
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 119, pp. 1–23.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

CENTRES AND LIMIT CYCLES FOR AN EXTENDED KUKLES
SYSTEM

JOE M. HILL, NOEL G. LLOYD, JANE M. PEARSON

Abstract. We present conditions for the origin to be a centre for a class
of cubic systems. Some of the centre conditions are determined by finding

complicated invariant functions. We also investigate the coexistence of fine

foci and the simultaneous bifurcation of limit cycles from them.

1. Introduction

In this paper we establish some properties of the cubic differential system
ẋ = P (x, y) = λx + y + kxy,

ẏ = Q(x, y) = −x + λy + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy2 + a7y
3,

(1.1)
where the ai and k are real. We first became interested in this class of systems when
considering transformations to generalised Liénard form [1]. It was also brought to
our attention that a system used to model predator-prey interactions with intrat-
rophic predation could be transformed so that it is an example of a system of type
(1.1). We investigated this particular case of system (1.1) in [7]. In [6] we found
conditions for the origin to be an isochronous centre for system (1.1).

When λ = 0 the origin is said to be a fine focus; then system (1.1) is derived from
a second order scalar equation and it has an invariant line kx = −1. When k = 0,
(1.1) is often referred to as the Kukles system; this system has been extensively
studied, see [2], [12] and [14] for example.

Here we derive conditions for the origin to be a centre for system (1.1) and
consider the simultaneous bifurcation of limit cycles from several fine foci. We shall
see, for example, that at most two fine foci of (1.1) can coexist; when one fine focus
is of order one, the other is of maximum order six and when one fine focus is of
order two, the other is of maximum order two. We show that in the latter case a
large amplitude limit cycle can surround the two fine foci and conjecture that this
is also true in the former.

We obtain necessary conditions for a critical point to be a centre for (1.1) by
calculating the focal values, which are polynomials in the coefficients k, ai. There is
a function V , analytic in a neighbourhood of the origin, such that its rate of change
along orbits, V̇ , is of the form η2r

2 +η4r
4 + · · · , where r2 = x2 +y2. The η2j are the
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focal values and the origin is a centre if, and only if, they are all zero. The relations
η2 = η4 = · · · = η2j = 0 are used to eliminate some of the variables from η2j+2.
This reduced focal value η2j+2, with strictly positive factors removed, is known as
the Liapunov quantity L(j). We note that L(0) = λ. The circumstances under
which the calculated L(j) are zero yield possible centre conditions. The origin is a
fine focus of order j if L(i) = 0 for i = 0, 1, . . . , j− 1 and L(j) 6= 0; at most j small
amplitude limit cycles can bifurcate from a fine focus of order j.

Various methods are used to prove the sufficiency of centre conditions; in this
paper we require three of them. The simplest is that the origin is a centre if
the system is symmetric in either axis, that is, it remains invariant under the
transformation (x, y, t) 7→ (x,−y,−t) or (x, y, t) 7→ (−x, y,−t). Another technique
which we employ involves a transformation of the system to Liénard form

ẋ = y, ẏ = −f(x)y − g(x). (1.2)

The relevant results are as follows; proofs can be found in [3].

Lemma 1.1. Consider system (1.2) where f, g are analytic, g(0) = 0, xg(x) > 0
for x 6= 0 and g′(0) > 0. Let F (x) =

∫ x

0
f(µ)dµ and G(x) =

∫ x

0
g(µ)dµ.

(i) The origin is a centre for system (1.2) if and only if there is an analytic
function Φ with Φ(0) = 0 such that G(x) = Φ(F (x)) in a neighbourhood of
x = 0.

(ii) The origin is a centre for system (1.2) if and only if there is a function z(x)
satisfying z(0) = 0, z′(0) < 0 such that F (z) = F (x) and G(z) = G(x).

The third approach, and the one which is of particular interest to us here, is the
possibility of finding an integrating factor. If the origin is a critical point of focus
type then it is a centre if there is a function D 6= 0 such that

∂

∂x
(DP ) +

∂

∂y
(DQ) = 0 (1.3)

in a neighbourhood of the origin. Such a function is called an integrating factor
or Dulac function. The existence of the function D means the system is integrable
and the origin is a centre.

We make a systematic search for an integrating factor of the form D = Πn
i=1C

αi
i ,

where each Ci is an invariant algebraic function. In this context an invariant func-
tion is such that Ċi = CiLi, where Li, known as the cofactor of Ci, is of degree one
less than that of the system. We require

∂

∂x
(DP ) +

∂

∂y
(DQ) = D(Px + Qy + α1L1 + · · ·+ αnLn) = 0. (1.4)

The αi and the coefficients in the Ci, Li are functions of the coefficients k, ai. We
note that the Ci, Li, αi may be complex; a real Dulac function is then constructed
from these together with their conjugates. In any given situation there may well
be no invariant functions and even though there is an upper bound for the possible
degree of an invariant curve it is not known how to determine this bound. Darboux
[5] showed that if n ≥ 1

2m(m+1)+2 invariant functions exist, where m is the degree
of the system, then the n functions can be combined to form a first integral. In
practice we find that fewer such functions are required. As will be apparent later,
finding such functions is non-trivial. However it is a relatively straightforward
matter to confirm that the functions found actually satisfy the relation (1.3).



EJDE-2007/119 EXTENDED KUKLES SYSTEM 3

These techniques for finding centre conditions are well established but the com-
putational problems encountered are often formidable. We are constantly pushing
the available software to its limits. The reduction of the focal values to obtain the
Liapunov quantities is one area which causes difficulties and here we demonstrate
the usefulness of our suite of programs INVAR [11] in the search for invariant func-
tions. We are unable to complete the reduction the focal values for (1.1) to obtain
the conditions that are necessary for the origin to be a centre, but we can find
sufficient conditions by searching for invariant functions. We then try to determine
whether or not we have a complete set of conditions for the origin to be a centre.

The necessary and sufficient conditions for the origin to a centre for the Kukles
system are known; we summarise them in Theorem 1.2. We note that the condition
given in [8, Theorem 3.3], with a2 = 0, is covered by condition (v) of Theorem 1.2.
In [9] it was conjectured that, when a7 6= 0, the origin is a centre for the Kukles
system if and only if one of the conditions given in Theorems 2.1 or 2.2 therein is
satisfied. This was verified in [10].

Theorem 1.2. Let λ = k = 0. The origin is a centre for system (1.1) if and only
if one of the following conditions holds:

(i) a2 = a5 = a7 = 0;
(ii) a1 = a3 = a5 = a7 = 0;
(iii) a4 = a3(a1 +a3), a5 = −a2(a1 +a3), (a1 +2a3)a6 +a2

3(a1 +a3) = 0, a7 = 0;
(iv) a5 +3a7 + a2(a1 + a3) = 0, 9a6a

2
2 +2a4

2 +27a7µ+9µ2 = 0, a4a
2
2 + a5µ = 0,

(3a7µ + µ2 + a6a
2
2)a5 − 3a7µ

2 − a6a
2
2µ = 0, where µ = 3a7 + a2a3;

(v) a5 + 3a7 + a2(a1 + a3) = 0, 18a4a5 − 27a4a7 + 9a5a
2
1 + 9a5a6 + 2a5a

2
2 =

0, 27a4a1 + 4a5a2 + 9a3
1 + 2a1a

2
2 = 0, 18a2

4 + 9a4a
2
1 + 2a4a

2
2 + 2a2

5 = 0,
18a4a2 + 9a5a1 + 9a5a3 + 9a2

1a2 − 27a1a7 + 9a6a2 + 2a3
2 = 0.

For a proof of the above theorem, see [2, 8, 9, 10].
This is one particular sub-class of system (1.1). In the next section we shall

present conditions that are necessary and sufficient for the origin to be a centre
for two other sub-classes of system (1.1); one with a7 = 0 and one with a2 = 0.
Presenting the results in this way allows for a clearer description of the general case
and gives us insight into the types of invariant functions we should seek for system
(1.1) in general. In section 3 we derive sufficient conditions for the origin to be a
centre for system (1.1) and in section 4 we investigate whether there are any other
conditions. The coexistence of fine foci and the bifurcation of small amplitude limit
cycles is considered in section 5, and in section 6 we investigate the possibility of
the existence of large amplitude limit cycles.

2. Sub-classes a7 = 0 and a2 = 0

In this section we consider the sub-classes of system (1.1) with a7 = 0 or a2 = 0.
We find that the origin is a fine focus of maximum order six when a7 = 0 and
maximum order seven when a2 = 0.

Theorem 2.1. Let λ = a7 = 0. The origin is a centre for system (1.1) if and only
if one of the following conditions holds:

(i) a2 = a5 = a7 = 0;
(ii) k = a1 = a3 = a5 = a7 = 0;
(iii) k = − 1

2a1, a3 = − 2
3a1, a4 = − 1

4a2
1, a5 = − 1

3a1a2, a6 = a7 = 0;
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(iv) k = −a1, a3 = − 2
3a1, a4 = 0, a5 = − 1

3a1a2, a6 = a7 = 0;
(v) k = − 1

4a1, a3 = − 3
4a1, a4 = − 1

4a2
1, a5 = − 1

4a1a2, a6 = a7 = 0;
(vi) k = − 1

2a1, a3 = −a1, a5 = a6 = a7 = 0;
(vii) a4 = a3(a1 +a3), a5 = −a2(a1 +a3), (a1 +2a3)a6−a3(k−a3)(a1 +a3) = 0,

a7 = 0;
(viii) k = −(a1 + a3), a6 = a1(a1 + a3), a5 = −a2(a1 + a3), (3a1 + 2a3)a4 +

a2
1(a1 + a3) = 0, a7 = 0.

