condition
given in [8, Theorem 3.3], with az = 0, is covered by condition (v) of Theorem [1.2
In [9] it was conjectured that, when a7y # 0, the origin is a centre for the Kukles
system if and only if one of the conditions given in Theorems 2.1 or 2.2 therein is
satisfied. This was verified in [I0].

Theorem 1.2. Let A =k = 0. The origin is a centre for system if and only

if one of the following conditions holds:
()
(ii) a1 = a3 = a5 = a7 =0;

(iii) as = az(a1+as), as = —az(a1 +as3), (a1 +2a3)as+a3(ay1+az) =0, a7 = 0;

(iv) as+3ar +az(a; +az) =0, 9agas + 2a3 + 27arpu +9u? = 0, aga3 +asp = 0,
(Barp + p? + agal)as — 3aru? — aga3p = 0, where = 3ay + azas;

(v) as + 3a7 + az(ay + a3) = 0, 18asas — 27asar + Yasa? + Yasag + 2asa3 =
0, 27a4a1 + 4asas + 9a:f + 2a1a§ =0, 1861?L + 9a4a% + 2a4a§ + 2a§ =0,
18a4as + 9asay + 9asas + 9a3as — 27arar + Yagas + 2a3 = 0.

(12:(15:(17:0,'

For a proof of the above theorem, see [2] [8 9] [10].

This is one particular sub-class of system . In the next section we shall
present conditions that are necessary and sufficient for the origin to be a centre
for two other sub-classes of system ; one with a; = 0 and one with as = 0.
Presenting the results in this way allows for a clearer description of the general case
and gives us insight into the types of invariant functions we should seek for system
in general. In section 3 we derive sufficient conditions for the origin to be a
centre for system and in section 4 we investigate whether there are any other
conditions. The coexistence of fine foci and the bifurcation of small amplitude limit
cycles is considered in section 5, and in section 6 we investigate the possibility of
the existence of large amplitude limit cycles.

2. SUB-CLASSES a7 =0 AND ay =0

In this section we consider the sub-classes of system (1.1)) with az = 0 or ay = 0.
We find that the origin is a fine focus of maximum order six when a; = 0 and
maximum order seven when as = 0.

Theorem 2.1. Let A = ay = 0. The origin is a centre for system (L.1)) if and only
if one of the following conditions holds:

(1) a9 = a5 = a7 = O,‘

(ll) k201203:a5:a7:0;

o 1 _ 2 _ 1.2 _ 1 _ —0N-
(iii) k= —5a1, a3 = —3a1, ag = —3ai, a5 = —3a1az, ag = a7 = 0;
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(iv) k= —al, az = —%al, as =0, a5 = —%a1az, ag = a7y = 0;
(v) k= al, az = %al, ay = —ia%, as = —ialag, ag = a7y =0;
(vi) k= al, a3 = —ay, as = ag = a7 = 0;
(vil) a4 = CL3(CL1 +as), as = —as(a1 +as), (a1 +2a3)as —as(k —az)(a1 +az) =0,
ay = 0

(viii) k = —(a1 + a3), ag = a1(a1 + a3), a5 = —az(a; + az), (3a1 + 2a3)as +
a%(al + CL3) =0, a7 =0.

Proof. Calculation of the focal values for system with a7 = 0, up to 114, and
their reduction to give the corresponding Liapunov quantities is routine. We do
not present the details here. We find that L(0) = L(1) = --- = L(6) = 0 only if
one of the conditions of Theorem holds. The sufficiency of these conditions is
confirmed as follows.

When (i) holds the system is invariant under the transformation (z,y,t) —
(z,—y,—t); the system is symmetric in the z-axis, hence the origin is a centre.
Similarly, when condition (ii) holds the system is invariant under the transformation
(z,y,t) — (—z,y,—t); the system is symmetric in the y-axis, so the origin is a
centre.

Conditions (iii), (iv), (v) and (vi) have ag = a7 = 0, in which case system
is of the form

b= 1+kx)y, §=2(—1+ax+azr?)+z(az +asz)y + azy®. (2.1)

If £ = 0 in these cases then condition (ii) is satisfied. When k # 0, we are able
to transform (2.1) to a Liénard system. The required transformation (see [3]) is
(z,y,t) — (z, (1 + kz)y¥(z),7), where

dt =(1+kx)~ exp(—/xa (1+ks)—1ds) = (1+ka)" 1%
dT 0 3 '

Then system (2.1) becomes a system of the form (|1.2]) with

fl@) = —x(ag + asx)(1 + kx)flf%, g(z) = x(1 — a1 — agx?®)(1 + kx)flf%.
We compute the integrals of f, g and denote these by F, G respectively. For
condition (iii) we have

F(z) = Z—;(g—( )4/3(a1x—3)2),

G(r) = —%(3—# ( 2 2)2/3(a1x—3)).

aj ai1xr —

2
a1r — 2

Let v = a1z — 2 and v3 = a1z — 2 then

4/3
2/a2 2.3 2

F(z) - F(z) = a%u4v4(v—u)(u v+ u® —u? —0?)Q,
2%CL2

where

Q=u*® +utv= (a1 —2)(a1z — 2))2/3 + (a1 — 2)1/3 + (@12 — 2)1/3 .
When z =2=0,Q, =Q, = —273q,. By the Implicit Function Theorem there is
z(z) with 2’'(z) < 0 such that F(z) = F(z(x)), G(x) = G(2(z)). The origin is a
centre by Lemma (ii).
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Similarly for condition (iv) we find

F(z) = @(9—((a1x_3)2), G(m):—%(9+M)

© daf 1-— alx)2/3

and
Q= ((1-mz) (1 -a)" (1 -an) + (1 -0b) —2

When condition (v) holds
2

as
F(z)=-8——0,
(z) (a1z — 4)?
2
G(z) = 8(3774)6 (atz* — 24ai2® + 240aiz® — 768a;z + 768)
a1 —

and Q = a12z — 2(x + z). For condition (vi)

2
as
Flz)=-2—"—=
(z) (ayr —2)2’
Glr) = 74( 2ag7t + 4a22? — 8ayz +4)
(a1x —2)4

and Q = ajxzz — ¢ — z. In each case Q is a common factor of F(z) — F(z) and
G(z) — G(z); the origin is a centre by Lemma (ii).

To prove the sufficiency of the remaining conditions we use INVAR, to help us
find appropriate invariant functions and to build Dulac functions. Confirmation
that the functions obtained are indeed Dulac functions is routine. When condition
(vii) holds we find the Dulac function

D = (1+ kx)*e*2*C3,

where
(a2 — 2y)(ask — ag) — kv

C=l+awr-y, o=

k2y ’
_ag(az —2y) _ap
ay = ————", az=-——,
ky v

and v satisfies v2 — ayy — a3 + ask — ag = 0. Hence, when kv # 0, the origin is
a centre. When k = 0 condition (iii) of Theorem holds. When v = 0, then
ag = az(k —a3z) = 0 and the system can be transformed to Liénard form with
f(z) = —azg(x); the origin is a centre by Lemma (i).
For condition (viii) we find the Dulac function
D = (1 + kx)*1e*2*C3,

where

C’:lfala:+%yfa4x2+%xy,

v Y
=1 a=war+2), az=7,

and v is a root of a3y? — (3a; + 2a3)a3(y + 1) = 0. If v # 0, the origin is a centre.
When 7 = 0, then one of conditions (i), (ii) or (vii) is satisfied. This completes the
proof. [
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When none of the conditions of Theorem holds and L(i) = 0, for i =
0,1,2,...,5, then L(6) # 0; the origin is then a fine focus of maximum order
six and at most six small amplitude limit cycles can be bifurcated from the origin.