Proof. Calculation of the focal values for system (1.1) with a7 = 0, up to η14, and
their reduction to give the corresponding Liapunov quantities is routine. We do
not present the details here. We find that L(0) = L(1) = · · · = L(6) = 0 only if
one of the conditions of Theorem 2.1 holds. The sufficiency of these conditions is
confirmed as follows.

When (i) holds the system is invariant under the transformation (x, y, t) 7→
(x,−y,−t); the system is symmetric in the x-axis, hence the origin is a centre.
Similarly, when condition (ii) holds the system is invariant under the transformation
(x, y, t) 7→ (−x, y,−t); the system is symmetric in the y-axis, so the origin is a
centre.

Conditions (iii), (iv), (v) and (vi) have a6 = a7 = 0, in which case system (1.1)
is of the form

ẋ = (1 + kx)y, ẏ = x(−1 + a1x + a4x
2) + x(a2 + a5x)y + a3y

2. (2.1)

If k = 0 in these cases then condition (ii) is satisfied. When k 6= 0, we are able
to transform (2.1) to a Liénard system. The required transformation (see [3]) is
(x, y, t) 7→ (x, (1 + kx)yΨ(x), τ), where

Ψ(x) =
dt

dτ
= (1 + kx)−1 exp

(
−

∫ x

0

a3(1 + ks)−1ds
)

= (1 + kx)−1− a3
k .

Then system (2.1) becomes a system of the form (1.2) with

f(x) = −x(a2 + a5x)(1 + kx)−1− a3
k , g(x) = x(1− a1x− a4x

2)(1 + kx)−1− 2a3
k .

We compute the integrals of f , g and denote these by F , G respectively. For
condition (iii) we have

F (x) =
a2

a2
1

(
9−

( 2
a1x− 2

)4/3(a1x− 3)2
)
,

G(x) = − 6
a2
1

(
3 +

( 2
a1x− 2

)2/3(
a1x− 3

))
.

Let u3 = a1x− 2 and v3 = a1z − 2 then

F (x)− F (z) =
24/3a2

a2
1u

4v4
(v − u)(u3v2 + u2v3 − u2 − v2)Ω,

G(x)−G(z) = 3
2

5
3 a2

a2
1u

2v2
(v − u)Ω,

where

Ω = u2v2 + u + v = ((a1x− 2) (a1z − 2))2/3 + (a1x− 2)1/3 + (a1z − 2)1/3
.

When x = z = 0,Ωx = Ωz = −2−
2
3 a1. By the Implicit Function Theorem there is

z(x) with z′(x) < 0 such that F (x) = F (z(x)), G(x) = G(z(x)). The origin is a
centre by Lemma 1.1 (ii).
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Similarly for condition (iv) we find

F (x) =
a2

4a2
1

(
9− (a1x− 3)2

(1− a1x)2/3

)
, G(x) = − 3

2a2
1

(
9 +

(a1x− 3)

(1− a1x)1/3

)
and

Ω = ((1− a1x) (1− a1z))1/3
(
(1− a1x)1/3 + (1− a1z)

1
3

)
− 2.

When condition (v) holds

F (x) = −8
a2x

2

(a1x− 4)2
,

G(x) = 8
x2

(a1x− 4)6
(
a4
1x

4 − 24a3
1x

3 + 240a2
1x

2 − 768a1x + 768
)

and Ω = a1xz − 2(x + z). For condition (vi)

F (x) = −2
a2x

2

(a1x− 2)2
,

G(x) = −4
(a2

1a4x
4 + 4a2

1x
2 − 8a1x + 4)

(a1x− 2)4

and Ω = a1xz − x − z. In each case Ω is a common factor of F (x) − F (z) and
G(x)−G(z); the origin is a centre by Lemma 1.1 (ii).

To prove the sufficiency of the remaining conditions we use INVAR to help us
find appropriate invariant functions and to build Dulac functions. Confirmation
that the functions obtained are indeed Dulac functions is routine. When condition
(vii) holds we find the Dulac function

D = (1 + kx)α1eα2xCα3 ,

where

C = 1 + a3x− γy, α1 =
(a2 − 2γ)(a3k − a6)− k2γ

k2γ
,

α2 =
a6(a2 − 2γ)

kγ
, α3 = −a2

γ
,

and γ satisfies γ2 − a2γ − a2
3 + a3k − a6 = 0. Hence, when kγ 6= 0, the origin is

a centre. When k = 0 condition (iii) of Theorem 1.2 holds. When γ = 0, then
a6 = a3(k − a3) = 0 and the system can be transformed to Liénard form with
f(x) = −a2g(x); the origin is a centre by Lemma 1.1 (i).

For condition (viii) we find the Dulac function

D = (1 + kx)α1eα2xCα3 ,

where

C = 1− a1x +
a2

γ
y − a4x

2 +
a5

γ
xy,

α1 = 1, α2 = a1(γ + 2), α3 = γ,

and γ is a root of a3
1γ

2 − (3a1 + 2a3)a2
2(γ + 1) = 0. If γ 6= 0, the origin is a centre.

When γ = 0, then one of conditions (i), (ii) or (vii) is satisfied. This completes the
proof. �
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When none of the conditions of Theorem 2.1 holds and L(i) = 0, for i =
0, 1, 2, . . . , 5, then L(6) 6= 0; the origin is then a fine focus of maximum order
six and at most six small amplitude limit cycles can be bifurcated from the origin.

We now consider the sub-class of system (1.1) with a2 = 0 and a3a7 6= 0. We
exclude the possibility that a3 = 0 because, when a2 = a3 = 0, the origin is a centre
for system (1.1) only if a7 = 0.

Theorem 2.2. Let λ = a2 = 0, with a3a7 6= 0. The origin is a centre for system
(1.1) if and only if one of the following conditions holds:

(i) a2 = 0, k = −(2a1 + a3), (a1 + 2a3)a4 + a2
1(a1 + a3) = 0, a5 = −3a7,

(a1+2a3)a6−2a1(a1+a3)(2a1+a3) = 0, 2(a1+2a3)2a2
7+a3

1(a1+a3)2(3a1+
2a3) = 0;

(ii) a2 = 0, k = −(a1 + a3), 2a3a4 + a1(a1 + a3)(a1 + 3a3) = 0, a5 = −3a7,
2a3a6 − a1(a1 + a3)(3a1 + 5a3) = 0, 4a2

3a
2
7 + a1(a1 + a3)4(a1 + 2a3) = 0.

Proof. When a2 = 0 and a3a7 6= 0 we find that L(0) = L(1) = · · · = L(7) = 0 only
if one of the conditions of Theorem 2.2 holds. The sufficiency of these conditions is
confirmed by constructing integrating factors from invariant functions. Again we
use INVAR to find these functions. When condition (i) holds there exists a Dulac
function

D = (1 + kx)α1eα2xC−3,

where

C = 1− a1x +
a2
1(a1 + a3)
(2a1 + a3)

x2 + a7xy,

α1 =
(a1 + a3)2

(2a1 + a3)2
, α2 = −a1(a1 + a3)

(2a1 + a3)
,

and hence the origin is a centre. We note that when 2a1 + a3 = 0, then k = 0 and
condition (v) of Theorem 1.2 is satisfied.

The Dulac function for condition (ii) is somewhat more complicated. It consists
of an invariant line, an invariant conic, an invariant degree three curve and an
invariant exponential. We have

D = (1 + kx)α1eα2xCα3
1 Cα4

2 , (2.2)

with

C1 = 1− a1x +
2a3a7

k2
y +

kτ(2a3 − k)
2a3

x2 − 2a1a7

k
xy +

k2τ

2a3
y2,

C2 = 1 +
Γ1

12a2
3γ

2wυ
x− γy +

Γ2

72a5
3γ

2w2υ
x2 +

τΓ3

8a3
3γ

2wυ
xy +

Γ4

12a2
3γ

2υ
y2

+
τ(2a3 − k)Γ5

144a5
3γ

2w2υ
x3 +

Γ6

48a5
3γ

2w2υ
x2y +

Γ7

36a3
3γ

2wυ
xy2 + wy3,

α1 =
9a3k

2ρΦ0 + 3k2ρΦ1γ − a3Φ2γ
2 − 6a3k

2Φ3γ
3 − 4a2

3k
2ργ4(Φ4 − a3a7γ

2)
−48a4

3γ
2w2(3a3a7 + k2γ)

,

α2 =
9a3k

3ρF0 + 3k3ρF1γ + a3τF2γ
2 − 6a3k

2τF3γ
3 − 4a2

3k
3ργ4(F4 − a3a7γ

2)
48a4

3γ
2w2(3a3a7 + k2γ)

,

α3 = − 6a3a7γ

3k2ρ + 4a3a7γ
, α4 = − 3k2ρ

3k2ρ + 4a3a7γ
,
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where ρ = a2
3 − k2, τ = a3 + k and υ = 4a2