We now consider the sub-class of system with ao = 0 and aga; # 0. We
exclude the possibility that az = 0 because, when as = a3 = 0, the origin is a centre
for system only if a7 = 0.

Theorem 2.2. Let A = ay = 0, with agsa; # 0. The origin is a centre for system
if and only if one of the following conditions holds:
(i) ax = 0, k = —(2a;1 + a3), (a1 + 2a3)as + a?(a; + a3) = 0, a5 = —3ar,
(a1+2a3)as—2a;1(a1+a3)(2a1+a3) = 0, 2(a1+2a3)?*a?+a3(a1+a3)?(3a; +
2&3) = O,’
(ii) ae = 0, k = —(a1 + as), 2asaq + a1(a1 + as)(a1 + 3a3) = 0, a5 = —3ar,
2azas — ay(a; + az)(3a; + 5az) = 0, 4a2a2 + a;(a; + az)*(a; + 2a3) = 0.

Proof. When as = 0 and aszar # 0 we find that L(0) = L(1) = --- = L(7) = 0 only
if one of the conditions of Theorem [2.2 holds. The sufficiency of these conditions is
confirmed by constructing integrating factors from invariant functions. Again we
use INVAR to find these functions. When condition (i) holds there exists a Dulac
function

D=(1+ kx)o‘leaﬂcﬁg,

where
a?(ay + a3)
C=1- e y?
a1x + (2a1 n a3) xr° + arxy,
_ (a1 +a3)2 o — _al((ll +Cl3)
! (20,1 —+ (2',3)27 2 (20,1 —+ a3) ’

and hence the origin is a centre. We note that when 2a; 4+ a3 = 0, then k = 0 and
condition (v) of Theorem is satisfied.

The Dulac function for condition (ii) is somewhat more complicated. It consists
of an invariant line, an invariant conic, an invariant degree three curve and an
invariant exponential. We have

D = (1 + kx)™e*2*Cy2C, (2.2)
with

2asa7 kt(2a3 — k) o 2a1a7 k*r
k2 y + 2&3 . k d + 2(13 v
Fl FQ 2 ’TFg F4 2

——— T — VY +
12a3y2wv 7

C’1=1—a1x—|-

Cy =1+

Y 72a§’y2w2vx 8a§’yzwvxy * 12a§72Uy
7(2a3 — k)T s Ty
144a3y?w?v v 48a§72wzvx2y * 36a3y2wv

_ 9a3k?p®g + 3k p®1y — azPoy? — 6ask’>P3y® — da3k? py* (D4 — azary?)
B —48a3v?w?(3azar + k)
_ 9ask®pFy + 3k pF17y + asTFyy? — 6ask®TF3y® — a3k py* (Fy — asazy?)
B 48aiy2w?(3azar + k27)

6asary 3k2p

 3k2p + dagary’ = 3k2p + dagary’

zy® + wy?,

aq

)

Qa2

9

a3 =
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where p = a% — k?, 7 = a3z + k and v = 4a3a;y — 3k3p. Here , w are roots of
4a3y* — 36a1as(a? + araz — a3)y* + 81a?k* = 0,
64aSw* — 16a3a3 (a% + araz — a%)
x (af — 4aias — 22a}aj — 20a1a3 + a3)w’® + afk'? = 0,
respectively and the I';, ®; and F; are as given in the Appendix.
To complete the proof we consider what happens when any of the denominators

in the above are zero. When kyw = 0, then a7 = 0. When v = 0 then either a7y =0

or a3 + 7Tajaz + 8a3 = 0. Let a; = %(\/ﬁ — T)as. We find a Dulac function that

consists of an invariant exponential function and three invariant lines. We have

D = (1 + kx)e™*Cy2C5*,

with
4a3 + 9%)(59* + 329a39? — 4a}
01:1+(a3—|— )(59% + 329a3 a?’)x—ﬂy,
2192a35
9P, 92Dy
C = 1 _— — =
2T 6adost ™ M T daydy
12433 1294303
Qo = — ) Q3 =
w nw
where § = 812a3 + 3392, 8 = 4a} + 39a39? — 739, w = 16a$ — 301a3¥* + 595,
4a33

9(156a4 + 9aZ9? — 59*)’
¥ is a root of (16a3 — 3243092 — ¥*)(4aj — 103a39? — ¥*) = 0 and @4, Do, P3 are
polynomials of degree six in ag, 9.

When (3azar + k>v)(3k%p + 4azary) = 0 then either a; = 0 or 2a; + 3az = 0.

Let a3 = —2as. Then there exists a Dulac function

2
D = (1+kx)C2Cyt

where
3 4a
Cr =1+ Sazz+ —y,
4 as
3 8 9
Cy=1+ 503% — ai;y + Eang — 3arzy.
This completes the proof. ([l

When none of the conditions of Theorem holds and L(i) = 0, for i =
0,1,2,...,6, then L(7) # 0; the origin is a fine focus of maximum order seven,
at most seven small amplitude limit cycles can be bifurcated from the origin.

3. SUFFICIENT CENTRE CONDITIONS

Now we return to the full system and derive some sufficient conditions for the
origin to be a centre. We have obtained the necessary and sufficient conditions
for the origin to be a centre for three sub-classes of system ; with k£ = 0,
with as = 0 or with a7 = 0. In these sub-classes we determined possible centre
conditions by considering the focal values and then proved that the conditions
we had found were sufficient. As the reduction of the focal values in the general



8 J. M. HILL, N. G. LLOYD, J. M. PEARSON EJDE-2007/119

case requires the calculation of some resultants that cannot be obtained with the
currently available hardware and software we adopt a different approach. We use
the knowledge gained from consideration of the sub-classes to give us an insight into
the probable centre conditions in the general case. We search for invariant functions
and corresponding integrating factors for the general system without introducing
a condition for which the origin may be a centre. The relationships between the
coefficients in system that must be satisfied to ensure that C; = C;L; and
holds, for D =II* ;C**, are sufficient conditions for the origin to be a centre.
We find three sufficient conditions for the origin to be a centre for system ,
with kasar # 0, using this approach.

Knowledge gained from the sub-classes suggests the type of invariant functions
we should seek in order to determine integrating factors. In particular, for the
Kukles system and the sub-class with a7 = 0 combinations of invariant exponential
functions, invariant lines and invariant conics are required. The Dulac functions for
the class with as = 0 are more complicated and include invariant lines, conics and
cubic functions. The line kz = —1 is invariant with respect to system , with
A = 0, and is included in each Dulac function we seek in the general case. Where
the degrees of the equations in the system are not equal it is often found that an
exponential function is also required and this is so in all cases here.