3a7γ − 3k3ρ. Here γ, w are roots of

4a2
3γ

4 − 36a1a3(a2
1 + a1a3 − a2

3)γ
2 + 81a2

1k
4 = 0,

64a6
3w

4 − 16a3
1a

3
3

(
a2
1 + a1a3 − a2

3

)
×

(
a4
1 − 4a3

1a3 − 22a2
1a

2
3 − 20a1a

3
3 + a4

3

)
w2 + a6

1k
12 = 0,

respectively and the Γi,Φi and Fi are as given in the Appendix.
To complete the proof we consider what happens when any of the denominators

in the above are zero. When kγw = 0, then a7 = 0. When υ = 0 then either a7 = 0
or a2

1 + 7a1a3 + 8a2
3 = 0. Let a1 = 1

2 (
√

17 − 7)a3. We find a Dulac function that
consists of an invariant exponential function and three invariant lines. We have

D = (1 + kx)eα1xCα2
1 Cα3

2 ,

with

C1 = 1 +
(4a2

3 + ϑ2)(5ϑ4 + 329a2
3ϑ

2 − 4a4
3)

2ϑ2a3δ
x− ϑy,

C2 = 1 +
ϑ4Φ1

16a3
3δβ

x− ny, α1 =
ϑ2Φ2

4a3Φ3
,

α2 = −12a2
3β

$
, α3 =

12ϑa2
3β

n$

where δ = 812a2
3 + 33ϑ2, β = 4a4

3 + 39a2
3ϑ

2 − 73ϑ4, $ = 16a6
3 − 301a2

3ϑ
4 + 5ϑ6,

n =
4a2

3β

ϑ(156a4
3 + 9a2

3ϑ
2 − 5ϑ4)

,

ϑ is a root of (16a4
3 − 32a2

3ϑ
2 − ϑ4)(4a4

3 − 103a2
3ϑ

2 − ϑ4) = 0 and Φ1, Φ2, Φ3 are
polynomials of degree six in a3, ϑ.

When (3a3a7 + k2γ)(3k2ρ + 4a3a7γ) = 0 then either a7 = 0 or 2a1 + 3a3 = 0.
Let a1 = − 3

2a3. Then there exists a Dulac function

D = (1 + kx)C−2
1 C−1

2

where

C1 = 1 +
3
4
a3x +

4a7

a3
y,

C2 = 1 +
3
2
a3x−

8a7

a3
y +

9
16

a2
3x

2 − 3a7xy.

This completes the proof. �

When none of the conditions of Theorem 2.2 holds and L(i) = 0, for i =
0, 1, 2, . . . , 6, then L(7) 6= 0; the origin is a fine focus of maximum order seven,
at most seven small amplitude limit cycles can be bifurcated from the origin.

3. Sufficient centre conditions

Now we return to the full system and derive some sufficient conditions for the
origin to be a centre. We have obtained the necessary and sufficient conditions
for the origin to be a centre for three sub-classes of system (1.1); with k = 0,
with a2 = 0 or with a7 = 0. In these sub-classes we determined possible centre
conditions by considering the focal values and then proved that the conditions
we had found were sufficient. As the reduction of the focal values in the general
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case requires the calculation of some resultants that cannot be obtained with the
currently available hardware and software we adopt a different approach. We use
the knowledge gained from consideration of the sub-classes to give us an insight into
the probable centre conditions in the general case. We search for invariant functions
and corresponding integrating factors for the general system without introducing
a condition for which the origin may be a centre. The relationships between the
coefficients in system (1.1) that must be satisfied to ensure that Ċi = CiLi and
(1.4) holds, for D = Πn

i=1C
αi
i , are sufficient conditions for the origin to be a centre.

We find three sufficient conditions for the origin to be a centre for system (1.1),
with ka2a7 6= 0, using this approach.

Knowledge gained from the sub-classes suggests the type of invariant functions
we should seek in order to determine integrating factors. In particular, for the
Kukles system and the sub-class with a7 = 0 combinations of invariant exponential
functions, invariant lines and invariant conics are required. The Dulac functions for
the class with a2 = 0 are more complicated and include invariant lines, conics and
cubic functions. The line kx = −1 is invariant with respect to system (1.1), with
λ = 0, and is included in each Dulac function we seek in the general case. Where
the degrees of the equations in the system are not equal it is often found that an
exponential function is also required and this is so in all cases here.

We search for functions that are invariant with respect to system (1.1). Both
f(x) = ex and g(x) = kx+1 are invariant without any constraints on the coefficients
ai, k. Next we look for functions that are invariant only when some relationships
between the coefficients are satisfied. For the three sub-classes we knew from the
reduction of the focal values what these relationships were. Here we aim to find
the relationships by satisfying Ċi = CiLi and equation (1.4).

We start with the simplest invariant curve, namely a line. Let C = 1+c10x+c01y,
with cofactor L = m10x + m01y + m20x

2 + m11xy + m02y
2. We have c10 = m01

and c01 = −m10; then seven equations must be satisfied for C = 0 to be invariant
with respect to (1.1). We assume that m10 6= 0, otherwise we recover the line
kx = −1. We determine m01,m20,m11,m02 in terms of m10 and the ai, k. There
are three remaining equations which must be satisfied. At this stage we try to build
a Dulac function using this line together with f and g. Five additional equations
must hold if D = gα1fα2Cα3 is a Dulac function that satisfies (1.4). If a7 6= 0, we
must have α3 = −3. Then m10 = 1

3a2 and the other αi are given by two of these
equations. We have determined all the coefficients of C and L, and the αi. The
four relationships between the coefficients that must hold to satisfy the remaining
equations are those of condition (i) of Theorem 3.1 below.

In a similar manner we search for invariant conics. Let C = 1 + c10x + c01y +
c20x

2 + c11xy + c02y
2, with cofactor L as above. Again c10 = m01 and c01 = −m10.

Twelve equations in the remaining eight coefficients of the conic and its cofactor
must be satisfied if C = 0 is invariant with respect to system (1.1). Five additional
equations must hold if D = gα1fα2Cα3 is a Dulac function that satisfies (1.4).
Consideration of all possible situations in which the conic does not reduce to a line,
or become the product of two lines, leads us to conclude that either c02 = 0 or
m02 = 2a7. Let c02 = 0. If a7 6= 0, then α3 = −3, the coefficients of the cofactor
are m10 = 1

3a2,m01 = −a1,m20 = 1
3a5,m11 = −a2

1 − a1k − 2a7 − 2
9a2

2 and C,
α1, α2 are as given in the proof of condition (ii) of Theorem 3.1 below. As two
of the equations are linearly dependent in this situation this leaves five equations
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in the coefficients k, ai that must be satisfied if Ċ = CL and (1.4) holds. These
equations lead to precisely the relationships of condition (ii) of Theorem 3.1. When
c02 6= 0 and m02 = 2a7 these same five equations must be satisfied together with
an additional equation; this is a specific instance of condition (ii).

We know that, when a2 = 0, there is a Dulac function which consists of powers
of f, g, an invariant conic and an invariant cubic curve. We search for this type of
Dulac function in the general case. Again the linear coefficients in each invariant
curve can be given in terms of the linear coefficients in the corresponding cofactor.
We have thirty-five equations in the twenty-four unknowns. In this instance the
invariant conic in which c02 6= 0 and m02 = 2a7 is used. We determine all the coef-
ficients of the invariant conic and its cofactor, in terms of the coefficients of system
(1.1), from the twelve equations that must be satisfied for the conic to be invariant
with respect to (1.1). This leaves four relationships between the coefficients in (1.1)
that must hold.

We then proceed to determine the coefficients of the cubic function and its co-
factor. Here there are eighteen equations in twelve unknowns. We eliminate all but
two of the unknowns, namely the coefficient of x in the cofactor (say γ) and the
coefficient of y3 in the invariant cubic (say w). One of the remaining equations is
quadratic in γ and independent of w. Attempts to eliminate γ from all remaining
equations using this equation lead to expressions being generated that result in
stack overflow. We turn our attention to the five equations that must be satisfied
if (1.4) holds. We find that if a7 6= 0, then α3 = − 3

2 (α4 + 1) and with α4 in terms
of γ, w and the coefficients k, ai we must have

(a1a2 + a2a3 + a5 + 4a7)(a1a2 + a2a3 + a5 + 3a7)(a1a3 + a2
3 − a4) = 0.

The two remaining equations that must hold to satisfy (1.4) give α1, α2. We cal-
culate that η4 = a1a2 + a2a3 + a5 + 3a7; η4 = 0 is necessary for the origin to be
a centre. This, with the four relationships from the requirement for the conic to
be invariant, yield condition (iii) of Theorem 3.1 below. We use these relation-
ships to replace k, a4, a5, a6, a7 in the remaining equations. We note that we have
introduced another unknown, r, where r2 = a2

2 + 4a2
3 − 4k2.

We use the quadratic in γ mentioned above to eliminate r and, for consistency,
we equate this expression for r with

√
a2
2 + 4a2

3 − 4k2. This consistency condition
has

V =(a2
2 + 4a2

3)γ
4 − 3a2(a2

2 + 4a2
3)γ

3

− 9(4a3
1a3 − 2a2

1a
2
2 + 4a2

1a
2
3 − 4a1a

2
2a3 − 4a1a

3
3 − a2

2a
2
3)γ

2

− 54a1a2(a1 + a3)3γ + 81a2
1(a1 + a3)4

as a factor. We know from consideration of a specific example that this factor
will ultimately lead to an appropriate Dulac function. This is the only remaining
equation that is independent of w.