We search for functions that are invariant with respect to system (L.1). Both
f(x) = e* and g(xz) = kx+1 are invariant without any constraints on the coefficients
a;, k. Next we look for functions that are invariant only when some relationships
between the coefficients are satisfied. For the three sub-classes we knew from the
reduction of the focal values what these relationships were. Here we aim to find
the relationships by satisfying C; = C;L; and equation .

We start with the simplest invariant curve, namely a line. Let C = 14c¢igz+co19,
with cofactor L = miox + mo1y + maox? + miizy + meay®. We have ci19 = mo1
and cg; = —mo; then seven equations must be satisfied for C' = 0 to be invariant
with respect to (1.I). We assume that mio # 0, otherwise we recover the line
kx = —1. We determine mq1, mgg, mMm11, Mo2 in terms of mig and the a;, k. There
are three remaining equations which must be satisfied. At this stage we try to build
a Dulac function using this line together with f and g. Five additional equations
must hold if D = g f*2C*3 is a Dulac function that satisfies . If a7 # 0, we
must have a3 = —3. Then mqg = %ag and the other «; are given by two of these
equations. We have determined all the coefficients of C' and L, and the «;. The
four relationships between the coefficients that must hold to satisfy the remaining
equations are those of condition (i) of Theorem below.

In a similar manner we search for invariant conics. Let C = 1 + cioz + co1y +
Co0T? + 112y + cooy?, with cofactor L as above. Again c1g = mg1 and co1 = —mip.
Twelve equations in the remaining eight coefficients of the conic and its cofactor
must be satisfied if C' = 0 is invariant with respect to system . Five additional
equations must hold if D = ¢g* f*2(C*3 is a Dulac function that satisfies .
Consideration of all possible situations in which the conic does not reduce to a line,
or become the product of two lines, leads us to conclude that either cgo = 0 or

moz = 2a7. Let cgo = 0. If ay # 0, then a3 = —3, the coefficients of the cofactor
_ 1 _ _ 1 _ 2 2 2
are mig = 3G2,Mo1 = —a1,M20 = 305,M11 = —a7 — ark — 2a7 — 5a3 and C,

a1, a9 are as given in the proof of condition (ii) of Theorem below. As two
of the equations are linearly dependent in this situation this leaves five equations
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in the coefficients k,a; that must be satisfied if C = CL and holds. These
equations lead to precisely the relationships of condition (ii) of Theorem When
co2 # 0 and mge = 2a7 these same five equations must be satisfied together with
an additional equation; this is a specific instance of condition (ii).

We know that, when as = 0, there is a Dulac function which consists of powers
of f,g, an invariant conic and an invariant cubic curve. We search for this type of
Dulac function in the general case. Again the linear coefficients in each invariant
curve can be given in terms of the linear coefficients in the corresponding cofactor.
We have thirty-five equations in the twenty-four unknowns. In this instance the
invariant conic in which cgo # 0 and mgs = 2ay is used. We determine all the coef-
ficients of the invariant conic and its cofactor, in terms of the coefficients of system
, from the twelve equations that must be satisfied for the conic to be invariant
with respect to . This leaves four relationships between the coefficients in
that must hold.

We then proceed to determine the coefficients of the cubic function and its co-
factor. Here there are eighteen equations in twelve unknowns. We eliminate all but
two of the unknowns, namely the coefficient of x in the cofactor (say ) and the
coefficient of y3 in the invariant cubic (say w). One of the remaining equations is
quadratic in v and independent of w. Attempts to eliminate v from all remaining
equations using this equation lead to expressions being generated that result in
stack overflow. We turn our attention to the five equations that must be satisfied
if holds. We find that if a7 # 0, then g = —3 (g + 1) and with a4 in terms
of v, w and the coefficients k, a; we must have

(ar1a2 + asas + as + 4ar)(ara2 + asas + as + 3a7)(aras + a% —ay4) =0.

The two remaining equations that must hold to satisfy give oy, an. We cal-
culate that ny = ajas + asaz + a5 + 3ay; n4 = 0 is necessary for the origin to be
a centre. This, with the four relationships from the requirement for the conic to
be invariant, yield condition (iii) of Theorem below. We use these relation-
ships to replace k, a4, as, ag, a7 in the remaining equations. We note that we have
introduced another unknown, r, where 72 = a3 + 4a3 — 4k>.

We use the quadratic in v mentioned above to eliminate r and, for consistency,
we equate this expression for r with \/a3 + 4a3 — 4k?. This consistency condition
has

\% :(ag + 4a§)’y4 — 3a2(a§ + 4a§)73

3 2 2 2 2 2 3_ .2 2\ 2
—9(4dajas — 2aja; + 4aja; — dayazas — daray — azaz)y

— 54ayas(ay + as)’y + 81a?(ay + az)?

as a factor. We know from consideration of a specific example that this factor
will ultimately lead to an appropriate Dulac function. This is the only remaining
equation that is independent of w.

We factorise each of the equations and remove any factors that involve only the
remaining coefficients a1, as,as; we are able to show that such factors being zero
lead to specific instances of conditions that are already known to us. Other than
V' = 0, the simplest of the remaining equations has over 7000 terms. We use a
polynomial remainder sequence to eliminate v (see Section 4 for more details on
polynomial remainder sequences). The later stages can only be completed by further
simplifying the expressions by replacing a; by —(k + as), a3 + 4a3 by t and scaling
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such that & = 1. For example, at the second stage of the polynomial remainder
sequence, where a quadratic in v is produced with approximately 30000 terms, the
size of the expressions can be almost halved by these changes of variable. We note
however that in order to check for factors that can be removed we need to replace
t by a3 + 4a? before attempting the factorisation. The calculations are repetitive,
but formidable. In some cases, in order to multiply two expressions together, we
have to split each expression into smaller units and multiply each unit then sum the
results. Near the final stage we produce an expression with 191690 terms, which
we need to factorise. Fortunately we can predict that one of the factors will be the
coefficient of 72 at the quadratic stage of the polynomial remainder sequence, an
expression with 9411 terms. There are four other factors, one of which is

W =(a3 + 4a2)3w* + ag(a3 + 4a3)*(a3 + Ta3ai — 6a3k* + 12a3 — 24a3k>
— 6azk® + 6kM)w® + (—aSa$ + 6aSazk? 4 6aSask® — 3aSaik* — 6aSask®
—aSk® —12a3a5 + 72a5a5k? + 60a5a5k> — 69a5a3k* — 90aza3k®
+ 9a3a2kS + 36a5a3k” + 6a3k® — 48a2al’ + 288a2aSk? + 192a2a%k?
— 408a3a$k* — 432a3a5k® + 120a3a3k® + 276a3a3k" + T2a3a3k®
— 12a2a3k® — 64a3? + 384a3°k* + 192a5k> — 720a5k* — 672a5k5
+ 272a5k° + 528a3k™ + 192a3k% + 16a3k")w?
= axk" (a3 + k)3(6a3a2 + 3a3ask — a3k? + 24a3 + 12a3k — 36a3k>
— 24azk®)w + k'*(ag + k)°.

We can show that when V' = W = 0 all remaining equations are satisfied. We have
found an appropriate Dulac function and condition (iii) of T heorem is sufficient
for the origin to be a centre.

Theorem 3.1. Let A\ = 0. The origin is a centre for system (L.1)) if one of the
following conditions holds:

(i) a5 = —as(a1 + a3) — 3az,
_ —2a3 — 9a3a3 + 9a3ask — 8lazazay + 27azark — 162a?
ag = 92 :
— (—2a3 — 9a3a3 + 9a3azk — bdasazar + 27azark — 81a2)y?
4= 2a$ ’
o) = (—4a3 — 9a3a3 + 9a3ask — 5dasazar + 27azark — 81a2)y

5 )
2a5

where v = asas + 3a7 and ay # 0;
(ii) as = agk‘ — 3@7, k= —((Ll + Cbg),

B k2(azk — agr)

ar= a3 +4a3
o — k(a3(ay + 3as) — 4arasz(3a; + 5ag)) — 3azk?r
" 2(a3 + 4a3) ’
u k(a3(a; — a3) + 4ajaz(ar + 3az)) + azk?r
4=

2(a3 + 4a3) ’
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where r* = a3 + 4a3 — 4k* and a3 + 4a3 # 0;

(111) as = 7a2(al + a3) — 30,7,
v — 9a2(ay + k) — 2a3(a1 + 2a3) + 9a4(3a; + 2k)
T 12a5 ’
" 9(18aske — 2ara3u + a1 (a3 (p + 2k) + as (3 + 4k) + arke)) — 8a3é
6 =

36a3 ’
9(16a3 + (9a; + 6k)?)a? + 2p(27a? + 18a1k + 4a3)as + a3p? =0,

9@@1+2kﬂ&£g%9u@a1+2k»ai+2(&uﬁda1+kQ@a1+2k)

+ 36a1a3(2a; + k) (a1 + k) — 4a3(ay + 2a3))a4
+ aip(2a3(k — az) + 9aip(ar + k)) =0,

wherep=9a%+9a1k+2a§,u:2a1—|—a3+k, e =az+k, 5=a§+9a4
and as # 0.

Proof. When either condition (i) or (ii) holds we find a Dulac function which con-
sists of the line kxz = —1, an exponential function and either another line or a
conic. The Dulac function then takes the form D = (1 + kx)®te*2*C~3, where C
and the «; are given below for each condition. For condition (iii) an invariant line,
an invariant conic and an invariant cubic together with an exponential function are
needed.

When condition (i) holds, and & # 0, we find

(asas + 3a7)m _az
a9 3 ’
a1 = (2a3 + Sdasark — 81a2 + 9(a2 — k*)a3)/9a3k?,
o = (—2a3 + 2Tagark + 81a2 + 9(k — az)azas)/9a3k.

When k = 0, condition (iv) of Theorem holds.
For condition (ii) we find

C=1+

a9 2 asg
C=1—ax— Zy—ax” — -y,
1 3y 4 3 Y

a1 = (9a3 4 2a3 — 6ask + 18ay + 6ag — 3k?)/3k?,
oy = —(9a} + a1k + 2a3 + 18ay + 6ag) /3k,

with k # 0. When k = 0, condition (v) of Theorem holds.

The Dulac function required when condition (iii) holds is by some way the most
complicated we have encountered. Here, in addition to the invariant exponential
function and the line kx = —1, we require an invariant conic, ¢y = 0, and an
invariant cubic, Cy = 0. The Dulac function is

D = (1 + kx)*e*2*C3C5™.

The invariant curves are not of high degree but have thousands of terms, and the
powers «; are non-trivial. The expressions are too lengthy to be given here. We
note that when ay = 0, condition (iii) becomes condition (ii) of Theorem and
the Dulac function reduces to that of equation . O
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4. FOCAL VALUES

Having established a set of sufficient conditions for the origin to be a centre for
system with kagar # 0 we endeavour to ascertain if we have found the nec-
essary conditions. If we could find a basis for the focal values for system we
would be able to determine the necessary and sufficient conditions for the origin
to be a centre. However the computations soon become too large for the currently
available software and hardware systems. We reduce the focal values as far as is
possible and, by using examples, determine whether or not the sufficient conditions
we have found are indeed the only conditions for the origin to be a centre. We con-
jecture that the conditions given in Theorem are both necessary and sufficient
for the origin to be a centre for system (L.1J).

We calculate the focal values up to 716 and in order to simplify them we set
a; = m — az. We assume throughout this section that kasa; # 0. We aim to
establish under what conditions the L(7) are zero simultaneously. We have

L(1) = aam + a5 + 3ar.
Let a5 = —agm — 3a7. Then L(1) =0 and

L(2) = Aag + B,
where
A = as(ag +m) — 3ay
and
B=— 2a§a7 + 2a2a§m — asasay — 3asazskm — Sasasm? + 2asalk

+ Basasm + 6asarm — Yasar — Yazkm — 15a7m?>.
Assume that A # 0 and let ag = —B/A. Then
L(3) = My + Miyas + Maj,
L(4) = No + Nyas + Naaj + Nsaj,
L(5) = Py + Piay + Pya3 + P3a3 + Pyaj,
L(6) = Qo + Q1a4 + Q203 + Q34 + Quaj + Qsal,

where the M;, N;, P;, Q; are polynomials in k, a1, as, as, ay.

In this instance calculating resultants to eliminate a4 is not feasible because of
the degrees to which the variables occur and the number of terms in the polyno-
mials involved. We employ a polynomial remainder sequence approach, the main
advantage being that we can work with the individual coefficients of the variable
being eliminated rather than the entire polynomial. Also factors of the reduced
polynomials can be removed at each stage in the process and some such factors can
be predicted. We use the following result to establish what these factors are.

Lemma 4.1. Suppose we have two univariate polynomials ay,as. We can deter-
mine a sequence of polynomials as, ..., a;, of decreasing degree, such that

1+1 .
i1, 05) = Biy1041; 1= 2,

. i
remainder(e;*
where 0; is the difference in degrees between a; and ;1 1; €; is the leading coefficient
5i_ 1 .. .
ofag; B3 = 1,041 = ei;12+ . Hence we have that 8;11 divides the pseudo remainder
of a;_1 and ay.
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The Proof of the above lemma can be found in [4].
Assume that My # 0. Let a3 = —(Mo + Myay)/Ma such that L(3) = 0. Then

L(4) = A%(po + pras),
L(5) = A*(ny + v1a4),
L(G) = A4(7'0 =+ T1a4),

where the p;,v;, 7; are polynomials in m, as, as, a7, k. In particular pg, p; are poly-
nomials with 936,654 terms respectively.
Assume that p; # 0 and let ag = —pg/p1. Then

L(3) = M3 A%a7f Q,
L(5) = M} Aa7F T,
L(6) = M3 Aazf O,
where
I = — 8laya?k — 54a3azark — 9a3aik + 243a3 4 12a5a;
+ 2a5a; + 243a2a3a§ + 4a5az + 81a§a§a7 + 9a§a§

and Q, T, ® are polynomials in m, as, as, a7.
When F = 0, the focal values 7sg, ..., 714 have a common factor

U =2a5a2 + 2aSay + 12a5aza7 + 9asas — 9asask + 18a3a? + 108a3a3ar

— 8la3a3ark + 486a3a3a2 — 243a3aza2k + 972aza3a3 — 243aza3k + 729a3.