We factorise each of the equations and remove any factors that involve only the
remaining coefficients a1, a2, a3; we are able to show that such factors being zero
lead to specific instances of conditions that are already known to us. Other than
V = 0, the simplest of the remaining equations has over 7000 terms. We use a
polynomial remainder sequence to eliminate γ (see Section 4 for more details on
polynomial remainder sequences). The later stages can only be completed by further
simplifying the expressions by replacing a1 by −(k + a3), a2

2 + 4a2
3 by t and scaling
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such that k = 1. For example, at the second stage of the polynomial remainder
sequence, where a quadratic in γ is produced with approximately 30000 terms, the
size of the expressions can be almost halved by these changes of variable. We note
however that in order to check for factors that can be removed we need to replace
t by a2

2 + 4a2
3 before attempting the factorisation. The calculations are repetitive,

but formidable. In some cases, in order to multiply two expressions together, we
have to split each expression into smaller units and multiply each unit then sum the
results. Near the final stage we produce an expression with 191690 terms, which
we need to factorise. Fortunately we can predict that one of the factors will be the
coefficient of γ2 at the quadratic stage of the polynomial remainder sequence, an
expression with 9411 terms. There are four other factors, one of which is

W =(a2
2 + 4a2

3)
3w4 + a2(a2

2 + 4a2
3)

2(a4
2 + 7a2

2a
2
3 − 6a2

2k
2 + 12a4

3 − 24a2
3k

2

− 6a3k
3 + 6k4)w3 + (−a6

2a
6
3 + 6a6

2a
4
3k

2 + 6a6
2a

3
3k

3 − 3a6
2a

2
3k

4 − 6a6
2a3k

5

− a6
2k

6 − 12a4
2a

8
3 + 72a4

2a
6
3k

2 + 60a4
2a

5
3k

3 − 69a4
2a

4
3k

4 − 90a4
2a

3
3k

5

+ 9a4
2a

2
3k

6 + 36a4
2a3k

7 + 6a4
2k

8 − 48a2
2a

10
3 + 288a2

2a
8
3k

2 + 192a2
2a

7
3k

3

− 408a2
2a

6
3k

4 − 432a2
2a

5
3k

5 + 120a2
2a

4
3k

6 + 276a2
2a

3
3k

7 + 72a2
2a

2
3k

8

− 12a2
2a3k

9 − 64a12
3 + 384a10

3 k2 + 192a9
3k

3 − 720a8
3k

4 − 672a7
3k

5

+ 272a6
3k

6 + 528a5
3k

7 + 192a4
3k

8 + 16a3
3k

9)w2

= a2k
7(a3 + k)3(6a2

2a
2
3 + 3a2

2a3k − a2
2k

2 + 24a4
3 + 12a3

3k − 36a2
3k

2

− 24a3k
3)w + k12(a3 + k)6.

We can show that when V = W = 0 all remaining equations are satisfied. We have
found an appropriate Dulac function and condition (iii) of Theorem 3.1 is sufficient
for the origin to be a centre.

Theorem 3.1. Let λ = 0. The origin is a centre for system (1.1) if one of the
following conditions holds:

(i) a5 = −a2(a1 + a3)− 3a7,

a6 =
−2a4

2 − 9a2
2a

2
3 + 9a2

2a3k − 81a2a3a7 + 27a2a7k − 162a2
7

9a2
2

,

a4 =
(−2a4

2 − 9a2
2a

2
3 + 9a2

2a3k − 54a2a3a7 + 27a2a7k − 81a2
7)γ

2

2a6
2

,

a1 =
(−4a4

2 − 9a2
2a

2
3 + 9a2

2a3k − 54a2a3a7 + 27a2a7k − 81a2
7)γ

2a5
2

,

where γ = a2a3 + 3a7 and a2 6= 0;
(ii) a5 = a2k − 3a7, k = −(a1 + a3),

a7 =
k2(a2k − a3r)

a2
2 + 4a2

3

,

a6 =
k(a2

2(a1 + 3a3)− 4a1a3(3a1 + 5a3))− 3a2k
2r

2(a2
2 + 4a2

3)
,

a4 =
k(a2

2(a1 − a3) + 4a1a3(a1 + 3a3)) + a2k
2r

2(a2
2 + 4a2

3)
,
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where r2 = a2
2 + 4a2

3 − 4k2 and a2
2 + 4a2

3 6= 0;
(iii) a5 = −a2(a1 + a3)− 3a7,

a7 =
9a2

1(a1 + k)− 2a2
2(a1 + 2a3) + 9a4(3a1 + 2k)

12a2
,

a6 =
9(18a4kε− 2a1a

2
2µ + 9a1(a2

1(µ + 2k) + a4(3µ + 4k) + a1kε))− 8a2
2δ

36a2
2

,

9(16a2
2 + (9a1 + 6k)2)a2

4 + 2ρ(27a2
1 + 18a1k + 4a2

2)a4 + a2
1ρ

2 = 0,

9(3a1 + 2k)(4a2
2 + 9µ(3a1 + 2k))a2

4 + 2
(
81a2

1µ(a1 + k)(3a1 + 2k)

+ 36a1a
2
2(2a1 + k)(a1 + k)− 4a4

2(a1 + 2a3)
)
a4

+ a2
1ρ

(
2a2

2(k − a3) + 9a1µ(a1 + k)
)

= 0,

where ρ = 9a2
1 + 9a1k + 2a2

2, µ = 2a1 + a3 + k, ε = a3 + k, δ = a2
2 + 9a4

and a2 6= 0.

Proof. When either condition (i) or (ii) holds we find a Dulac function which con-
sists of the line kx = −1, an exponential function and either another line or a
conic. The Dulac function then takes the form D = (1 + kx)α1eα2xC−3, where C
and the αi are given below for each condition. For condition (iii) an invariant line,
an invariant conic and an invariant cubic together with an exponential function are
needed.

When condition (i) holds, and k 6= 0, we find

C = 1 +
(a2a3 + 3a7)

a2
x− a2

3
y,

α1 = (2a4
2 + 54a2a7k − 81a2

7 + 9(a2
3 − k2)a2

2)/9a2
2k

2,

α2 = (−2a4
2 + 27a2a7k + 81a2

7 + 9(k − a3)a2
2a3)/9a2

2k.

When k = 0, condition (iv) of Theorem 1.2 holds.
For condition (ii) we find

C = 1− a1x−
a2

3
y − a4x

2 − a5

3
xy,

α1 = (9a2
1 + 2a2

2 − 6a3k + 18a4 + 6a6 − 3k2)/3k2,

α2 = −(9a2
1 + 9a1k + 2a2

2 + 18a4 + 6a6)/3k,

with k 6= 0. When k = 0, condition (v) of Theorem 1.2 holds.
The Dulac function required when condition (iii) holds is by some way the most

complicated we have encountered. Here, in addition to the invariant exponential
function and the line kx = −1, we require an invariant conic, C1 = 0, and an
invariant cubic, C2 = 0. The Dulac function is

D = (1 + kx)α1eα2xCα3
1 Cα4

2 .

The invariant curves are not of high degree but have thousands of terms, and the
powers αi are non-trivial. The expressions are too lengthy to be given here. We
note that when a2 = 0, condition (iii) becomes condition (ii) of Theorem 2.2 and
the Dulac function reduces to that of equation (2.2). �
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4. Focal values

Having established a set of sufficient conditions for the origin to be a centre for
system (1.1) with ka2a7 6= 0 we endeavour to ascertain if we have found the nec-
essary conditions. If we could find a basis for the focal values for system (1.1) we
would be able to determine the necessary and sufficient conditions for the origin
to be a centre. However the computations soon become too large for the currently
available software and hardware systems. We reduce the focal values as far as is
possible and, by using examples, determine whether or not the sufficient conditions
we have found are indeed the only conditions for the origin to be a centre. We con-
jecture that the conditions given in Theorem 3.1 are both necessary and sufficient
for the origin to be a centre for system (1.1).

We calculate the focal values up to η16 and in order to simplify them we set
a1 = m − a3. We assume throughout this section that ka2a7 6= 0. We aim to
establish under what conditions the L(i) are zero simultaneously. We have

L(1) = a2m + a5 + 3a7.

Let a5 = −a2m− 3a7. Then L(1) = 0 and

L(2) = Aa6 + B,

where
A = a2(a3 + m)− 3a7

and

B =− 2a2
2a7 + 2a2a

2
3m− a2a3a4 − 3a2a3km− 5a2a3m

2 + 2a2a4k

+ 5a2a4m + 6a3a7m− 9a4a7 − 9a7km− 15a7m
2.

Assume that A 6= 0 and let a6 = −B/A. Then

L(3) = M0 + M1a4 + M2a
2
4,

L(4) = N0 + N1a4 + N2a
2
4 + N3a

3
4,

L(5) = P0 + P1a4 + P2a
2
4 + P3a

3
4 + P4a

4
4,

L(6) = Q0 + Q1a4 + Q2a
2
4 + Q3a

3
4 + Q4a

4
4 + Q5a

5
4,

where the Mi, Ni, Pi, Qi are polynomials in k, a1, a2, a3, a7.
In this instance calculating resultants to eliminate a4 is not feasible because of

the degrees to which the variables occur and the number of terms in the polyno-
mials involved. We employ a polynomial remainder sequence approach, the main
advantage being that we can work with the individual coefficients of the variable
being eliminated rather than the entire polynomial. Also factors of the reduced
polynomials can be removed at each stage in the process and some such factors can
be predicted. We use the following result to establish what these factors are.