Let
(—4a2 — 9a3a3 + 9a3aszk — Sdasazar + 27azark — 81a2)y
a = - )
! 2a3
(—2a3 — 9a3a2 + 9a3ask — 5dazazar + 2Tazark — 81a2)y?
a4 = 3
2a$

where v = asas + 3a7. Then F = ¥ =0 and

—2a3 — 9a%a3 + 9a3azk — 8lagazar + 27azark — 162a2
9a3 '

These, together with a5 = —asm — 3ay, are condition (i) of Theorem the origin
is a centre for system . We note that in the special case when A = B = 0 this
condition is still satisfied and there are no other conditions with kasa; # 0.

The polynomials 2,T", ® have 2294, 2895 and 7674 terms respectively. The de-
grees to which each of the remaining variables occur in 2, ', ® are as shown in the
following table:

ag —

as a3 m ay k
Q12 13 19 11 11
r{13 14 20 12 12
® |18 19 25 15 16

Clearly any further progress in the reduction of the focal values is going to be
difficult, if not impossible, but we note that @ = I' = ® = 0 if either of the
conditions (ii) or (iii) of Theorem [3.1] holds.

Suppose that we could calculate the resultants of Q, " and €2, ® with respect to
a3. Any common factor of the leading coefficients of a3 in 2, I', ® will be a factor
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of the resultants, but this common factor being zero may not be sufficient for the
vanishing of the polynomials. We have that asarzm(k + m) is such a factor. In
particular, when k = —m, we find

Y1 = (a2 + 4a2)a? + 2aom>ar + aym*(ay + 2a3)

is a common factor of 2, I' and ®. Let

3ar — aym*(ar + 2a3)

2 2
as + 4az

—2aom

w=a?= .
Then L(3) = qo + qra7. Assume ¢ # 0 and let a; = —qo/q1. For consistency we
must have T = ¢?w — ¢ = 0. We find

T, = (a% +4a§)ai+ (4ayas(ar +3as) —i—a%(al —ag))ma4—|—a1m2(a1(a1 +3a3)? —a%ag)

is a common factor of L(4) and Y. Now k = —m, a5 = —asm — 3ay, ag = —B/A,
T, = Ty =0 is precisely condition (iii) of Theorem the origin is a centre.

We have seen how conditions (i) and (iii) of Theorem [3.1|emerge from the reduc-
tion of the focal values. However we are unable to locate condition (ii) by a similar
argument. It is possible that conditions (ii) and (iii) are specific instances of more
general conditions. We show that this is not the case by considering a particular
example. Each of these conditions has five relationships between the eight coeffi-
cients a;, k. We can choose values for three of the variables without imposing new
relationships.

Let a; =1, as =1, az = —2. Now Q,I', ® are polynomials in ar, k, and a4, as,
ag are given in terms of ar, k also. Let R(f,g,x) denote the resultant of f and g
with respect to = and # represent a (large) integer. We calculate resultants with
respect to a7 and find

R(Q,T,a7) = #(k —1)3(2k — 3)°(k* + 6k 4 10)*¢ K, Ko,
R(Q,®,a7) = #(k — 1)3(2k — 3)*(k? + 6k 4 10)°¢ K K3,

where ¢ = 162k 4 152k% — 28k — 84 and K, Ky, K3 are irreducible polynomials
of degrees 52,64, 95 in k, respectively. When K; = 0, then py = p; = 0 and when
2k — 3 = 0, then a7 = 0; both situations are excluded under current assumptions.
The leading coefficients of a7 in Q, T, ® have k2 + 6k + 10, which is positive definite,
as a common factor. For the general case this factor is a3 + (a; — a3 + k)2, which
is non-zero when ay # 0. Clearly K, K3 cannot be zero simultaneously. So we
must have k = 1(= —m) or ¢ = 0; the former is true when condition (iii) holds, the
latter when condition (ii) holds. Furthermore there are no other centre conditions
with five or fewer relationships that satisfy @ =T = ® = 0.

After extensive consideration of all the possible situations in which the Liapunov
quantities up to L(6) are zero simultaneously we have not found any centre condi-
tions other than those given in Theorems [1.2] 2.2 and However there are
several instances where we are unable to calculate resultants or eliminate variables
using a polynomial remainder sequence, so we cannot be certain that we have a
complete set of necessary conditions. We have shown, by considering an example,
that when 2 =T = ® = 0 there are no other such conditions which contain five or
fewer relationships between the coefficients. We can also demonstrate that when
one of k,as or ay is zero in ,I', ® then all the centre conditions found, by consid-
ering Q@ =T = & = 0, can be obtained from one of the conditions in Theorem
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with the appropriate variable set to zero. This wealth of evidence leads us to the
following claim.

Conjecture 4.2. The origin is a centre for system (L.1) when kasar # 0 if and
only if one of the conditions of Theorem holds.

5. COEXISTING FINE FOCI

One of the significant features of a planar dynamical system is the possible
configuration of limit cycles. Information is sought on the number of critical points
that can be encircled by closed orbits and on the number of closed orbits that can
encircle one such critical point. This may be phrased as asking how many nests of
limit cycles can there be and how many limit cycles make up each nest.

Suppose that A = 0 in system , so that the origin is a fine focus. From
the equation for @, critical points can occur only on the z-axis and on kx = —1.
However kx = —1 is invariant, so any critical point on it cannot be of focus type.
Thus any fine focus must have y = 0 and z(as2? + a;2 — 1) = 0. The condition for
a fine point is z(asx + az) = 0. Thus only one critical point other than the origin
can be a fine focus.

Lemma 5.1. System (1.1) with A = 0 can have at most two fine foci.

Suppose that there are two fine foci. We can scale coordinates so that they are
(0,0) and (1,0). Then ag = 1 — ay,a5 = —az and the system is
& =y(1+ kx),
. 2 2 3 2 2 3 (5.1)
U =—z+ a1+ asxy + azy” + (1 — a1)z” — asxy + agzy” + ary”.

The point (1,0) is a fine focus, as opposed to a fine col, if (k+1)(a; —2) > 0. We
denote the Liapunov quantities associated with the origin by L(7) and those for the
point (1,0) by M(i).

Theorem 5.2. Suppose that the origin and (1,0) coezist as fine foci in system
(5.1). If (1,0) is of order one then the origin is of order at most siz.

Proof. We calculate that
L(l) = ag(al + a3z — 1) + 3ar, (52)
M(1) = 3(a1 — 2)%a7 + a2((2 — a1)ag + (ay — 1)(k — a3 + 1) + a3). (5.3)

For (1,0) to be a fine focus of order one we must ensure that M (1) # 0. Let
ar = gas(1 — a1 — ag), then L(1) = 0 and

L(2) = a2(3as(2a1 + 3as — 1) + ¢),
where
¢ =15a3 + 24alaz + 9a3k — 39a? + 2a1a3 + 9a1a3 + 9ayazk — 45a,a3
— 15a1k + 33a; + 2a3a3 — 2a3 — 9a3 — 9azk + 2laz + 6k — 9.

If as = 0, then a5 = a7 = 0 and the origin is a centre by Theorem (i). We require
as # 0 for the origin to be a fine focus of order greater than two. If 2a; + 3ag =1
then ¢ = ay®, where

® = (a1 — 2)(2a3 +9(a1 — 1)) +9(k + 1)(a; — 1)?, (5.4)

which is non-zero if as # 0 and (1, 0) is a fine focus.