Lemma 4.1. Suppose we have two univariate polynomials α1, α2. We can deter-
mine a sequence of polynomials α3, . . . , αj, of decreasing degree, such that

remainder(εδi−1+1
i αi−1, αi) = βi+1αi+1; i > 2,

where δi is the difference in degrees between αi and αi+1; εi is the leading coefficient
of αi; β3 = 1, βi+1 = ε

δi−2+1
i−1 . Hence we have that βi+1 divides the pseudo remainder

of αi−1 and αi.
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The Proof of the above lemma can be found in [4].
Assume that M2 6= 0. Let a2

4 = −(M0 + M1a4)/M2 such that L(3) = 0. Then

L(4) = A2(ρ0 + ρ1a4),

L(5) = A3(ν0 + ν1a4),

L(6) = A4(τ0 + τ1a4),

where the ρi, νi, τi are polynomials in m,a2, a3, a7, k. In particular ρ0, ρ1 are poly-
nomials with 936, 654 terms respectively.

Assume that ρ1 6= 0 and let a4 = −ρ0/ρ1. Then

L(3) = M2
2 A2a7zΩ,

L(5) = M2
2 Aa7zΓ,

L(6) = M2
2 Aa7zΦ,

where

z =− 81a2a
2
7k − 54a2

2a3a7k − 9a3
2a

2
3k + 243a3

7 + 12a4
2a7

+ 2a5
2a1 + 243a2a3a

2
7 + 4a5

2a3 + 81a2
2a

2
3a7 + 9a3

2a
3
3

and Ω,Γ,Φ are polynomials in m,a2, a3, a7.
When z = 0, the focal values η8, . . . , η14 have a common factor

Ψ =2a6
2a

2
3 + 2a6

2a4 + 12a5
2a3a7 + 9a4

2a
4
3 − 9a4

2a
3
3k + 18a4

2a
2
7 + 108a3

2a
3
3a7

− 81a3
2a

2
3a7k + 486a2

2a
2
3a

2
7 − 243a2

2a3a
2
7k + 972a2a3a

3
7 − 243a2a

3
7k + 729a4

7.

Let

a1 =
(−4a4

2 − 9a2
2a

2
3 + 9a2

2a3k − 54a2a3a7 + 27a2a7k − 81a2
7)γ

2a5
2

,

a4 =
(−2a4

2 − 9a2
2a

2
3 + 9a2

2a3k − 54a2a3a7 + 27a2a7k − 81a2
7)γ

2

2a6
2

,

where γ = a2a3 + 3a7. Then z = Ψ = 0 and

a6 =
−2a4

2 − 9a2
2a

2
3 + 9a2

2a3k − 81a2a3a7 + 27a2a7k − 162a2
7

9a2
2

.

These, together with a5 = −a2m−3a7, are condition (i) of Theorem 3.1; the origin
is a centre for system (1.1). We note that in the special case when A = B = 0 this
condition is still satisfied and there are no other conditions with ka2a7 6= 0.

The polynomials Ω,Γ,Φ have 2294, 2895 and 7674 terms respectively. The de-
grees to which each of the remaining variables occur in Ω,Γ,Φ are as shown in the
following table:

a2 a3 m a7 k
Ω 12 13 19 11 11
Γ 13 14 20 12 12
Φ 18 19 25 15 16

Clearly any further progress in the reduction of the focal values is going to be
difficult, if not impossible, but we note that Ω = Γ = Φ = 0 if either of the
conditions (ii) or (iii) of Theorem 3.1 holds.

Suppose that we could calculate the resultants of Ω,Γ and Ω,Φ with respect to
a3. Any common factor of the leading coefficients of a3 in Ω, Γ, Φ will be a factor
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of the resultants, but this common factor being zero may not be sufficient for the
vanishing of the polynomials. We have that a2a7m(k + m) is such a factor. In
particular, when k = −m, we find

Υ1 = (a2
2 + 4a2

3)a
2
7 + 2a2m

3a7 + a1m
4(a1 + 2a3)

is a common factor of Ω, Γ and Φ. Let

ω = a2
7 =

−2a2m
3a7 − a1m

4(a1 + 2a3)
a2
2 + 4a2

3

.

Then L(3) = q0 + q1a7. Assume q1 6= 0 and let a7 = −q0/q1. For consistency we
must have Υ = q2

1ω − q2
0 = 0. We find

Υ2 = (a2
2+4a2

3)a
2
4+(4a1a3(a1+3a3)+a2

2(a1−a3))ma4+a1m
2(a1(a1+3a3)2−a2

2a3)

is a common factor of L(4) and Υ. Now k = −m, a5 = −a2m− 3a7, a6 = −B/A,
Υ1 = Υ2 = 0 is precisely condition (iii) of Theorem 3.1; the origin is a centre.

We have seen how conditions (i) and (iii) of Theorem 3.1 emerge from the reduc-
tion of the focal values. However we are unable to locate condition (ii) by a similar
argument. It is possible that conditions (ii) and (iii) are specific instances of more
general conditions. We show that this is not the case by considering a particular
example. Each of these conditions has five relationships between the eight coeffi-
cients ai, k. We can choose values for three of the variables without imposing new
relationships.

Let a1 = 1, a2 = 1, a3 = −2. Now Ω,Γ,Φ are polynomials in a7, k, and a4, a5,
a6 are given in terms of a7, k also. Let R(f, g, x) denote the resultant of f and g
with respect to x and # represent a (large) integer. We calculate resultants with
respect to a7 and find

R(Ω,Γ, a7) = #(k − 1)3(2k − 3)6(k2 + 6k + 10)4φK1K2,

R(Ω,Φ, a7) = #(k − 1)3(2k − 3)4(k2 + 6k + 10)6φK1K3,

where φ = 162k3 + 152k2 − 28k − 84 and K1,K2,K3 are irreducible polynomials
of degrees 52, 64, 95 in k, respectively. When K1 = 0, then ρ0 = ρ1 = 0 and when
2k − 3 = 0, then a7 = 0; both situations are excluded under current assumptions.
The leading coefficients of a7 in Ω,Γ,Φ have k2 +6k+10, which is positive definite,
as a common factor. For the general case this factor is a2

2 + (a1 − a3 + k)2, which
is non-zero when a2 6= 0. Clearly K2,K3 cannot be zero simultaneously. So we
must have k = 1(= −m) or φ = 0; the former is true when condition (iii) holds, the
latter when condition (ii) holds. Furthermore there are no other centre conditions
with five or fewer relationships that satisfy Ω = Γ = Φ = 0.

After extensive consideration of all the possible situations in which the Liapunov
quantities up to L(6) are zero simultaneously we have not found any centre condi-
tions other than those given in Theorems 1.2, 2.1, 2.2 and 3.1. However there are
several instances where we are unable to calculate resultants or eliminate variables
using a polynomial remainder sequence, so we cannot be certain that we have a
complete set of necessary conditions. We have shown, by considering an example,
that when Ω = Γ = Φ = 0 there are no other such conditions which contain five or
fewer relationships between the coefficients. We can also demonstrate that when
one of k, a2 or a7 is zero in Ω,Γ,Φ then all the centre conditions found, by consid-
ering Ω = Γ = Φ = 0, can be obtained from one of the conditions in Theorem 3.1
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with the appropriate variable set to zero. This wealth of evidence leads us to the
following claim.

Conjecture 4.2. The origin is a centre for system (1.1) when ka2a7 6= 0 if and
only if one of the conditions of Theorem 3.1 holds.

5. Coexisting fine foci

One of the significant features of a planar dynamical system is the possible
configuration of limit cycles. Information is sought on the number of critical points
that can be encircled by closed orbits and on the number of closed orbits that can
encircle one such critical point. This may be phrased as asking how many nests of
limit cycles can there be and how many limit cycles make up each nest.

Suppose that λ = 0 in system (1.1), so that the origin is a fine focus. From
the equation for ẋ, critical points can occur only on the x-axis and on kx = −1.
However kx = −1 is invariant, so any critical point on it cannot be of focus type.
Thus any fine focus must have y = 0 and x(a4x

2 + a1x− 1) = 0. The condition for
a fine point is x(a5x + a2) = 0. Thus only one critical point other than the origin
can be a fine focus.

Lemma 5.1. System (1.1) with λ = 0 can have at most two fine foci.

Suppose that there are two fine foci. We can scale coordinates so that they are
(0, 0) and (1, 0). Then a4 = 1− a1, a5 = −a2 and the system is

ẋ = y(1 + kx),

ẏ = −x + a1x
2 + a2xy + a3y

2 + (1− a1)x3 − a2x
2y + a6xy2 + a7y

3.
(5.1)

The point (1, 0) is a fine focus, as opposed to a fine col, if (k + 1)(a1 − 2) > 0. We
denote the Liapunov quantities associated with the origin by L(i) and those for the
point (1, 0) by M(i).

Theorem 5.2. Suppose that the origin and (1, 0) coexist as fine foci in system
(5.1). If (1, 0) is of order one then the origin is of order at most six.

Proof. We calculate that

L(1) = a2(a1 + a3 − 1) + 3a7, (5.2)

M(1) = 3(a1 − 2)2a7 + a2((2− a1)a6 + (a1 − 1)(k − a3 + 1) + a3). (5.3)

For (1, 0) to be a fine focus of order one we must ensure that M(1) 6= 0. Let
a7 = 1

3a2(1− a1 − a3), then L(1) = 0 and

L(2) = a2(3a6(2a1 + 3a3 − 1) + ϕ),

where

ϕ =15a3
1 + 24a2

1a3 + 9a2
1k − 39a2

1 + 2a1a
2
2 + 9a1a

2
3 + 9a1a3k − 45a1a3

− 15a1k + 33a1 + 2a2
2a3 − 2a2

2 − 9a2
3 − 9a3k + 21a3 + 6k − 9.

If a2 = 0, then a5 = a7 = 0 and the origin is a centre by Theorem 2.1 (i). We require
a2 6= 0 for the origin to be a fine focus of order greater than two. If 2a1 + 3a3 = 1
then ϕ = a2Φ, where

Φ = (a1 − 2)(2a2
2 + 9(a1 − 1)2) + 9(k + 1)(a1 − 1)2, (5.4)

which is non-zero if a2 6= 0 and (1, 0) is a fine focus.
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So, for the origin to be a fine focus of order greater than two, we also need
2a1 + 3a3 6= 1. Let a6 = ϕ

3(1−2a1−3a3)
. Now we require M(1) = a2(a1 + a3 − 1)Φ to

be non-zero and we have

L(3) = M(1)(Γ− 2a2
2(a1 + a3 − 1)),

where

Γ =3(25a3
1 + 97a2

1a3 + 7a2
1k − 32a2

1 + 117a1a
2
3 + 22a1a3k − 88a1a3

− 4a1k + 14a1 + 45a3
3 + 15a2

3k − 54a2
3 − 8a3k + 22a3 − 2).

Let a2
2 = Γ

2(a1+a3−1) . Then

L(4) = a2(Ak2 + Bk + C)Ω,

where

A = 15(a1 + a3)2 − 20(a1 + a3) + 8 > 0,

B = 15(a1 + a3)2(11a1 + 13a3)− 5(a1 + a3)(59a1 + 67a3) + 4(45a1 + 49a3 − 8),

C =90(a1 + a3)3(4a1 + 5a3)− 45(a1 + a3)2(19a1 + 23a3)

+ 30(a1 + a3)(25a1 + 29a3)− 8(35a1 + 38a3 − 5),

Ω =15(a1 − 2)a2
3 + (a1 − 2)(29a1 + 5k − 13)a3 + 14a3

1 + 5a2
1k − 40a2

1

− 11a1k + 28a1 + 3k − 7.

When a3 is either root of Ω = 0, we have a2
2 < 0. We require a2 to be real, so

Ω 6= 0. As A is non-zero let k = (−B+r)
2A , where

r =
√

B2 − 4AC. (5.5)

Then
L(5) = a2Ω(αr + β),

where α, β are polynomials of degrees nine and twelve in a1, a3. Assume for the
time being that α 6= 0. Let r = −β

α . Then

L(6) = a2Ω(3a1 + 3a3 − 2)2Θ,

where Θ is a polynomial of degree sixteen in a1 and a3. For consistency, r as given

by (5.5) must also be equal to −β

α
. This is true if (3a1 + 3a3 − 2)Λ = 0, where Λ

is a polynomial of degree twelve in a1, a3. When 3a1 + 3a3 = 2 then k = −1, and
(1, 0) is not a fine focus. The origin can be a fine focus of order greater than six
only if Θ = Λ = 0. We calculate the resultants of Θ and Λ with respect to a1 and
a3. We find

R(Θ,Λ, a3) =#(a1 − 2)3(a1 − 1)3(a1 − 5)2(2a1 − 1)(6a3
1 − 58a2

1 + 183a1 − 191)

× (8a2
1 − 41a1 + 53)(27a4

1 − 180a3
1 + 478a2

1 − 620a1 + 343)2zΥ,

where z,Υ are polynomials of degrees eighteen and forty in a1. The quadratic
and degree four factors are positive definite. The one real root of the cubic factor,
together with the corresponding value for a3, are such that a1 + a3 = 1, which is
excluded if (1, 0) is a fine focus of order one. When a1 = 1

2 (or a1 = 5) then a3 = 0
(or a3 = −3) and 2a1 + 3a3 = 1, which is also excluded. Similarly, when a1 = 1 or
a1 = 2 then (k + 1)(a1 − 2) ≤ 0.
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Using Sturm sequences [13] we find that Υ = 0 has six distinct real roots. We
also locate the corresponding roots a3, and find that all the root pairs are such
that (k + 1)(a1 − 2) ≤ 0. When z = 0, we have α = β = 0. A similar analysis to
that for the case α 6= 0 leads us to conclude that, when α = 0, the origin can be of
maximum order five when (1, 0) is of order one.

We conclude that L(6) 6= 0 under current assumptions; the origin is of maxi-
mum order six and at most seven small amplitude limit cycles can be bifurcated
simultaneously from the two fine foci. �

Theorem 5.3. Suppose that the origin and (1, 0) coexist as fine foci for system
(5.1). If (1, 0) is of order greater than one then both the fine foci are of maximum
order two, or both are centres.

Proof. We have L(1),M(1) given by (5.2), (5.3) respectively. Again we make a
substitution for a7 from L(1) = 0. Then

M(1) = a2(a6(2− a1) + φ),

where
φ = (1− a1)(a2

1 + a1a3 − 4a1 − 2a3 − k + 3).

If (1, 0) is a fine focus then a1 6= 2. Let a6 = φ
a1−2 . Then

L(2) = M(2) = a2(a1 − 2)(a1 + a3 − 1)Φ,

where Φ is given by (5.4). If a2 = 0, then a5 = a7 = 0 and both critical points
are centres by Theorem 2.1 (i). Similarly, when a1 + a3 = 1 then a4 = a3, a6 =
a3(k−a3)

a3+1 , a7 = 0 and both critical points are centres by Theorem 2.1 (iv). If a2 6= 0
and (1, 0) is a fine focus then (a1−2)Φ 6= 0. If L(2) is non-zero, so is M(2) . Hence
both points are fine foci of maximum order two or they are both centres. �

We can demonstrate that four small amplitude limit cycles can be bifurcated
from the two fine foci of order two of system (1.1). We begin with system (1.1)
with

λ = 0, a4 = 1− a1, a5 = −a2, a7 = −1
3
a2(a1 + a3 − 1), a6 =

φ

a1 − 2
.

Hence the origin and (1, 0) are fine foci of order two, and L(0) = M(0) = L(1) =
M(1) = 0,M(2) = L(2) 6= 0. First we perturb a6 such that M(1) becomes non-zero
and of opposite sign to M(2). If (2−a1)(a1 +a3−1) > 0 we decrease a6, otherwise
we increase a6. The stability of (1, 0) is reversed and a limit cycle bifurcates. Next
we perturb a7 such that L(1) becomes non-zero and of opposite sign to L(2), so
reversing the stability of the origin. If a2(a1 + a3 − 1) > 0 then we decrease a7,
otherwise we increase a7. A second limit cycle bifurcates, but this time from the
origin. Another limit cycle can be bifurcated from the origin, by increasing λ if
a2(a1 + a3 − 1) > 0 or decreasing λ otherwise. To bifurcate a fourth limit cycle
from (1, 0) we require the stability of (1, 0) to be reversed, so then it has the same
stability as the origin. Hence we require λM(1) < 0, which is the case when
M(1)M(2) < 0.

Similarly seven small amplitude limit cycles can be bifurcated from the two fine
foci when one is of order one and the other is of order six.



18 J. M. HILL, N. G. LLOYD, J. M. PEARSON EJDE-2007/119

6. Large amplitude limit cycles

We have proved that the origin can be a fine focus of order seven and we have
investigated the possibility of small amplitude limit cycles bifurcating from two
coexisting fine foci. In this case we found that the maximum number of small
amplitude limit cycles that can exist simultaneously is seven. By considering the
global phase portrait within a particular parameter range, we shall demonstrate
that a large amplitude limit cycle can surround two fine foci in system (1.1). It is
known that the Kukles system, with two fine foci of order two, can have a large
amplitude limit cycle surrounding both critical points [14].

Theorem 6.1. If the fine foci at the origin and (1, 0) are both of order two for
system (1.1) then at least five limit cycles exist under certain conditions.

Proof. We begin with two fine foci, each of maximal order two. Therefore system
(1.1) is of the form

ẋ = y (1 + kx) ,

ẏ = −x + a1x
2 + a2xy + (1− a1 + δ)y2 + (1− a1)x3 − a2x

2y + Axy2 − a2δ

3
y3,

(6.1)
where

δ = a1 + a3 − 1, A = (1− a1)
(
δ − (a1 + k − 1)

(a1 − 2)

)
, (k + 1)(a1 − 2) > 0.

One can consider system (6.1) as a perturbation of the system
ẋ = y (1 + kx) ,

ẏ = −x + a1x
2 + (1− a1 + δ)y2 + (1− a1)x3 + Axy2,

(6.2)

with the introduction of the term

β = −a2y
(
(x− 1

2
)2 +

δ

3
y2 − 1

4

)
,

when a2 is perturbed from zero. System (6.2) has centres at the origin and (1, 0),
and a col at ( 1

a1−1 , 0). We consider a particular global phase portrait of system
(6.2). We can arrange for there to be no critical points on the line kx = −1 by
choosing values of the parameters such that

k(a1 − 2)(δ − a1)− k + a2
1(δ − 1) + a1(2− 3δ) + 2δ − 1 ≥ 0.