16 J. M. HILL, N. G. LLOYD, J. M. PEARSON EJDE-2007/119

So, for the origin to be a fine focus of order greater than two, we also need
2a1 +3a3 # 1. Let ag = Now we require M (1) = az(a; +as — 1)® to
be non-zero and we have

L(3) = M(1)(T — 2a3(a; + a3 — 1)),

Y
3(1—2a1—3a3) "

where
T :3(25a‘;’ + 97a%a3 + 7a§k — 32a% + 117a1a§ + 22a1a3k — 88ajas
— dark + 14a; + 4503 + 1503k — 54a3 — 8azk + 22a3 — 2).
Let a3 = m Then
L(4) = az(Ak* + Bk + C)Q,
where

A =15(a; + a3)* — 20(a; + a3) +8 > 0,
B = 15(a; + a3)*(11a; + 13a3) — 5(ay + a3)(59a; + 67as) + 4(45a; + 49a3 — 8),
C =90(ay + a3)*(4ay + 5a3) — 45(a1 + a3)?(19a1 + 23a3)
+ 30(a1 + a3)(25a1 + 29a3) — 8(35a; + 38as — 5),
Q =15(a; — 2)a3 + (a1 — 2)(29a; + 5k — 13)as + 14a3 + 5a7k — 40a3
—1la1k +28a; + 3k — 7.

When a3 is either root of Q@ = 0, we have a2 < 0. We require as to be real, so

Q #0. As A is non-zero let k = (_2BXT), where

r=+/B2 - 4AC. (5.5)

Then

L(5) = axQ(ar + ),
where «, # are polynomials of degrees nine and twelve in a1, a3. Assume for the
time being that a # 0. Let r = —g. Then

L(6) = a2Q(3a1 + 3a3 — 2)?0,
where © is a polynomial of degree sixteen in a; and as. For consistency, r as given

by (5.5) must also be equal to —g. This is true if (3a; + 3az — 2)A = 0, where A

is a polynomial of degree twelve in aq,a3. When 3a; + 3az = 2 then £k = —1, and
(1,0) is not a fine focus. The origin can be a fine focus of order greater than six
only if ® = A = 0. We calculate the resultants of © and A with respect to a; and
as. We find

R(©,A, a3) =#(a; — 2)*(a; — 1)*(a1 — 5)%(2a1 — 1)(6a3 — 58a% + 183a; — 191)
x (8a? — 41ay + 53)(27a} — 180a3 + 478a? — 620a; + 343)%F Y,

where F,Y are polynomials of degrees eighteen and forty in a;. The quadratic
and degree four factors are positive definite. The one real root of the cubic factor,
together with the corresponding value for as, are such that a; + a3 = 1, which is
excluded if (1,0) is a fine focus of order one. When a; = % (or a; = 5) then ag =0
(or a3 = —3) and 2a; + 3as = 1, which is also excluded. Similarly, when a; =1 or

a1 = 2 then (k+1)(a; —2) <0.
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Using Sturm sequences [I3] we find that T = 0 has six distinct real roots. We
also locate the corresponding roots az, and find that all the root pairs are such
that (k+1)(a; —2) < 0. When f =0, we have a = § = 0. A similar analysis to
that for the case a # 0 leads us to conclude that, when o = 0, the origin can be of
maximum order five when (1,0) is of order one.

We conclude that L(6) # 0 under current assumptions; the origin is of maxi-
mum order six and at most seven small amplitude limit cycles can be bifurcated
simultaneously from the two fine foci. O

Theorem 5.3. Suppose that the origin and (1,0) coexist as fine foci for system
(5.1). If (1,0) is of order greater than one then both the fine foci are of maximum
order two, or both are centres.

Proof. We have L(1), M(1) given by (5.2)), (5.3) respectively. Again we make a
substitution for a7 from L(1) = 0. Then

M(1) = az(ag(2 — a1) + ¢),
where
¢ =(1—a1)(a? + aras — 4a; — 2a3 — k + 3).
If (1,0) is a fine focus then a; # 2. Let ag = —2. Then

L(Q) = M(Q) = (Lz(al — 2)(0,1 + a3z — ].)(I)7

where ® is given by (5.4). If as = 0, then a5 = ay = 0 and both critical points
are centres by Theorem% (i). Similarly, when a; + az = 1 then a4 = a3, a5 =
%7 a7 = 0 and both critical points are centres by Theorem (iv). Ifas #0
and (1,0) is a fine focus then (a; —2)® # 0. If L(2) is non-zero, so is M(2) . Hence

both points are fine foci of maximum order two or they are both centres. O

We can demonstrate that four small amplitude limit cycles can be bifurcated
from the two fine foci of order two of system (L.1)). We begin with system (1.1)
with

¢

a1—2'

1
A=0, ag=1-a1, as= —az, a7:—§a2(a1+a3—1)7 ag =

Hence the origin and (1,0) are fine foci of order two, and L(0) = M(0) = L(1) =
M(1) =0,M(2) = L(2) # 0. First we perturb ag such that M (1) becomes non-zero
and of opposite sign to M (2). If (2—ay)(a1 + a3 —1) > 0 we decrease ag, otherwise
we increase ag. The stability of (1,0) is reversed and a limit cycle bifurcates. Next
we perturb a7 such that L(1) becomes non-zero and of opposite sign to L(2), so
reversing the stability of the origin. If as(a; + az — 1) > 0 then we decrease ar,
otherwise we increase ay. A second limit cycle bifurcates, but this time from the
origin. Another limit cycle can be bifurcated from the origin, by increasing A if
az(a1 + az — 1) > 0 or decreasing A otherwise. To bifurcate a fourth limit cycle
from (1,0) we require the stability of (1,0) to be reversed, so then it has the same
stability as the origin. Hence we require AM (1) < 0, which is the case when
M(1)M(2) < 0.

Similarly seven small amplitude limit cycles can be bifurcated from the two fine
foci when one is of order one and the other is of order six.
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6. LARGE AMPLITUDE LIMIT CYCLES

We have proved that the origin can be a fine focus of order seven and we have
investigated the possibility of small amplitude limit cycles bifurcating from two
coexisting fine foci. In this case we found that the maximum number of small
amplitude limit cycles that can exist simultaneously is seven. By considering the
global phase portrait within a particular parameter range, we shall demonstrate
that a large amplitude limit cycle can surround two fine foci in system . It is
known that the Kukles system, with two fine foci of order two, can have a large
amplitude limit cycle surrounding both critical points [14].

Theorem 6.1. If the fine foci at the origin and (1,0) are both of order two for
system (1.1) then at least five limit cycles exist under certain conditions.