For example, we can take k = 1, a1 = 3, δ = 3. We then use polar coordinates to
consider the critical points at infinity. Provided that A ≤ 0, that is δ ≥ a1+k−1

a1−2 ,
the only critical points at infinity lie on θ = ±π

2 .
At infinity θ̇ ≤ 0, so the motion is clockwise in the region kx > −1 and the

outward separatrices of the col cannot tend to a critical point at infinity. The
system is symmetric in the x-axis, so the separatrices form homoclinic loops and
the orbits outside the ‘figure of eight’ so formed are closed. Take one of these closed
orbits; Γ, say. Increase a2 so that system (6.2) becomes system (6.1). For system
(6.1) the flow is inwards across Γ because the vector product of the two fields is

−y2(1 + kx)a2

(
(x− 1

2
)2 +

δ

3
y2 − 1

4

)
.

If a2 > 0, the two fine foci are both unstable and hence there is a large amplitude
limit cycle inside Γ.
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In the previous section we demonstrated that a total of four small amplitude
limit cycles can be bifurcated from the origin and (1, 0) simultaneously. Our current
assumptions are consistent with the argument therein. Therefore system (1.1) can
have five limit cycles. �

This leads us to the following conjecture.

Conjecture 6.2. When system (1.1) has two fine foci of orders six and one than
at least eight limit cycles can exist.

Concluding remarks. We have presented various properties of system (1.1). In
particular we have found sufficient conditions for the origin to be a centre by finding
complicated invariant functions that can be combined to form a Dulac function.
We conjecture that we have found the necessary and sufficient conditions for the
origin to be a centre for system (1.1) even though we were unable to complete the
reduction of the focal values because of the size of the expressions generated. We
also proved some results on the possible configurations of limit cycles.

7. Appendix

The polynomials required in the proof of condition (ii) of Theorem 2.2 are as
follows:

Φ0 =a4
3a7k

4 + 2a3
3a7k

5 + 2a3
3k

4w + 4a2
3a7w

2 + 2a2
3k

5w

− 2a3a7k
7 − 2a3k

6w − a7k
8 − 2k7w,

Φ1 =2a6
3k

4 + 20a5
3a7w + 2a5

3k
5 − 5a4

3k
6 + 12a4

3w
2 − 24a3

3a7k
2w − 6a3

3k
7

− 12a3
3kw2 − 4a2

3a7k
3w + 2a2

3k
8 + 4a3k

9 + k10,

Φ2 =− 4a8
3a7k

2 − 12a7
3k

2w + 16a6
3a7k

4 + 12a6
3k

3w + 4a5
3a7k

5 + 30a5
3k

4w

− 21a4
3a7k

6 − 72a4
3a7w

2 − 24a4
3k

5w − 10a3
3a7k

7 + 216a3
3a7kw2

− 24a3
3k

6w + 8a2
3a7k

8 + 12a2
3k

7w + 6a3a7k
9 + 6a3k

8w + a7k
10,

Φ3 =a5
3k

4 − 8a4
3a7w + a4

3k
5 − 2a3

3k
6 + 8a3

3w
2 + 8a2

3a7k
2w

− 2a2
3k

7 + a3k
8 + k9,

Φ4 =2a3
3a7 + 3a2

3w − 3a3a7k
2 − 3a3kw − a7k

3,

F0 =a4
3a7k

4 + 2a3
3a7k

5 + 2a3
3k

4w + 4a2
3a7w

2 + 2a2
3k

5w − 2a3a7k
7 − 2a3k

6w

− a7k
8 − 2k7w,

F1 =2a6
3k

4 + 20a5
3a7w + 2a5

3k
5 + 12a4

3a7kw − 5a4
3k

6 + 12a4
3w

2 − 12a3
3a7k

2w

− 6a3
3k

7 − 4a2
3a7k

3w + 2a2
3k

8 + 4a3k
9 + k10,

F2 =4a7
3a7k

3 − 4a6
3a7k

4 + 12a6
3k

3w − 12a5
3a7k

5 − 12a5
3k

4w + 8a4
3a7k

6

+ 144a4
3a7w

2 − 18a4
3k

5w + 13a3
3a7k

7 − 216a3
3a7kw2 + 12a3

3k
6w

− 3a2
3a7k

8 + 6a2
3k7w − 5a3a7k

9 − a7k
10,

F3 =a4
3k

5 − 8a3
3a7kw + 4a3

3w
2 + 8a2

3a7k
2w − 2a2

3k
7 + k9,

F4 =2a3
3a7 + 3a2

3w − 3a3a7k
2 − a7k

3,

Γ1 =96a6
3a7k

3γ2 − 32a6
3k

4γ3 + 12a5
3a7k

4γ2 + 144a5
3a7γ

3w − 9a5
3k

7γ
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− 108a5
3k

3γ2w − 243a4
3a7k

7 − 282a4
3a7k

5γ2 − 36a4
3a7k

3γw + 72a4
3k

8γ

+ 98a4
3k

6γ3 + 12a4
3k

4γ2w − 486a3
3a7k

8 − 114a3
3a7k

6γ2 + 180a3
3k

9γ

+ 34a3
3k

7γ3 + 108a3
3k

5γ2w + 186a2
3a7k

7γ2 + 36a2
3a7k

5γw + 18a2
3k

10γ

− 66a2
3k

8γ3 − 12a2
3k

6γ2w + 486a3a7k
10 + 102a3a7k

8γ2 − 171a3k
11γ

− 34a3k
9γ3 + 243a7k

11 − 90k12γ,

Γ2 =512a11
3 a7k

4γ3 − 384a11
3 k7γ2 − 36a10

3 a7k
7γ + 2016a10

3 a7k
3γ2w

− 96a10
3 k8γ2 − 672a10

3 k4γ3w − 1152a9
3a7k

8γ − 2624a9
3a7k

6γ3

+ 228a9
3a7k

4γ2w + 768a9
3a7γ

3w2 + 837a9
3k

11 + 2256a9
3k

9γ2

− 225a9
3k

7γw + 96a9
3k

5γ3w − 576a9
3k

3γ2w2 − 2106a8
3a7k

9γ

− 1052a8
3a7k

7γ3 − 5211a8
3a7k

7w − 5958a8
3a7k

5γ2w − 540a8
3a7k

3γw2

+ 1917a8
3k

12 + 1206a8
3k

10γ2 + 1575a8
3k

8γw + 2058a8
3k

6γ3w

+ 180a8
3k

4γ2w2 + 2556a7
3a7k

10γ + 4164a7
3a7k

8γ3 − 10071a7
3a7k

8w

− 2316a7
3a7k

6γ2w + 1368a7
3a7k

4γw2 + 792a7
3a7k

2γ3w2 − 288a7
3a7γ

2w3

− 1917a7
3k

13 − 4572a7
3k

11γ2 + 3726a7
3k

9γw + 402a7
3k

7γ3w

− 783a7
3k

7w2 − 126a7
3k

5γ2w2 + 216a7
3k

3γw3 + 8226a6
3a7k

11γ

+ 2936a6
3a7k

9γ3 + 702a6
3a7k

9w + 4008a6
3a7k

7γ2w + 2484a6
3a7k

5γw2

− 168a6
3a7k

3γ3w2 − 7695a6
3k

14 − 3462a6
3k

12γ2 − 216a6
3k

10γw

− 1488a6
3k

8γ3w − 1458a6
3k

8w2 − 54a6
3k

6γ2w2 + 3528a5
3a7k

12γ

− 1672a5
3a7k

10γ3 + 10422a5
3a7k

10w + 2088a5
3a7k

8γ2w + 576a5
3a7k

6γw2

− 2187a5
3k

15 + 3600a5
3k

13γ2 − 3861a5
3k

11γw − 480a5
3k

9γ3w

+ 108a5
3k

9w2 + 702a5
3k

7γ2w2 − 216a5
3k

5γw3 − 4806a4
3a7k

13γ

− 1884a4
3a7k

11γ3 + 4509a4
3a7k

11w − 66a4
3a7k

9γ2w + 8667a4
3k

16

+ 3690a4
3k

14γ2 − 1377a4
3k

12γw + 102a4
3k

10γ3w + 1458a4
3k

10w2

− 126a4
3k

8γ2w2 − 4932a3
3a7k

14γ − 380a3
3a7k

12γ3 − 351a3
3a7k

12w

+ 6777a3
3k

17 − 588a3
3k

15γ2 + 360a3
3k

13γw − 18a3
3k

11γ3w + 675a3
3k

11w2

− 1278a2
3a7k

15γ − 1917a2
3k

18 − 1338a2
3k

16γ2 + 18a2
3k

14γw − 3510a3k
19

− 312a3k
17γ2 − 972k20,

Γ3 =192a8
3k

4γ2 − 576a7
3a7γ

2w − 192a7
3k

5γ2 − 64a6
3a7k

3γ3 + 576a6
3a7kγ2w

− 432a6
3k

8 − 780a6
3k

6γ2 + 56a5
3a7k

4γ3 + 1296a5
3a7k

4w + 576a5
3a7k

2γ2w

− 432a5
3k

9 + 390a5
3k

7γ2 + 48a5
3k

3γ3w + 162a4
3a7k

7γ + 132a4
3a7k

5γ3

+ 1296a4
3a7k

5w − 48a4
3a7k

3γ2w + 1323a4
3k

10 + 1134a4
3k

8γ2

− 32a4
3k

4γ3w + 162a3
3a7k

8γ − 56a3
3a7k

6γ3 + 48a3
3a7k

4γ2w + 1782a3
3k

11

− 54a3
3k

9γ2 − 16a3
3k

5γ3w − 162a2
3a7k

9γ − 68a2
3a7k

7γ3 − 432a2
3k

12

− 546a2
3k

10γ2 − 162a3a7k
10γ − 1350a3k

13 − 144a3k
11γ2 − 459k14,
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Γ4 =128a6
3a7γ

3 − 96a6
3k

3γ2 + 36a5
3a7k

3γ − 12a5
3k

4γ2 − 288a4
3a7k

4γ

− 264a4
3a7k

2γ3 − 48a4
3a7γ

2w + 243a4
3k

7 + 282a4
3k

5γ2 + 36a4
3k

3γw

− 684a3
3a7k

5γ − 136a3
3a7k

3γ3 + 486a3
3k

8 + 114a3
3k

6γ2 − 360a2
3a7k

6γ

− 186a2
3k

7γ2 − 36a2
3k

5γw − 486a3k
10 − 102a3k

8γ2 − 243k11,

Γ5 =512a10
3 a7k

4γ3 − 96a9
3k

8γ2 − 480a9
3k

4γ3w − 1116a8
3a7k

8γ

− 2624a8
3a7k

6γ3 + 1020a8
3a7k

4γ2w + 192a8
3a7γ

3w2 − 96a8
3k

9γ2

+ 96a8
3k

5γ3w − 2232a7
3a7k

9γ − 1088a7
3a7k

7γ3 + 144a7
3a7k

5γ2w

+ 243a7
3k

12 + 390a7
3k

10γ2 + 1197a7
3k

8γw + 1470a7
3k

6γ3w

− 324a7
3k

4γ2w2 + 2412a6
3a7k

10γ + 4128a6
3a7k

8γ3 − 1944a6
3a7k

8w

− 2748a6
3a7k

6γ2w + 828a6
3a7k

4γw2 + 648a6
3a7k

2γ3w2 − 288a6
3a7γ

2w3

+ 729a6
3k

13 + 492a6
3k

11γ2 + 2169a6
3k

9γw + 216a6
3k

7γ3w

+ 108a6
3k

5γ2w2 + 8352a5
3a7k

11γ + 3008a5
3a7k

9γ3 − 3888a5
3a7k

9w

− 996a5
3a7k

7γ2w + 1944a5
3a7k

5γw2 − 24a5
3a7k

3γ3w2 + 243a5
3k

14

− 390a5
3k

12γ2 − 450a5
3k

10γw − 1092a5
3k

8γ3w + 324a5
3k

6γ2w2

+ 3708a4
3a

7k12γ − 1600a4
3a7k

10γ3 + 1728a4
3a7k

8γ2w + 1116a4
3a7k

6γw2

− 1215a4
3k

15 − 696a4
3k

13γ2 − 2394a4
3k

11γw − 312a4
3k

9γ3w

− 108a4
3k

7γ2w2 − 4824a3
3a7k

13γ − 1920a3
3a7k

11γ3 + 3888a3
3a7k

11w

+ 852a3
3a7k

9γ2w − 1215a3
3k

16 − 6a3
3k

14γ2 − 747a3
3k

12γw

+ 102a3
3k

10γ3w − 5004a2
3a7k

14γ − 416a2
3a7k

12γ3 + 1944a2
3a7k

12w

+ 243a2
3k

17 + 300a2
3k

15γ2 + 225a2
3k

13γw − 1296a3a7k
15γ

+ 729a3k
18 + 102a3k

16γ2 + 243k19,

Γ6 =− 3072a13
3 a7k

4γ2 + 2880a12
3 k4γ2w + 6912a11

3 a7k
8 + 21888a11

3 a7k
6γ2

− 1152a11
3 a7γ

2w2 + 256a11
3 k7γ3 − 576a11

3 k5γ2w + 13824a10
3 a7k

9

+ 9408a10
3 a7k

7γ2 − 960a10
3 a7k

3γ3w + 64a10
3 k8γ3 − 6480a10

3 k8w

− 14580a10
3 k6γ2w − 28512a9

3a7k
10 − 55704a9

3a7k
8γ2 − 488a9

3a7k
4γ3w

+ 2592a9
3a7k

4w2 − 1584a9
3a7k

2γ2w2 − 558a9
3k

11γ − 1504a9
3k

9γ3

− 11664a9
3k

9w − 2514a9
3k

7γ2w + 96a9
3k

3γ3w2 − 85050a8
3a7k

11

− 44580a8
3a7k

9γ2 + 2394a8
3a7k

7γw + 2844a8
3a7k

5γ3w + 5184a8
3a7k

5w2

+ 648a8
3a7k

3γ2w2 − 1278a8
3k

12γ − 804a8
3k

10γ3 + 15957a8
3k

10w

+ 24042a8
3k

8γ2w + 216a8
3k

4γ3w2 − 7614a7
3a7k

12 + 51984a7
3a7k

10γ2

+ 5634a7
3a7k

8γw + 2264a7
3a7k

6γ3w + 11340a7
3a7k

6w2

+ 7440a7
3a7k

4γ2w2 + 192a7
3a7γ

3w3 + 1278a7
3k

13γ + 3048a7
3k

11γ3

+ 42930a7
3k

11w + 9954a7
3k

9γ2w + 414a7
3k

7γw2 + 156a7
3k

5γ3w2

− 144a7
3k

3γ2w3 + 137862a6
3a7k

13 + 66036a6
3a7k

11γ2 + 1692a6
3a7k

9γw
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− 1520a6
3a7k

7γ3w + 17172a6
3a7k

7w2 + 2952a6
3a7k

5γ2w2 + 5130a6
3k

14γ

+ 2308a6
3k

12γ3 + 8991a6
3k

12w − 12690a6
3k

10γ2w + 972a6
3k

8γw2

− 228a6
3k

6γ3w2 + 112914a5
3a7k

14 − 2520a5
3a7k

12γ2 − 4788a5
3a7k

10γw

− 1776a5
3a7k

8γ3w + 8100a5
3a7k

8w2 − 1104a5
3a7k

6γ2w2 + 1458a5
3k

15γ

− 2400a5
3k

13γ3 − 29808a5
3k

13w − 6462a5
3k

11γ2w + 144a5
3k

9γw2

− 252a5
3k

7γ3w2 + 144a5
3k

5γ2w3 − 30942a4
3a7k

15 − 29436a4
3a7k

13γ2

− 4086a4
3a7k

11γw − 364a4
3a7k

9γ3w − 324a4
3a7k

9w2 − 5778a4
3k

16γ

− 2460a4
3k

14γ3 − 17901a4
3k

14w + 774a4
3k

12γ2w − 972a4
3k

10γw2

+ 12a4
3k

8γ3w2 − 78570a3
3a7k

16 − 12576a3
3a7k

14γ2 − 846a3
3a7k

12γw

− 4518a3
3k

17γ + 392a3
3k

15γ3 − 486a3
3k

15w − 402a3
3k

13γ2w

− 558a3
3k

11γw2 − 35694a2
3a7k

17 − 1428a2
3a7k

15γ2 + 1278a2
3k

18γ

+ 892a2
3k

16γ3 − 567a2
3k

16w − 426a2
3k

14γ2w − 5130a3a7k
18

+ 2340a3k
19γ + 208a3k

17γ3 − 972a3k
17w + 648k20γ,

Γ7 =768a9
3a7k

3γ2 − 256a9
3k

4γ3 + 192a8
3a7k

4γ2 + 384a8
3a7γ

3w + 18a8
3k

7γ

− 288a8
3k

3γ2w − 1674a7
3a7k

7 − 3744a7
3a7k

5γ2 + 180a7
3a7k

3γw

+ 576a7
3k

8γ + 1312a7
3k

6γ3 − 492a7
3k

4γ2w − 3834a6
3a7k

8

− 2220a6
3a7k

6γ2 − 936a6
3a7k

4γw − 792a6
3a7k

2γ3w − 144a6
3a7γ

2w2

+ 1053a6
3k

9γ + 526a6
3k

7γ3 + 783a6
3k

7w + 846a6
3k

5γ2w + 108a6
3k

3γw2

+ 2160a5
3a7k

9 + 5400a5
3a7k

7γ2 − 2304a5
3a7k

5γw − 264a5
3a7k

3γ3w

+ 108a5
3a7k

3w2 − 1278a5
3k

10γ − 2082a5
3k

8γ3 + 2484a5
3k

8w

+ 1698a5
3k

6γ2w − 36a5
3k

4γw2 + 11556a4
3a7k

10 + 4704a4
3a7k

8γ2

− 1044a4
3a7k

6γw − 4113a4
3k

11γ − 1468a4
3k

9γ3 + 1836a4
3k

9w

− 114a4
3k

7γ2w − 108a4
3k

5γw2 + 6534a3
3a7k

11 − 1800a3
3a7k

9γ2

+ 180a3
3a7k

7γw − 144a3
3a7k

5γ3w − 108a33a7k
5w2 − 1764a3

3k
12γ

+ 836a3
3k

10γ3 − 1566a3
3k

10w − 1206a3
3k

8γ2w + 36a3
3k

6γw2

− 5778a2
3a7k

12 − 2676a2
3a7k

10γ2 + 36a2
3a7k

8γw + 2403a2
3k

13γ

+ 942a2
3k

11γ3 − 2619a2
3k

11w − 444a2
3k

9γ2w − 7020a3a7k
13

− 624a3a7k
11γ2 + 2466a3k

14γ + 190a3k
12γ3 − 918a3k

12w − 1944a7k
14

+ 639k15γ.
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