Proof. We begin with two fine foci, each of maximal order two. Therefore system

(1.1) is of the form
& =y(l+ka),

a0
g =—x+ a2 +agry + (1 —ay +8)y* + (1 —ay)a® — aga’®y + Axy® — %yg,

(6.1)

where
kE—1
d=ay+az—1, A= (1—(11)((5—@01—’_7»7 (k+1)(a; —2) > 0.
(a1 —2)
One can consider system (/6.1)) as a perturbation of the system
t=y(l+kz),
(6.2)

y=—x+ax?+(1—a +0)y*+ (1 —a)z® + Axy?,
with the introduction of the term
1 1) 1
)2 + 7y2 - 7)7

G T

when a9 is perturbed from zero. System (6.2]) has centres at the origin and (1, 0),
and a col at (ﬁ, 0). We consider a particular global phase portrait of system

. We can arrange for there to be no critical points on the line kx = —1 by
choosing values of the parameters such that

k(a1 —2)(6 —a1) —k+a3(0 — 1)+ a1 (2 —30) +25 — 1> 0.
For example, we can take k = 1,a; = 3,0 = 3. We then use polar coordinates to
consider the critical points at infinity. Provided that A < 0, that is § > %ﬁ;l,
the only critical points at infinity lie on 0 = 7.

At infinity 6 < 0, so the motion is clockwise in the region kx > —1 and the
outward separatrices of the col cannot tend to a critical point at infinity. The
system is symmetric in the z-axis, so the separatrices form homoclinic loops and
the orbits outside the ‘figure of eight’ so formed are closed. Take one of these closed
orbits; I', say. Increase as so that system becomes system . For system
the flow is inwards across I' because the vector product of the two fields is

—y2(1 + kx)ay ((m - %)2 + ng - i)
If as > 0, the two fine foci are both unstable and hence there is a large amplitude
limit cycle inside T.
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In the previous section we demonstrated that a total of four small amplitude
limit cycles can be bifurcated from the origin and (1, 0) simultaneously. Our current
assumptions are consistent with the argument therein. Therefore system can
have five limit cycles. O

This leads us to the following conjecture.

Conjecture 6.2. When system (L.1) has two fine foci of orders six and one than
at least eight limit cycles can ezist.

Concluding remarks. We have presented various properties of system (1.1]). In
particular we have found sufficient conditions for the origin to be a centre by finding
complicated invariant functions that can be combined to form a Dulac function.
We conjecture that we have found the necessary and sufficient conditions for the
origin to be a centre for system even though we were unable to complete the
reduction of the focal values because of the size of the expressions generated. We
also proved some results on the possible configurations of limit cycles.
7. APPENDIX

The polynomials required in the proof of condition (ii) of Theorem are as
follows:

o =asarkt + 2a3a7k’ + 2a3k w + 4akarw? + 262k w
— 2asa7k” — 2a3kSw — ark® — 2k w,

®y =2aSk? + 20a3a7w + 2a5k5 — 5a3k® + 12a5w? — 24a3ark*w — 6a3k’
— 12a3kw? — 4a3ark3w + 2a3k° + dazk® + k'O,

Oy = — 4aSark? — 12a5k%w + 16aSark* + 12a5k3w + 4aja7k® + 30a5k" w
— 21a§a7k6 — 72a§a7w2 — 24a§k5w — 10a§a7k7 + 216a§a7kw2
— 24a§k6w + 8a§a7k8 + 12a§k7w + 6aszark? + 6ask®w + a7k,

®3 =a5k* — Sazarw + azk® — 2a3k°® + 8ajw? + 8a3ark*w
—2a2k7 + azk® + k7,

Dy :2a§a7 + 3a§w — 3asark® — 3askw — a71€37

Fy :a§a7k4 + 2a§a7k5 + 2a§k4w + 4a§a7w2 + 2a§k5w — 2a3a7k” — 2a3k%w
— ark® — 2k"w,

Fy :2a§k4 + 2Oaga7w + 2(12/@5 + 12a§a7kw — 5a§k6 + 12a§w2 — 12a§a7k2w
— 6a3k” — dajark®w + 2a3k® + dask® + k'O,

Fy :4a§a7k3 — 4aga7k4 + 12agk3w — 12aga7k5 — 12a§k4w + 8a§a7k6
+ 144a3a;w® — 18a3k>w + 13a3a7k” — 216a3arkw? + 12a3k%w
— 3a§a7k8 + 6a§k7w — bagark? — ark'?,

F3 =a3k® — 8ajarkw + 4ajw? + 8aiark*w — 2a3k" + kP,

Fy :2a§a7 + 3a§w — 3agark?® — a7k®,

Iy =96a5a7k3y? — 32aSk*~® 4+ 12a3a7k*~? + 144a3a7y*w — 9a3k™y
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— 108a5k3y?w — 243aja7k™ — 282a3a7k>y? — 36asark3yw + T2a5k5y
+ 98a3k59% + 12a5k*y*w — 486a3a7k® — 114a3a7k5? + 180a3k"

+ 34a3k™y® + 108a3k° v w + 186a3ark™y? + 36a2ark yw + 18a2k'%y
— 66a§k8'y3 — 12a§k672w + 486a5a7k'0 + 102a3a7k872 — 171a3k11'y
— 34a3k®y3 + 243a7k — 90k,

[y =512a3'ark*y® — 384a3' k742 — 36a3’ark” + 201643 ark®y?w
—96a3°k%y? — 67203 k* v w — 1152a3a7ky — 2624a3a7k%~>
+ 228a3ark*y?w + 768a3ary*w? + 837ajk! + 2256a3k" >
— 225a5k yw + 96aJk5 v w — 576a3k>y w? — 2106a5a7k"
—1052a5a7k™* — 5211a5ark"w — 5958a5a7k>y*w — 540aark3yw?
+ 1917a3k" + 1206a5k"°y? + 1575a5k%yw + 2058a5k%~v*w
+ 180a§k472w2 + 2556aga7k10’y + 4164a§a7k873 — 10071a§a7k8w
— 2316a§a7k672w + 1368a§a7k47w2 + 792a% a7k P w? — 288a§a772w3
—1917alk"® — 457241k v + 372645 k% yw + 402a5k" v w
— 783aik w? — 126a3k°y*w? + 216aik3yw® + 8226aSark
+ 2936aga7k9’y3 + 702aga7k9w + 4008aga7k772w + 2484aga7k5'yw2
— 168a5a7k*y3w? — 7695a5k™ — 3462a5k'24? — 216a5k O yw
— 1488aSk3y3w — 1458a5k5w? — 54aSkSy*w? + 3528a5ark'?y
— 1672a3a7k'%9% + 1042243 a7k w + 2088a3a7k5y*w + 576a3a7kyw?
— 2187a5k™ + 3600a5k"*y? — 3861a3k ™ yw — 480a5k v w
+ 108a3k%w? + 702a5k" v w? — 216a5k5yw® — 4806a3a7k>y
— 1884aza7k'*y® + 4509a3a7 kM w — 66a3a7k"y?w + 8667ask'®
+ 3690a3k~? — 1377a3k 2 yw + 102a3k* v w + 1458a3 k' w?
— 126a§k8'y2w2 — 4932a§a7k14'y — 380@%&7/{1273 — 351a§a7k12w
+ 6777a5k"™ — 588a3k'®y% + 360a3k 3 yw — 18a3k 3w + 675a3 k! w?
— 1278a%a7k'®y — 1917a3k™® — 1338a3k%~? + 18a3k *yw — 3510a3k"®
— 312a3k'"~% — 972k%°,

I3 =192a5k*y? — 576a5a7v*w — 192ak°~? — 64aSark3y® + 576aSark~?w
— 432aSk® — 780a5k%y* + 56ajark*y® + 1296a3ark*w + 576a3a7k*y*w
— 432a3K° + 390a5k™~? + 48a5k3 v w 4 162a3a7k™y + 132a5a7k°~>
+ 1296aza7k>w — 48a3a7k>y*w + 1323a3k™® + 1134a3k5+2
— 32a3k 3w + 162a3a7k®y — 56a3ark®y® + 48a3ark*y*w + 178243k
— 54a3k?? — 16a3k°y3w — 162a3a7k"y — 68a3a7k™y® — 432a3k*?
— 546a2k'%y% — 162aza7k'%y — 1350a3k™® — 144a3k" 2 — 459k,
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Ty =128aSa7y® — 96a$k3y? + 36a5ark®y — 12a5k*y? — 288a3ark*y

— 264a3a7k*y® — 48aza7y?w + 243a3k” + 282a3k°~* + 36a3k3yw
— 684a3ark®y — 136a3a7k>~® + 486a3k® + 114a3k%y? — 360a3ark’
— 186a2k"y? — 36a2k5yw — 486a3k'" — 102a3k5y? — 243k,

T's =512a3%ark*y® — 96a5k%~* — 480a3k* v w — 1116a5a7k%y

I'e =

— 2624a5a7k%~ 4 1020a5a7k?*w + 192a5a7v3w? — 96a5k%~>
+ 9605 k573w — 2232a%a7k%y — 1088a%ark™v® + 144alar k52
sk”y w azazk’y azark'y” + 14dazark®y w
+ 243a3k'? + 390a5k0~? 4+ 11970 kS yw + 147003k 3w
— 324alk*y?w? + 2412aSa7k*0y + 4128a5a7k%~® — 1944a5arkPw
— 2748aSark%v*w + 828aSark*yw? + 648aSark* v w? — 288aSaryiw?
+ 729a5k" + 49245k 42 + 2169aSkvw + 216a5k™ v w
+ 108a$k°v*w? + 8352a3ark™ 'y + 3008a5ark’~® — 3888a5ark w
—996a3a7k" v w + 1944a3a7k>yw? — 24ajarkPy3w? 4 24303k
—390a3k'?y* — 450a3k" yw — 1092a5k%y w + 324a3k%~*w?
+ 3708a3a" k'?y — 1600a3a7k'"v> + 1728a3a7k5y*w + 1116a3a7k5yw?
— 1215a3k™® — 696a3k'37? — 2394a3k"  yw — 312a3k° v w
— 108a3k"y?w? — 4824a3a7k*y — 1920a3a7k" v 4 3888ajar k! w
+ 852a§a7k972w — 1215&%]@16 — 6a§k1472 — 747agk12’yw
+ 10203k 93w — 5004aza7 k' y — 416a3a7k"?~® + 1944a a7k w
+ 24302k + 30002542 + 22502k 3 yw — 1296aza7k' %y
+ 729a3k'® + 102a3k'%~% + 243K,

— 3072a33a7k*y? + 2880032k v w + 6912a5 ark® + 21888a3  arkO?
— 1152a3  ary?w? + 25603 k™y® — 576a3' k°y?w + 1382403 ark’
+9408a3 ark™y? — 96003 ar kv w + 64a3kBy® — 6480a3 kP w

— 14580a°k%~*w — 28512a3a7k'® — 55704a3a7k®y? — 488ajark* v w
+ 2592a3a7k*w? — 1584a3ark*y*w? — 558a3k v — 1504a3k%~>

— 11664a3k"w — 2514a3k"v*w + 96a5k>y3w? — 85050a5ar k!

— 44580a5a7ky? + 2394a5 a7k yw + 2844a3ar kv w + 5184aiark’w?
+ 648a3ark>y2w? — 1278a5k %y — 804aik 093 + 15957a5 k™ w

+ 2404205 k57w + 216a5k* v w? — T614akark'? + 51984a%ark'0~?

+ 5634a§a7k87w + 2264a§a7k673w + 1134Oa§a7k6w2

+ 74400 a7 k* v w? 4 192a a7y w® + 1278a k3 + 3048a %k A3
+42930a%k ™ w + 9954al k% w + 414alk yw? + 15645 k53 w?

— 144alk3y?w?® + 137862a5a7k" + 66036a5a7k" 72 + 1692aSark?yw
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— 1520aSark™ v w + 17172a5a7k"w? 4 2952aSa7k>y*w? + 5130a5k
+ 2308a5k 2y + 8991a5k 2w — 12690a5k 0w + 972a5k5yw?

— 228aSkSy3w? + 112914a5a7k — 2520a5a7k'%y? — 4788a5 a7k yw
— 1776a5a7k®y*w + 8100a5a7k®w? — 1104a3a7k5y?w? + 1458a3k* >~
— 2400a3k"y? — 29808a5k™*w — 6462a3k" v w + 144a3k”yw?

— 25203k 3 w? + 144a3k5v*w? — 30942a3a7k® — 29436a3a7 k3>
— 4086azark' yw — 364a3ark®y3w — 324ajark w? — 5778a3k 0y

— 2460a3k' Y3 — 17901a3k™ w + TT4a3k"?v*w — 972a3k* O yw?

+ 12a3k%y3w? — 78570a3a7k'® — 12576a3a7k™+? — 846a3ark*?yw
— 4518a3k "y + 39245k~ — 48643k w — 40243k 3y w

— 558a3k M yw? — 35694a3ark'” — 1428a3a7k' y? 4 1278a3k Sy

+ 892a2k%~3 — 56702k 5w — 42662k y*w — 5130aza7k'®

+ 2340a3k'y 4 208a3k "y — 972a3k "w + 648Kk20~,

['7 =768a3a7k®y? — 256a5k*y* + 192a5a7k*y? + 384a5ary3w + 18a5k™
— 288a5k3y?w — 1674a%ark” — 3744a%a7k>y? + 180alark*yw
+ 576ak%y 4+ 1312a5k593 — 492afk*y*w — 3834aSark®
— 2220aSa7k%?* — 936a5ark*yw — 792aSark* v w — 144alary w?
+ 1053a$k”y + 526a$k™y> + 783a$k w + 846a5k>v*w + 108ak> yw?
+ 2160a3a7k® 4 5400a3a7k™v* — 2304a3a7k’yw — 264a3a7k>y>w
+ 108a3ark>w? — 1278a5k' %y — 2082a5k%® + 248443k w
+ 1698a3k%y*w — 36a3k*yw? 4 11556a3a7k" + 4704a3a7k5~>
— 1044a3a7k®yw — 4113a3k" y — 146843k + 1836a3k w
— 114a3k™y?w — 108a3k>yw? + 6534a3a7k' — 1800a3ark >
+ 180a§a7k7'yw — 144a§a7k573w — 108a33ark’w? — 1764@%]9127
+ 83643k %93 — 156643k "w — 1206a3k3y*w + 36a3k°yw?
— 5778a3a7k'? — 2676a3a7k'"? + 36a3arkSyw + 2403a3k" 3y
+ 94203k Y3 — 261903k w — 444a3k%y?w — 7020aza7 k™
— 624asar k% + 2466ask ™y + 190ask2y3 — 918ask 2w — 1944a, kM
+ 639k15.
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